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Abstract: The process of segmenting images is one of the most critical ones in automatic image analysis 
whose goal can be regarded as to find what objects are presented in images. Artificial neural networks 
have been well developed. First two generations of neural networks have a lot of successful applications. 
Spiking Neuron Networks (SNNs) are often referred to as the 3rd generation of neural networks which 
have potential to solve problems related to biological stimuli. They derive their strength and interest from 
an accurate modeling of synaptic interactions between neurons, taking into account the time of spike 
emission. SNNs overcome the computational power of neural networks made of threshold or sigmoidal 
units. Based on dynamic event-driven processing, they open up new horizons for developing models with 
an exponential capacity of memorizing and a strong ability to fast adaptation. Moreover, SNNs add a new 
dimension, the temporal axis, to the representation capacity and the processing abilities of 
neuralnetworks. In this paper, we present how SNN can be applied with efficacy in image segmentation. 
Keywords: Classification, Clustering, Learning, Segmentation, Spiking neuron network. 

 

1. INTRODUCTION 

Mage segmentation consists in subdividing an image into 
its constituent parts and extracting these parts of interest. A 

large number of segmentation algorithms have been 
developed since the middle of 1960’s [1], and this number 
continually increases from year to year in a fast rate. 
Simple and popular methods are threshold-based and process 
histogram characteristics of the pixel intensities of the image. 
Of course, thresholding has many limitations: the transition 
between objects and background has to be distinct and the 
result does not guarantee closed object contours, often 
requiring substantial post-processing. Region-based methods 
have also been developed; they exploit similarity in intensity, 
gradient, or variance of neighboring pixels. Watersheds 
methods can be included in this category. The problem with 
these methods is that they do not employ any shape 
information of the image, which can be useful in the presence 
of noise. Meanwhile, artificial neural networks are already 
becoming a fairly renowned technique within computer 
science. Since 1997, Maass[2],[3] has quoted that 
computation and learning has to proceed quite differently in 
SNNs. He proposes to classify neural networks as follows: 

• 1st generation: Networks based on McCulloch and Pitts’ 
neurons as computational units, i.e. threshold gates, with 
only digital outputs (e.g.perceptrons, Hopfield network, 
Boltzmann machine, multilayer perceptrons with 
threshold units). 

• 2nd generation : Networks based on computational units 
that apply an activation function with a continuous set of 
possible output values, such as sigmoid or polynomial or 
exponential functions (e.g. MLP, RBF networks). The real 

valued outputs of such networks can be interpreted as 
firing rates of natural neurons. 

• 3rdgeneration of neural network models: Networks which 
employ spiking neurons as computational units, taking 
into account the precise firing times of neurons for 
information coding. 

The use of spiking neurons promises high relevance for 
biological systems and, furthermore, might be more flexible 
for computer vision applications [4]. Many of the existing 
segmentation techniques, such as supervised clustering use a 
lot of parameters which are difficult to tune to obtain 
segmentation where the image has been partitioned into 
homogeneously colored regions. In this paper, a spiking 
neural network approach is used to segment images with 
unsupervised learning. 
The paper is organized as follows: in the first Section, related 
works present in the literature of spiking neural network 
(SNNs). The second Section is the central part of the paper 
and is devoted to the description of the SNN segmentation 
method and its main features. The results and discussions of 
the experimental activity are reported in the third Section. 
Last Section concludes. 
  

2. SPIKING NEURAL NETWORK 

2.1 Biological background 

Neurons are remarkable among the cells of the body in their 
ability to propagate signals rapidly over large distances. They 
do this by generating characteristic electrical pulses called 
action potentials, or more simply spikes that can travel down 
nerve fibers.  
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Neurons are highly specialized for generating electrical 
signals in response to chemical and other inputs, and 
transmitting them to other cells. Some important 
morphological specializations are the dendrites that receive 
inputs from other neurons and the axon that carries the 
neuronal output to other cells. The elaborate branching 
structure of the dendrite tree allows a neuron to receive inputs 
from many other neurons through synaptic connections [6]. 
The membrane potential   of a postsynaptic neuron  
varies continuously through time (cf. Figure 1). Each action 
potential, or spike, emitted by a presynaptic neuron 
connected to generates a weighted PostSynaptic Potential 
(PSP) which is function of time. 
If the  synaptic weight is excitatory, the EPSP is positive: 
Sharp increasing of the potential   and then smoothly 
decreasing back to null influence. If  is inhibitory then 
the IPSP is negative: Sharp decreasing  and then 
smoothly increasing. At each time, the value of  results 
from the addition of the still active PSPs variations. 
Whenever the potential  reaches the threshold value  
of , the neuron fires or emits a spike, that corresponds to a 
sudden and very high increase of , followed by a 
strong depreciation and a smooth return to the resting  
potential 0 [7]. 
 

