
HAL Id: hal-00329461
https://hal.science/hal-00329461v1

Submitted on 16 Oct 2008 (v1), last revised 1 Feb 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A mathematical model for HIV dynamics
François Dubois, Hervé Le Meur, Claude Reiss

To cite this version:
François Dubois, Hervé Le Meur, Claude Reiss. A mathematical model for HIV dynamics. Mathe-
maticS In Action, 2010, 3 (1), pp.1-35. �hal-00329461v1�

https://hal.science/hal-00329461v1
https://hal.archives-ouvertes.fr


A mathematical model for HIV dynamics
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Abstract. This contribution is devoted to a new model of HIV multiplication. We take into
account the antigenic diversity through what we define “antigenicity” whether of the virus or of
the adapted lymphocytes by a specific variable. We model two processes in the interaction of
the immune system and the viral strains. On the one hand, the presence of a given viral quasi-
species generates antigenically adapted lymphocytes. On the other hand, the lymphocytes kill
viruses for which they have been designed. We consider also the mutation and multiplication of
the virus. A new infection term is derived.

So as to compare our system of differential equations with some well-knowns models, we
study all of them mathematically and compare their predictions to ours in the reduced case of
only one antigenicity. In this particular case, our model does not yield any major qualitative
differences. We prove that in this case, our model is biologically consistent (positive fields) and
has a unique continuous solution for long time evolution. In conclusion, this model improves
the ability to simulate more advanced phases of the disease.

Résumé. - Nous proposons et étudions un nouveau modèle pour la multiplication du virus du
sida. Nous prenons en compte la diversité antigénique via la notion d’antigénicité tant pour
les virus que pour les lymphocytes qui leur sont adaptés. Cette antigénicité est caractérisée
par une variable spécifique. Nous modélisons deux phénomènes d’interaction entre le système
immunitaire et les souches virales. D’une part la présence d’une quasi-espèce virale suscite des
lymphocytes adaptés à leur antigénicité. D’autre part les lymphocytes tuent les virus pour
lesquels ils ont été produits. Nous prenons aussi en compte la mutation et la multiplication du
virus. Nous proposons un nouveau terme traduisant l’infection.

Afin de comparer notre système d’équations différentielles avec ceux existant dans la littérature,
nous en faisons une analyse mathématique. Nous comparons leurs prédictions avec la nôtre dans
le cas simple d’une seule antigénicité. Dans ce cas particulier, notre modèle ne présente pas de
différence importante avec ceux de la littérature, est biologiquement consistant (les grandeurs
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restent positives) et a une unique solution continue aux temps longs. En conclusion, ce modèle
améliore la capacité de simulation des phases plus avancées de la maladie.

Key words: HIV modeling; antigenic variation; mutation; immune response.
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1 Introduction

Virus multiplication is at the basis of viral infection. Although the viral replication cycle
involved makes heavy use of the infected cell’s resources (Warrilow et al., 2008; Fujii et al.,
2007), the enzyme(s) in charge of viral genome replication is(are) frequently encoded in the
latter (Brass et al., 2008). Compared to cellular polymerases, viral polymerases are usually
more error-prone (Kashkina et al., 2006). It follows that the viral mutation rate, defined
as the average number of base changes at a given position of the genome per replication
cycle, may be large compared to that observed in our own cells, which is about one in a
billion (Petravic et al., 2008). For certain viruses, in particular retroviruses like HIV-1,
it could be up to 1,000,000 times greater. By the end of 2007, the Los Alamos HIV data
base listed over 230,000 different viral sequences (see www.hiv.lanl.gov). Given the small
genome size of these viruses, chances are then that each member of a viral progeny carries
mutations. A single point mutation may be enough to simultaneously affect two genes
encoded in different, but overlapping reading frames, whilst silent mutations, which do
not change amino acid coding, may nevertheless have important biological consequences
(Mueller et al., 2006)

A virus is mainly characterized by its ability to infect target cells (infectivity) and by
its antigenic signature (antigenicity), defined as both the capacity to induce an immune
response and also its strength and type. Immunogenicity is the ability of antigens to elicit
a response from cells of the immune system. Mutations during virus replication may
therefore release infective or non-infective viruses, of the same or of different antigenicity.
For HIV-1, the ratio of infectious to non-infectious particles is estimated to range from
1:1 to 1:60,000, depending on the type of cell infected and the viral strain (Thomas et
al., 2007). Whether the virus is infective or not, over 800 mutations affecting HIV-1
antigenicity were identified in its envelop gene (env) alone (Kothe et al., 2006).

By encoding its own replication enzymes, the virus has control over its replication fi-
delity and thereby challenges heavily the immune system, due to the huge burden imposed
by the number of infective virions produced and their antigenic diversity. This burden
is even worse when the virus targets part of the immune system (CD4 displaying cells),
as is the case for HIV-1. In addition, the immune cell proliferation induced by the viral
attack will provide HIV-1 virions with new targets, engaging the cell-virus dynamics in
an exponentially soaring extension regime.

Kinetic modeling is therefore of high interest for understanding the course of infection.
It is a prerequisite for designing and optimizing treatment strategies based on antiviral
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drugs. A large number of deterministic and stochastic inter- and intra-cellular models of
HIV dynamics have already been proposed (Finzi and Silliciano, 1998; Nowak and May,
2000; Pastore and Zubelli, 2008; Perelson, 2002; Snedecor, 2003; Perelson and Nelson,
1999; Tuckwell and Le Corfec, 1998), but none enable the prediction of the course of
the disease in all its phases. For instance, even if, following antiviral treatment, the
plasma load of the virus becomes undetectable, unscheduled bursts occur, probably fed
by viral sanctuaries disseminated in various tissues and organs (lymph or neuronal tissues,
gastro-intestinal or uro-genital tracts etc. See Recher et al. (2007)). One may assume
that, despite tissue-specific kinetic diversities, the course of infection in all sanctuaries
(including plasma) obeys a common, complex host-predator relation, differing only by
sanctuary-specific parameters. The course of the global infection would then be the
result of all local processes. This result would however not be a simple addition or
superposition, as it is likely that each local process would provid e viruses having locally-
specified antigenicities and infectivities which may challenge the immune cells in the same
or other sanctuaries.

What is the infection phenomenology ? As far as our study is concerned, the pro-
cess involves four major participants or “fields”: uninfected T lymphocytes (denoted T ),
infected ones (U), infectious viruses (V ) and non-infectious viruses (U). For each par-
ticipant, a characteristic antigenicity is recognized by a lymphocyte, or displayed by a
virus. In the following, we call antigenicity the variable associated to this biomolecular
characteristic and denote it by the index j.

The evolution with time of Tj depends on 3 phenomena: regression of the Tj population
due to the viral attack (whatever the antigenic pedigree of the infecting virus), which
transforms Tj’s into Uj ’s; the stimulation of the immune system by both infectious and
noninfectious viruses of antigenicity j; the natural fate of Tj independently of the viral
presence, ie spontaneous generation and death of Tj species. The Tj population may
include cross-reacting species, which are active also against a (limited) number of targets
with different antigenicities.

Uj lymphocytes are derived only from the Tj population following viral attack, ie
the immune system does not directly contribute inactive T cells of antigenicity j. It is
assumed also, that the switch from the Tj to the Uj state occurs only upon viral infection.
As for Tj , Uj ’s are subject to natural death.

Viruses Vj and Wj are generated through infection of any susceptible T cell, what-
ever its antigenicity. The parent virus of Vj and Wj may be a Vj (no viral antigenicity
modification) or a Vk of different antigenicity (viral antigenicity mutation).

Viruses Vj and Wj will be the target of lymphocytes Tj exclusively. Both viral species
have a natural death rate.

Viruses Vj and Wj differ by mutations in genes involved in infectivity, but not affecting
antigenicity j.

This modelling assumes that viral genome parts responsible for infectivity may differ
from those responsible for antigenicity. Since the viral strategy is to escape the immune re-
sponse whilst minimizing loss of infectivity, excess mutations in the antigenicity-specifying
part of the viral genome would be more favorable. The immune system senses mainly the
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viral surface, hence mutations in the viral envelop genes would be most beneficial, but
they should not, or marginally only, affect viral genome parts responsible for infectivity.
HIV-1 handles in part this dilemma by introducing mutational hot-spots in its genome (Ji
and Loeb, 1994 and the website http://www.hiv.lanl.gov), mainly in the envelop genes,
where the mutation rate is much higher due to local sequence and structural particularities
of the genome (Bebenek et al., 1993; Kothe et al., 2006).

What is the therapeutic motivation ?

Approved drugs for AIDS treatment are of three kinds mainly. Two of them inhibit
reverse transcription (using nucleotide and non-nucleotide analogs) and the third inhibits a
viral enzyme in charge of cleaving reverse transcriptase from a precursor protein. Because
of its high mutation rate, HIV rapidly develops resistance to any one of these drugs taken
individually. Resistance can be considerably delayed by using various combinations of
these drugs (multitherapies). So far however, no combination has been found that could
clear the virus. Therefore therapies are life-long and unfortunately have considerable
side-effects.

