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6 Bd. Maréchal Juin, F-14050 Caen, France

{olivier.lezoray,abderrahim.elmoataz-billah,vinhthong.ta}@unicaen.fr

Abstract

The extension of lattice based operators to multivariate

images is a challenging theme in mathematical morphol-

ogy. We propose to consider manifold learning as the basis

for the construction of a complete lattice by learning graph

neighborhood topological order. With these propositions,

we dispose of a general formulation of morphological oper-

ators on graphs that enables us to process by morphological

means any kind of data modeled by a graph.

1. Introduction

Mathematical Morphology is a nonlinear approach to

image processing which relies on a fundamental structure,

the complete lattice L [10]. A complete lattice L is a non-

empty set equipped with an ordering relation, such that ev-

ery non-empty subset K of L has a lower bound ∧K and

an upper bound ∨K. In this context, images are modeled

by functions mapping their domain space Ω, into a com-

plete lattice L. With the acceptance of complete lattice the-

ory, it is possible to define morphological operators for any

type of image data once a proper ordering is established [2].

Within this model, morphological operators are represented

as mappings between complete lattices in combination with

matching patterns called structuring elements that are sub-

sets of Ω. In particular, the two fundamental operators in

Mathematical Morphology, dilation and erosion, form the

basis of many other morphological processes [13] such as

opening (γ = δǫ), closing (ϕ = ǫδ), etc. Erosion ǫ and dila-

tion δ of a function f ∈ L for an element x ∈ Ω are defined

by:

ǫ(f, x|B) = {f(y) : f(y) = ∧f(z), z ∈ B(x)}
δ(f, x|B) = {f(y) : f(y) = ∨f(z), z ∈ B(x)}

(1)
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where B denotes a structuring element that contains x and

its neighbors in Ω. If Mathematical Morphology is well de-

fined for binary and gray scale images, there exist no gen-

eral extension which permits to perform basic operations on

multivariate data since there is no natural ordering on vec-

tors. Several ordering have been reported in literature to

consider that problem but they are reduced to considering

one specific type of images (color [1] or tensor [5] images).

In the sequel, we consider the general case of multivari-

ate images. A multivariate image can be represented by the

mapping Ω ⊂ Z
l → R

p where l is the image dimension and

p the number of channels. One way to define an ordering re-

lation between vectors is to use a transform [7] h from R
p

into R
q, with q ≪ p, followed by the conditional ordering

on each dimension of R
q. With h : R

p → R
q, and x →

h(x) then ∀(xi, xj) ∈ R
p × R

p, xi ≤ xj ⇔ h(xi) ≤ h(xj).
When h is bijective, this corresponds to define a space fill-

ing curve that goes through each point of the R
p space just

once and thus induces a total ordering. Therefore, there is

an equivalence: (total ordering on R
p)⇔(bijective applica-

tion h : R
p → R

q). To be able to perform morphological

operations on multivariate images, we need to define such

a transform h which is nothing more than a dimensionality

reduction transform. There exists a lot of different methods

to achieve dimensionality reduction that have enjoyed re-

newed interest over the past years [12]. For instance, once

a neighborhood graph is constructed from a given set, man-

ifold learning consists in mapping its elements into a lower

dimensional space while preserving local properties of the

adjacency graph.

In this paper, we propose to consider manifold learning

as the basis for the construction of a complete lattice by

learning graph neighborhood topological order. Since we

consider graph-based methods, we redefine basic morpho-

logical operators on graphs of the arbitrary topologies. With

these propositions, we dispose of a general formulation that

enables us to process by morphological means any kind of

data modeled by a graph.

The remainder of this paper is organized as follows. Sec-



tion 2 recalls basic graph notions, defines morphological

operators on graphs and explains how we construct a com-

plete lattice by learning graph neighborhood topological or-

der with Laplacian Eigenmaps. In Section 3, we report sev-

eral experiments for the morphological processing of im-

ages, region maps, image features data sets and image man-

ifolds. Last Section concludes.

2. Learning graph neighborhood topological

order

2.1. Preliminaries on graphs

We provide some basic definitions on graph theory [6].

A graph G is a couple G = (V,E) where V is a finite set

of vertices and E is a set of edges included in a subset of

V × V . Two vertices u and v in a graph are adjacent if the

edge (u, v) exists in E. u ∼ v denotes the set of vertices

u connected to the vertex v via the edges (u, v) ∈ E. Let

G = (V,E) and G′ = (V ′, E′) be two graphs. G′ will be

called a sub-graph of G if V ′ ⊆ V and E′ ⊆ E. A path

is a set of vertices (v1, v2, · · · , vl) such as there is an edge

for each two successive vertices of the path: ∀i ∈ [1, l[, the

edge (vi, vi+1) ∈ E. A graph is connected when for every

pair of vertices u and v there is a path in which v1 = u and

vl = v. In the rest of this paper, we consider only simple

graphs for which maximum one edge can link two vertices.

