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This paper presents a graph-based ordering scheme of color vectors. A complete graph is
defined over a filter window and its structure is analyzed to construct an ordering of color
vectors. This graph-based ordering is constructed by finding a Hamiltonian path across
the color vectors of a filter window by a two-step algorithm. The first step extracts, by
decimating a minimum spanning tree, the extreme values of the color set. These extreme
values are considered as the infimum and the supremum of the set of color vectors. The
second step builds an ordering by constructing a Hamiltonian path among the vectors
of color vectors, starting from the infimum and ending at the supremum. The properties
of the proposed graph-based ordering of vectors are detailed. Several experiments are
conducted to assess its filtering abilities for morphological and median filtering.

Keywords: Ordering of vectors, color, filtering, mathematical morphology, median,
graph, Hamiltonian path.

1. Introduction

Color image processing is a very important area of research which belongs to the

processing of multichannel images20,28,29. A large number of nonlinear image filters

have been initially developed for the processing of gray-scale images. It is now ad-

mitted that a direct extension of these algorithms to color images by a component-

wise approach is not suitable since it neglects the correlation that exists between

the color channels of a natural image. Moreover, this can produce color shifts or

other artifacts16. To address this problem, a vectorial processing of color images is

preferable.

Nonlinear filters such as median or morphological filters require the pixels con-

tained in a filter window to be ordered. Since there is no natural ordering for vector
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data, their extension to color images is not straightforward. The definition of an

ordering of color vectors is therefore of high interest for processing color images20,23

since it can be used for image filtering, edge detection, spatial interpolation, etc20.

In this paper, a new graph-based approach to the ordering of color vectors is

presented. A complete graph is defined over a filter window and its structure is

analyzed to construct an ordering of color vectors. This graph-based ordering is

constructed by finding a Hamiltonian path8 across the color vectors of a filter win-

dow by a two-step algorithm. The first step extracts, by decimating a minimum

spanning tree, the extreme values of the color set. These extreme values are con-

sidered as the infimum and the supremum of the set of color vectors. The second

step builds an ordering by constructing a Hamiltonian path among the vectors of

color vectors, starting from the infimum and ending at the supremum.

The rest of this paper is organized as follows. In the next section, an overview

of multivariate ordering of vectors is presented and various schemes for ordering

vectors are described. In Section 3, these schemes are compared according to their

abilities for color morphological or median filtering. In Section 4, after having re-

called basic definitions on weighted graphs, the proposed graph-based ordering of

color vectors is described. Results and discussion are presented in Section 5. In the

final section, some concluding remarks are made.

2. Multivariate ordering of vectors

To process multivariate data such as color vectors, the three main multivariate

orderings of vectors are the pre-order, the partial order and the total order. Before

the description of these orderings, we provide definitions of the relations used to

characterize an ordering of vectors10,40,17.

Definition 1. Let R be a binary relation on a given set A.

• R is reflexive if ∀x ∈ A,xRx,

• R is transitive if ∀x,y, z ∈ A,xRy and yRz⇒ xRz,

• R is anti-symmetric if ∀x,y ∈ A,xRy and yRx⇒ x = y.

Definition 2. A binary relation R on a set A is a pre-order if R is reflexive and

transitive.

Definition 3. A binary relation R on a set A is a partial order if R is reflexive,

transitive and anti-symmetric.

Definition 4. A binary relation R on a set A is a total order if R is a partial

order and if ∀x,y ∈ A,xRy or yRx.

Therefore, a complete ordering on a set A is an ordering where any pair of

vectors can be ordered (e.g. the binary relation ≤ on R).

