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Abstract

In this paper, the forgetting of the initial distribution for a non-
ergodic Hidden Markov Models (HMM) is studied. A new set of con-
ditions is proposed to establish the forgetting property of the filter,
which significantly extends all the existing results. Both a pathwise-
type convergence of the total variation distance of the filter started
from two different initial distributions, and a convergence in expecta-
tion are considered. The results are illustrated using generic models
of non-ergodic HMM and extend all the results known so far.

1. Introduction and notations. A Hidden Markov Model (HMM) is
a doubly stochastic process with an underlying Markov chain that is not
directly observable. More specifically, let X and Y be two spaces equipped
with countably generated σ-fields X and Y; denote by Q and G respectively,
a Markov transition kernel on (X,X ) and a transition kernel from (X,X ) to
(Y,Y). Consider the Markov transition kernel defined for any (x, y) ∈ X×Y

and C ∈ X ⊗ Y by

(1) T [(x, y), C]
def
= Q⊗G[(x, y), C] =

∫∫

Q(x, dx′)G(x′, dy′)1C(x′, y′) .

We consider {Xk, Yk}k≥0 the Markov chain with transition kernel T and ini-

tial distribution ν⊗G(C)
def
=
∫∫
ν(dx)G(x, dy)1C (x, y), where ν is a probabil-

ity measure on (X,X ). We assume that the chain {Xk}k≥0 is not observable
(hence the name hidden). In addition, we assume that there exists a measure
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2 GASSIAT, LANDELLE, MOULINES

µ on (Y,Y) such that for all x ∈ X, G(x, ·) is absolutely continuous with
respect to µ; under these assumptions, the joint transition kernel T may be
expressed as

(2) T [(x, y), C] =

∫∫

Q(x, dx′)g(x′, y′)1C(x′, y′)µ(dy′) , C ∈ X ⊗ Y ,

where g(x, ·) = dG(x,·)
dµ denotes the Radon-Nikodym derivative of G(x, ·) with

respect to µ; g(x, ·) is referred to as the likelihood of the observation. We
denote by φν,n[y0:n] the distribution of the hidden state Xn conditionally on

the observations y0:n
def
= [y0, . . . , yn], which is given by

(3) φν,n[y0:n](A) =
ν [g(·, y0)Qg(·, y1)Q . . . Qg(·, yn)1A]

ν [g(·, y0)Qg(·, y1)Q . . . Qg(·, yn)]

=

∫

Xn+1 ν(dx0)g(x0, y0)
∏n

i=1Q(xi−1, dxi)g(xi, yi)1A(xn)
∫

Xn+1 ν(dx0)g(x0, y0)
∏n

i=1Q(xi−1, dxi)g(xi, yi)
,

where Qf(x) = Q(x, f)
def
=
∫
Q(x, dx′)f(x′), for any function f ∈ B+(X) the

set of non-negative functions f : X → R, such that f is X/B(R) measurable,
with B(R) the Borel σ-algebra. Let (Ω,F ,P⋆) be a probability space and
{Yk}k≥0 be a Y-valued stochastic process defined on (Ω,F).

A typical question is under which conditions the distance between the
filtering measures φν,n and φν′,n for two different choices of the initial dis-
tribution ν and ν ′ vanishes, i.e.

lim
n→∞

∥
∥φν,n[Y0:n] − φν′,n[Y0:n]

∥
∥
TV = 0 P⋆ − a.s. ,

where ‖·‖TV denotes the total variation norm. We stress that {Yk}k≥0 is not
necessarily itself the observation sequence associated to the HMM used to
define the sequence of filtering distribution, which means that we are inter-
ested in studying the forgetting property of the initial condition even when
the model is mis-specified, which happens to be often the case in practical
settings. The forgetting property of the initial condition of the optimal fil-
ter in nonlinear state space models has attracted many research efforts; see
for example the in-depth tutorial of [5]. The brief overview below is mainly
intended to allow comparison of assumptions and results presented in this
contributions with respect to those previously reported in the literature.

The filtering equation can be seen as a positive random non-linear oper-
ator acting on the space of probability measure; the forgetting property can
be investigated using tools from the theory of positive operators, namely
the Birkhoff contraction inequality for the Hilbert projective metric (see [1],
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FORGETTING FOR NON-ERGODIC HMM 3

[14], [13]). The results obtained using this approach require stringent mixing
conditions for the transition kernels; these conditions state that there exist
positive constants ǫ− and ǫ+ and a probability measure λ on (X,X ) such
that for f ∈ B

+(X),

(4) ǫ−λ(f) ≤ Q(x, f) ≤ ǫ+λ(f) , for any x ∈ X .

This condition in particular implies that the chain is uniformly geometri-
cally ergodic. Similar results were obtained independently by [6] using the
Dobrushin ergodicity coefficient (see [7] for further refinements under this
assumption). The mixing condition has later been weakened by [4], under
the assumption that the kernel Q is positive recurrent and is dominated by
some reference measure λ:

sup
(x,x′)∈X×X

q(x, x′) <∞ and

∫

essinfq(x, x′)π(x)λ(dx) > 0 ,

where q(x, ·) = dQ(x,·)
dλ , essinf is the essential infimum with respect to λ and

πdλ is the stationary distribution of the chain Q . If the upper bound is
reasonable, the lower bound is restrictive in many applications and fails to
be satisfied e.g. for the linear state space Gaussian model.

In [14], the stability of the optimal filter is studied for a class of ker-
nels referred to as pseudo-mixing. The definition of pseudo-mixing kernel is
adapted to the case where the state space is X = R

d, equipped with the Borel
sigma-field X . A kernel Q on (X,X ) is pseudo-mixing if for any compact set
C with a diameter d large enough, there exist positive constants ǫ−(d) > 0
and ǫ+(d) > 0 and a measure λC (which may be chosen to be finite without
loss of generality) such that

(5) ǫ−(d)λC(A) ≤ Q(x,A) ≤ ǫ+(d)λC(A) , for any x ∈ C, A ∈ X

This condition implies that for any (x′, x′′) ∈ C × C,

ǫ−(d)

ǫ+(d)
< essinfx∈Xq(x

′, x)/q(x′′, x) ≤ esssupx∈Xq(x
′, x)/q(x′′, x) ≤

ǫ+(d)

ǫ−(d)
,

where q(x, ·)
def
= dQ(x, ·)/dλC, and esssup and essinf denote the essential

supremum and infimum with respect to λC. This condition is obviously
more general than (4), but still it is not satisfied in the linear Gaussian case
(see [14, Example 4.3]).

Several attempts have been made to establish the stability conditions
under the so-called small noise condition. The first result in this direction
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4 GASSIAT, LANDELLE, MOULINES

has been obtained by [1] (in continuous time) who considered an ergodic
diffusion process with constant diffusion coefficient and linear observations:
when the variance of the observation noise is sufficiently small, [1] established
that the filter is exponentially stable. Small noise conditions also appeared
(in a discrete time setting) in [3] and [15]. These results do not allow to
consider the linear gaussian state space model with arbitrary noise variance.

A very significant step has been achieved by [12], who considered the
filtering problem of Markov chain {Xk}k≥0 with values in X = R

d filtered
from observations {Yk}k≥0 in Y = R

ℓ,

(6)

{

Xk+1 = Xk + b(Xk) + σ(Xk)ζk ,

Yk = h(Xk) + βεk .

Here {(ζk, εk)}k≥0 is a i.i.d. sequence of standard Gaussian random vectors
in R

d+ℓ, b(·) is a d-dimensional vector function, σ(·) a d×d-matrix function,
h(·) is a ℓ-dimensional vector-function and β > 0. The authors established,
under appropriate conditions on b, h and σ, that the optimal filter forgets
the initial conditions; these conditions cover (with some restrictions) the
linear gaussian state space model.

A new approach for ergodic HMM using the so-called Local Doeblin prop-
erty is proposed in [8]. Both almost sure convergence and convergence in
expectation for the distance in total variation norm for two filters with
different initial distributions are proven. The results hold under weaker con-
ditions than those appearing under other mixing assumptions and, in par-
ticular, cover the linear Gaussian state-space model. Moreover, assumptions
on observations are relaxed and convergence theorems apply for sequences
which are not necessarily HMM.

The works mentioned above mainly deal with ergodic HMM, i.e. the sit-
uations in which the hidden Markov chain is ergodic. Non-ergodic HMM
models are routinely used in the non-linear filtering literature, many models
used for example in tracking or financial econometrics being simply random
walks (see [9] and [16] and the references therein). Non-ergodic HMM have
been considered much less frequently in the literature. The main references
in this direction are [3] and [15]. In [3], the observation process is the signal
(state) corrupted by an additive white noise of sufficiently small noise vari-
ance. In [15], the authors also assumed that the observation is a possibly
non-linear function of the signal (satisfying some additional technical con-
ditions) and that this function of the signal is also observed in an additive
noise model of sufficiently small variance. The authors propose to truncate
the Markov kernels on random sets depending on the observation sequences,
which are chosen in such a way that the truncated kernels satisfy mixing
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FORGETTING FOR NON-ERGODIC HMM 5

conditions. The authors establish the convergence of the first-order moment
of the difference under signal-to-noise ratio condition.

