

Efficient Constrained Delaunay Triangulation implementation in Java for spatial hydrological analysis

<u>T. Leduc</u>, E. Bocher, F. González Cortés IRSTV – CERMA Laboratory – Ecole Centrale de Nantes Foss4G 2008, Cape Town, Sept. 30th 2008

Table of contents

- Context purpose methodology
- OrbisGIS platform,
- 2D constrained Delaunay triangulation,
- The topographical graph
- Conclusion

The context

Position

 TIN approach vs classical grid hydrology analysis:

 Take into account urban artifacts (heterogeneous objects, strong space's partition, roads, pits,

buildings...)

The objectives

The methodology

The platform...

 A scientific GIS, GPL licensed, 100% pure Java, based on the GDMS engine (a spatial SQL language):

2D meshing problem

- a mesh is a partition of a domain into elementary bounded cells where 2 cells are disjoint or share a lower dim. portion of space,
- main goals of a mesh generator:
 - control: the number of vertices, the cell shape criteria, the linear constraints...
- Input:
 - a Planar Straight Line Graph (set of vertices and edges... such as iso-height lines),
- Output:
 - a set of triangles without adding Steiner points,

CDT properties...

local empty circum circle property,

⇒ max. the min. angle property,

- produced triangulation is unique (assuming careful handling of the degeneracies),
- external edges of the triangulation corresponds to the convex hull of the input constraints.

Sweep-line algorithm Domiter & Zalik (IJGIS, 2008)

M Michaud's implementation source: Y. Egels (IGN/ENSG)

- Sort input set of vertices according to x axis,
- Create a 1st triangle with the 3 first vertices,
- Sweep the vertices each by each and create (and legalize) a new triangle with each visible edge of the convex envelop of existing triangles,

Benchmarks (1)

- Intel® Core™2 duo E6750@2.66GHz, 100k vertices randomly distributed:
 - M Michaud's implementation: 7s (0.7s);
 - M Davis' implementation: 13s;
 - WaterBugExtension/TINBuilder OpenJUMP's plugin
 - P Austin's implementation: 61s;
 - Our own implementation of D&Z sweep-line algorithm (without adjacencies): 134s!

Benchmarks (2)

- Intel® Core™2 duo E6750@2.66GHz, 29460 vertices and 13350 edges:
 - M Michaud's implementation: 1.7s / 0.2s;
 - M Davis' implementation: ?s;
 - WaterBugExtension/TINBuilder OpenJUMP's plugin

Some evaluation tools

- select CheckDelaunayProperty() from t;
- select Geomark() from dp;
 - ⇒ exhibit all the degeneracies / cocyclic vertices (spatial bookmarks = stored map area extents),

select QualityMeasuresOfTIN() from t;

🙆 Result from : select QualityMeasuresOfTIN() from tl 🗴				
label	min	max	average	standard
angles	0,003	179,989	60	29,811
perimeters	3,414	8 458	109,133	66,646
areas	0,5	6 274,5	500,18	440,402
circum radius	0,707	2 232 234,501	128,076	10 225,25
edges length	1	4 229	36,378	26,035

Some CDT impl. that does not match our criteria

in M. Davis TINBuilder implementation:

Need of refinement...

The influence of the Delaunay refinement algorithm on the triangulation. Shewchuk's implementation introduces some Steiner points to obtain a greater min. angle:

From TIN to graph

 starting from a planar triangulation (each vertex embeds its own elevation) ⇒ topographical network structure

Future works

- Delaunay Triangulation refinement,
- CAM implementation,
- Multi-scale sensitivity of the model...
- And, of course, the CAM to obtain the runoff accumulation!

To learn some more & try it by yourself...

... a FOSS scientific GIS platform developed by a French research institute:

http://orbisgis.cerma.archi.fr/

... and hosted by a French academic forge:

http://sourcesup.cru.fr/projects/orbisgis