A multivariate image can be represented by the mapping Z
l → R

p where l is the

image dimension and p the number of channels. Let W = {xk ∈ Z
l; k = 1, 2, . . . , N}
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design a filter window of finite length N where x1 determines the position of the

filter window (i.e. x1 occupies the central location in the filter window). From

W one therefore gets a set {x1,x2, · · · ,xN} of N p-dimensional vectors: xi =

{x1
i ,x

2
i , · · · ,x

p
i },xi ∈ R

p. A classical way to define an ordering relation between

vectors is to use a transform9 h from R
p into R

q followed by the natural ordering

on each dimension of R
q. With h : R

p → R
q, and x → h(x) then ∀(xi,xj) ∈

R
p×R

p,xi ≤ xj ⇔ h(xi) ≤ h(xj). When h is bijective, this corresponds to defining

a space filling curve that goes through each point of the R
p space just once and

thus induces a total ordering. According to these definitions, we can review some

several possible types of multivariate orderings of vectors as it has been done by

Barnett5. The ones we present are the marginal, the reduced and the conditional

orderings. We recall their principles here.

• In the marginal ordering, vectors are ordered in each dimension indepen-

dently (q = p, h = Identity). This order is a partial ordering and it is now

admitted that this approach is not satisfactory since it can produce new

vectors which do not belong to the initial set.

• In the reduced ordering, q = 1 and h denotes a chosen distance metric which

differentiates the possible reduced ordering schemes. Each vector is reduced

to a scalar and the vector data are sorted according to the obtained scalar

values. A classical way to define the h transform is to use a cumulative

distance. This type of ordering is very popular and is used for color vector

median filters for instance20,21. This order is a pre-order.

• In the conditional (or lexicographic) ordering, the vectors are ordered ac-

cording to a hierarchical order of the components. Therefore, q = 1 and

h : R
p → R,xi → xk

i with k adaptively determined. For two vectors xi and

xj , one has:

xi ≤ xj







x1
i < x1

j , or

x1
i = x1

j , and, x2
i < x2

j or · · ·

x1
i = x1

j , and, x2
i = x2

j · · · x
p
i < x

p
j

This ordering is a total ordering of vectors but it introduces a strong dis-

symmetry between the components.

Since processing multivariate data is of interest in many research areas (e.g. color

or multi spectral image processing), a wide range of different schemes for ordering

vectors can be found in literature 2,4,6,7,11,12,14,18,25,26,27,28,35,38,39. Most of these

works rely on modified lexicographic ordering schemes since this is the only true

total ordering relation commonly used in literature. However, another total ordering

of color vectors, called the bit-mixing ordering, has been proposed by Chanussot6.

The bit-mixing is based on the binary representation of each component of the

considered vector x. If the p components of x are coded with b bits each, the p · b

available bits are blended together to build the p · b bits long scalar value h(x)6,15.
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The considered transform h can then be written as follows:

h(x) =

b
∑

k=1

{

2p·(b−k)

p
∑

i=1

2(p−i)xi⊲k

}

where xi⊲k denotes the kth bit of the ith component of x. In the case of color images,

p = 3, b = 8.

In the context of space filling-curves, it is worth mentioning the works of Rega-

zonni 30,34 where a given curve is defined for median filtering. We do not consider

that issue of constructing a space filling curve on all the space R
p. We will see

in Section 4.2 that an equivalent notion (the Hamiltonian path) can be used to

construct an ordering of color vectors.

3. Ordering and filtering

One very important field of application of multivariate image processing and in par-

ticular color images is filtering28,6,20,29. In this section, we focus on the link between

ordering color vectors and filtering (morphological31,9 or median23,6). Morphologi-

cal or median filters are usually based on specific orderings of color vectors which

have advantages and disadvantages. We give details about both in the sequel.

3.1. Vector morphological filters

Mathematical morphology is a nonlinear approach to image processing which relies

on a fundamental structure, the complete lattice L. A complete lattice is defined

such that31:

• An ordering relation ≤ is defined over L,

• For every finite subset K of L, there exists a supremum ∨K and an infimum

∧K.

A marginal approach can be used, but a purely vectorial approach is preferable.

Indeed, with a marginal approach, the supremum and the infimum do not always

belong to the lattice and false colors can appear6. Another constraint to the def-

inition of morphological filters is therefore to impose that the supremum and the

infimum of a given set do belong to this one. Total orderings are thus usually con-

sidered for color morphological operators. In this frame, the main orderings of color

vectors are the lexicographic ordering11,2 and the bit-mixing ordering6 which are

total orderings and which both fulfill all the requirements of the complete lattice

L.