In this contribution, we propose a new set of conditions to establish the
forgetting property of the filter, which are more general than those proposed
in [3] and [15]. In Theorem 5, the convergence of the total variation distance
of the filter started from two different initial distributions is established, and
is shown to hold almost surely w.r.t. the probability distribution of the ob-
servation process {Yk}k≥0. Then, in Theorem 6, a bound for the expectation
of this total variation distance is obtained and used in Section 3 for non-
linear state-space models to obtain a geometric rate. The results are shown
to hold under rather weak conditions on the observation process {Yk}k≥0

which do not necessarily entail that the observations are produced by the
filtering model.

The paper is organized as followed. In section 2, we introduce the assump-
tions and state the main results. In section 3, nonlinear state-space models
are considered with different kind of dependence for the state noise and with
observations not necessarily produced by the model defining the filter. The
proofs are given in sections 4, 5, 6.

2. Main results. In this section, we present two theorems on the for-
getting properties of the optimal filter. These results require the choice of
a set-valued function, referred to as Local Doeblin set function, which ex-
tends the so-called local Doeblin sets introduced in [19] and later exploited
in [12]. The difference between LD-sets of [19] and LD-set functions lies in
the dependence on the successive observations.

Definition 1 (LD-set function ). A set-valued function C : y 7−→ C(y)
from Y to X is called a Local Doeblin set function (LD-set function) if there
exists a map (y, y′) 7−→

(
ε−
C
(y, y′), ε+

C
(y, y′)

)
from Y×Y to (0,∞)2 such that,

for all (y, y′) ∈ Y × Y, there exists a measure λy,y′ on (X,X ) satisfying

(7) ε−
C
(y, y′)λy,y′ [A ∩ C(y′)] ≤ Q[x,A ∩ C(y′)] ≤ ε+

C
(y, y′)λy,y′ [A ∩ C(y′)]

for all x ∈ C(y) and A ∈ X .

Some general conditions on the Local Doeblin set function involving the
distributions of the observations ensure the forgetting property of the opti-
mal filter. The case of nonlinear state-space models is studied in Section 3.
Roughly speaking, inequality (7) means that the transition of the hidden
chain, when the state is in a given subset C(y) does not depend too much
on the current state.
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6 GASSIAT, LANDELLE, MOULINES

We denote, for a set A ∈ X and an observation y ∈ Y, the supremum of
the likelihood over A,

(8) ΥA(y)
def
= sup

x∈A
g(x, y) .

Consider the following assumptions on the likelihood of the observations :

(H1) For all (x, y) ∈ X × Y, g(x, y) > 0.
(H2) For all η > 0, there exists an LD-set function Cη satisfying, for all

y ∈ Y,

(9) ΥCc
η(y)(y) ≤ ηΥX(y) .

The first condition states that the likelihood is everywhere positive. This
excludes the case of additive noise with bounded support; see for example
[2]. When X = R

d, the second assumption is typically satisfied when, for
any given y, the likelihood goes to zero as the state |x| goes to infinity:
lim|x|→∞ g(x, y) = 0. This assumption is satisfied in many models of prac-
tical interest, and roughly implies that the observation effectively provides
information on the state range of value.

For a given LD-set function C , we set

Φν,C(y, y′)
def
= ν

[

g(·, y)Qg(·, y′)1C(y′)(·)
]

,(10)

ΨC(y, y′)
def
= λy,y′

[

g(·, y′)1C(y′)

]

.(11)

The main idea of the proof is that the states belong very often to the
LD-sets. Every time the state is in a LD set and jumps to another LD set,
the forgetting mechanism comes into play. From now on, for all (x, x′) ∈ X2,
denote by x̄ = (x, x′) the product ḡ(x̄, y) = g(x, y)g(x′, y). Similarly, for
all A ∈ X , denote Ā = A × A, for all LD-set function C, C̄ the set-valued
function C̄(y) = C(y)× C(y). Finally, for all (x, x′) ∈ X2, and A, B ∈ X , set
Q̄(x, x′, A × B) = Q(x,A)Q(x′, B). Then, for any A ∈ X and ν and ν ′ two
probability measures on (X,X ), the difference φν,n[y0:n](A) − φν′,n[y0:n](A)
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FORGETTING FOR NON-ERGODIC HMM 7

may be expressed as

φν,n[y0:n](A) − φν′,n[y0:n](A)

(12)

=
E

Q
ν [
∏n

i=0 g(Xi, yi)1A(Xn)]

E
Q
ν [
∏n

i=0 g(Xi, yi)]
−

E
Q
ν′ [
∏n

i=0 g(Xi, yi)1A(Xn)]

E
Q
ν′ [
∏n

i=0 g(Xi, yi)]
,

=
E

Q̄
ν⊗ν′

[∏n
i=0 ḡ(X̄i, yi)1A(Xn)

]
− E

Q̄
ν′⊗ν

[∏n
i=0 ḡ(X̄i, yi)1A(Xn)

]

E
Q
ν [
∏n

i=0 g(Xi, yi)] E
Q
ν′ [
∏n

i=0 g(Xi, yi)]
,

=
E

Q̄
ν⊗ν′

[∏n
i=0 ḡ(X̄i, yi){1A(Xn) − 1A(X ′

n)}
]

E
Q
ν [
∏n

i=0 g(Xi, yi)] E
Q
ν′ [
∏n

i=0 g(Xi, yi)]
,(13)

We compute bounds for the numerator and the denominator of the previous
expression. Such bounds are given in the two following Propositions (proofs
are postponed to Section 4). For an LD-set function C denotes:

(14) ρC(y, y′)
def
= 1 − (ε−

C
/ε+

C
)2(y, y′) .

Proposition 2. Let C be an LD-set function and ν and ν ′ be two prob-
ability measures on (X,X ). For any integer n and any sequence {yi}

n
i=0 in

Y, let us define
(15)

∆n
(
ν, ν ′, y0:n

)
= sup

A∈X

∣
∣
∣
∣
∣
E

Q̄
ν⊗ν′

[
n∏

i=0

ḡ(X̄i, yi)1A(Xn)

]

− E
Q̄
ν⊗ν′

[
n∏

i=0

ḡ(X̄i, yi)1A(Xn)

]∣
∣
∣
∣
∣
.

Then,

∆n
(
ν, ν ′, y0:n

)
≤ E

Q̄
ν⊗ν′

{

ḡ(X̄0, y0)
n∏

i=1

ḡ(X̄i, yi)ρ
δi

C(yi−1,yi)

}

,

where δi = 1C̄(yi−1)×C̄(yi)
(X̄i−1, X̄i).

Proposition 3. Let C be an LD-set function and {yi}
n
i=0 a sequence in

Y. We have for all n ∈ N

E
Q
ν

[
n∏

i=0

g(Xi, yi)

]

≥

(
n∏

i=2

ε−
C
(yi−1, yi)

)

Φν,C(y0, y1)
n∏

i=2

ΨC(yi−1, yi) .

By combining these two Propositions, we obtain an explicit bound for
the total variation distance

∥
∥φν,n[y0:n] − φν′,n[y0:n]

∥
∥
TV. It is worthwhile to

imsart-aap ver. 2007/04/13 file: NonErgodic.hyper11946.tex date: 11th October 2008



8 GASSIAT, LANDELLE, MOULINES

note that the bound we obtain is valid for any sequence y0:n and any initial
distributions ν and ν ′. To state the result, some additional notations are
required. Under assumption (H2), for a fixed η > 0 and a corresponding
LD-set function Cη, let us define, for α ∈ (0, 1) and a sequence y0:n = {yi}

n
i=0

in Y,
(16)

Λη(y0:n, α)
def
= max

{
n∏

k=1

ρδk
η (yk−1, yk), {δk}

n
k=1 ∈ {0, 1}n :

n∑

k=1

δk ≥ αn

}

,

where ρη is a shorthand notation for ρCη
(see (14))

Theorem 4. Let α be some number in (0, 1), ν and ν ′ some probability
measures on (X,X ) and {yi}

n
i=0 a sequence in Y. Then,

(17)
∥
∥φν,n[y0:n] − φν′,n[y0:n]

∥
∥
TV ≤ Λη(y0:n, α)+

ηan

n∏

i=2

(

ε−
C
(yi−1, yi)ΨC(yi−1, yi)

)−2
n∏

i=0

Υ2
X(yi)Φ

−1
ν,C(y0, y1)Φ

−1
ν′,C(y0, y1) ,

with an = ⌊ (1−α)n
2 ⌋.