These simple graphs are always assumed to be connected

and undirected [6]. A graph, as defined above, is said to be

weighted if it is associated with a weight function k : E →
R

+ satisfying k(u, v) > 0 if (u, v) ∈ E, k(u, v) = 0 if

(u, v) /∈ E. We can now define the space of functions on

graphs. Let H(V ) denote the Hilbert space of real-valued

functions on vertices, in which each f : V → R
p assigns a

vector f(v) to each vertex v. In Mathematical Morphology,

H(V ) has to be a complete lattice, this notion corresponds

to a topological order of vertices in terms of graph theory.

2.2. Mathematical Morphology on graphs

Given an arbitrary graph G = (V,E) and a vertex v,

the neighborhood set N (G, v) of vertices of a vertex v is

defined as:

N (G, v) = {u ∈ V : (u, v) ∈ E} ∪ {v} (2)

Then, we can obtain the set A(G, v) of edges connecting

any vertices in N (G, v) as:

A(G, v) = {(u, w) ∈ E : u ∈ N (G, v), w ∈ N (G, v)}
(3)

A structuring element S(G, v) at a given vertex v of a graph

G is a sub-graph of G defined as:

S(G, v) = (N (G, v),A(G, v)) (4)

With these definitions, we can define the erosion ǫ :
H(V ) → H(V ) of a function f ∈ H(V ) on a graph G
at a vertex v by:

ǫ(G, f, v) = {f(u) : f(u) = ∧f(w), w ∈ N (G, v)} (5)

and similarly for the dilation, we have:

δ(G, f, v) = {f(u) : f(u) = ∨f(w), w ∈ N (G, v)} (6)

If we compare these last definitions to the usual definitions

(see Equation (1)), the structuring element is directly ex-

pressed by the graph topology. For the case of images, these

definitions are equivalent. Indeed, for images, one considers

grid graphs (one vertex per pixel) and vertices are then con-

nected according to the chosen structuring element. How-

ever, our formulation is more general since it can be applied

on graphs of the arbitrary topologies. Similar definitions for

binary graphs can be found in [8].

With the previous definitions, graph topology never changes

but only vectors f(v) associated to vertices. However, since

erosion and dilation produce flat zones when applied on im-

ages, this comes to merge nodes when applied on graphs.

Therefore, we can also define contracting erosion and dila-

tion. First, we define the erosion of a graph G = (V,E) at

vertex v in terms of vertex preservation:

ǫV(G, f, v) = {u : f(u) = ∧f(w), w ∈ N (G, v)} (7)

Then, one can define the vertex erosion ǫV(G) : V → V of

a graph G = (V,E) as:

ǫV(G) = V ∩ {ǫV(G, f, v),∀v ∈ V } (8)

Similarly, we can define the edge erosion ǫE(G) : E → E
of a graph G = (V,E) as:

ǫE(G) = {(u, v) ∈ E, u ∈ ǫV(G), v ∈ ǫV(G)} (9)

Finally, we can define the contracting erosion ǫc(G) :
(V,E) → (V,E) of a graph G = (V,E) as an operation

that produces a new graph by: ǫc(G) = (ǫV(G), ǫE(G)).
This new graph corresponds to a sub-graph of G. Similar

definitions can be obtained for contracting dilation. What-

ever the formulation of erosion and dilation (contracting or

not), one always assumes that H(V ) is a complete lattice.

As previously mentioned, this is problematic when vectors

are associated to vertices (i.e. p > 1).

2.3. Laplacian Eigenmaps

To ensure that H(V ) can be considered as a complete

lattice, one has to define a total ordering relation for func-

tions f ∈ H(V ). This corresponds to define a topologi-

cal order on the graph. We propose to construct the order-

ing relation by defining a dimensionality reduction operator



h : R
p → R

q. The complete lattice is then defined by

comparing h(f(v)) with the conditional ordering relation.

Graph-based methods have recently emerged as a power-

ful tool for nonlinear dimensionality reduction and mani-

fold learning [12]. These methods are particularly suited

for analyzing high dimensional data that has been sampled

from a low dimensional sub-manifold. Among the exist-

ing methods, we choose to use Laplacian Eigenmaps [4].