The lexicographic ordering is however strongly dissymmetric and most of the

ordering of color vectors decisions are taken on the level of the first component which

implies the attribution of a priority to the components. This provides operators the

behavior of which is not homogeneous in a color space. The choice of the priority

component being difficult3,25,1, this can be alleviated by considering perceptual
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color spaces based on Luminance/Hue/Saturation2,18 where the ordering is more

natural from a human perception point of view. Even if this ordering has drawbacks,

this is the most commonly used and it has been studied by several authors for

morphological filtering12,18,26,27,35,38,39.

The bit-mixing ordering enables to limit the dissymmetry between the compo-

nents. However, since it is based on an interlacing of bits, it is reduced to operate

in color spaces where components are described by integers, which is not the case

of a lot of color spaces. The bit-mixing ordering was therefore mainly conceived to

operate in the RGB color space.

Once an ordering of color vectors is defined, one can apply the two main mor-

phological operations that is to say the erosion ǫ and the dilatation δ. Regardless

the ordering scheme, the color erosion (ǫ) and dilatation (δ) over a filter window

W centered on x are given by:

ǫ(x) = {y : y = ∧W} and δ(x) = {y : y = ∨W}

where ∨ and ∧ are respectively the supremum and the infimum of a set. Other

morphological operators can be obtained by composition of these elementary oper-

ations: the opening (γ = δǫ) and the closing (ϕ = ǫδ) for instance.

3.2. Vector Median Filters

The most popular vector filter is the Vector Median Filter (VMF)21 introduced by

Astola4. We do not detail the state of the art on vector median filters since it is

out of the scope of this paper and excellent reviews can be found in20,21,23,29. Such

vector filters are based on the ordering of vectors in a filter window W . Each vector

xk ∈ W is associated with a distance measure:

Rk =

N
∑

i=1

‖xk − xi‖γ for k = 1, 2, . . . , N

where ‖xk − xi‖γ quantifies the Minkowski distance between two vectors

‖xk − xj‖γ =

(

p
∑

i=1

∣

∣xi
k − xi

j

∣

∣

γ
)

1

γ

where γ designs the chosen norm which is usually

the Euclidean one (γ = 2). The VMF output is the sample x(1) associated with the

minimal aggregated distance:

x(1) = arg min
xi∈W

Ri

According to the distance between two vectors, it is possible to differentiate the

techniques operating on the vector distance domain21, the angular domain37 or

their combinations13.

3.3. Discussion

The first observation is that reduced orderings used for vector median filters are not

adapted to morphological filtering since they do not define a complete lattice. They
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are however adapted to any type of multivariate image and to any color space. The

second observation is that the ordering schemes used for morphological processing

are usually total orderings, but they have the main drawback of being suited to

only one given color space: RGB for the bit-mixing ordering and IHSL11 for the

lexicographic ordering. Moreover, these ordering schemes cannot be used to perform

morphological operations on multivariate images. For the bit-mixing ordering, we

are limited to integers and to the number of bits available to code an integer. For

the lexicographic ordering, the dominant role of the first component is difficult to

overcome except in a perceptual color space such as IHSL. The final observation is

that all the usual orderings of vectors have disadvantages; we would like to have one

ordering of vectors the basis of which is enough general to permit morphological

and median filtering on vectors of arbitrary dimensions.

4. Graph-based Ordering

In this section, we propose a graph-based alternative to the classical approaches to

ordering the vectors of color vectors.

4.1. Preliminaries on graphs

We provide some basic definitions on graph theory8. A graph G is a couple

G = (V, E) where V is a finite set of vertices and E is a subset E ⊆ V × V .

The elements of V are the vertices of the graph and the elements of E are the edges

of the graph. Two vertices u and v in a graph are adjacent if the edge (u, v) exists

in E, the two vertices being then called neighbor vertices.

The degree δ(v) of a vertex v is the number of edges incident to the vertex.

δ : V → N is defined as δ(v) = |u ∼ v| where | · | denotes the cardinal of a set. The

relation u ∼ v denotes the set of vertices u connected to the vertex v via the edges

(u, v) ∈ E: u is a neighbor adjacent vertex of v. If a vertex has a unity degree, it is

called a leaf.