Proof. The expression (12) together with Proposition 2 imply

∥
∥φν,n[y0:n] − φν′,n[y0:n]

∥
∥
TV ≤

∆n(ν, ν ′, y0:n)

E
Q
ν [
∏n

i=0 g(Xi, yi)] E
Q
ν′ [
∏n

i=0 g(Xi, yi)]
,

where ∆n(ν, ν ′, y0:n) is defined by (15). Set

N
C̄,n =

n∑

i=1

1{X̄i−1 ∈ C̄(yi−1)}1{X̄i ∈ C̄(yi)} , M
C̄c,n =

n−1∑

i=0

1
C̄c(yi)

(X̄i) .

For any sequence {uj}, such that uj ∈ {0, 1} for j ∈ {0, . . . , n} and uj = 0
for j ≥ n,

n ≥
n−1∑

i=0

ui ∨ ui+1 =
n−1∑

i=0

(ui + ui+1 − uiui+1) ≥
n∑

i=0

ui − 1 −
n−1∑

i=0

uiui+1 ,

which implies that
∑n−1

i=0 ui ≤ (n+1)/2+
∑n−1

i=0 uiui+1. Using this inequality
with ui = 1{X̄i ∈ C̄(yi)} for i ∈ {0, . . . , n} shows that N

C̄,n < αn implies
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FORGETTING FOR NON-ERGODIC HMM 9

that MC̄c,n ≥ an. Therefore, using Proposition 2, we obtain

(18)

∆n(ν, ν ′, y0:n) ≤ E
Q̄
ν⊗ν′

[

ḡ(X̄0, y0)
n∏

i=1

ḡ(X̄i, yi)ρ
δi
η (yi−1, yi)1{NC̄,n ≥ αn}

]

+ E
Q̄
ν⊗ν′

[

ḡ(X̄0, y0)
n∏

i=1

ḡ(X̄i, yi)ρ
δi
η (yi−1, yi)1{NC̄,n < αn}

]

,

with δi = 1C̄(yi−1)×C̄(yi)
(X̄i−1, X̄i). The last term in the right-hand side of

(18) satisfies

E
Q̄
ν⊗ν′

[

ḡ(X̄0, y0)
n∏

i=1

ḡ(X̄i, yi)ρ
δi
η (yi−1, yi)1{NC̄,n < αn}

]

≤ E
Q̄
ν⊗ν′

[
n∏

i=0

ḡ(X̄i, yi)1{MC̄c,n ≥ an}

]

.

By splitting this last product, we obtain

n∏

i=0

ḡ(X̄i, yi)1{MC̄c,n ≥ an}

=
∏

0≤i≤n,
X̄i∈C̄(yi)c

ḡ(X̄i, yi)1{MC̄c,n ≥ an} ×
∏

0≤i≤n,
X̄i∈C̄(yi)

ḡ(X̄i, yi)1{MC̄c,n ≥ an} ,

≤ ηan ×
∏

0≤i≤n,
X̄i∈C̄(yi)c

Υ2
X(yi) ×

∏

0≤i≤n,
X̄i∈C̄(yi)

Υ2
X(yi) ,

which implies E
Q̄
ν⊗ν′

[
∏n

i=0 ḡ(X̄i, yi)1{MC̄c,n ≥ an}
]

≤ ηan
∏n

i=0 Υ2
X
(yi). The

first term in the right-hand side expression of (18) satisfies

E
Q̄
ν⊗ν′

[

ḡ(X̄0, y0)
n∏

i=1

ḡ(X̄i, yi)
n∏

i=1

ρδi
η (yi−1, yi)1{NC̄,n ≥ αn}

]

≤ E
Q̄
ν⊗ν′

[
n∏

i=0

ḡ(X̄i, yi)

]

Λη(y0:n, α) .

By combining the above relations, the result follows.

The last step consists in finding conditions upon which the bound in the
right hand side of (17) is small. This bound depends explicitly on the ob-
servations Y ’s; it is therefore not difficult to state general conditions upon
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10 GASSIAT, LANDELLE, MOULINES

which this quantity is small. Let {Yk}k≥0 be a stochastic process with proba-
bility distribution P⋆ in (Y,Y), which is not necessarily related to the model
under which the filter is computed. We first formulate an almost sure conver-
gence on the total variation distance of the filter initialized with two different
probability measures ν and ν ′ and then later establish a convergence of the
expectation.

Theorem 5. Assume (H1) and (H2). Assume moreover that there exists
some LD-set function C such that

lim inf
n→∞

n−1
n∑

k=2

log ε−
C
(Yk−1, Yk) > −M, P⋆ − a.s.(19)

lim sup
n→∞

n−1
n∑

k=0

log ΥX(Yk) < M, P⋆ − a.s.(20)

lim inf
n→∞

n−1
n∑

k=2

log ΨC(Yk−1, Yk) > −M, P⋆ − a.s.(21)

for some constant M > 0. Assume in addition that, for all η > 0 and
α ∈ (0, 1),

(22) lim sup
n→∞

n−1 log Λη(Y0:n, α) < 0, P⋆ − a.s.

Then, for any initial probability distributions ν and ν ′ on (X,X ) such that

νQ1C(Y1) > 0 , P⋆ − a.s. ν ′Q1C(Y1) > 0 , P⋆ − a.s.

we have

lim sup
n→∞

n−1 log
∥
∥φν,n[Y0:n] − φν′,n[Y0:n]

∥
∥
TV < 0, P⋆ − a.s.

Proof of theorem 5. Under the stated assumptions, there exists a
LD-set function C and some constant M > 0 such that

lim sup
n→∞

exp(−2Mn)
n∏

i=2

(

ε−
C
(Yi−1, Yi)

)−2
≤ 1 , P⋆ − a.s.

lim sup
n→∞

exp(−2Mn)
n∏

i=0

Υ2
X(Yi) ≤ 1 , P⋆ − a.s.

lim sup
n→∞

exp(−2Mn)
n∏

i=2

Ψ−2
C

(Yi−1, Yi) ≤ 1 , P⋆ − a.s.
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FORGETTING FOR NON-ERGODIC HMM 11

Let α be some number in (0, 1). Since an = (1−α)n
2 + o(n), by choosing η

small enough, it follows that

lim sup
n→∞

ηan

n∏

i=2

[

ε−
C
(Yi−1, Yi)ΨC(Yi−1, Yi)

]−2
n∏

i=0

Υ2
X(Yi)

≤ lim sup
n→∞

ηane6Mn ≤ lim sup
n→∞

e−cn

for some c > 0. The proof is concluded by using inequality and (22).

The assumptions linking the LD-set function and the observations make
this theorem quite abstract. With a filtering model defined by specific equa-
tions, assumptions can be directly formulated on the model and on the
observations. Such situations will be described through examples presented
in Section 3.

Compared to [8, Theorem 1 ] in the ergodic case , the conditions (19) and
(22) are specific to the non-ergodic case, since they involve the functions ε−

C

and ε+
C
. In the ergodic case, these functions are constant and assumptions

(19) and (22) are trivially satisfied.

Theorem 6. Assume (H1) and (H2). Let C be a LD-set function. Then,
for any Mi > 0, i = 0, . . . , 3, δ > 0 and α ∈ (0, 1), there exist constants
η > 0 and β ∈ (0, 1) such that, for all n ∈ N,

(23) E⋆

[ ∥
∥φν,n[Y0:n] − φν′,n[Y0:n]

∥
∥
TV

]

≤ 2βn+r0(ν, n)+r0(ν
′, n)+

4∑

i=1

ri(n)

where the sequences in the right-hand side of (23) are defined by

r0(ν, n)
def
= P⋆ (log Φν,C(Y0, Y1) ≤ −M0n) ,(24)

r1(n)
def
= P⋆

(
n∑

k=2

log ε−
C
(Yk−1, Yk) ≤ −M1n

)

,(25)

r2(n)
def
= P⋆

(
n∑

k=0

log ΥX(Yk) ≥M2n

)

,(26)

r3(n)
def
= P⋆

(
n∑

k=2

log ΨC(Yk−1, Yk) ≤ −M3n

)

,(27)

r4(n)
def
= P⋆ (log Λη(Y0:n, α) ≥ −δn) .(28)

The proof is along the same lines as above and left to the reader. This
result does not provide directly a rate of convergence. Indeed, only the first

imsart-aap ver. 2007/04/13 file: NonErgodic.hyper11946.tex date: 11th October 2008



12 GASSIAT, LANDELLE, MOULINES

term of the right-hand side of equation (23) gives a geometric rate. In Section
3, for given filtering equations, explicit majorations of the other terms will
be obtained with geometric rates. Like for the pathwise convergence, the
terms r1 and r4 which involve the functions ε−

C
and ε+

C
are specific to the

non-ergodic case.