Let {x1, x2, · · · , xn} ∈ R
p be n sample vectors. Given a

neighborhood graph G associated to these vectors, one con-

siders its adjacency matrix W where weights Wij are given

by a Gaussian kernel Wij = k(xi, xj) = e
(

− ||xi−xj ||
2

σ2

)

.

Let D denote the diagonal matrix with elements Dii =
∑

j Wij and ∆ denote the un-normalized Laplacian de-

fined by ∆ = D − W . Laplacian Eigenmaps dimensional-

ity reduction consists in searching for a new representation

{y1, y2, · · · , yn} with yi ∈ R
n, obtained by minimizing:

1

2

∑

ij

∥

∥yi − yj

∥

∥

2
Wij = Tr(YT ∆Y)

with Y = [y1, y2, · · · , yn].

This cost function encourages nearby sample vectors to be

mapped to nearby outputs. This is achieved by finding the

eigenvectors y1, y2, · · · , yn of matrix ∆. Dimensionality

reduction is obtained by considering the q lowest eigen-

vectors (the first eigenvector being discarded) with q ≪ p.

Therefore, we can define a dimensionality reduction opera-

tor h : xi → (y2(i), · · · , yq(i)) where yk(i) is the ith coor-

dinate of eigenvector yk.

2.4. Morphological processing by local man-
ifold learning

To compare vector values and order them, we will only

use the second eigenvector provided by Laplacian Eigen-

maps since most of geometrical information appears in first

eigenvector (known as Fiedler vector). This is equivalent

to define the following projection: h : R
p → R which ob-

viously forms a complete lattice for H(V ). Dimensional-

ity reduction by Laplacian Eigenmaps is an algorithm the

complexity of which is O(|V |3) where |.| denotes the car-

dinality of a set. If one wants to use Laplacian Eigen-

maps to perform dimensionality reduction directly on the

whole set of pixels of an image, processing time becomes

too computationally demanding for large images or large

data sets. Therefore, we propose to use Laplacian Eigen-

maps on sub-graphs of initial graphs: structuring elements.

Given a vertex v, dimensionality reduction is performed on

the graph S(G, v) which is used to construct the similar-

ity matrix W . This comes to learn a graph neighborhood

topological order on the sub-graph S(G, v) to construct the

complete lattice that is defined on H(N (G, v)). To sum-

marize, when one considers a morphological operation on a

graph at a given vertex v, one has to: 1) construct a similar-

ity matrix W from S(G, v), 2) compute the eigenvectors of

∆ = D−W , 3) define the complete lattice on H(N (G, v))
by the dimensionality reduction operator h : R

p → R.

Then, one can determine lower and upper bounds of the lat-

tice H(N (G, v)) by using the projection h. As compared

to computing Laplacian Eigenmaps on the whole graph, our

approach is O(|V |k3) where k = {∨|N (G, v)|,∀v ∈ V }
denotes the maximum number of vertices of a structuring el-

ement. This formulation is sufficiently general to apply it to

any type of data living on graphs. Moreover, by modifying

the kernel quantifying the similarity between feature vectors

of vertices, one obtains a family of morphological operators

parameterized by the weight function of the graph.

3. Experimental results

In this Section, we present how our proposed formalism

can be used to process images, region maps, image features

data sets and image manifolds. An important issue in the

Manifold Learning part of our proposal lies in what value

of σ to use in Gaussian kernel of the similarity matrix. This

value acts as a scaling parameter and can be fixed a priori.

However, to have a parameterless kernel, for a graph G =
(V,E), the width of Gaussian kernel is estimated by:

σ = max
v∈V,u∼v

||f(v) − f(u)||

where ||f(v) − f(u)|| denotes a given distance measure

between feature vectors. We always estimate σ for each

S(G, v).
First, we consider the case of morphological image pro-

cessing and particularly color images. A color image is

represented by a grid-graph (one vertex per pixel) and ver-

tices are connected according to the shape of the structur-

ing element. In the sequel, for color images, we consider

8-adjacency grid graphs that means using a square struc-

turing element of size 3 × 3. A color image associates

color vectors to vertices: f : V ⊂ Z
2 → R

p. One has

p = 3 for feature vectors in the classical RGB, HSI color

spaces and p = 6 in CIECAM02 color space [9]. The

Euclidean distance is used to compare color feature vec-

tors. Figure 1 presents results of an erosion in three dif-

ferent color spaces on a retina image1. One strong advan-

tages towards our formulation is that it remains exactly the

same whatever the representation associated to a given color

pixel. Therefore, this is no more problematic to apply mor-

phological operations to multivariate images. Since we are

able to perform the two basic morphological operations, we

can go one step further an compose them to obtain other

morphological operations. Figure 2 presents such results

1Retina image courtesy of Center for Bio-image In-

formatics, University of California, Santa Barbara

http://www.bioimage.ucsb.edu



Figure 1. Color image erosion in different
color spaces with, from top to bottom: orig-
inal image, erosions (ǫ) in RGB, HSI and
CIECAM02 color spaces.