Obviously, the high mutation rate of reverse transcriptase is central to the successful
viral strategy. It allows the virus to escape the circulating immune cells (antigenic muta-
tions) and to develop drug resistance, although over 90% of its progeny lacks infectivity
and will therefore be rapidly cleared. The natural viral mutation rate is at the limit of the
“error threshold” (Biebricher and Eigen, 2005), as a slight increase would produce 100%
non-infectious viruses. Conversely, reducing the mutation rate would reduce the antigenic
diversity and allow the immune system to eliminate the stabilized viral strains, and drug
resistance would vanish.

New AIDS therapy at stake?

A promising therapeutic approach would then be to take control of the viral mutation
rate. This was shown to be feasible (Derrien, 1998 with a CNRS-filed patent based on
this work USPTO 6,727,059; Murakami et al., 2005; Harris et al., 2005; Drosopoulos et
al., 1998), by supplying the reverse transcriptase with nucleotide analogs. Some of them
relax while others reinforce the replication fidelity, without blocking reverse transcription.
For a review see Anderson et al. (2004).

Both therapeutic strategies would give rise to specific viral dynamics. These need
to be understood and assessed in detail. The medical decision to choose one particular
strategy and setting up the adapted drug regimen for a patient, given his viral load and
lymphocyte count (dose and extent of treatment, time expected to reach viral clearance
etc) needs careful analysis. Simulation of viral dynamics with a drug regimen could help
in reaching this decision. To this end, the present work is to build a realistic mathematical
model of viral dynamics.

In the following we review some well-known models by giving an analysis of the fixed
points and their stability in Section 2. In Section 3, we derive our new model precisely
and Section 4 is devoted to a full study of its mathematical properties in a reduced case
(only one antigenicity). We conclude in Section 5.
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2 Some popular models

Throughout this section, we review some well-known models. Some of them take specific
biological reality into account. So as to come to a common description with our model
presented later, we reduced them in a preliminary step when needed. The fields T, U, V,W
have the same meaning as above. When the model has a term identical to ours, we denote
the parameter of the term as ours. When it is different, we denote it the same way as the
authors and add a subscript depending on the authors. Also, we use the very same values
of common parameters to have comparable results. We take most values from Snedecor
(2003) since this paper is very well documented and check these values with other articles
(Nelson et al., 2001; Herz et al., 1996; Perelson et al., 1996; ...).

All the fields of the models are non-dimensionnalized by using the value of the non-
infected lymphocytes at health (no virus and long time) as a characteristic value both for
the lymphocytes (infected or not) and the virus.

2.1 A Nowak-May model

In Nowak and May (2000) the authors propose a simple model for the dynamics of the
non-infected lymphocytes (T ), the infected ones (U) and the viral population (V ):



















dT
dt

= β(1 − T ) − γNM V T,

dU
dt

= γNM V T − αU,

dV
dt

= aU − ξNMV.

(1)

This system is linear except for one interaction term. A simple analysis of this system
gives two fixed points that are either health (T ∗ = 1, U∗ = 0, V ∗ = 0) or a state that we
will call hereafter seropositivity since virus coexist with lymphocytes:

T ∗ =
αξNM

aγNM

, U∗ =
β

α
(1 − T ∗), V ∗ =

βa

αξNM

(1 − T ∗). (2)

Notice, that the link of our denomination with what is usually called “seropositivity”
would need to be investigated. In our contribution, a seropositivity state is any fixed
point different from health. We also define a seropositivity fixed point to be admissible if
the fields (namely U∗) are positive. Here it gives αξNM − aγNM < 0 and so T ∗ < 1. We
say that such a fixed point is immune deficient. So according to the parameters, there is
either one fixed point (health) or two (health and seropositivity).

Concerning stability, the study is easy too. The characteristic polynomial is −(β +
λ)(λ2 + (α + ξNM)λ + αξNM − aγNM). The second order polynomial has a positive
discriminant. On the one hand, if αξNM − aγNM < 0 (there exists a seropositivy fixed
point as T ∗ < 1) then health is unstable in one direction and stable in the two others. On
the other hand if αξNM − aγNM > 0, health is the only fixed point and is locally stable.
We perform numerical simulations for which the following parameters were taken:

β = 0.01 day−1 , γNM = 0.0125 day−1 , α = 0.7 day−1 , a = 250 day−1.
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In Figure 1, one may see the dynamics for the case of health alone (ξNM = 10 day−1),
and an initial value close to health (T0 = 1, U0 = V0 = 5%). As is proved by theory,
health (alone) is stable. After about one day, the number of viruses is decreasing by one
order of magnitude. During this period, the number of sound lymphocytes is changed
only by 1 part over 10,000. It begins to rise again after about 8 days.
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Figure 1: Numerical results for Nowak-May model with three equations. Case where the
health is stable. Short time evolution on the left (3 days) and phase plane for lymphocytes
and viruses on the right for a 600 days evolution.

By changing ξNM for ξNM = 1. day−1, we reach the regime where there are two fixed
points. With an initial condition identical to above (T0 = 1, U0 = V0 = 5%), we numeri-
cally check that seropositivity is stable as can be seen on Figure 2. First the number of
viruses rises from 0.05 to more than 63, then it decreases to 0.53. During the same time,
the number of healthy lymphocytes decreases to 0.035 typically then raises to 0.36. In the
end, the dynamics oscillates around a fixed point that is the seropositive state (T ≃ 0.25
and V ≃ 1 with our parameters).

In Nowak and May (2000), the authors also proposed some other models taking the
antigenicity into account. In Chapter 12 of their book, they propose various models,
suggesting that “antigenic variation generates the long-term dynamics that give rise to
the overall pattern of disease progression in HIV infection” (p. 124). Their “general idea
was that the rapid genetic variation of the virus generates over time viral populations
(quasispecies) which are more and more adapted to grow well in the microenvironment
of a given patient” (p. 124).

According to their best model, “The immune system and the virus population are in
a defined steady-state only if the antigenic diversity of the virus population is below a
certain threshold value. If the antigenic diversity exceeds this threshold [then] the virus
population can no longer be controlled by the immunne system.” (Nowak and May, 2000
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Figure 2: Numerical results for Nowak-May model with three equations. Case where a
seropositive state is stable. Short time evolution on the left (100 days) and phase plane
for lymphocytes and virus on the right for a 600 days evolution.

p. 125). Such a behavior seems meaningful. With our notations their model writes:

dVj

dt
= Vj(rNM − pNMTj − qNMZ), ∀i = 1, ...N

dTj

dt
= cNMVj − bNMTj − U V Tj , ∀i = 1, ...N

dZ

dt
= kNMV − bNMZ − uNM V Z.

where V =
∑

j Vj and Z denotes the “cross-reactive immune response directed against all
different virus strains” (Nowak and May, 2000 p. 130).

In the models they study, they set various parameters to values assumed to be constant.
More precisely, they assume the parameters do not depend on N . Why is it impossible ?
Assume there were only linear and non-linear terms like:

dVj

dt
= rNM Vj − pNM Tj Vj ∀j.

What is the integrated (in j) equation ? If we assume all the populations Tj and Vj are
independent on j, then Tj =

∑

k Tk/N = T/N and Vj = V/N . Then the integrated (in j)
equation is:

dV

dt
= rNM V −

pNM

N
T V if Tj =

T

N
, Vj =

V

N
.

Since it is the only equation biologically measurable, the measured parameter in an ex-
periment will be pNM/N and not pNM . In other words pNM = O(N). This should modify
the mathematical study.

The conclusion of their study is that in their models “the cross-reactive immune re-
sponses provide a selection pressure against antigenic variation, while strain-specific re-
sponses select for antigenic variation” (Nowak and May, 2000).
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2.2 A reduced Snedecor’s model

In Snedecor (2003), the author gives three models of the multiplication of virus HIV-1.
Her goal is to model both drug resistance, the different behaviors in the lymphatic tissue
and the peripheral blood, but also the immune system. Distinguishing the blood and
lymphatic tissues drives the author to have numerous constants that model the fluxes
between these body parts and enriches her model.

In order to have a common basis with other models, we need to reduce the above
mentionned models to make their main features comparable with the features of other
models. After non-dimensionnalizing the three fields with respect to the health value
of lymphocytes (T ∗ = 2.5 1011), we are lead to only one model in which the uninfected
lymphocytes are denoted by T , the infected ones by U and the virus by V . We take
the values of the parameters in the same body part (lymphatic tissue). The reduced
Snedecor’s model is written:















dT
dt

= β(1 − T ) + rS

γS + V (T − 1) − (1 − αS)βSV T

dU
dt

= +(1 − αS)βSV T − αU

dV
dt

= aU − σSV − βSV T.

(3)

In this system, when the parameters used by S. Snedecor appear in terms that do not
appear in other models, they are denoted with her notation with an index S. For instance,
the division rate of T cells is rS = 0.004 day−1, the treatment efficacy is αS ∈ [0, 1], and
the viral clearance is σS = 2 day−1. After non-dimensionalizing, the other parameters
become

βS = 0.0125 day−1, γS = 4 × 10−5, β = 0.01 day−1, α = 0.7 day−1, and a = 250 day−1.