A path p is a set of vertices p = (v1, v2, · · · , vk) such as there is an edge for

each two successive vertices of the path: ∀i ∈ [1, k[, the edge (vi, vi+1) ∈ E. The

length of a path corresponds to its number of edges. A path is simple if an edge

is covered only once. A path is Hamiltonian if it uses all the vertices exactly once

(this problem is NP-complete). A complete graph is a graph where an edge connects

every pair of vertices. A complete graph with n vertices has n(n− 1)/2 edges and

the degree of each vertex is (n− 1).

A graph is connected when for every pair of vertices u and v there is a path in

which v1 = u and vk = v. A graph is undirected when the set of edges is symmetric,

i.e., for each edge (u, v) ∈ E, we have also (v, u) ∈ E. In the rest of this paper,

we consider only simple graphs for which maximum one edge can link two vertices.



October 12, 2008 21:7 WSPC/INSTRUCTION FILE lezoray˙ijig3

7

These simple graphs are always assumed to be connected and undirected8. A graph,

as defined above, is said to be weighted if it is associated with a weight function

w : E → R
+ satisfying w(u, v) > 0 if (u, v) ∈ E, w(u, v) = 0 if (u, v) /∈ E and

w(u, v) = w(v, u) for all edges in E since we consider undirected graphs.

We can now define the space of functions on graphs. LetH(V ) denote the Hilbert

space of real-valued functions on vertices, in which each f : V → R
+ assigns a real

value f(v) to each vertex v. A function f in H(V ) can be thought as a column

vector in R
|V |. Similarly, one can define H(E) the space of real-valued functions on

edges, in which each one g : E → R
+ assigns a real value to each edge e.

A tree is a connected acyclic simple graph. A spanning tree of a connected,

undirected graph G is a tree composed of all the vertices and some of the edges of

G. A minimum spanning tree (MST) is then a spanning tree with weight less than

the weight of every other spanning tree. Therefore, a minimum spanning tree T (G)

of a graph G is a weighted connected graph T (G) = (V ′, E′) where the sum of the

weights
∑

(u,v)∈E′

w(u, v) is minimum. For a graph G of n vertices, its MST T (G) has

exactly (n− 1) edges. The MST can be efficiently computed in O(|E|log|V |) using

Prim’s algorithm with appropriate data structures.

4.2. Graphs and Ordering of vectors

As previously mentioned, there is an equivalence:

(total ordering on R
p)⇔(bijective application h : R

p → R)⇔(space filling curve in

R
p)

We recall that a space filling curve is a curve that goes through each point of the

space just once. Therefore, if the space is represented by a connected graph, we

also have the equivalence: (space filling curve in R
p)⇔(Hamiltonian path on R

p).

Usual definitions of space filling curves34,30 in R
p use curves (e.g. a Peano scan)

which are independent of the image spatial structure and therefore they do not

respect topology. Indeed, finding an optimal Hamiltonian path is too difficult (NP-

complete) to be directly solved on R
p: for a graph of n vertices, there are (n− 1)!

possible Hamiltonian paths. In this paper, we take a Hamiltonian path point of

view of the ordering of vectors. However, we propose to dynamically construct such

a Hamiltonian path on a filter window W rather on the complete space R
p.

To a given filter window W , we can associate a complete graph the vertices of

which correspond to the vectors of W . This corresponds to a function f ∈ H(V ), f :

V → W which associates a color vector x ∈ W to each vertex. Similarly, we can

associate a weight to each edge of the graph, w ∈ H(E), w : E → R
+. Classically,

we consider w(u, v) = ‖f(u)− f(v)‖2.

In this paper, we just focus on color images (p = 3) but the principle remains

the same for higher dimensions. To illustrate our approach, we use a reference

image (figure 1, a painting by Joan Miro called “The singer”) in color mathematical
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morphology which was introduced by Hanbury2,11,17. In the sequel, we illustrate our

new graph-based ordering approach of color vectors on a predefined filter window

W of this image (specified by the zoomed and surrounded area in the top right of

figure 1).