  
Fig. 1. Emission of spike 

 
2.2 Models of spiking neurons 
 
Since the works of Santiago Ramon y Cajal and Camillo 
Golgi, a vast number of theoretical neuron models have been 
created, with a modern phase beginning with the work of 
Hodgkin and Huxley [8]. 
We divide the spiking neuron models into three main classes, 
namely threshold-fire, conductance based and compartmental 
models. Because of the nature of this paper we will only 
cover the class of threshold-fire and specially spike response 
model (SRM). 
The SRM as defined by Gerstner [9] is simple to understand 
and to implement. The model expresses the membrane 
potential u at time t as an integral over the past, including a 
model of refractoriness.  
Let ; 1  denote the set of all firing times 
of neuron  and  
Γ ;       denote the set of all 
presynaptic neuron to .  
The state  of neuron  at time t is given by: 

Γ

 

 
 
 

(1) 

  models the potential reset after a spike emission,  
describes the response to presynaptic spikes. For the kernel 
functions, a choice of usual expressions is given by: 

   (2) 

 
where H is the Heaviside function,  is the threshold and   a 
time constant defining the decay of the PSP. The function 

 is an  -function as: 
 0  0  

 
 

(3) 

 
3. SEGMENTATION USING SPIKING NEURAL 

NETWORK 
 
However, before building a SNN, we have to explore three 
important issues: network architecture, information encoding 
and learning method. After that we will use the SNN to 
segment images. 
 
3.1 Network architecture 
 
The network architecture consists of a fully connected 
feedforward network of spiking neurons with connections 
implemented as multiple delayed synaptic terminals (Fig 2). 
The network consists of an input layer, a hidden layer, and an 
output layer. The first layer is composed of three inputs 
neurons (RGB values) of pixel. Each node in the hidden layer 
has a localized activation Φ Φ X C ,σ   where 
Φ .  is a radial basis function (RBF) localized around C with the degree of localization parameterized by σ . 

Choosing Φ Z,σ e  Z
σ   gives the Gaussian RBF. This 

layer transforms real values to temporal values. The 
activations of all hidden nodes are weighted and sent to the 
output layer. Instead of a single synapse, with its specific 
delay and weight, this synapse model consists of many sub-
synapses, each one with its own weight and delay d . 

 
Fig. 2. Network architecture 
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3.2 Information encoding 
 
The first question that arises when dealing with spiking 
neurons is how neurons encode information in their spike 
trains, since we are especially interested in a method to 
translate an analog value into spikes. We distinguish 
essentially three different approaches [9] in a very rough 
categorization: 
Rate coding: the information is encoded in the firing rate of 
the neurons.  
Temporal coding: the information is encoded by the timing of 
the spikes. 
Population coding: information is encoded by the activity of 
different pools (populations) of neurons, where a neuron may 
participate of several pools. 
We have used the temporal encoding proposed by Bohte et al.  
in [10]. By this method, the input variables are encoded with 
graded and overlapping activation functions, modeled as 
local receptive fields. 
Each neuron of entry is modeled by a local receiving field. A 
receiving field is a Gaussian function. Each receiving field i 
have a center C  given by the equation (4) and a width 
σ  given by the equation (5) such as: m is number of receptive 
fields in each population and γ 1.5. 
 1.52  
 

 (4) 

1 2  
(5) 

 
3.3 Learning method 
 
The approach presented here implements the Hebbian 
reinforcement learning method through a winner-takes-all 
algorithm [11]. For unsupervised learning, a Winner-Take-
All learning rule modifies the weights between the input 
neurons and the neuron first to fire in the output layer using a 
time-variant of Hebbian learning: if the start of a PSP at a 
synapse slightly precedes a spike in the output neuron, the 
weight of this synapse is increased, as it had significant 
influence on the spike-time via a relatively large contribution 
to the membrane potential. Earlier and later synapses are 
decreased in weight, reflecting their lesser impact on the 
output neuron's spike time. For a weight with delay d  from 
neuron i to neuron j we use: 
 ∆w ηL ∆t                                                                  (6) 
 
And L ∆t 1 β e ∆  ‐β                                               (7) 
 

with  κ 1         

 
Fig. 3. Gaussian learning function 

 
The learning window is defined by the following parameters: 

• v :this parameter, determines the width of the learning 
window where it crosses the zero line and affects the 
range of ∆ , inside which the weights are increased. 

• Inside the neighborhood the weights are increased, 
otherwise they are decreased. 

• : this parameter determines the amount by which the 
weights will be reduced and corresponds to the part of 
the curve laying outside the neighborhood and bellow the 
zero line. 

• : because of the time constant  of the EPSP, a neuron i 
firing exactly with j does not contribute to the firing of j, 
so the learning window must be shifted slightly to 
consider this time interval and to avoid reinforcing 
synapses that do not stimulate j. 

 
 

4. EXPERIMENTAL RESULTS AND DISCUSSION 
 
We have chosen an image from Berkeley Segmentation 
Dataset and Benchmark [12] defined in pixel grid of 250x250 
pixels (Fig 4). 
 

 
Fig. 4. Original image 

 
To show the influence of the number of neurons at exit on the 
number of areas of the segmented image, we had fixed the 
number of sub-synapses at 14 between two neurons, the step 
of training to 0.35, the choice of the base of training is  
random starting from the image source of 5% and numbers of 
receiving fields with 18 (6 for each value of intensity) and we 
varied the number of classes at exit. The images obtained are 
shown in Figure 5: 
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