2.2.1 Fixed points

In the present subsection, we prove the following proposition:

Proposition 1. There exists a threshold

αS4 = 1 −
α(βS + σS)

aβS

(4)

such that if the efficacy parameter αS is above αS4 then health is the only fixed point. If
αS < αS4 there are two fixed points: health and a seropositivity.

Proof.

The search for fixed points gives two possibilities.

The first one is health: T ∗ = 1, U∗ = 0, V ∗ = 0.
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The existence of the second one depends on the therapy’s efficacy parameter αS.
Different critical values of αS will appear in the discussion. The solution for T is

T ∗ =
σS/βS

a(1−αS )
α

− 1
,

and is drawn in Figure 3 (left) with an infinite value for αS = αS3 = 1 − α/a = 0.9972.
So, should a drug be very efficient (αS > αS3), then T ∗ < 0 and health would be the only
solution. Then the solution V ∗ is a non-negative solution of the second order equation:

V 2(1 − αS)βST
∗ − V ((rS − β)(T ∗ − 1) − (1 − αS)βSγST

∗) + βγS(T ∗ − 1) = 0. (5)

Numerically, it seems that the discriminant is non-negative (see Figure 3 right) but
indeed, it is negative between αS1 ≃ 0.54920378 and αS2 ≃ 0.5492747378 and the min-
imum is about −2 × 10−13 ! Notice that when perturbing the parameters this behavior
remains. Except for αS not too close to 1, the discriminant is small (see Figure 3 right).
We have drawn in Figure 3 (center) the only admissible solution V ∗ as a function of αS.
It is then simple to have U∗ = (1 − αS)βSV

∗T ∗/α.
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Figure 3: The fixed points T ∗ (lymphocytes), V ∗ (virus) and the discriminant of (5) as a
function of the treatment efficacy αS.

If we take care of retaining only admissible solutions ((T ∗, U∗, V ∗) ≥ 0), we must force
T ∗ ≥ 0 or αS ≤ αS3. Moreover, if T ∗ crosses 1 (for αS = αS4 = 0.5492 exactly see (4)),
the sign of the constant term in (5) changes and so does one solution V of (5). One may
then summarize the discussion for T ∗, and the two solutions V ∗

1 and V ∗

2 of (5) in Table 1.
Indeed, there exists a non-health solution only for αS ≤ αS4. Such a fixed point can be
named seropositive solution.

2.2.2 Stability

Since the domain of admissible fixed points is not regular, the study of stability through
the eigenvectors and eigenvalues at a corner (such as health) needs to be more precise.
We define admissible directions to prohibit directions that do not enter the domain:
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α 0 αS4 αS1 αS2 αS3 1
T ∗ + + + + −

T ∗ − 1 − + + + −
V ∗

1 − − V ∗

1 ∈ C − +
V ∗

2 + − V ∗

2 ∈ C − +
solution (T ∗, V ∗

2 ) Ø Ø Ø Ø

Table 1: Second fixed point existence for reduced Snedecor’s model.

Definition 2. Let X 7→ f(X) a smooth function and the associated dynamical system
X ′(t) = f(X). Let us denote B the biologically admissible domain (all biological fields non-
negative). Let X∗ be a fixed point of a dynamical system (f(X∗) = 0) at the boundary
∂B, and (λ, u) one of its eigenvalue/ eigenvector.

The eigenvector u is defined as admissible only if λ > 0 and either X∗ +εu or X∗−εu
for positive ε enters the domain.

The following proposition investigates the fixed points stability:

Proposition 3. Let αS4 as defined in (4). When health is the only fixed point (αS >
αS4) it is stable. When there are two fixed points (αS < αS4), health is unstable in one
admissible direction.

Proof. The Jacobian matrix of the second member of (3) enables us to study the local
behavior of the solutions. It is:

J =







rSV
∗

γS + V ∗ − β − (1 − αS)βSV
∗ 0 −(1 − αS)βST

∗ +
rSγS(T ∗ − 1)
(γS + V ∗)2

(1 − αS)βSV
∗ −α (1 − αS)βST

∗

−βSV
∗ a −σS − βST

∗






. (6)

In the case of the first fixed point (health (T ∗, U∗, V ∗) = (1, 0, 0)), the characteristic
polynomial is −(β+λ)(λ2 +λ(α+σS +βS)+α(σS +βS)− (1−αS)aβS). The discriminant
of the second order polynomial is (α − σS − βS)2 + 4(1 − αS)aβS > 0. So the roots are
real and it is possible to discuss the sign of the roots. The already met threshold value
αS4 = 0.5492 (exactly see (4)) is stil the key value for discussing on αS. If αS > αS4,
health is alone (cf. Proposition 1) and the roots are negative, so it is locally stable. If
αS < αS4, there are two stable and one unstable eigenvector. We easily check that the
unstable eigenvector at this fixed point (health), located at a corner of the domain, enters
the domain in the sense that one direction along this eigenvector (among the two) lets all
the fields be non-negative. So this direction of instability is admissible.

We checked numerically that the locally stable fixed point (αS > αS4: health alone)
remains stable even under non-small perturbations. In Figure 4, we draw the dynamics
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of stable health. In this computation, we took the same parameters as Snedecor:

rS = 4 × 10−3 day−1, σS = 2 day−1, βS = 1.25 × 10−2 day−1, γS = 4 × 10−5,
β = 0.01 day−1, α = 0.7 day−1, a = 250 day−1,

and for the specific case of health stable, we took αS = 0.6 > αS4 for the treatment
efficacy. The qualitative evolution of the pair lymphocytes-virus is comparable to the one
of Nowak-May’s model presented on Figure 1. The number of virus loses a factor 5 in 3
days typically.
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Figure 4: Numerical results for Snedecor model with three equations. Case where the
health is stable. Short time evolution on the left (3 days) and phase plane for lymphocytes
and viruses on the right for a 600 days evolution.

In the case where there exists also a second fixed point (seropositivity: αS < αS4), even
odd initial conditions like (T0, U0, V0) = (1, 1, 1) lead to the second fixed point available.
This second fixed point happens to be numerically locally stable as can be seen on Figure
5 where the parameters are the same as Snedecor’s, as recalled above, except the therapy
efficacy αS = 0.3. In this figure, one may check that health is locally unstable as the
solution evades health to get closer to a seropositivity. Notice that this second fixed point
can be interpreted as seropositivity. But as it is stable, the model predicts no death ...

2.2.3 Some comments

The disappearance of the second fixed point (seropositivity) when αS increases could be
meaningful. Yet in real life, even for very efficient drugs, the virus kills. Despite highly
active multitherapies, over ten percent of AIDS patients face therapeutic escape due to
viruses which were indetectable for years while developing resistance against all approved
drugs. So, to what extent can any stable fixed point be meaningful ? This criticism is
valid for all the models analyzed in this article.

The original model makes a distinction between the drug-resistant and drug-sensitive
viruses which, in view of the goals of the author, is meaningful. But it makes no difference
between infectious and non-infectious viruses.
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Figure 5: Numerical results for Snedecor model with three equations. Case where the
seropositive state is stable. Relatively short time evolution on the left (260 days) and
phase plane for lymphocytes and viruses on the right for a 900 days evolution.

In a sense, the Snedecor’s model takes into account the immune system. But it was
proved that “the growth fraction of CD4+ (...) was correlated (...) with viral load”
(Sachsenberg et al., 1998). No such correlation appears in the model. Indeed, the immune
system is modeled only through its exhaustion when V is too large.

If αS = 0 (no treatment), the coefficient before the terms of disappearance of T , of
V and appearance of U is the same. The identity of the V and T terms indicates that
in this model, each time a virus infects a T , it disappears. So viruses are assumed to be
free viruses. Indeed, the author defines her field V as “free virus”. Similarly, the term
−βSV T in the evolution of V is by no means a model of the immune system response.
Moreover, the author defines parameter βS as “infection rate of ... T cells by ... virus”.
We emphasize here the coherence of Snedecor’s model which takes into account “free
virus”: a free virus disappears each time it infects a lymphocyte. This property is not
satisfied by most other models.

In this model, viruses disappear only through natural death or infection of a T . So
there is no immune system effect. Indeed, σS is called “viral clearance (death) rate”, but
it does not depend on T . This is frequent in HIV modelling, but not realistic unless the
immune system is neglected ! This is discussed in Perelson (2002) (pp. 31-32) where the
author acknowledges his trouble: “The fact that models with constant [σS ] can account
for the kinetics of acute HIV infection is surprising”.

2.3 Perelson’s model

In Perelson (2002) (and preceding papers with various coauthors), A. Perelson proposes
a dynamical system to describe the interaction of HIV virus with T4 lymphocytes. The
model uses four fields that we will denote with our notations to ease comparisons: un-
infected lymphocytes (T ), infected lymphocytes (U), infectious free viruses (V ) and un-
infectious free viruses (W ). After non-dimensionnalizing with respect to the amount of
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lymphocytes in a safe body (and a given volume), the system reads:































dT
dt

= β(1 − T ) − δPV T

dU
dt

= δPV T − αU

dV
dt

= aθU − σPV

dW
dt

= a(1 − θ)U − σPW

(7)

In this system, when the parameters used by Perelson appear in terms that do not
appear in our model, they are denoted with his notation with an index P .