3. Nonlinear state-space models. Let X = R
n and Y = R

p with
p ≤ n, endowed with the Borel σ-algebra X and Y. We consider the model:

(29)

{

Xk = f(Xk−1) + ζk ,

Yk = h(Xk) + εk ,

where f and h denote some measurable functions. The observation noise
{εk}k≥0 is a sequence of i.i.d. random variables with positive density υ with
respect to the Lebesgue measure λLeb on Y. We consider the following as-
sumptions:

(E1) f is a-Lipschitz, i.e. |f(x) − f(y)| ≤ a|x − y| and h is uniformly con-
tinuous and surjective and, for all y1, y2 ∈ Y and x1, x2 ∈ X in the
preimage of y1 and y2, there exist constant b0 and b such that,

|x1 − x2| ≤ b0 + b|y1 − y2| .

(E2) The density υ is bounded, and lim|u|→∞ υ(u) = 0. Moreover, for all
compact set K ⊂ Y, the quantity infy∈K υ(y) is positive.

Notice that f is not necessarily contracting so that the model is possibly
non-ergodic. The assumption (E1) has been first considered in [15]. A func-
tion f satisfying (E1) can be viewed as a perturbation of a bijective function
whose inverse is b-Lipschtiz. The rationale for considering such assumption
is the following. For two successive observations y1, y2 ∈ Y, the distance
between inverse images of y1, y2 can not be arbitrarily large. Even if h is
not bijective, the distance |y1 − y2| gives information on the distance of two
successives preimage states. The assumption (E2) is more classical and is
satisfied, for example, by Gaussian densities.

We first consider the simplest situation where the state noise is a sequence
of i.i.d. random variables independent of the observation noise {εk}k≥0 and
the observations are distributed according to the model. Then, we study
more general dependence structure of the state noise distribution and the
case where the observations do not necessarily follow the model.

3.1. Nonlinear state-space model with i.i.d. state noise. In this section,
we assume that the state noise {ζk}k≥0 is a sequence of i.i.d. random vari-
ables with positive density γ with respect to the Lebesgue measure denoted
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FORGETTING FOR NON-ERGODIC HMM 13

λLeb and independent of the observation noise {εk}k≥0. Then, for any A ∈ X ,

(30) Q(x,A) =

∫

A
γ[x′ − f(x)]λLeb(dx′) .

For any ∆ ∈ (0,∞), let us define the following set-valued function from Y

to X by

(31) y 7−→ C(y,∆)
def
= {x ∈ X : |h(x) − y| ≤ ∆} .

For any y ∈ Y, C(y,∆) is included in a neighborhood of the preimage of y.
Indeed, under assumption (E1), for any z ∈ X in the preimage of y, and any
x ∈ C(y,∆),

|x− z| ≤ b0 + b∆ .

Let (y, y′) ∈ Y2. By the condition (E1), h is surjective so the preimage of y
and y′ by h is non empty. We choose arbitrarily z and z′ in these preimages:
y = f(z) and y′ = f(z′). By the triangle inequality and the condition (E1),
it follows that, for all (x, x′) ∈ C(y,∆) × C(y′,∆),
(32)
|f(x)−x′| ≤ |f(x)−f(z)|+|f(z)−z′|+|z′−x′| ≤ a(b0+b∆)+D(y, y′)+b0+b∆ ,

where D is defined by

(33) D(y, y′)
def
= sup

{
|f(z) − z′| : (z, z′) ∈ X

2 with h(z) = y, h(z′) = y′
}
.

For any r > 0, we consider the minimum and the maximum of the state
noise density over a ball of radius r:

(34) γ−(r)
def
= inf

|s|≤r
γ(s) , γ+(r)

def
= sup

|s|≤r
γ(s) ,

It follows from (30) and (32) that, for all A ∈ X and x ∈ C(y,∆),
(35)
ε−∆(y, y′)λLeb[A∩C(y′,∆)] ≤ Q[x,A∩C(y′,∆)] ≤ ε+∆(y, y′)λLeb[A∩C(y′,∆)] ,

where,

ε−∆(y, y′)
def
= γ−[(a+ 1)b0 + (a+ 1)b∆ +D(y, y′)] ,

ε+∆(y, y′)
def
= γ+[(a+ 1)b0 + (a+ 1)bd∆ +D(y, y′)] .

Since γ is a positive density, it follows by (35) that the application defined
by (31) is a LD-set function. By assumption (E2), for all η > 0, we may
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14 GASSIAT, LANDELLE, MOULINES

choose ∆ large enough so that sup|s|>∆ υ(s) ≤ η sups∈X υ(s), which implies
that assumption (H2)

(36) ΥCc(y,∆)(y) ≤ ηΥX(y) ,

is satisfied. The positiveness of υ implies assumption (H1).
To check assumptions (19) and (22), it is required to compute an upper

bound for {D(Yk−1, Yk)}k≥1. For z, z′ ∈ X such that h(z) = Yk−1, h(z
′) =

Yk, it follows from the triangle inequality and assumption (E1) that

|f(z) − z′| ≤ |f(z) − f(Xk−1)| + |f(Xk−1) −Xk| + |Xk − z′| ,

≤ a(b0 + b|εk−1|) + |ζk| + b0 + b|εk| .

Therefore, for all integer k ≥ 1,

(37) D(Yk−1, Yk) ≤ (a+ 1)b0 + ab|εk−1| + |ζk| + b|εk| .

Thanks to this bound, assumptions (19) and (22) are satisfied by applying
the Law of Large Numbers, see Propositions 7 and 9 and their proofs. Since
γ− is a non increasing function, it follows by (37) that, for all integer k ≥ 1,
log ε−∆(Yk−1, Yk) ≤ −Z∆

k where for all ∆ > 0 and all integer k ≥ 1,

(38) Z∆
k

def
= − log γ− [2(a+ 1)b0 + (a+ 1)b∆ + ab|εk−1| + |ζk| + b|εk|] .

Proposition 7. Let us consider the filtering model defined by (29). As-
sume (E1), (E2) and, for all ∆ > 0,

(39) E|Z∆
1 | <∞ .

Let {Yk}k≥0 be the sequence of observations produced by the filtering equa-
tions (29) and let C be the LD-set function defined by (31). Then, for any
initial probability distributions ν and ν ′ on (X,X ) and ∆ > 0 such that

νQ1C(Y1,∆) > 0 , P⋆ − a.s. ν ′Q1C(Y1,∆) > 0 , P⋆ − a.s.

we have

lim sup
n→∞

n−1 log
∥
∥φν,n[Y0:n] − φν′,n[Y0:n]

∥
∥
TV < 0, P⋆ − a.s.

The condition (39), is not very restrictive. For example, let us assume
that γ is a centered Gaussian density and that {ζk}k≥0 and {εk}k≥0 are
sequences of Gaussian random variables. It follows, that γ−(r) = γ(r) for
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FORGETTING FOR NON-ERGODIC HMM 15

all r ≥ 0. The condition (39) holds if E(|ε1|
2) < ∞ and E(|ζ1|

2) <∞ which
are trivially satisfied.

With more stringent conditions for initial laws, geometric rates hold for
the convergence of the expected value of the total variation. Let us recall
the definition of the log-moment generating function that will be used in the
sequel.

Definition 8. The log-moment generating function ψZ(λ) of the ran-

dom variable Z is defined on the set {λ ≥ 0 : E[eλZ ] < ∞} by ψZ(λ)
def
=

log E[eλZ ].

Proposition 9. Let us consider the filtering model defined by (29) and
satisfying (E1), (E2) and, for all ∆ > 0, there exists τ > 0 such that

(40) ψZ∆
1

is finite on [0, τ).

Let {Yk}k≥0 be the sequence produced by the filtering equations (29) and
let C denotes the LD-set function defined by (31). Then, for ν and ν ′ two
probability measures on (X,X ) and ∆ > 0 such that, for some λ > 0,

(41) E⋆

{

exp
(

λ[log νg(·, Y0)Q1C(Y1,∆)]−
)}

<∞ ,

E⋆

{

exp
(

λ[log ν ′g(·, Y0)Q1C(Y1,∆))]−
)}

<∞ ,

we have

lim sup
n→∞

n−1 log E⋆
[∥
∥φν,n[Y0:n] − φν′,n[Y0:n]

∥
∥
TV

]
< 0 .

Assume that γ is the density of a standard Gaussian random variable.
The condition E[eλZ∆

1 ] <∞ is equivalent to
∫

Rn+2p
exp

[

(λ− ς)|x|2
]

dx <∞ ,

where ς denotes some positive constant. Therefore, for λ > 0 small enough,
the condition (40) is satisfied.