on a color image (a hematology microscopic image in Fig-

ure 2(a)). The local maxima (Figure 2(b)) of this color im-

age are extracted. They are defined as the set of vertices

such that δ(G, f, v) = f(v). The morphological gradient

(Figure 2(c)) of the color image is computed. It is defined

as ∇(G, f, v) = ||δ(G, f, v) − ǫ(G, f, v)||. A watershed

of the morphological gradient with, as markers, the local

maxima is then obtained (Figure 2(d) shows the final region

map). Since over-segmentation is obtained, a classification

driven watershed can be used alternatively. A closing fol-

lowed by an opening is applied to the color image to per-

form strong simplification (Figure 2(e)). A k-means clus-

tering with k = 3 classes is performed on the simplified

image (Figure 2(f)). The final segmentation (Figure 2(g))

is obtained by a watershed of morphological gradient of the

simplified image with, as markers, the connected regions

of the clustering. Both these segmentations examples show

that the classic morphological approach to segmentation is

fully operational within our formalism.

Second, we consider the morphological processing of

Region Adjacency Graphs (RAG). From a cytological mi-

croscopic image (Figure 3(a)), a partition is constructed

(Figure 3(b)) by labeling connected components obtained

from a k-means clustering with k = 4. To the obtained

partition, a RAG can be associated where each vertex repre-

sents a region and edges model adjacency relations between

regions. To perform morphological operations on such a

graph, one needs to define the feature vectors associated to

(a) (b) (c) (d)

(e) (f) (g)

Figure 2. Color image segmentation with

morphological operators. See text for details.

vertices and the distance used to compare these features. We

have used here a Mahalanobis distance and f : V → R
3×3

that represents the variance-covariance matrix associated to

each region. Several morphological contracting operations

are then applied successively: one erosion and two dilations

(Figures 3(c)-3(e)). Since these operations are contracting

ones, the number of vertices is reduced at each operation.

Figure 3(f) presents the original image with boundaries of

Figure 3(e) superimposed. Such processing on a RAG is a

simple alternative to region merging.

(a) Original Image f . (b) Labeled k-means

partition.

(c) ǫc.

(d) δc(ǫc). (e) δc(δc(ǫc)). (f) Region boundaries.

Figure 3. Morphological contracting operations

on a region adjacency graph.

Third, we consider the morphological processing of im-

age features data set (the Iris data set [3]). Iris data set

contains 3 classes of samples in 4-dimensions (i.e. f :
V → R

4) with 50 samples in each class. The graph used to



V1

0.0 0.4 0.8

●
●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●●

●●

●
●

●

●●

●

●

●

●●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●
●

●
●

●
●

● ●

●

●
●●

●
●

●

●

●

●

●●●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●
●

●

●●

●

●
●
●

●

●●●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●●
●●

●●

●
●

●

●●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●
●●

●
●

●

●

●

●

●● ●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●●

●

●
●

●

●

●●●

●
●

●

●

0.0 0.4 0.8

0.
0

0.
4

0.
8

●
●
●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
● ●
●●

●●

●
●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●
●

●
●

●
●
● ●

●

●
●●

●
●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●●

●

●
●

●

●

● ●●

●
●

●

●

0.
0

0.
4

0.
8

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●

● V2
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●●●
● ●

●
● ●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

●● ●●
●● ●● ●●

● ●
●

●
●

●●●
●
●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

● ●
●

●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

●●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

●● ●
● ●

●
●●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

● ●●●
●● ● ●●●
● ●

●
●

●
●● ●
●

●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

● ●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

V3

0.
0

0.
4

0.
8

●●●
●●

●
●●●●●●●

●●
●
●●

●
●

●
●

●

●
●
● ●●●
●● ●●●●
●●

●
●
●

●●●
●

●

●
●
●●●

●
●
●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

●●
●

●
●●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

0.0 0.4 0.8

0.
0

0.
4

0.
8

●●●● ●

●
●

●●
●

●●
●●

●

●●
● ●●

●

●

●

●

● ●

●

●●●●

●

●
●

●
● ●

●
● ●

●●
●

●

●
●

●● ●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●
●
●

●

●
●

●
●

●●●
●

●

●

●

●
●
● ●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●● ●● ●

●
●
●●

●
●●

●●
●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●

●
● ●

●
● ●

●●
●

●

●
●

●● ●●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●
●

●
●

● ●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●● ●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

0.0 0.4 0.8

●●●●●

●
●
●●
●
●●
●●

●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●
●

●●
●

●●
●●
●

●

●
●
●●●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
● ●

●

●

●
●
●

●

●
●
●
●

●●●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

V4

(a) Original Iris data set.
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(b) Opening γ = δ(ǫ).
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(c) Contracting opening γc = δc(ǫc).