2.3.1 Fixed points

One may state the following theorem concerning the fixed points of (7).

Theorem 4. There exists only two fixed points to system (7). The first one is ”health”:
(T ∗, U∗, V ∗,W ∗) = (1, 0, 0, 0). The second one will be denoted seropositivity, where:

T ∗ =
ασP

aδP θ
, V ∗ =

β

δP

(

1

T ∗
− 1

)

, W ∗ =
1 − θ

θ
V ∗, U∗ =

σP

aθ
V ∗. (8)

The seropositivity is admissible (V ≥ 0) under the condition that

aδP θ − ασP > 0. (9)

The proof of this theorem is easy and left to the reader.

2.3.2 Stability of fixed points

So as to evaluate the local stability of fixed points, one must compute the right hand
side’s Jacobian matrix J :

J(T ∗, U∗, V ∗,W ∗) =









−β − δPV
∗ 0 −δPT

∗ 0
δPV

∗ −α δPT
∗ 0

0 aθ −σP 0
0 a(1 − θ) 0 −σP









. (10)

In the case of ”health”, (T ∗, U∗, V ∗,W ∗) = (1, 0, 0, 0) it looks:

J(1, 0, 0, 0) =









−β 0 −δP 0
0 −α δP 0
0 aθ −σP 0
0 a(1 − θ) 0 −σP









. (11)

It enables to state a theorem of conditional stability for ”health”.
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Proposition 5. Health as a fixed point is stable if and only if

aδP θ − ασP < 0. (12)

The proof is very simple and left to the reader. The eigenvalues are real and take the
values −β,−σP , 1/2(−α−σP ±

√

(α− σP )2 + 4aδPθ)). The admissibility of the unstable
direction can also be checked.

In the case seropositivity may occur, one may state the following theorem.

Theorem 6. Under the admissibility assumption (9), the seropositivity fixed point (8) is
stable.

Proof. Apart from λ = −σP , the eigenvalues satisfy:
∣

∣

∣

∣

∣

∣

λ+ β + δPV
∗ 0 δPT

∗

−δPV
∗ λ+ α −δPT

∗

0 −aθ λ+ σP

∣

∣

∣

∣

∣

∣

= 0,

or λ3 + b1λ
2 + b2λ+ b3 = 0 with

b1 =
1

ασP

(βaδP θ + ασP (α + σP )), b2 =
βaδP θ

ασP

(α + σP ), b3 = β(aδP θ − ασP ). (13)

We need to use the Routh-Hurwitz Criterion (Henrici, 1974 p. 490) that gives neces-
sary and sufficient conditions ensuring that the roots of the cubic polynomial have positive
real parts. In our case, this criterion reads:

∆1 = b1 > 0, ∆2 =

∣

∣

∣

∣

b1 1
b3 b2

∣

∣

∣

∣

> 0, ∆3 =

∣

∣

∣

∣

∣

∣

b1 1 0
b3 b2 b1
0 0 b3

∣

∣

∣

∣

∣

∣

> 0.

The first condition is obviously satisfied. Thanks to condition (9), the third condition
is equivalent to the second one. It happens that ∆2 can be computed:

∆2 =
1

α2σ2
P

(βaδP θ + ασP (α + σP ))(aβδPθ(α + σP ) + α2σ2
P ) − β(aδPθ − ασP ), (14)

and this term is obviously positive because the only negative term is compensated by one
of the expanded terms.

2.3.3 Some numerical simulations

So as to have simulations comparable with the other models studied in the present article,
we use the same values of parameters as previously:

β = 0.01 day−1 , α = 0.7 day−1 , a = 250 day−1.
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Moreover, some other parameters were the same as in the Snedecor’s model and we used
the same values:

δP = 0.0125 day−1 , σP = 2 day−1.

So as to be in the regime of health stable, we used θ = 0.1. As can be checked on Figure 6,
health is stable, although it needs numerous days to come back to health. The qualitative
evolution of the lymphocytes and viruses is comparable to the one of Nowak-May’s model
presented in Figure 1 and to the one of Snedecor’s Model in Figure 4. The uninfected
lymphocytes decrease to their minimum value (0.999625) in about six days. Then some
hundreds of days are needed to get sufficiently close to 1.
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Figure 6: Numerical results for Perelson’s model with four equations. Case where the
health is stable. Short time evolution on the left (3 days) and phase plane for lymphocytes
and viruses on the right for a 600 days evolution.

So as to have a stable seropositive state, we only change θ for θ = 0.6. Results can be seen
on Figure 7. The global dynamics converges to the seropositivity with oscillations. The
maximum value of the free virus (about 2.2) is reached at day 39. Then the uninfected
lymphocytes decrease until 0.599 at day 58. The minimum value of virus (0.019525)
happens on the 116th day and the cycle goes on as shown in Figure 7.

3 A new model with antigenic variable

So as to build up our model, we will follow the biological description of the various
phenomena concerning the various fields: the uninfected lymphocytes of antigenicity i ∈
A (Ti(t)), the infected lymphocytes of antigenicity i (Ui(t)), the infectious viruses of
antigenicity i (Vi(t)) and the non-infectious viruses of antigenicity i (Wi(t)). The space
A is still undetermined. The best set is not known, but when trying to get a macroscopic
model (by integration of antigenicity i), we will need to investigate the various possibilities
to get a limiting operator for (t, i) ∈ R+ × A. This is the issue of a forthcoming paper.
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Figure 7: Numerical results for Perelson model with four equations. Case where the
seropositive state is stable. Relatively short time evolution on the left (200 days) and
phase plane for lymphocytes and viruses on the right for a 600 days evolution.

We will also need the sum of each field:

T =
∑

j

Tj , U =
∑

j

Uj , V =
∑

j

Vj and W =
∑

j

Wj.

3.1 Lymphocytes evolution

The variation in time of Tj(t) (dTj/dt) must take into account various phenomena:

• a natural death and generation modeled by a term like:
(

dTj

dt

)

natural

= −βjTj + γj (15)

• when a virus (Vj or Wj) of antigenicity j is detected, the immune system generates
lymphocytes of the same antigenicity to fight them. This can be modeled by an expo-
nential multiplication whose time constant is roughly proportional to the inverse of the
number of viruses Vj + Wj. This is a “Lotka-Volterra” type term that we met only in
Pastore and Zubelli (2008) for the cross-antigenic immune action:

(

dTj

dt

)

growth

= +Cj(Vj +Wj)Tj (16)

• the virus attack lymphocytes independently of the antigenicity. More precisely, there
are two regimes:

+ If V/T ≤ 1 as a virus may attack only one lymphocyte Tk (Dern et al., 2001), the
ratio of attacked lymphocytes is V/T . If we introduce a time constant, it gives a term
like:

(

dTj

dt

)

infection

≃ −
1

τj

(

V

T

)

Tj , if
V

T
≤ 1.
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+ If V/T ≥ 1, as a virus may infect only one lymphocyte (Dern et al., 2001) only part

of the viruses may infect the lymphocytes. More precisely, no more than T viruses may
infect. In other words, the ratio of attacked lymphocytes may not be superior to 1. There
is a kind of saturation of the efficacy of predators Vj while the number of lymphocytes
decreases with time. Up to a time constant, we saturate the infection ratio:

(

dTj

dt

)

infection

≃ −
1

τ̃j
Tj , if

V

T
≥ 1.

+ If V/T ∼ 1, the two terms must match by continuity, and so τj = τ̃j . This complex

behavior may be compiled due to a non-linear function J of the “min-mod” type:

J(ξ) =

{

ξ if ξ ≪ 1
1 if ξ ≫ 1

. (17)

The effect discussed here can be modeled by

(

dTj

dt

)

infection

= −
1

τj
J

(

V

T

)

Tj. (18)

In order to justify our essentially linear term in (18) in an other way, we make hereafter
various assumptions and wonder how our term should behave upon these assumptions,
seen how reality behaves.

Firstly we assume that we double Vj (and only it) without changing V or to a noticeable
extent, while V/T remains small. Then the effect does not change and so the term must
not change. This prohibits a simple term like −Vj/τj .

Secondly we assume that all the Vi are doubled (including Vj) and so V is doubled
too for a still small V/T . Obviously the effect is doubled. So the modeling term should
depend on Vi (whatever i) only through V .

Thirdly we assume that we double Tj , and only it (not the more general Ti), without
changing T (or to a noticeable extent) nor V (and still V/T ≪ 1). Then the effect doubles.
It proves that the term should depend linearly on Tj.

At this stage, we have a linear dependance both in V and Tj . If we do not take care,
we might deduce a −V Tj/τj term that leads to −V T/τ when integrated over j. We still
need to explain why our term may not depend linearly on T although it depends on Tj .

To that end, we make the assumption that we double all the Ti (including Tj). Since
a virus may infect only one lymphocyte at a time, the effect should not be modified
as the limiting parameter is not the amount of lymphocytes but the amount of viruses.
Indeed, assume a patient has caught any disease that makes his immune system produce
lymphocytes, it should not make the HIV infection more virulent, in the first stage where
V/T ≪ 1. This is satisfied by our term and not by −V Tj/τj.