Fig. 1. Test image for morphological filtering operations.

4.3. Inf and Sup extraction

As previously mentioned, to define a Hamiltonian path over a filter window W ,

we consider the complete graph G0 over W . Since it is difficult to find an optimal

Hamiltonian path on G0 among all the (|W | − 1)! different possibilities, we propose

to approximate this path. Instead of trying to directly define the Hamiltonian path,

we begin by extracting its bounds (∧ and ∨).

Let T0 = T (G0) denote the MST of G0. An MST being a generalization to

higher dimensions of a one-dimension sorted list36, we can use its structure to find

candidate bounds of the Hamiltonian path. A vertex v of a Hamiltonian path is

one of its bounds if δ(v) = 1: it is a leaf. We use this principle to extract them. Let

N0 = {u|δ(u) = 1, u ∈ T0} denote the leaves of T0. The vertices in N0 are the only

candidates for bounds of the Hamiltonian path. Since most of the time |N0| > 2, N0

has to be reduced to only two elements. To that aim, we iterate the same process

on the complete graph constructed over the vertices of N0 until |Ni| = 2 with i the

iteration number.

To sum it up, to extract the bounds of a Hamiltonian path, the principle can

be described as follows:
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i← 0

Construct the complete graph Gi over the filter window W

Repeat

Ti = T (Gi)

Ni = {u|δ(u) = 1, u ∈ Ti}

Construct the complete graph Gi+1 over the vertices of Ni

i← i + 1
until (|Ni−1| = 2)
Ti = Gi

Ni = {u ∈ Ti}

At the end of the process,Ni = {u, v} contains two vertices considered as bounds

of the Hamiltonian path. However, one still has to define which one of these two

vertices is the ∨ (respectively the ∧). The ∧ is identified as the closest vertice to a

reference color xref
11,32 which is usually black:

∨ = arg max
v∈Ni

‖f(v),xref‖2 and ∧ = arg min
v∈Ni

‖f(v),xref‖2

The use of a reference color is not new and was proposed by Soria-Frisch in32 and

Hanbury for the IHSL color space11.

Computing the MST of a graph is O(|E|log|V |) and O(N2logN) on a complete

graph since |V | = |W | = N . One then iterates the process on the complete graph

built from the leaves of the MST. There is no bound on the number of leaves of

an MST for p > 2 (see in 33), we therefore have determined an experimental upper

bound of this number. For a complete graph built over a filter window of size N ,

an upper bound of the number of leaves of the MST is ⌈N/2⌉ where ⌈·⌉ denotes the

smallest integer upper than the operand. This means that, at each iteration, the

number of surviving vertices is divided by two (this is an upper bound). One then

can prove that the complexity of this step is O(N3

2 logN).

(a) G0 (b) T0 (c) G1 (d) T1 (e) G2

Fig. 2. The graphs Gi and Ti in the different steps of the algorithm for Hamiltonian path bounds
extraction. For each Ti, the vertices degrees are superimposed. T2 is not shown here.
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Figure 2 presents the different steps of the algorithm. The complete graph G0

is constructed over the filter window W (Figure 2(a)) and its MST T0 is computed

(Figure 2(b)). A new complete graph G1 Figure 2(c)) is constructed over the leaves

of T0 and its MST T1 is computed (Figure 2(d)). Finally, A complete graph G2 of

two vertices is obtained (Figure 2(e)). With xref as black, the ∨ is the top left pixel

of W and ∧ the bottom middle one.

4.4. Ordering of vectors construction

Once the two bounds of the Hamiltonian path have been determined, the complete

Hamiltonian path can be constructed. On the filter window W under consideration,

a Hamiltonian path p = (v1, v2, · · · , vk) must respect the following properties:

• The length of p is |W | = N ,

• Its bounds are leaves i.e. δ(v1) = δ(vk) = 1,

• v1 = ∧ and vk = ∨,

• The other vertices have a degree of 2: ∀v ∈ {v2, · · · , vk−1}, δ(v) = 2.