The conditions (41) can be interpreted as non-degenerative conditions.
Indeed, they forbid that νg(·, Y0)Q1C(Y1,∆) is null almost everywhere and
the same for ν ′. Intuitively, it means that the distribution of the random
variable νg(·, Y0)Q1C(Y1,∆) is not concentrated close to zero. For example, if
there exists a constant c > 0 such that

νg(·, Y0)Q1C(Y1,∆) ≥ c , P⋆ − a.s ν ′g(·, Y0)Q1C(Y1,∆) ≥ c , P⋆ − a.s

then the conditions of (41) are satisfied. Proofs of Propositions 7 and 9 are
given in Section 5.
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16 GASSIAT, LANDELLE, MOULINES

3.2. Nonlinear state-space model with dependent state noise. We now
consider the case where the state noise {ζk}k≥0 can depend on previous
states. This model has been introduced in [15, Section 3] and is important
because it covers the case of partially observed discretely sampled diffu-
sion, as well as partially observed stochastic volatility models [3, Section 2].
This example illustrates that the forgetting property is kept even when the
distributions of the observations differ from the model.

(G) {ζk}k≥0 is a sequence of random variables such that, for all integer k,
ζk is independent of εk and for all A ∈ X ,

P(ζk ∈ A|Xk−1 = x) =

∫

q(x, u)1A(u)λLeb(du) .

Moreover, there exist a positive probability density ψ and positive con-
stants µ−, µ+ such that, for all x, u ∈ X,

µ−ψ(u) ≤ q(x, u) ≤ µ+ψ(u) .

A first example of state equation satisfying (G) is considered in [3]. A signal
takes its values in X and follows the equation

(42) Xk = f(Xk−1) + σ(Xk−1)ξk ,

where {ξk}k≥0 is a sequence of i.i.d random variables and where σ : X →
R

n×n is a measurable function that satisfies, for all x, u ∈ X, the following
hypoellipticity condition:

(43) σ−|u|2 ≤ 〈u, σ(x)σT(x)u〉 ≤ σ+|u|2 ,

where σ−, σ+ are positive constants and the superscript T denotes the trans-
position. Another important example where (G) is satisfied is the case of
certain discretely sampled diffusions. Let (Xt)t≥0 be the unique solution of
the following stochastic differential equation

dXt = ρ(Xt)dt + σ(Xt)dBt ,

where B is the n-dimensional Brownian motion and the functions ρ : R
n →

R
n and σ : R

n → R
n×n are respectively of class C1 and C3 . Then, the

sequence {Xk}k≥0 satisfies assumption (G) if the function σ is hypoelliptic
(condition (43)); see [15]. The assumptions (E1), (E2) and (G) are a bit
more stringent that those made in [15]. Indeed, in [15], the function h is not
necessarily uniformly continuous and no restrictions are made on υ. This
allows to establish the forgetting of the initial condition with probability
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FORGETTING FOR NON-ERGODIC HMM 17

one without restriction on the signal-to-noise ratio and for sequences of
observations which are not necessarily distributed according to the model
used to compute the filtering distribution. Let us denote by Q the transition
kernel for {Xk}k≥0. Then, for all A ∈ X and for all x ∈ X,

Q(x,A) =

∫

A
q[x, x′ − f(x)]λLeb(dx′) .

For the same reasons as above, we consider the same set-valued function
C (31) as before. Let (y, y′) ∈ Y2. Like in (32), it follows by (E1) and the
triangle inequality that, for all (x, x′) ∈ C(y,∆) × C(y′,∆),

|f(x) − x′| ≤ c+ d∆ +D(y, y′) ,

where D is defined in (33), c = (a+ 1)b0 and d = (a+ 1)b. By setting

(44) q−(r)
def
= µ− × inf

|v|≤r
ψ(v) , q+(r)

def
= µ+ × sup

|v|≤r
ψ(v) ,

it follows from condition (G) that, for all A ∈ X and x ∈ C(y,∆),
(45)
ε−∆(y, y′)λLeb[A∩C(y′,∆)] ≤ Q[x,A∩C(y′,∆)] ≤ ε+∆(y, y′)λLeb[A∩C(y′,∆)] ,

where

ε−∆(y, y′)
def
= q−[c+ d∆ +D(y, y′)] , ε+∆(y, y′)

def
= q+[c+ d∆ +D(y, y′)] .

Since ψ is a positive density, the application defined by (31) is a LD-set
function. As in Section 3.1, assumptions (H1) and (H2) are satisfied. Assume
now that the process {Y ∗

k }k≥0 is generated by the following non-linear state-
space observations

(46)

{

X∗
k = f∗(X∗

k−1) + ζ∗k ,
Y ∗

k = h∗(X∗
k) + ε∗k ,

where {ε∗k}k≥0 is a sequence of i.i.d random variables, f∗ is a∗-Lipschtiz, h∗

is surjective and for all x1, x2 ∈ X,

|x1 − x2| ≤ b∗0 + b∗|h∗(x1) − h∗(x2)| ,

for some positive constants b∗0, b
∗. For all integer k ≥ 1 , ζ∗k is independent

of ε∗k and, for all A ∈ X ,

P(ζ∗k ∈ A|X∗
k−1 = x) =

∫

q∗(x, u)1A(u)λLeb(du) .
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18 GASSIAT, LANDELLE, MOULINES

There exists probability densities ψ∗ and positive constants µ∗−, µ
∗
+ such

that, for all x, u ∈ X,

(47) µ∗−ψ
∗(u) ≤ q∗(x, u) ≤ µ+

∗ ψ
∗(u) .

We assume that

(O1) f∗ and h∗ are such that ‖f − f∗‖∞ <∞ and ‖h− h∗‖∞ <∞.

Lemma 10. Let {Y ∗
k }k≥0 be the sequence following (46). Under (O1),

for all integer k ≥ 1,

D(Y ∗
k−1, Y

∗
k ) ≤ κ+ 2a∗b∗ + a∗b∗|ε∗k−1| + b∗|ε∗k| + |ζ∗k | ,

where
κ = ‖f − f∗‖∞ + (b0 + b ‖h∗ − h‖∞)(1 + a∗)

Proof of Lemma 10. For all integer k ≥ 1, for z, z′ ∈ X such that
h(z) = Y ∗

k−1, h(z
′) = Y ∗

k and for u, u′ ∈ X such that h∗(u) = Y ∗
k−1, h

∗(u′) =
Y ∗

k , it follows by the triangle inequality that

|f(z) − z′| ≤ |f(z) − f∗(z)| + |f∗(z) − f∗(u)| + |f∗(u) − u′| + |u′ − z′| ,

≤ ‖f − f∗‖∞ + a∗|z − u| + |f∗(u) − u′| + |u′ − z′| .(48)

Let us notice that

|z − u| ≤ b0 + b|h(z) − h(u)| ≤ b0 + b |h(z) − h∗(u)|
︸ ︷︷ ︸

=0

+b|h∗(u) − h(u)| .

Then, by denoting K = b0 + b ‖h∗ − h‖∞, it follows that |z − u| ≤ K and,
for the same reasons, |z′ − u′| ≤ K. Combining these two majorations with
(48) leads to

|f(z) − z′| ≤ κ+ |f∗(u) − f∗(Xk−1)| + |f∗(Xk−1) −Xk| + |Xk − u′| ,

≤ κ+ a∗[b∗0 + b∗|h∗(z) − h∗(Xk−1)|] + |ζ∗k | + b∗0 + b∗|h∗(Xk) − h∗(u′)| ,

where κ = ‖f − f∗‖∞ + K(1 + a∗). Thus, it is proven that, for all integer
k ≥ 1,

D(Y ∗
k−1, Y

∗
k ) ≤ K ′ + 2a∗b∗ + a∗b∗|ε∗k−1| + b∗|ε∗k| + |ζ∗k | .
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Let us define for all ∆ > 0

(49) V ∗∆
+ = log q−

[
c+ d∆ + κ+ 2a∗b∗ + a∗b∗|ε∗0| + b∗|ε∗1| + |ζ∗+|

]
,

where ζ∗+ is a random variable independent of {ε∗k}k≥0 with density ψ∗.

Proposition 11. Let us consider the filtering model defined by (29) and
satisfying (E1), (E2) and (G). Let C be the LD-set function defined by (31)
and let {Y ∗

k }k≥0 be the sequence following (46) such that (O1) holds and,
for all ∆ > 0,

(50) E

(

|V ∗∆
+ | log+ |V ∗∆

+ |
)

<∞ .

Then, for any initial probability distributions ν and ν ′ on (X,X ) and ∆ > 0
satisfying

νQ1C(Y ∗

1
,∆) > 0 , P⋆ − a.s. ν ′Q1C(Y ∗

1
,∆) > 0 , P⋆ − a.s.

we have

lim sup
n→∞

n−1 log
∥
∥φν,n[Y ∗

0:n] − φν′,n[Y ∗
0:n]
∥
∥
TV < 0, P⋆ − a.s.

This proposition has important consequences. Observations issued from
equations (29) under conditions (E1), (E2) and (G) are of the observa-
tions produced by (46) under (O1). It is only needed that ‖f − f∗‖∞ and
‖h− h∗‖∞ are bounded to ensure the w.p.1 convergence.