Notice that by summing over j and assuming τj constant, we find dT/dt = −V/τ in
the first regime (V ≤ T ) and dT/dt = −T/τ in the second regime (V ≥ T ). Moreover,
if V ≫ T the effect does not depend on V as the limiting factor is the presence of
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lymphocytes. These are expected as they seem natural. Most authors have considered
that the infection term should be quadratic like −V T/τ . This conclusion may not be
drawn from our considerations. It is even denied as the regimes exclude one another. To
our knowledge, a term like ours has never been proposed. It must be recalled that all the
models are designed to be tested with the only biologically meaningful fields T + U and
V +W . Yet the phenomenon we model will simplify in the evolution equation of T + U
and V +W . So it should never be measured. Yet, it translates into the model a crucial
biological reality. So this term would deserve to be tested and such a test is postponed
to a forthcoming research.
The consolidated evolution equation for the lymphocytes is the sum

dTj

dt
=

(

dTj

dt

)

natural

+

(

dTj

dt

)

growth

+

(

dTj

dt

)

infection

dTj

dt
= −βj Tj + γj + Cj(Vj +Wj)Tj −

1

τj
J

(

V

T

)

Tj . (19)

3.2 Infected lymphocytes evolution

The evolution of infected lymphocytes depends on various effects:

• the infection of a lymphocyte by a virus (same term as for Tj (18) with a plus sign)
generates an infected lymphocyte Uj :

(

dUj

dt

)

generation

= +
1

τj
J

(

V

T

)

Tj;

• and a natural death:
(

dUj

dt

)

natural

= −αj Uj .

To summarize, we have:

dUj

dt
=

(

dUj

dt

)

generation

+

(

dUj

dt

)

natural

= +
1

τj
J

(

V

T

)

Tj − αj Uj . (20)

3.3 Infectious and non-infectious virus evolution

The multiplication of virus is the main phenomenon and occurs in the infected lympho-
cytes. So the sum in j growth term of V +W must be

∑

j

(

d(Vj +Wj)

dt

)

growth

=

(

d(V +W )

dt

)

growth

= aU, (21)

as taken into account by Nowak and May (2000), Snedecor (2003) and Perelson (2002)
(whether they distinguish infectious and non-infectious virus or not).
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The evolution of virus depends also on mutations. Some of them modify the abil-
ity to infect and others the antigenicity. Here, those two properties are considered as
independent, as mentionned in the introduction where references are given.

Only one parameter θ measures the probability to mutate to an infectious offspring
(necessarily from an infectious virus). So 1 − θ is the probability to mutate to a non-
infectious offspring. Since we assume antigenicity and ability to infect are independent,
we may assume θ does not depend on j (nor k).

Let us denote Skj the probability to mutate from an antigenicity k (only Vk as Wk

does not even infect and so does not mutate) to an antigenicity j (either Vj or Wj) per
unit of time. So we have:

Skj ≥ 0,
∑

j

Skj = 1, (22)

and Skj depends a priori on the number of antigenicities. The offspring of a virus Vk

will mutate to Vj with the probability θSkj (the case k = j where there is no mutation is
included). So it will mutate to Wj with the probability (1 − θ)Skj.

As a consequence of the assumption that antigenicity and ability to infect are inde-
pendent, equation (21) can be split into two parts :

(

dV

dt

)

growth

= aθU,

(

dW

dt

)

growth

= a(1 − θ)U. (23)

Notice that the value of θ suggested by Thomas et al. (2007) ranges from 1 to 1/60,000.
But Kothe et al. (2006) found in one experiment a ratio θ close to 1/8. To fix the ideas,
we suggest in the following to set θ = 1/10.
The value of Skk is considered as relatively low by the biological community but we have
not found any precise and trust-worthy proposition in the literature.
The distribution k 7→ Skj for j 6= k needs to be non-uniform for a biological reason. As is
well known (Bebenek et al., 1993; Ji and Loeb, 1994), there exist mutationnal hot spots
in the HIV virus. We may guess these hot spots will elicit non-uniform distribution of the
antigenicity during multiplication/mutation. The precise value of the probability k 7→ Skj

is of course an open problem.

3.3.1 Infectious virus

The infectious virus variation (dVj/dt) depends on various effects.

• The first and most complex is multiplication and mutation. Through mental experi-
ments, we are to determine the fields present in the modeling term.

As multiplication takes place in the infected lymphocytes, if there were no such lym-
phocytes (U = 0), whatever might be the number of (free) viruses, there would be no
multiplication and the term would be zero. This would almost occur in the end of the
disease. More precisely, as once a virus has infected a lymphocyte, no more viruses may
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infect it (Dern et al., 2001), U is a good measure of the total number of infectious viruses.
Note that in our model V is the number of free and infecting viruses. So there must be
a dependance on U (or Uj at this stage).

As the antigenicity of an infected lymphocyte has no link with the antigenicity of the
multiplicating virus, the involved field must be U (and not Uj).

As there are mutations from any antigenicity k, the Vk mutate and their offspring is
made of either Vj or Wj with probability θSkj or (1 − θ)Skj respectively. So there must
be
∑

k SkjθVk in the modeling term.
What can be the modeling term ? Up to now, we have U(

∑

k SkjθVk) times an
unknown term A(t). Once summing over the antigenicity, we must find aθU . So because
of (23), A(t) is such that:

∑

j

(

dVj

dt

)

growth

=
∑

j

A(t)U

(

∑

k

SkjθVk

)

= aθU ⇒ A(t) =
a

V
,

because
∑

j Skj = 1. So our modeling term for multiplication with mutation to Vj (Vk →
Vj) is:

(

dVj

dt

)

growth

= a
U

V

∑

k

SkjθVk. (24)

• attack of the viruses by the lymphocytes of the same antigenicity produced by the

immune system:
(

dVj

dt

)

lymphocyte

= −ξjVjTj. (25)

Once compiled, the evolution equation is:

dVj

dt
=

(

dVj

dt

)

growth

+

(

dVj

dt

)

lymphocyte

=
aU

V

∑

k

SkjθVk − ξjVjTj . (26)

3.3.2 Non-infectious viruses

The variation of non-infectious viruses (dWj/dt) may be modeled by various effects and
translated into various terms similar to infectious ones:

• mutation from an antigeniticy k (Vk with Vj included) to Wj:

(

dWj

dt

)

growth

=
aU

V

∑

k

Skj(1 − θ)Vk;

• attack of the virus by the lymphocytes of the very same antigenicity. Notice that as

the immune system may not detect whether a virus is infectious or not the ξj must be
the same as for Vj :

(

dWj

dt

)

lymphocyte

= −ξj Wj Tj .
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Once compiled the evolution equation reads:

dWj

dt
=

(

dWj

dt

)

growth

+

(

dWj

dt

)

lymphocyte

=
aU

V

∑

k

Skj(1 − θ)Vk − ξj Wj Tj . (27)

As for Vj, the lymphocytes do attack only the virus of the same antigenicity. Moreover,
they cannot make a distinction between infectious or non-infectious viruses.

3.4 The dynamical system

When we collect equations (19), (20), (26) and (27), our model reads finally as said in
Dubois et al. (2007):

dTj

dt
= −βjTj + γj + Cj(Vj +Wj)Tj −

1

τj
J

(

V

T

)

Tj , (28)

dUj

dt
= +

1

τj
J

(

V

T

)

Tj − αj Uj , (29)

dVj

dt
=

aθU

V

∑

k

SkjVk − ξj Vj Tj , (30)

dWj

dt
=

a(1 − θ)U

V

∑

k

SkjVk − ξj Wj Tj. (31)

Very simple manipulation enable macroscopic laws to be proven:

d(V +W )

dt
= aU −

∑

j

ξj(Vj +Wj)Tj;

d(T + U +
∑

j(
Cj

ξj
(Vj +Wj)))

dt
= −

∑

j

βjTj +
∑

j

γj −
∑

j

αjUj + aU
∑

j

Cj

ξj
. (32)

Since we see no reason why ξj or Cj should depend on j, the equation (32) could be
considered as a simple linear combination of the integrated versions of (28-31). Such a
law could be experimentally checked.

There remains the problem of initial conditions and the way they enter into the evo-
lution model with mutations. Indeed, in most ordinary differential systems, as soon as
a function is identically zero in a subdomain, it remains so (Cauchy-Picard Theorem).
Moreover, 10−20 or 10−40 are numerically very different while they both mean “zero”.
In simulations of mutation, we will need a quantic jump. All this is postponed to a
forthcoming article.
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4 Mathematical properties

Starting from (28-31), we make the various fields dimensionless by using the value of
Tequil = γj/βj at equilibrium as a characteristic value. Then we let N = 1:

T =
Tj

Tequil
, U =

Uj

Tequil
, V =

Vj

Tequil
, W =

Wj

Tequil
.

We also define dimensionless parameters:

ω = Cj Tequil, ζ = ξj Tequil.