The construction of the Hamiltonian path we propose is based on the nearest neigh-

bor principle on the initial complete graph G0. To determine the nearest neighbor

u of a vertex v we consider the weight of the edge w(u, v) but also the saliency of

the neighbor u. The saliency of a vertex quantifies its global importance in the set

of MST which where generated during the inf and sup extraction. It is defined as

follows:

∆(v) =

imax
∑

i=0

(i + 1) · δ(Ti, v) where δ(Ti, v) = δ(v), v ∈ Ti

where i corresponds to an iteration number in the Hamiltonian path bounds ex-

traction and imax the total number of iterations. The bounds v1 and vN have the

highest saliences. Otherwise, the saliency of a vertex is all the more important when

it survives in the successive Ti. For instance, the saliency of the top left pixel vj of

the filter window in figure 2(a) is

∆(vj) = 1 · δ(T0, vj) + 2 · δ(T1, vj) + 3 · δ(T2, vj) = 1 · 1 + 2 · 1 + 3 · 1 = 6

The construction of the Hamiltonian path is O(N2) and can then be summarized

as follows:















v1 = ∧ and vN = ∨

vj+1 = arg min
u∼vj

u/∈{v1,··· ,vj}

(wuvj
∆(u)) ∀j = 1, · · · , (N − 2)

Figure 3 illustrates the construction of the ordering of vectors of W as a Hamil-

tonian path: on the complete graph G0 (Figure 3(a), with vertices saliences super-

imposed), one obtains the path depicted by figure 3(b).
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(a) G0 (b) The constructed
Hamiltonian path.

Fig. 3. (a) The graph G0 with vertices saliences ∆(v) superimposed and (b) the constructed
Hamiltonian path.

5. Evaluation and discussion

In this section, we evaluate the four orderings of vectors detailed in the previ-

ous sections, namely the reduced ordering based on distances, the lexicographic

ordering, the bit mixing ordering and the proposed graph-based ordering.

5.1. Ordering schemes comparison

First, to see the influence of each ordering scheme, we apply each of them on the

filter window W of figure 1. Results are shown in figure 4. The first row presents the

filter window W . Other rows show the results for the different orderings of vectors.

As it was previously noticed, the marginal approach creates some color artifacts

Fig. 4. Comparison of several schemes for ordering vectors on a filter window (from figure 1).
Each color is indexed in the filter window (top row). These indexes are superimposed for all the
ordering schemes (- indicates that the color vector does not belong to the filter window).

(appearance of false colors). One can however note that this is not visually obvious.
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For the lexicographic ordering, several permutations of the color channels have been

studied to assess the dominant role of the first channel. In this case, considering the

Green channel as dominant provides better results but this might not be the case

for another filter window. For the reduced ordering, the chosen distance between

vectors has high influence on the final ordering: some visually close color can be far

away one from the other in the ordering. The bit-mixing ordering is very close to

the lexicographic RGB ordering which assesses the fact that the way the bits are

mixed still involves dissimetry. The graph-based ordering is visually satisfying and

very close to the lexicographic GRB ordering (only two permutations).

We now analyze the computational complexity of the different ordering schemes

for a given filtering window W of size N to obtain a complete ordering of the vec-

tors. With usual sorting algorithms, the lexicographic ordering computational com-

plexity is O(N2) and the bit-mixing ordering computational complexity is O(N2).

The reduced ordering based on distances computational complexity is O(N2). The

graph-based ordering computational complexity is O(N3

2 logN).

5.2. Morphological Filtering

In this subsection, we only consider the lexicographic, the bit mixing and the graph-

based orderings for morphological filtering. Figure 5 presents a comparison of the

considered orderings of vectors for the two main morphological operations: the

erosion (ǫ) and the dilatation (δ).

The considered color space is RGB, the filter window is a 3× 3 square and the

reference color for the graph-based ordering is black. In figure 5, few differences

can be noticed between the three orderings of vectors. For the erosion the results

look similar for the three orderings except for the lexicographic ordering in the red

areas of the image. The disadvantages of the lexicographic ordering which gives a

dominant role to the first component is well observed in red areas of figure 5(a).

