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Abstract 
 
The process of segmenting images is one of the most 

critical ones in automatic image analysis whose goal can 
be regarded as to find what objects are presented in 
images. Artificial neural networks have been well 
developed. First two generations of neural networks 
have a lot of successful applications.  Spiking Neuron 
Networks (SNNs) are often referred to as the 3rd 
generation of neural networks which have potential to 
solve problems related to biological stimuli. They derive 
their strength and interest from an accurate modeling of 
synaptic interactions between neurons, taking into 
account the time of spike emission. SNNs overcome the 
computational power of neural networks made of 
threshold or sigmoidal units. Based on dynamic event-
driven processing, they open up new horizons for 
developing models with an exponential capacity of 
memorizing and a strong ability to fast adaptation. 
Moreover, SNNs add a new dimension, the temporal 
axis, to the representation capacity and the processing 
abilities of neural networks. In this paper, we present 
how SNN can be applied with efficacy in image 
segmentation. 
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1. Introduction 
 
Image segmentation consists of subdividing an image 
into its constituent parts and extracting these parts of 
interest. A large number of segmentation algorithms 
have been developed since the middle of 1960's [1], and 
this number continually increases at a fast rate. 
Simple and popular methods are threshold-based and 
process histogram characteristics of the pixel intensities 
of the image. Of course, thresholding has many 
limitations: the transition between objects and 
background has to be distinct and the result does not 

guarantee closed object contours, often requiring 
substantial post-processing. 
Region-based methods have also been developed; they 
exploit similarity in intensity, gradient, or variance of 
neighboring pixels. Watersheds methods can be included 
in this category. The problem with these methods is that 
they do not employ any shape information of the image, 
which can be useful in the presence of noise. 
Meanwhile, artificial neural networks are already 
becoming a fairly renowned technique within computer 
science. Since 1997, Maass [2,3] has quoted that 
computation and learning has to proceed quite 
differently in SNNs. He proposes to classify neural 
networks as follows: 
• 1st generation: Networks based on McCulloch  and 

Pitts' neurons as computational units, i.e. threshold 
gates, with only digital outputs (e.g.perceptrons, 
Hopfield network,  Boltzmann machine, multilayer 
perceptrons with threshold units). 

• 2nd generation: Networks based on computational 
units that apply an activation function with a 
continuous set of possible output values, such as 
sigmoid or polynomial or exponential functions (e.g. 
MLP, RBF networks). The real-valued outputs of 
such networks can be interpreted as firing rates of 
natural neurons. 

• 3rd generation of neural network models: Networks 
which employ spiking neurons as computational 
units, taking into account the precise firing times of 
neurons for information coding. 

The use of spiking neurons promises high relevance for 
biological systems and, furthermore, might be more 
flexible for computer vision applications [4]. 
Spiking neurons with leaky integrator synapses have 
been used to model image segmentation and binding by 
synchronization and desynchronization of neuronal 
group activity. The model, which is called RFSLISSOM, 
integrates the spiking leaky integrator model with the 
RF-LISSOM structure, modeling self-organization and 
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functional dynamics of the visual cortex at a more 
accurate level than earlier models [5]. 
Many of the existing segmentation techniques, such as 
supervised segmentation use a lot of parameters which 
are difficult to tune to obtain segmentation where the 
image has been partitioned into homogeneously colored 
regions. In this paper, a spiking neural network approach 
is used to segment images with unsupervised learning. 
The paper is organized as follows: in the first Section, 
related works present in the literature of spiking neural 
network (SNNs). The second Section is the central part 
of the paper and is devoted to the description of the SNN 
segmentation method and its main features. The results 
and discussions of the experimental activity are reported 
in the third Section. Last Section concludes.  

 
2. Spiking Neural Network 
 
2.1 Biological background 
 
Neurons are remarkable among the cells of the body in 
their ability to propagate signals rapidly over large 
distances. They do this by generating characteristic 
electrical pulses called action potentials, or more simply 
spikes that can travel down nerve fibers.  
Neurons are highly specialized for generating electrical 
signals in response to chemical and other inputs, and 
transmitting them to other cells. Some important 
morphological specializations are the dendrites that 
receive inputs from other neurons and the axon that 
carries the neuronal output to other cells. The elaborate 
branching structure of the dendritic tree allows a neuron 
to receive inputs from many other neurons through 
synaptic connections [6]. 
The membrane potential   of a postsynaptic 
neuron  varies continuously through time (cf. Figure 
1). Each action potential, or spike, emitted by a 
presynaptic neuron connected to generates a weighted 
PostSynaptic Potential (PSP) which is function of time. 
If the  synaptic weight is excitatory, the EPSP is 
positive: Sharp increasing of the potential   and 
then smoothly decreasing back to null influence. If  
is inhibitory then the IPSP is negative: Sharp decreasing 

 and then smoothly increasing. At each time, the 
value of  results from the addition of the still 
active PSPs variations. Whenever the potential  
reaches the threshold value  of , the neuron fires or 
emits a spike, that corresponds to a sudden and very high 
increase of , followed by a strong depreciation and 
a smooth return to the resting  potential 0 [7]. 
 