Figure 4. Morphological processing of image features data set (the Iris data set).

represent data corresponds to a k-nearest neighbors graph

(k = 10). The Euclidean distance is used to compare fea-

ture vectors. Figure 4 presents the result of an opening γ
(Figure 4(b)) and a contracting opening γc (Figure 4(c))

applied to the original data set (Figure 4(a)). The opening

has enabled to simplify the data set while keeping the same

number of samples. The contracting opening has enabled

to retain only few representative samples from the original

data set (a third). Applying a k-means (k = 3) to both

these data sets gives 91.33% and 100.00% of classification

rates for opening and contracting opening whereas this rate

is 88.7% on the original data set. This shows the benefits

of our proposal which extends morphological processing to

graphs of the arbitrary topologies that can be used to model

any data set. This opens new outlooks for data mining by

morphological means.

Finally, we consider the morphological processing of im-

age manifolds that represent high dimensional real-world

data. The United States Postal Service (USPS) handwritten

digits data set is a database that contains grayscale hand-

written digit images scanned from digit 0 to 9. The images

are of size 16×16 pixels. To model such an image manifold,

a k-nearest neighbor graph is constructed (k = 10) where to

each vertex is associated an image (i.e. f : V → R
16×16).

A simple Euclidean distance is used to compare feature vec-

tors. For visualization purposes, 50 samples were randomly

selected for digit 0 (Figure 5(a)). A database of cytological

cellular images is also considered. This database contains

color images of cells of different sizes that belong to 18 dif-

ferent classes. To each cell is associated a region map that

delineates its nuclear boundary. For visualization purposes,

we only consider the class of dystrophic mesothelials (38
cells in this category). One problem with such a database is

that the images of cells have different sizes. Therefore, we

consider the 64-colors quantized color histogram of each

(a) Original 0 digits. (b) A series of 2 Erosions.

(c) A series of 2 contracting

Erosions.

(d) Graph of Figure 5(a) digits with red

borders for digits of Figure 5(c).

Figure 5. Morphological processing of an im-
age manifold (USPS handwritten digits data
set).

cell (only inside the nucleus) and we have f : V → R
64 that

associates a color histogram to each vertex. To model this

image manifold, a k-nearest neighbor graph is constructed

(k = 7). The Earth Mover Distance (EMD) [11] is used to

compare histogram feature vectors. For both these image

manifolds, Morphological processing is applied: a series of

two erosions or a series of two contracting erosions (Fig-

ures 5(b)-5(c) and 6(b)-6(c)). We have the same behavior

than for the processing of image features data set. The series

of erosions simplify the image manifolds while maintaining

their size. Then, a same feature vector can be associated to

different vertices and simplification acts as a suppression of

outliers. When the series of erosions are contracting mor-

phological operations, the manifold size is lower and few

representative images have been retained. To better under-



(a) Original cells.

(b) A series of 2 Erosions.

(c) A series of 2 con-

tracting Erosions.

(d) Graph of Figure 6(a) cells with red

borders for cells of Figure 6(c).

Figure 6. Morphological processing of an im-
age manifold (cellular cytology data set).

stand the behavior of such a series of contracting erosions,

in Figures 5(d) and 6(d), the surviving images of Figures

5(c) and 6(c) are shown with red borders on a graphical rep-

resentation of the graph associated to Figures 5(a) and 6(a).

One can see that the surviving images tend to correspond to

the most representative elements of the manifold. This can

be interesting for manifold compression or for extracting

relevant items of data bases.

4 Conclusion

In this paper, we have considered the general case of

morphological processing of multivariate data on graphs of

the arbitrary topologies. Morphological operators relying

on a complete lattice, it is defined by learning graph neigh-

borhood topological order with Laplacian Eigenmaps. With

proper formulations of the basic morphological operators

on graphs, any kind of data modeled by a graph can be pro-

cessed by morphological means. The behavior of our pro-

posal has been presented for the morphological processing

of images, region maps, image features data sets and image

manifolds. Moreover, these experimental results open new

outlooks for the use of Mathematical Morphology that has

been reduced to images until now.
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