The same observation can be made for the lexicographic dilatation in figure 5(d).

The bit mixing ordering performs good for the erosion but it is less good than the

other two orderings for the dilatation: the bit mixing is very sensitive to the small

color variations in the background of the image.

The reference color used in the graph-based ordering has an influence on the

determination of the ∨ and the ∧. Usually one will take black as a reference color,

however for some special considerations, it might be interesting to use another

color. We have performed an erosion in the RGB color space with different refer-

ence colors: black, red, green, blue and yellow. All the results are presented in figure

6(a)-(e), each column of the first row corresponds to a reference color. The first row

gives an erosion of figure 1 with the five different reference colors. To illustrate the

differences between the obtained results, we first computed the difference between

the original image and black erosion (figure 6(f)). This gives an idea of the mod-

ifications made by the erosion in the image. To see the influence of the reference

color, the differences between black erosion and the other reference color erosions
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(a) ǫ Lexicographic (b) ǫ Bit Mixing (c) ǫ Graph

(d) δ Lexicographic (e) δ Bit Mixing (f) δ Graph

Fig. 5. ǫ and δ with different orderings on the figure 1.

are computed. The differences between the obtained erosions are given in figure

6(g)-(j). As expected, changing the reference color changes the way the erosion acts

on some colors since it favors the colors close to the reference: look at the eye of the

singer for the red erosion and the yellow elongated pattern (bottom right) for the

blue erosion. This becomes quite clear for the result of yellow erosion: the majority

of the colors of the image are closer to yellow than to black and this last color tends

to disappear in yellow erosion.

5.3. Median Filtering

In this subsection, we consider the abilities of the different orderings for median

filtering. The aim here is not to conceive an efficient noise filtering operator but

to study the influence of the ordering on median filtering. For comparison, the

reduced ordering based on distances is considered as the reference. This enables us
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(a) Black (b) Red (c) Green (d) Blue (e) Yellow

(f) Black (g) Red (h) Green (i) Blue (j) Yellow

Fig. 6. Influence of the reference color on the graph ordering for an erosion.

to perform filtering with VMF, BVDF or DDF operators. To compare the different

orderings of vectors, a standard image is considered and is presented in figure 7

(similar results were obtained on other standard images). The experiments were

conducted in the RGB color space with three different orderings: reduced ordering

based on distances, graph ordering and bit mixing ordering. The original test images

have been corrupted by impulse noise expressed as19:

xi,j =

{

v with probability pv

oi,j with probability 1− pv

where i, j characterize the sample position, oi,j is the original sample, xi,j represents

the sample from the noisy image, pv is a corruption probability and v = (vR, vG, vB)

is a noise vector of intensity random values. For the experiments, the considered

degree of the impulse noise corruption pv has ranged from 0% to 30%. To evalu-

ate the achieved results, objective criteria as Mean Absolute Error (MAE), Mean

Square Error (MSE) and Normalized Color Differece (NCD) have been used19.

Figure 8 presents the results of the first conducted experimentation with a

VMF filtering for the different orderings. Each figure presents an objective criterion

according to the level of noise corrupting the image. It is easy to see that the

orderings of vectors can be classified in the following way according to their impulse
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Fig. 7. Test color image.

noise median filtering abilities: reduced ordering based on distances, graph ordering,

bit mixing ordering. The bit mixing is the least suitable ordering and the graph

ordering has a behavior similar to reduced ordering for small quantities of impulse

noise.

We have led the same experiments with a BVDF filtering for the reduced order-

ing based on distances and the graph ordering and we got the same type of curves

(not shown here for the sake of brevity) than for the VMF assessing the superiority

of the reduced ordering. It is worth noting that to obtain a BVDF with the graph

ordering, one has only to change the weighting of the edges between the vertices

of the graph: w(u, v) = θ(f(u), (v)) where θ(xi,xj) represents the angle between

the two color vectors xi and xj . We then compare the DDF filtering scheme with

a reduced ordering and a graph ordering (w(u, v) = θ(f(u), (v)) ‖f(u)− f(v)‖2).