  
Figure 1. Emission of spike 
 
2.2 Models of spiking neurons 
 
Since the works of Santiago Ramon y Cajal and Camillo 
Golgi, a vast number of theoretical neuron models have 
been created, with a modern phase beginning with the 
work of Hodgkin and Huxley [8]. 
We divide the spiking neuron models into three main 
classes, namely threshold-fire, conductance based and 
compartmental models. Because of the nature of this 
paper we will only cover the class of threshold-fire and 
specially spike response model (SRM). 
The SRM as defined by Gerstner [9] is simple to 
understand and to implement. The model expresses the 
membrane potential u at time t as an integral over the 
past, including a model of refractoriness.  
Let ; 1  denote the set of all firing 
times of neuron  and  
Γ ;       denote the set 
of all presynaptic neuron to .  
The state  of neuron  at time t is given by: 
 

Γ

 

 
 
 
(1) 

  models the potential reset after a spike emission,  
describes the response to presynaptic spikes. For the 
kernel functions, a choice of usual expressions is given 
by: 

 (2) 

 
where H is the Heaviside function,  is the threshold and 

  a time constant defining the decay of the PSP. The 
function  is an  -function as: 
 0  0     

 
(3) 
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3. Segmentation Using Spiking Neural 
Network 
 
However, before building a SNN, we have to explore 
three important issues: network architecture, information 
encoding and learning method. After that we will use the 
SNN to segment images. 
 
3.1 Network architecture 
 
The network architecture consists of a fully connected 
feedforward network of spiking neurons with 
connections implemented as multiple delayed synaptic 
terminals (cf. Figure 2). 
The network consists of an input layer, a hidden layer, 
and an output layer. The first layer is composed of three 
inputs neurons (RGB values) of pixel. Each node in the 
hidden layer has a localized activation Φ
Φ X Cn ,σn   where Φ .  is a radial basis 
function (RBF) localized around Cnwith the degree of 
localization parameterized by σn. 

Choosing Φ Z, σ e  Z
σ   gives the Gaussian RBF. 

This layer transforms real values to temporal values. The 
activations of all hidden nodes are weighted and sent to 
the output layer. Instead of a single synapse, with its 
specific delay and weight, this synapse model consists of 
many sub-synapses, each one with its own weight and 
delay . 

 
Figure 2. Network architecture 
 
3.2 Information encoding 
 
The first question that arises when dealing with spiking 
neurons is how neurons encode information in their 
spike trains, since we are especially interested in a 
method to translate an analog value into spikes. We 
distinguish essentially three different approaches [9] in a 
very rough categorization: 

• Rate coding: the information is encoded in the 
firing rate of the neurons.  

• Temporal coding: the information is encoded by 
the timing of the spikes. 

• Population coding: information is encoded by 
the activity of different pools (populations) of 
neurons, where a neuron may participate of 
several pools. 

We have used the temporal encoding proposed by Bohte 
et al.  in [10]. By this method, the input variables are 
encoded with graded and overlapping activation 
functions, modeled as local receptive fields. 
Each neuron of entry is modeled by a local receiving 
field. A receiving field is a Gaussian function. Each 
receiving field i have a center Ci given by the equation 
(4) and a width σi given by the equation (5) such as: m 
is number of receptive fields in each population and 1.5. 
 1.52  
 

(4) 

1 2  
(5) 

 
 
3.3 Learning method 
 
The approach presented here implements the Hebbian 
reinforcement learning method through a winner-takes-
all algorithm [11]. For unsupervised learning, a Winner-
Take-All learning rule modifies the weights between the 
input neurons and the neuron first to fire in the output 
layer using a time-variant of Hebbian learning: if the 
start of a PSP at a synapse slightly precedes a spike in 
the output neuron, the weight of this synapse is 
increased, as it had significant influence on the spike-
time via a relatively large contribution to the membrane 
potential. Earlier and later synapses are decreased in 
weight, reflecting their lesser impact on the output 
neuron's spike time. For a weight with delay  from 
neuron i to neuron j we use: 
 ∆ ∆                                                       (6) 
And ∆ 1 ∆  

 -                                 (7) 

with  1         
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to 0.35, the choice of the base of training is random 
starting from the image source of 5%, the number of 
sub-synapses at 14 and we varied numbers of receiving 
fields. The images obtained are shown in Figure 7: 
 

        
Fig. 7. Segmented image with 4 and 6 receptive fields 

for each value of intensity. 
 
To show the influence of the percentage of simple 
training on the number of classes of the segmented 
image we had fixed the number of area at exit at 10, the 
step of training to 0.35, the number of sub-synapses at 14 
and numbers of receiving fields with 18 (6 for each value 
of intensity) and we varied the number of percentage of 
simple training. The images obtained are shown in 
Figure 8: 
 

  
Fig. 8. Segmented image with 5 and 20 % of simple 

training. 
 
5. Conclusion 
In this paper we applied spiking neural networks to 
image segmentation. At first, the network is build, a 
subset of the image pixel is taken to be learned by the 
network and finally the SNN processes the rest of the 
image to have as a result an important number of classes 
quantized the image. 
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