Let us write ζ∗k = g∗(X∗
k−1, A

∗
k) where g∗ denotes a measurable function

and {A∗
k}k≥0 a sequence of i.i.d. random variables with uniform law on (0, 1).

We make the following assumptions

(O3) there exists a measurable function g∗+ such that, for all x ∈ X and
a ∈ (0, 1), |g∗(x, a)| ≤ g∗+(a);

(O4) Let {Z∗∆
k }k≥0 be the sequence defined by, for all ∆ > 0 and for all

integer k ≥ 1,

Z∗∆
k = − log q−

[
c+ d∆ + κ+ 2a∗b∗ + a∗b∗|ε∗k−1| + b∗|ε∗k| + g∗+(U∗

k )
]
,

For all ∆ > 0, there exists τ > 0 such that the log-moment generating
function ΨZ∗∆

1
is finite on [0, τ).

Proposition 12. Let us consider the filtering model defined by (29) and
satisfying (E1), (E2) and (G). Let {Y ∗

k }k≥0 be the sequence following (46)
such that (O1), (O3) and (O4) hold and let C be the LD-set function defined
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by (31). Then, for ν and ν ′ two probability measures on (X,X ) and ∆ > 0
such that, for some λ > 0,

E⋆

{

exp
(

λ[log νg(·, Y ∗
0 )Q1C(Y ∗

1
,∆)]−

)}

<∞ ,

E⋆

{

exp
(

λ[log ν ′g(·, Y ∗
0 )Q1C(Y ∗

1
,∆))]−

)}

<∞ ,

we have

lim sup
n→∞

n−1 log E⋆
[∥
∥φν,n[Y ∗

0:n] − φν′,n[Y ∗
0:n]
∥
∥
TV

]
< 0 .

For the convergence in expectation, the restrictive assumption (O3) has
to be made. Let us precise that, for the case considered in [3], this condition
is satisfied since the function σ in (42) is bounded. The case of [15] is not
covered by this condition. It seems quite difficult to get the same results as in
[15] with observations not necessarily from an HMM without strengthening
the assumptions on {ζ∗k}k≥0. Let us precise that the convergence theorem
of [15] is proved for observations issued from the filtering equations. The
assumption (O4) is of the same type as (40).

Proofs of Propositions 11 and 12 are given in Section 6.

4. Proofs of Propositions 2 and 3.

Proof of Proposition 2. For convenience, we write Ci = C(yi), ε
−
i =

ε−
C
(yi−1, yi), ε

+
i = ε+

C
(yi−1, yi), gi(x) = g(x, yi), λi = λyi−1,yi

and ρi =

1− (ε−i /ε
+
i )2. Let us define λ̄i

def
= λi ⊗ λi. Since C is an LD-set function, for

all i = 1, . . . , n, x̄ ∈ C̄i−1, and f̄ a non-negative function on X × X,

(51) (ε−i )2λ̄i(1C̄i
f̄) ≤ Q̄(x̄,1C̄i

f̄) ≤ (ε+i )2λ̄i(1C̄i
f̄) .

Let us define the sequence of unnormalized kernels Q̄0
i and Q̄1

i by, for all
x̄ ∈ X2, and f̄ a non-negative function on X × X,

Q̄0
i (x̄, f̄) = (ε−i )21C̄i−1

λ̄i(1C̄i
f̄) ,

Q̄1
i (x̄, f̄) = Q̄(x̄, f̄) − (ε−i )21C̄i−1

λ̄i(1C̄i
f̄) .

It follows from (51) that, for all x̄ in C̄i−1, 0 ≤ Q̄1
i (x̄,1C̄i

f̄) ≤ ρiQ̄(x̄,1C̄i
f̄)

which implies that, for all x̄ ∈ X2,

Q̄1
i (x̄, f̄) = 1C̄i−1

(x̄)Q̄1
i (x̄,1C̄i

f̄) + 1C̄i−1
(x̄)Q̄1

i (x̄,1C̄c
i
f̄) + 1C̄c

i−1
(x̄)Q̄1

i (x̄, f̄) ,

≤ ρi1C̄i−1
(x̄)Q̄(x̄,1C̄i

f̄) + 1C̄i−1
(x̄)Q̄1

i (x̄,1C̄c
i
f̄) + 1C̄c

i−1
(x̄)Q̄1

i (x̄, f̄) ,

≤ Q̄

(

x̄, ρ
1

C̄i−1
(x̄)1

C̄i

i f̄

)

.
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We write ∆n
(
ν, ν ′, y0:n) = supA∈X |∆n(A)|, where

∆n(A)
def
= ν ⊗ ν ′

(
ḡ0Q̄ḡ1 . . . Q̄ḡn1A×X

)
− ν ′ ⊗ ν

(
ḡ0Q̄ḡ1 . . . Q̄ḡn1A×X

)
.

We decompose ∆n(A) into ∆n(A) =
∑

t0:n−1∈{0,1}n ∆(A, t0:n−1), where

∆n(A, t0:n−1)
def
= ν ⊗ ν ′

(

ḡ0Q̄
t0
0 ḡ1 . . . Q̄

tn−1

n−1 ḡn1A×X

)

− ν ′ ⊗ ν
(
ḡ0Q̄

t0
0 ḡ1 . . . Q̄

tn−1

n−1 ḡn1A×X

)
.

Note that, for any t0:n−1 ∈ {0, 1}n and any sets A,B ∈ X ,

ν ⊗ ν ′
(
ḡ0Q̄

t0
0 ḡ1 . . . Q̄

tn−1

n−1 ḡn1A×B
)

= ν ′ ⊗ ν
(
ḡ0Q̄

t0
0 ḡ1 . . . Q̄

tn−1

n−1 ḡn1B×A
)
.

If there is an index i ∈ {0, . . . , n − 1} such that ti = 0, then

ν ⊗ ν ′
(
ḡ0Q̄

t0
0 ḡ1 . . . Q̄

tn−1

n−1 ḡn1A×X)

= ν ⊗ ν ′
(
ḡ0Q̄

t0
0 ḡ1 . . . Q̄

ti−1

i−1 ḡi1C̄i
) × (ε−i+1)

2λ̄i
(1C̄i+1

ḡi+1Q̄
ti+1

i+1 . . . Q̄
tn−1

n−1 ḡn1A×X

)
,

= ν ′ ⊗ ν
(
ḡ0Q̄

t0
0 ḡ1 . . . Q̄

ti−1

i−1 ḡi1C̄i
) × (ε−i+1)

2λ̄i
(1C̄i+1

ḡi+1Q̄
ti+1

i+1 . . . Q̄
tn−1

n−1 ḡn1A×X

)
.

Thus, ∆n(A, t0:n−1) = 0 except if for all i ∈ {0, . . . , n − 1}, ti = 1, and we
obtain

∆n(A) = ν ⊗ ν ′
[

ḡ0Q̄
1
0ḡ1 . . . Q̄

1
n−1ḡn

(1A×X − 1X×A

)]

.

It then follows

∆n
(
ν, ν ′, y0:n

)
≤ ν⊗ν ′(ḡ0Q̄

1
0ḡ1 . . . Q̄

1
n−1ḡn) ≤ E

Q̄
ν⊗ν′

[

ḡ(X̄0, y0)
n∏

i=1

ḡ(X̄i, yi)ρ
δi

i

]

,

with δi = 1
C̄i−1×C̄i

(X̄i−1, X̄i).

Proof of Proposition 3. Since C is an LD-set function, there exist
some applications ε−

C
, ε+

C
such that, for all i = 1, . . . , n, for all x ∈ C(yi−1)

and for all A ∈ X with A ⊂ C(yi),

(52) ε−
C
(yi−1, yi)λyi−1,yi

(A) ≤ Q(x,A) ≤ ε+
C
(yi−1, yi)λyi−1,yi

(A) .

Let us write the obvious inequality

E
Q
ν

[
n∏

i=0

g(Xi, yi)

]

≥ E
Q
ν

[

g(X0, y0)
n∏

i=1

g(Xi, yi)1C(yi)(Xi)

]

.
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Then, for the right-hand side of this expression, by (52) we have

E
Q
ν

[

g(X0, y0)
n∏

i=1

g(Xi, yi)1C(yi)(Xi)

]

= E
Q
ν

[

g(X0, y0)g(X1, y1)1C(y1)(X1)
n∏

i=2

g(Xi, yi)1C(yi−1)×C(yi)(Xi−1,Xi)

]

,

≥ ν
[
g(·, y0)Qg(·, y1)1C(y1)(·)

]
n∏

i=2

ε−
C
(yi−1, yi)λyi−1,yi

[
g(·, yi)1C(yi)

]
.