With these notations, the system reads:

dT

dt
= β(1 − T (t)) −

T (t)

τ
J

(

V (t)

T (t)

)

+ ω
(

V (t) +W (t)
)

T (t), (33)

dU

dt
=

T (t)

τ
J

(

V (t)

T (t)

)

− αU(t), (34)

dV

dt
= a θ U(t) − ζ V (t)T (t), (35)

dW

dt
= a (1 − θ)U(t) − ζ W (t)T (t). (36)

The unknown fields for (33-36) are dimensionless whereas the time variable remains di-
mensioned (by days). Since we assume there is only one antigenicity (N = 1), mutation
disappears. Hereafter, we prove the solution remains admissible and exists globally. Then
we look for the fixed points and study their stability.

4.1 The solution remains admissible

We intend to prove that the system (33-36) is mathematically well posed and biologi-
cally meaningful: it does not exhibit negative values of the fields for admissible initial
conditions. To that purpose, we make various assumptions on the parameters:

β, τ, ω, α, ζ are real positive and 0 < θ < 1,
J(•) is a real function concave over [0,∞[, J(0) = 0, J ′(0) = 1,
J(x) → 1 when x→ +∞ and J is bounded on R−.

(37)

¿From the biological meaning of the system, we define the set of admissible fields:

B = {(T, U, V,W ), T > 0, U ≥ 0, V ≥ 0, W ≥ 0}, (38)

and its interior:

B̊ = {(T, U, V,W ), T > 0, U > 0, V > 0, W > 0}. (39)
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Due to the Cauchy-Picard theorem, we know that there exists a local in time solution.
The question is then whether this local solution is admissible. Our main result is the
following Theorem.

Theorem 7 (Biological consistance). The solution (T (t), U(t), V (t),W (t)) of system
(33-36) with an initial condition in B remains in B.

To prove Theorem 7, we will need various lemmas. The first one states that the number
of lymphocytes does not vanish in finite time.

Lemma 8. If the initial condition (T0, U0, V0,W0) is in B, then T (t) > 0 for all time for
which the fields T, U, V,W are defined.

Proof. Thanks to the Cauchy-Picard theorem (Arnold, 1978), we know that for t suffi-
ciently small, T (t) is positive. So if there exists at least one time t̃ such that T (t̃) = 0,
then we define t∗ to be the smallest and we have t∗ > 0. Since J(•) is bounded (whatever
V and T ), (33) writes at that time

dT

dt
(t∗) = β > 0.

As a consequence, for t below and sufficiently close to t∗, T (t) < 0. But as T0 > 0, from
the intermediate value theorem, there exists a t′ smaller than t∗ for which T (t′) = 0. This
contradicts the assumption that t∗ is the smallest and completes the proof.

We need now to study the various cases where the initial conditions are either in B̊ or
on the boundary of B. This will be discussed through some lemmas where the initial
condition has either zero, three, two or one initial vanishing fields. In the case of initial
condition in the interior of B, one may state the following Lemma.

Lemma 9 (Zero vanishing initial condition). If the initial condition of system (33-
36) is in B̊, then the solution remains in B̊ for any t ≥ 0 provided it exists.

Proof. We will discuss the cases where one, two or three fields vanish simultaneously.

• Let us assume W vanishes first and alone (before the other fields) and then let us
denote t∗ the smallest time for which W vanishes. On [0, t∗], one has:

V (t) > 0, U(t) > 0, W (t) ≥ 0, W (t∗) = 0, (40)

in addition to the fact that T (t) > 0 (see Lemma 8). The equation (36) writes dW
dt

=
a (1 − θ)U(t∗) > 0 because 0 < θ < 1 (see the assumption (37)). So, there exists a time
t̃ smaller than t∗ at which W (t̃) < 0. From the intermediate value theorem, one may
conclude that there exists a time smaller than t∗ (and than t̃) at which W vanishes. This
contradicts the definition of t∗ and so W may not vanish first.

Identical arguments enable to prove that V may not vanish first. To prove that U may
not vanish first neither, we assume that t∗ is the first vanishing time of U . So, on [0, t∗]:

U(t) ≥ 0, U(t∗) = 0, V (t) > 0, W (t) > 0. (41)
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Thanks to Lemma 8, one has T (t∗) > 0 and so dU
dt

(t∗) = J(V
T
) T (t∗)

τ
> 0. In a similar way

to the two previous cases, one gets a time t̃ smaller than t∗ for which U(t̃) < 0. Thanks to
the intermediate value Theorem, one gets also a time smaller than t∗ where U vanishes.
This contradicts the definition of t∗. So U may not vanish first neither.

• Let us discuss now the case where two fields vanish simultaneously. The case where
V and W vanish simultaneously and alone is impossible for the same arguments as the
case where W vanishes first. The case where U and W vanish simultaneously and alone
may be treated in the same way as the case of U vanishing first. The only remaining
case is if U and V vanish simultaneously (and not W ). Let us then define t∗ the smallest
such vanishing time. The Cauchy-Picard Theorem, applied to the system (33-36) with
reversed time, enables us to claim that the (unique) solution is also such that

dT

dt
= β(1 − T (t)) + ωW (t)T (t),

dW

dt
= −ζW (t)T (t), U(t) = V (t) = 0,

for all time t in [t∗ − ǫ, t∗] for some ǫ > 0. This contradicts the definition of t∗ as the
smallest vanishing time.

• In the case where U, V and W vanish at the same time, the proof is the same as for
Lemma 10.

The following Lemma solves the case of three vanishing initial fields.

Lemma 10 (Three vanishing initial conditions). If the initial condition is T0 >
0, U0 = V0 = W0 = 0, then the solution is unique and is health.

Proof. The proof relies only on the Cauchy-Picard Theorem which states that

T (t) = 1 − (1 − T0) exp (−βt),

and the other fields identically zero.

The next Lemma deals with the case where two initial fields vanish.

Lemma 11 (Two vanishing initial conditions). If the initial condition is among

T0 > 0, U0 = V0 = 0, W0 > 0, (42)

T0 > 0, U0 > 0, V0 = W0 = 0, (43)

T0 > 0, U0 = 0, V0 > 0, W0 = 0, (44)

the solution of system (33-36) remains in B.

Proof.

• In the case (42), the Cauchy-Picard Theorem enables us to claim that there exists a
solution of (33-36) for which U(t) = V (t) = 0, and the fields T (t),W (t) satisfy

dT

dt
= β(1 − T (t)) + ωW (t)T (t) (45)

dW

dt
= −ζ W (t)T (t). (46)
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Let us assume W vanishes at some times. Among these times, we chose t∗ to be the
smallest. On the compact set [0, t∗], T is continue and so bounded by γ > 0. So (46)
enables to claim

dW

dt
≥ −γζW then W (t) ≥ W0 exp (−ζγt) for t ≥ 0

which contradicts the assumption that W (t∗) = 0. So W may not vanish in finite time
and so in the case (42), W (t) > 0 for any positive time and U = V = 0.

• In the case (43), dV
dt
> 0 and so V (t) > 0 for t small enough. Similarly, for t small

enough, W (t) > 0. So for t small enough, the solution enters the interior of B. Such a
new initial condition has been adressed in Lemma 9. So the solution remains in B.

• In the case (44), dU
dt

> 0 thanks to (34), and so U(t) > 0 for t sufficiently small.

Indeed, dW
dt

= 0 but d2W
dt2

= a (1 − θ) dU
dt
> 0. This is enough to assess that W (t) > 0 for

t sufficiently small. Using the new “initial” condition at this time, we are driven back to
the case treated by Lemma 9. This completes the proof.

Lemma 12 (One vanishing initial condition). If one and only one initial field van-
ishes, the solution remains in B.

Proof. If U0 = 0 (and V0W0 > 0), then dU
dt

(0) = 1
τ
T J(V

T
) > 0. One may conclude in

a similar way to the case (44) treated in Lemma 11. If V0 = 0 (and U0W0 > 0), then
dV
dt

(0) = a θ U0 > 0. So in finite time, one is driven back to the case treated in Lemma
9 (zero vanishing intitial condition). If W0 = 0 (and U0 V0 > 0), the argument is very
similar.

Proof of Theorem 7.
Up to now, we have proved that if the initial condition does not vanish (Lemma 9),
vanishes three times (Lemma 10), two times (Lemma 11), or once (Lemma 12), the
solution remains in B. This completes the proof of Theorem 7. �

4.2 Global existence

The following Theorem states that the solution remains finite and so is global in t.

Theorem 13. Let

η = aω − α ζ, (47)

and

γ =
∣

∣

∣

η

ζ

∣

∣

∣
. (48)

If the initial condition (T0, U0, V0, W0) is in B, then the solution of (33-36) satisfies:

T (t) + U(t) +
ω

ζ
(V (t) +W (t)) ≤ T0 + U0 +

ω

ζ
(V0 +W0) + β t if η ≤ 0, (49)
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and

T (t)+U(t)+
ω

ζ
(V (t)+W (t)) ≤

(

T0+U0+
ω

ζ
(V0+W0)

)

eγt +
β

γ

(

eγt−1
)

if η > 0. (50)

As a consequence, the solution is finite for all time t ∈ [0,+∞[ and so is global.