Results are shown in figure 9. One can see on all the curves that, for the DDF fil-

tering, the graph ordering always provides better results than the reduced ordering.

This comes to the conclusion that the graph ordering we propose in this paper is

suitable for median filtering but the weights of the edges in the initial graph have

to be carefully determined. This brings our graph ordering approach closer to the

problem of the determination of weights in weighted median filtering24,22.

To give a visual illustration of the differences between the different orderings of

vectors, figure 10 presents a zoomed area of the Parrots image (figure 7(c)). The

zoomed area (figure 10(e)) has been corrupted by 15% of impulse noise (figure 10(a))

and filtered first by a VMF with reduced ordering (figure 10(b)), graph ordering

(figure 10(c)), or bit mixing ordering (figure 10(d)) and then by a DDF with reduced

ordering (figure 10(f)) or graph ordering (figure 10(g)). The best visual results, as

expected from the curves in figures 8 and 9, are obtained by the VMF with reduced

ordering. One can also notice the better performance of graph ordering while using

both distance and direction for weighting the edges of the graph.

As for morphological filtering, the reference color xref used in the differentiation

of the ∨ and the ∧ can have some influence on median filtering. Figure 11 presents

a study of the influence of the reference color on vector median filtering with a



October 12, 2008 21:7 WSPC/INSTRUCTION FILE lezoray˙ijig3

16

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  5  10  15  20  25  30

M
SE

 m
ea

su
re

Percentage of impulse noise

MSE Measure for parrots image with impulse noise

parrots Distance
parrots Graph

parrots BitMixing

(a) Parrots MSE

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0  5  10  15  20  25  30
M

A
E

 m
ea

su
re

Percentage of impulse noise

MAE Measure for parrots image with impulse noise

parrots Distance
parrots Graph

parrots BitMixing

(b) Parrots MAE

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  5  10  15  20  25  30

N
C

D
 m

ea
su

re

Percentage of impulse noise

NCD Measure for parrots image with impulse noise

parrots Distance
parrots Graph

parrots BitMixing

(c) Parrots NCD

Fig. 8. VMF Error Measures (MSE, MAE and NCD) with different orderings having the respective
following curve colors: blue for bit mixing, green for graph and red for reduced.

graph-based ordering and different reference colors among red, green, blue, cyan,

yellow, purple, black and white. This influence is studied in the presence of impulse

noise. As shown in figure 11, the reference color does not have a lot of influence on

the results and black as color reference is sufficient in most of the cases. As noise

increases the best reference color can change (cyan in this case). However, changing

the reference color still does not make it possible to outperform the vector median

filtering with reduced ordering based on distances.

6. Conclusion

A new ordering of vectors based on the construction of a Hamiltonian path across

the pixels of a filtering window has been proposed. A Hamiltonian path is equivalent

to a space filling curve and we dynamically construct such a path on a given filter

window. The proposed method is based on a two-step analysis of the color vectors
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Fig. 9. DDF Error Measures (MSE, MAE and NCD) with different orderings.

within a filter window. The first step extracts the two extreme vectors of a set

of color vectors. Starting from the minimum spanning tree of a complete graph

defined on a filter window, an iterative selection of candidate vectors is performed.

The latter is based on the degree of the vertices of the graph. From these two

vectors, a Hamiltonian path is constructed on the complete graph representing the

filter window. The proposed ordering has the advantage of being directly applicable

to vectors of any dimensions and is suited for morphological or median filtering.

However, the filtering abilities of a median filter based on the proposed graph-

ordering are less efficient those of a classical vector median filter. The proposed

ordering of vectors opens a new way of ordering color vectors via graph-theoretical

algorithms. Future research will be about the reduction of the complexity of the

proposed vector ordering because it is higher than that of usual algorithms.
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(a) Corrupted im-
age.

(b) VMF reduced
ordering.

(c) VMF graph-
based ordering.

(d) VMF bit mixing
ordering.

(e) Original image. (f) DDF reduced
ordering.

(g) DDF graph-
based ordering.

Fig. 10. 15% impulse noise filtered output with a VMF and a DDF and different vector ordering
schemes.
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