5. Proofs of Propositions 7 and 9 .

Proof of Proposition 7. Since, by definition (34), γ− is a decreasing
function, the inequality (37) leads to

(53) n−1
n∑

k=2

log ε−∆(Yk−1, Yk) ≥ −n−1
n∑

k=2

Z∆
k ,

where Z∆
k is defined in (38). Since the process {ab|εk−1| + |ζk| + b|εk|}k≥1

is stationary 2-dependent, the strong law of large numbers for m-dependent
sequences and the integrability condition (39) yield

(54) lim
n→∞

n−1
n∑

k=2

Z∆
k = E(Z∆

1 ) <∞ , P⋆ − a.s.

By combining (53) and (54), the first condition (19) of Theorem 5 is sat-
isfied. By assumption (E2), the density υ is bounded which implies that
supy∈Y ΥX(y) ≤ supυ. Hence, the second condition (20) of Theorem 5 is
satisfied. We now consider the third condition (21). Since the measure ap-
pearing in the definition of the LD-set function does not depend on y, y′,
the function (y, y′) 7→ ΨC(y′,∆)(y, y

′), defined in (11), does not depend on y
and is given by

ΨC(y′,∆)(y, y
′) =

∫

C(y′,∆)
υ[y′ − h(x)]λLeb(dx) ≥ λLeb[C(y′,∆)] × inf

|s|≤∆
υ(s) .

Since the function h is uniformly continuous, for any fixed ∆ > 0, there
exist δ > 0 such that, for all x, x′ ∈ X satisfying |x − x′| ≤ δ, we have
|h(x) − h(x′)| ≤ ∆, showing that λLeb[C(y′,∆)] ≥ δ. Thus, we have, for all
y, y′ ∈ Y,

(55) ΨC(y′,∆)(y, y
′) ≥ ̺∆ ,
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for some ̺∆ > 0, depending only on ∆. The third condition (21) of Theorem
5 follows. Since assumption (H2) is satisfied, for any fixed η > 0, we choose
∆ > 0 such that inequality (36) holds. Let us write

(56) R∆(x)
def
= log

[
1 − (γ−/γ+)2(2c+ d∆ + x)

]
.

We will repeatedly use the following representation of the so-called L-statistic
(see [17, Chapter 8]):

Lemma 13. Let {U1, . . . , Un} be a sequence and Un,1 ≤ Un,2 ≤ . . . ≤ Un,n

the upper ordered statistic. Then,

n−1
n∑

k=j

Un,k =

∫ 1

j/n
F−1

n,U (s) ds

where F−1
n,U (s)

def
= inf{t ∈ R, Fn,U(t) ≥ s} is the empirical quantile function,

i.e. the generalized inverse of the empirical distribution function Fn,U (t)
def
=

n−1∑n
k=1 1{Uk≤t}.

Applying this representation yields

(57) n−1 log Λη(Y0:n, α) ≤

∫ 1

0
1{u ≥ 1 − rn}F

−1
n (u) du ,

where rn = (⌈nα⌉−1)/n, Fn(t) = n−1∑n
k=1 1{R∆(ab|εk−1|+|ζk|+b|εk|) ≤ t}

and F−1
n its generalized inverse. The function R∆ defined by (56) is negative

and then, Fn(0) = 1 which implies that F−1
n (u) ≥ 0 for all u ∈ (0, 1). Thus,

by Fatou’s lemma,

(58) lim sup
n→∞

∫ 1

0
1{u ≥ 1 − rn}F

−1
n (u) du

≤

∫ 1

0
lim sup

n→∞
1{u ≥ 1 − rn}F

−1
n (u) du P⋆ − a.s.

The following lemma is a generalization of [18, Lemma 21.2].

Lemma 14. Let {Ψn}n≥0 be a sequence of nondecreasing functions and Ψ
a bounded nondecreasing function such that for all x ∈ X, limn→∞ Ψn(x) =
Ψ(x). Then, Ψ−1 has at most a countable number of discontinuity points
and at any point u where Ψ−1 is continuous,

lim
n→∞

Ψ−1
n (u) = Ψ−1(u) .
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Let us denote F (t) = P[R∆(ab|ε0| + |ζ1| + b|ε1|) ≤ t] and notice that
F (0) = 1. Then, combining (57), (58) and Lemma 14 leads to

lim sup
n→∞

n−1 log Λη(Y0:n, α) ≤

∫ 1

1−α
F−1(u) du < 0 , P⋆ − a.s. .

This shows that the fourth condition (22) is satisfied and finally, Theorem
5 applies.

Let us recall that ψZ denotes the log-moment generating function of the

random variable Z defined by ψZ(λ)
def
= log E[eλZ ] and we define its Legen-

dre’s transformation by

ψ∗
Z(x) = sup

λ≥0
{xλ− ψZ(λ)} .

Proof of Proposition 9. We start by giving an exponential inequality
for m-dependent variables.

Lemma 15. Let {Zk}k≥0 be a sequence of m-dependent stationary ran-
dom variables. There exists some constant C > 0 such that, for all M ≥ 0,

P

(
n∑

k=1

Zk ≥Mn

)

≤ C exp[−nψ∗
Z1

(2Mm)/(2m)] .

The proof is elementary and left to the reader. It follows by equation (53)
that

P

(

n−1
n∑

k=2

log ε−∆(Yk−1, Yk) ≤ −M1n

)

≤ P

(
n∑

k=2

Z∆
k ≥M1n

)

.

Thanks to (40), by applying Lemma 15, there exist some constant c1, δ1 > 0
such that r1(n) ≤ c1e

−δ1n. Since υ is bounded, we can choose M2 large
enough such that r2(n) = 0. By (55), for all (y, y′) ∈ Y2, ΨC(y′,∆)(y, y

′) ≥
̺∆ , for some ̺∆ > 0. Then, by choosingM3 large enough, we have r3(n) = 0.
For r4(n), we need an exponential inequality for L-statistics based on m-
dependent variables.

Lemma 16. Let {Uk}k≥0 be a sequence of m-dependent stationary neg-
ative random variables. For all α ∈ (0, 1), there exists a real r > 0 such
that

lim
n→∞

n−1 log P





n∑

k=n−⌈αn⌉+1

Un,k ≥ −rn



 < 0 .
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Proof of Lemma 16. For j ∈ {1, . . . ,m}, define Ij = {j, j + m, j +
2m, . . .} and let nj = |Ij | the cardinal of Ij. For any j ∈ {1, . . . ,m}, the

sequence {Uk, k ∈ Ij} is i.i.d.. Denote {U
(j)
k }1≤k≤nj

the sequence {Uk, k ∈
Ij}. Since Uk < 0 for all integer k, it then follows that

n∑

k=n−⌈αn⌉+1

Un,k ≤
m∑

j=1

nj
∑

k=(nj−⌈αn⌉+1)∨0

U
(j)
nj ,k ,

and

P





n∑

k=n−⌈αn⌉+1

Un,k ≥ −rn



 ≤
m∑

j=1

P





nj∑

k=(nj−⌈αn⌉+1)∨0

U
(j)
nj ,k ≥ −rn/m



 ,

for all n ≥ N larger than some integer N . The sequence {U
(j)
k }1≤k≤nj

is a
sequence of i.i.d. random variable. Then, using [10, Theorem 6.1], we have

lim
n→∞

n−1
j log P



n−1
j

nj∑

k=(nj−⌈αn⌉+1)∨0

U
(j)
nj ,k ≥ −δ



 < 0 ,

for some positive δ and the result follows since nj/n = 1/m+ o(1).

Define by Uk = R∆ [ab|εk−1| + |ζk| + b|εk|] for all integer k ≥ 1. By the
definition (16) of Λη,

(59) n−1 log Λη(Y0:n, α) ≤ n−1
n∑

k=n−⌈αn⌉+1

Un,k .

Then, by equation (59) and by applying Lemma 16, there exist some con-
stants c4, δ4 > 0 such that r4(n) ≤ c4e

−δ4n. Finally, under assumptions (E1),
(E2) and (40), Theorem 6 applies and provides a geometric rate.

6. Proofs of Propositions 11 and 12 .

Proof of Proposition 11. Let us define, for all ∆ > 0 and for all
integer k ≥ 1,

(60) V ∗∆
k = log q−

[
c+ d∆ + κ+ 2a∗b∗ + a∗b∗|ε∗k−1| + b∗|ε∗k| + |ζ∗k |

]
.
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Using the definitions (44), (45) of q− and ε−∆, Lemma 10 shows that

(61) n−1
n∑

k=2

ε−∆(Y ∗
k−1, Y

∗
k ) ≥ n−1

n∑

k=2

V ∗∆
k .

Thus, to check (19), it suffices to control the asymptotic behavior of right-
hand side of this inequality. We use the following result [11, Chapter 2,
Section 6].

Lemma 17. Let us denote by {Hk}k≥0a filtration and consider a sequence
{Uk}k≥0 of random variable adapted to {Hk}k≥0. Let us assume that there
exists a random variable U such that E

(

|U | log+ |U |
)

< ∞ and P(|Uk| >
x) ≤ cP(|U | > x) for all x > 0 and some c > 0. Then

lim
n→∞

n−1
n∑

k=1

[Uk − E(Uk|Hk−1)] = 0 , P − a.s.