Proof. By adding (33-34) and ω
ζ

times the sum of (35) and (36), all the non-linear terms
disappear and one has:

dT

dt
+ βT +

dU

dt
−
η

ζ
U +

ω

ζ

d

dt
(V +W ) = β. (51)

Thanks to Theorem 7, the solution remains in B and so U ≥ 0. Moreover if η ≤ 0, we
can minorate the fourth term of (51) by 0 because ζ > 0. As a consequence,

d

dt

(

T + U +
ω

ζ
(V +W )

)

≤ β,

and the relation (49) is a simple consequence of the integration in time of the previous
inequality.

If η > 0, we integrate between 0 and t the equation (51), and owing to the positivity
of T , one has

T + U +
ω

ζ
(V +W ) ≤ T0 + U0 +

ω

ζ
(V0 +W0) + βt+ γ

∫ t

0

U(t′) dt′. (52)

Let us denote

δ0 ≡ T0 + U0 +
ω

ζ
(V0 +W0) and φ(t) ≡

∫ t

0

U(t′) dt′.

Due to Theorem 7 we know that the solution remains in B (T > 0, V ≥ 0,W ≥ 0), the
equation (52) enables to write:

dφ

dt
≤ δ0 + βt+ γφ(t),

d

dt
(exp (−γt)φ) ≤ exp (−γt) (δ0 + βt). (53)

The inequality (53) can be integrated (φ(0) = 0):

exp (−γt)φ(t) ≤

[

−
β

γ
t−

1

γ

(

δ0 +
β

γ

)]

exp (−γt) +
1

γ

(

δ0 +
β

γ

)

,

or

γφ(t) ≤ −

(

βt+ δ0 +
β

γ

)

+

(

δ0 +
β

γ

)

exp (+γt).

With such a bound for φ, one may take back the right hand side of (52):

T + U +
ω

ζ
(V +W ) ≤ δ0 + βt+ γφ ≤ δ0 exp (γt) +

β

γ
(exp (γt) − 1),

which is the inequality (50). This completes the proof.
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4.3 Fixed points

Looking for fixed points of (33-36), we must find solutions of the associated stationnary
system:

0 = β(1 − T ) − T
τ J
(

V
T

)

+ ω
(

V +W
)

T,

T
τ J

(

V
T

)

= αU,

a θ U = ζ V T,
a (1 − θ)U = ζ W T.

(54)

We will prove the following proposition

Proposition 14. Let η defined in (47) and

ρ =
αζτ
aθ

,

V =
βaθ

aω − αζ
.

(55)

The fixed points of (33-36) depend on the sign of η. Three cases must be distinguished.

• If η > 0, the fixed points are either health and seropositivity (if ρ < 1), or only health
(if ρ ≥ 1).

• If η = 0, there is no fixed point else than health.

• If η < 0, health is always a solution. Moreover, there appears a non-explicit threshold
value L and three sub-cases depending on L:

+ When ρ < 1 there is one seropositivity fixed point.

+ When 1 < ρ < L, there are two seropositivity fixed points.

+ When ρ > L there is no seropositivity solution.

Proof. One finds easily that

(1 − θ)V = θW,

U =
ζ
a (V +W )T =

ζ
aθ
V T.

(56)

Then, the system (54) reduces to

0 = β(1 − T ) −
αζ

aθ
V T +

ω

θ
V T, (57)

T

τ
J

(

V

T

)

=
αζ

aθ
V T. (58)

Since T = 0 is not a solution, one may simplify T in (58). Equation (57) gives T :

T =
β

β − (ωa−αζ)
aθ

V
=

1

1 − V/V
. (59)
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Thanks to the value of T given by (59), we are driven to solve (58) in the form:

J

(

V
(V − V )

V

)

=
αζτ

aθ
V = ρV. (60)

Three cases appear to solve this equation.

• If η > 0, we must find the solution V of (60) where V > 0. To guarantee T ≥ 0, we
must have V < V . Since the function V 7→ J(V (V − V )/V ) is symmetric with respect
to V /2 and the right hand side ρV is a linear function of V , only two subcases must be
distinguished according to the Figure 8.

>1

V

<1

V0

0

Figure 8: Two characteristic shapes of the curves V 7→ ρV and V 7→ J(V (V − V )/V )
(dotted) for η > 0.

This discussion is summarized in the following:
1. If ρ < 1 there are two solutions:

(i) V1 = 0 ⇒ T1 = 1, U1 = 0 = W1 ;
(ii) V2 > 0 ⇒ T2 > 1.

The first one will be denoted health and the second one seropositivity. We notice that
V2 < V and in the end, the condition on V to ensure T > 0 is satisfied.
2. If ρ ≥ 1, the only solution is health.

• If η = 0, then V = ∞. There is no solution.

• If η < 0, then V < 0 and there is no constraint on V to ensure that T ≥ 0. Unlike the
case η > 0, the parabola inside the function J is of the type y = +x2 instead of y = −x2.
So as to circumvent this, we will invert the function V 7→ V (1 − V/V ) on R+ where it
is one-to-one. For any V ∈ R+ (we look for non-negative V ), there is a unique X ∈ R+

such that

X = V (1 − V/V ) ⇔ V = ψ(X) =
V +

√

V
2
− 4V X

2
. (61)

Then equation (60) amounts to

J(X) = ρψ(X). (62)

In other words we need to intersect J(X) and the parabola ρψ(X). Only three cases
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1

X
0

0

J(X)

L
L<

1<

1

Figure 9: Three characteristic shapes of the curves X 7→ ρψ(X) and J (dotted) with J ≡
tanh and η < 0.

must be distinguished, according to Figure 9. They depend entirely on the slope of ρψ(X)
at X = 0 whose value is ρ. Hereafter, we denote with a superscript the roots of (62).

1. If ρ ≤ 1, there are two solutions denoted X1
i :

(i) X1
1 = 0 corresponding to health ;

(ii) X1
2 > 0 corresponding to seropositivity.

2. If 1 < ρ ≤ L there are three solutions denoted by X2
i :

(i) X2
1 = 0 corresponding to health ;

(ii) X2
2 > 0 corresponding to seropositivity ;

(iii) 0 < X2
3 < X2

2 corresponding to seropositivity.

Notice that there is no explicit value of L. Yet for J ≡ tanh and V ≃ −0.054, we could
numerically find L ≃ 3.7.

3. If ρ > L, there is only one solution X3
1 = 0 (health).

4.4 Stability

The Jacobian matrix is, at every fixed point:













V
Tτ J

′

(

V
T

)

−
β
T 0 ωT − J ′

(

V
T

)

/τ ωT

J
(

V
T

)

/τ − V
Tτ

J ′

(

V
T

)

−α J ′

(

V
T

)

/τ 0

−ζV aθ −ζT 0
−ζW a(1 − θ) 0 −ζT













.
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If we compute the characteristic polynomial through the last right column, we find:

P (λ) = −(ζT + λ)

∣

∣

∣

∣

∣

∣

∣

∣

V
Tτ J

′

(

V
T

)

−
β
T − λ 0 ωT − J ′

(

V
T

)

/τ

J
(

V
T

)

/τ − V
Tτ J

′

(

V
T

)

−α− λ J ′

(

V
T

)

/τ

−ζV aθ −ζT − λ

∣

∣

∣

∣

∣

∣

∣

∣

−ωT

∣

∣

∣

∣

∣

∣

∣

J
(

V
T

)

/τ − V
Tτ J

′

(

V
T

)

−α− λ J ′

(

V
T

)

/τ

−ζV aθ −ζT − λ
−ζW a(1 − θ) 0

∣

∣

∣

∣

∣

∣

∣

.

(63)

Thanks to (56), we can easily simplify the second line of the second determinant of (63).
As a consequence one may write:

P (λ) = −(ζT + λ)

∣

∣

∣

∣

∣

∣

∣

∣

V
Tτ J

′

(

V
T

)

−
β
T − λ 0 ωT − J ′

(

V
T

)

/τ

J
(

V
T

)

/τ − V
Tτ J

′

(

V
T

)

−α− λ J ′

(

V
T

)

/τ

−ζV aθ −ζT − λ

∣

∣

∣

∣

∣

∣

∣

∣

−ωT (ζT + λ)

∣

∣

∣

∣

∣

J
(

V
T

)

/τ − V
Tτ J

′

(

V
T

)

−α− λ

−ζW a(1 − θ)

∣

∣

∣

∣

∣

.

In the general case, no more factorization could be found and the polynomial is

P (λ) = −(ζT + λ)
[(

V
Tτ J

′

(

V
T

)

−
β
T − λ

)(

−aθJ ′

(

V
T

)

/τ + (α + λ)(ζT + λ)
)

+

+
(

ωT
θ

− J ′

(

V
T

)

/τ
)(

aθ
(

J
(

V
T

)

/τ − V
Tτ J

′

(

V
T

))

− (α + λ)ζV
)]

.