Define the filtration {F∗
k}k≥0 whereF∗

k = σ
(

{X∗
j }0≤j≤k, {ζ

∗
j }0≤j≤k, {ε

∗
j}j≥0

)

.

Since q− defined in (44) is non-increasing, there exists c > 0 such that, for
all x > 0, P(|V ∗∆

k | > x) ≤ cP(|V ∗∆
+ | > x), where V ∗∆

+ is defined in (49).
Hence, we may apply Lemma 17 which yields, for any ∆ > 0,

(62) lim inf
n→∞

n−1
n∑

k=2

V ∗∆
k = lim inf

n→∞
n−1

n∑

k=2

E{V ∗∆
k |F∗

k−1} , P⋆ − a.s.

By (47), since for all x > 0, log x ≥ − log− x, then, by the strong law of
large numbers,
(63)

lim inf
n→∞

n−1
n∑

k=2

E{V ∗∆
k |F∗

k−1} ≥ −E[H∆(a∗b∗|ε∗0| + b∗|ε∗1|)] , P⋆ − a.s.

where H∆(x) = µ∗+ ×
∫

log− q
−[c + d∆ + κ+ 2a∗b∗ + x+ |w|]ψ∗(w) dw. By

(50), E[H∆(a∗b∗|ε∗0| + b∗|ε∗1|)] < ∞, it then follows by (61), (62) and (63)
that

lim inf
n→∞

n−1
n∑

k=2

log ε−∆(Y ∗
k−1, Y

∗
k ) ≥ lim inf

n→∞
n−1

n∑

k=2

V ∗∆
k > −∞ , P⋆ − a.s.

and the condition (19) is satisfied. The proof of assumptions (20) and (21)
can be checked as in Proposition 7. Since (H2) is satisfied, for a fixed η > 0,
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we choose ∆ > 0 such that ΥCc(y,∆)(y) ≤ ηΥX(y). Applying Lemma 13
yields

n−1 log Λη(Y
∗
0:n, α) ≤

∫ 1

0
1{1 − rn ≤ u}F ∗

n
−1(u) du , P⋆ − a.s.

where rn = (⌈nα⌉ − 1)/n and F ∗
n
−1 is the generalized inverse of the distri-

bution function:

(64) F ∗
n(t) = n−1

n∑

k=1

1{R∆[κ+ 2a∗b∗ + a∗b∗|ε∗k−1| + b∗|ε∗k| + |ζ∗k |] ≤ t} ,

with R∆ is defined in (56). For convenience, let us write G(ε∗k−1, ε
∗
k, ζ

∗
k) =

R∆[κ+ 2a∗b∗ + a∗b∗|ε∗k−1| + b∗|ε∗k| + |ζ∗k |]. Setting

(65) H∗
n(t) = n−1

n∑

k=1

P
{
G(ε∗k−1, ε

∗
k, ζ

∗
k) ≤ t|F∗

k−1

}
,

it follows from Lemma 17 that, for a fixed t ∈ R,

(66) lim
n→∞

{F ∗
n(t) −H∗

n(t)} = 0 , P⋆ − a.s.

The convergence in (66) may be shown to hold uniformly in t:

Lemma 18. Let us consider the stochastic functions F ∗
n and H∗

n defined
by (64), (65). Then,

(67) lim
n→∞

‖F ∗
n −H∗

n‖∞ = 0 , P⋆ − a.s.

Proof. Let us define

J∗
n(t) = n−1

n∑

k=1

∫

P
{
G(ε∗k−1, ε

∗
k, w) ≤ t |F∗

k−1

}
ψ∗(w) dw ,(68)

J∗(t) = E

[∫ 1{G(ε∗0, ε
∗
1, w) ≤ t}ψ∗(w) dw

]

.(69)

By the Glivenko-Cantelli Theorem, limn→∞ ‖J∗
n − J∗‖∞ = 0, P⋆-a.s. Set

ε > 0 and a sequence −∞ = t0 ≤ t1 . . . ≤ tN = ∞ such that J∗(t−i ) −
J∗(ti−1) < ε/µ∗+ for every i. By (47), for all real numbers t < t′, P⋆-a.s.

H∗
n(t′)−H∗

n(t) = n−1
n∑

k=1

P(t < G(ε∗k−1, ε
∗
k, ζ

∗
k) ≤ t′|F∗

k−1) ≤ µ∗+[J∗
n(t′)−J∗

n(t)] ,
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and then

lim sup
n→∞

|H∗
n(t′) −H∗

n(t)| ≤ µ∗+|J
∗(t′) − J∗(t)| , P⋆ − a.s.

For all t ∈ R, there exists an index i such that ti−1 ≤ t < ti. Since F ∗
n and

H∗
n are increasing functions, it follows that

F ∗
n(ti−1) ≤ F ∗

n(t) ≤ F ∗
n(t−i ) , H∗

n(ti−1) ≤ H∗
n(t) ≤ H∗

n(t−i ) .

These inequalities imply

sup
t∈R

|F ∗
n(t)−H∗

n(t)| ≤ max
0≤i≤N

|F ∗
n(t−i )−H∗

n(t−i )|+ max
1≤i≤N

|H∗
n(t−i )−H∗

n(ti−1)| ,

and then
lim sup

n→∞
sup
t∈R

|F ∗
n(t) −H∗

n(t)| ≤ ε , P⋆ − a.s.

By (47), for all t ∈ R,

F ∗
n(t) = F ∗

n(t) −H∗
n(t) +H∗

n(t) ≥ F ∗
n(t) −H∗

n(t) + µ∗−J
∗
n(t) , P⋆ − a.s.

Hence, using the limit (67), for a given δ > 0, there exists an integer l such
that, for all n ≥ l and t ∈ R,

(70) F ∗
n(t) ≥ µ∗−J

∗
n(t) − δ , P⋆ − a.s.

Let us notice that J∗
n is an increasing function with limt→−∞ J∗

n(t) = 0 and
limt→+∞ J∗

n(t) = 1. Then, we can define its generalized inverse denoted by
J∗

n
−1. By (70), it follows that, for all u ∈ [0, (µ∗− − δ) ∧ 0],

F ∗
n
−1(u) ≤ J∗

n
−1[(u+ δ)/µ∗−] , P⋆ − a.s.

By choosing δ > 0 such that µ∗− − δ > 1 − α, there exists an integer i ≥ l
such that, for all n ≥ i, we have

∫ 1

0
1{1 − rn ≤ u}F ∗

n
−1(u) du

≤

∫ 1

0
1{1 − rn ≤ u ≤ µ∗− − δ}J∗

n
−1[(u+ δ)/µ∗−] du , P⋆ − a.s.
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By Fatou’s lemma,

lim sup
n→∞

∫ 1

0
1{1 − rn ≤ u}F ∗

n
−1(u) du

≤

∫ 1

0
lim sup

n→∞
1{1 − rn ≤ u ≤ µ∗− − δ}J∗

n
−1[(u+ δ)/µ∗−] du , P⋆ − a.s.

It follows by Lemma 14 that

lim sup
n→∞

n−1 log Λη(Y
∗
0:n, α) ≤

∫ µ∗

−
−δ

1−α
J∗−1[(u+ δ)/µ∗−] du < 0 , P⋆ − a.s.

Thus, condition (22) is satisfied and Theorem 5 applies.

Proof of Proposition 12. It follows, by definition of r1, Lemma 10
and (O3), that

r1(n) = P⋆

(

n−1
n∑

k=2

log q−[c+ d∆ +D(Y ∗
k−1, Y

∗
k )] ≤ −M1n

)

≤

P⋆

(

n−1
n∑

k=2

log q−
[
c0 + a∗b∗|ε∗k−1| + b∗|ε∗k| + g∗+(A∗

k)
]
≤ −M1n

)

.

with c0 = c+ d∆+κ+2a∗b∗. Then, by (O4) and applying Lemma 15, there
exist some constants c1, δ1 > 0 such that r1(n) ≤ c1e

−δ1n. By the same
arguments as in proof of Proposition 9, the real numbers M2 and M3 can
be chosen large enough such that r2(n) = 0 and r3(n) = 0. Let us denote by
{U+

k }k≥0 the sequence defined by U+
k = R∆[κ+2a∗b∗ +a∗b∗|ε∗k−1|+ b∗|ε∗k|+

g∗+(A∗
k)], for all integer k ≥ 1. By definition of Λη,

(71) n−1 log Λη(Y
∗
0:n, α) ≤ n−1

n∑

k=n−⌈αn⌉+1

U+
n,k .

By applying Lemma 16, there exist some constants c4, δ4 > 0 such that
r4(n) ≤ c4e

−δ4n. Finally, Theorem 6 applies and provides a geometric rate.
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