(64)

4.4.1 Health’s stability

In the case of health (T = 1, U = 0 = V = W ), the eigenvalues are zeros of (64) which
can be rewritten thanks to (55):

P (λ) = (ζT + λ)(β + λ)

(

aθ

τ
(−1 + ρ) + λ(α + ζ) + λ2

)

= 0. (65)

We will prove the following theorem.

Theorem 15. If ρ > 1, health is (locally) stable.
If ρ < 1, there exists one positive eigenvalue associated to an admissible eigenvector in
the sense of Definition 2.

Proof. The discriminant of the non-reduced second order polynomial in (65) is (α− ζ)2 +
4aθ/τ > 0. This enables us to claim that:

• if ρ > 1, the four roots are negative and so the evolution is (locally) stable;
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• if ρ < 1, there exists one (and only one) positive root and so the evolution is locally
unstable in one direction.

We still have to prove that the eigenvector ~v associated to a positive eigenvalue of (65)
is admissible. In other words, we need to prove that ~v is such that for ε > 0 or ε < 0
small enough, (1, 0, 0, 0) + ε~v has its four components non-negative. To prove this, we
write the system satisfied by the eigenvector:









−(β + λ) 0 ω − 1/τ ω
0 −(α + λ) 1/τ 0
0 aθ −(ζ + λ) 0
0 a(1 − θ) 0 −(ζ + λ)

















x1

x2

x3

x4









=









0
0
0
0









, (66)

where ρ < 1 and λ is the (unique) positive root of (65). More precisely, λ is the unique
root of the third term: aθ(−1 + ρ)/τ + λ(α+ ζ) + λ2. As this second order polynomial is
the determinant of the 2 × 2 submatrix in the center of the matrix in (66), and because
of the very particular shape of the lines 2 and 3, we can claim these lines are bound. It
suffices then to take off the third line to be driven to the system equivalent to (66):







(β + λ)x1 = (ω − 1/τ)x3 + ωx4

(α + λ)x2 = x3/τ
a(1 − θ)x2 = (ζ + λ)x4.

As λ > 0, we can see that there exists solutions such that x2, x3, x4 be non-negative. So,
at least locally the solution in the direction of this eigenvector is admissible and the proof
is complete.

4.4.2 Seropositivity’s stability

We have no rigorous study of the stability/unstability of seropositivity. So we use numer-
ical simulations. In this subsection, we take

β = 0.01 day−1, α = 0.7 day−1, ω = 0.01 day−1, a = 250 day−1, θ = 0.1,

and initial values

T (0) = 1, U(0) = 0, V (0) = W (0) = 0.05.

The other parameters (τ, ζ) are taken so as to illustrate the fixed points depicted in
Proposition 14. We provide the evolution on a short time and a phase portrait for each
case. Let us remind the fixed points:
1. If η > 0

(i) If ρ < 1: health (partially unstable) and one seropositivity numerically stable
as can be seen on Figure 10. In this simulation, η = 1.8, ρ = 0.28. The effect of the
infection is to emphasize the activity of the immune system ;

(ii) If ρ ≥ 1: only health (stable), as in Figure 11 (η = 0.4, ρ = 1.68). Minimum
value for lymphocytes is obtained for t ≃ 0.8 day and maximal one for t ≃ 16.4 days.
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2. If η < 0:
(i) If ρ < 1: health (partially unstable) and one seropositivity numerically stable

as can be seen on Figure 12 (η = −4.5, ρ = 0.28). The effect of the infection is to reduce
the activity of the immune system at a very low level (≃ 0.015 times the level of health);

(ii) If 1 < ρ < L: health (stable) and two seropositivities. We choosed the
parameters ζ = 6, τ = 6 (η = −4.5, ρ = 1.008) for simulation. A first seropositive state
(T ∗ ≃ 0.129, U∗ ≃ 0.03073, V ∗ ≃ 0.992, W ∗ ≃ 8.9) was numerically found to be locally
stable (not shown). A second seropositive state (T ∗ ≃ 0.992, U∗ ≃ 0.00028, V ∗ ≃
0.00117, W ∗ ≃ 0.01058) is very close to health and is locally unstable since it has three
negative and one positive eigenvalues. So as to illustrate this, we have taken initial data

Xj = X∗ + εVj, 1 ≤ j ≤ 4,

where X∗ is the fixed point, Vj is one of its eigenvector and ε is sufficiently small. This
experiment is depicted in Figure 13. Note that although health is locally stable, initial
conditions with a viral load of 5% drove the state to a seropositivity state. This proves
that the basin of attraction is small. So we provide a simulation with an initial viral load
of only 1% in Figure 14 ;

(iii) If L < ρ: health is stable as one may see on Figure 15 (η = −4.5, ρ = 2.8).
Minimum value for lymphocytes is obtained for t ≃ 2.6 days.
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Figure 10: Numerical results for our model. Case where a seropositive state is stable
(τ = 10, ζ = 1). Relatively short time evolution on the left (25 days) and phase plane for
lymphocytes and viruses on the right for a 600 days evolution.

4.5 Some comments

Various effects are supposed to be more or less incorporated in any model and specifically
ours:

• If a model considers the field of free viruses, then infection makes an uninfected
lymphocyte and a free virus disappear and an infected lymphocyte appear at the same
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Figure 11: Numerical results for our model. Case where the health is stable (τ = 20, ζ =
3). Short time evolution on the left (3 days) and phase plane for lymphocytes and viruses
on the right for a 600 days evolution.
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Figure 12: Numerical results for our model. Case where a seropositive state is stable
(τ = 1, ζ = 10). Relatively short time evolution on the left (25 days) and phase plane for
lymphocytes and viruses on the right for a 600 days evolution. The effect of the infection
is to reduce drastically the efficacy of the immune system.



34 François Dubois, Hervé VJ. Le Meur and Claude Reiss

 0.0009

 0.001

 0.0011

 0.0012

 0.0013

 0.0014

 0.0015

 0.0016

 0.993 0.992 0.991

 
v
i
r
u
s
e
s
 

 uninfected lymphocytes 

initial condition 1
initial condition 2
initial condition 3
initial condition 4

seropositive fixed point

Figure 13: Numerical results for our model with 4 equations (τ = 6, ζ = 6). Simulations
are initialized with states very close to the fixed point in directions that correspond to
eigenvectors. The seropositive state is unstable in one direction among four.
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Figure 14: Numerical results for our model with 4 equations. Case where health is stable
(τ = 6, ζ = 6) only for small perturbations. Relatively short time evolution on the left (3
days) and phase plane for lymphocytes and viruses on the right for a 1500 days evolution.
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Figure 15: Numerical results for our model. Case where the health is stable (τ = 10, ζ =
10). Short time evolution on the left (3 days) and phase plane for lymphocytes and viruses
on the right for a 600 days evolution.

time. Three identical terms (up to a ± sign) should be present in such a model. It is not
often the case. Since we consider not only free viruses but also infecting viruses, we are
not forced to have the same three terms.

By explicitly deriving the model, we justifiy our “piecewise linear” term, although all
the authors use a quadratic term. Very likely, the reason why this phenomenon’s modeling
has not been much studied is that the only biologically measured field is T + U . So the
term modeling this phenomenon disappears in any evolution equation on T + U . Yet it
models a crucial reality and deserves more attention.

• We characterize each virus by its antigenicity and by the information that it is in-
fectious or not. We characterize the lymphocytes by the virus antigenicity against which
they have been designed. Mutation is then only a probabilistic phenomenon and the main
modeling question is the space in which it takes place and its probabilistic law. Such a
study is postponed to a forthcoming article.

• We model the production of Tj by the immune system once it has detected the Vj.
The production depends on the Vj population, and so our term is quadratic. It has no
counterpart in any model we read, but it could be balanced by the quadratic term modeling
the immune effect against each strain of virus present in numerous models (Pastore and
Zubelli, 2008; ...) including ours.

• The multiplication/mutation is the most challenging phenomenon. The death rate
of infected lymphocytes is about 70 times greater than that of uninfected lymphocytes.
Indeed, in Snedecor (2003), the author proposes various articles among which Finzi and
Siliciano (1998) for the death rate of infected lymphocytes and Sachsenberg et al. (1998)
for the death rate of uninfected lymphocytes. The ratio of these rates is about 70. More-
over, since only one virus may infect a lymphocyte (Dern et al., 2001), we may assume
U is a good measure of the total number of infecting viruses. This assumption is very
likely but would deserve to be further tested. A simple modeling of mutation generates
our term.
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• We model the effect of the immune system against the viruses by a term depending
quadratically on Vj and Tj since these terms are effective in the same regime. Such a term
can be found in the models depending on antigenic variation in Nowak and May (2000)
(chapter 12 and 13) and Pastore and Zubelli (2008) but in these models the lymphocyte’s
generation is modeled only through a linear term in Vj . Notice that with further assump-
tions, one may find a linear combination of the T + U and V + W evolution such that
this new combination is simply linear. This could be experimentally tested.

The overall behavior of all the systems studied above (including ours if N = 1) al-
lows the fields to remain non-negative and be attracted by some fixed points. So all
these models predict convergence to some fixed point which is never immuno-suppresed
(T = 0). We consider this to be a major drawback for the long term modeling of HIV
infection. This opinion is shared by the authors of Pastore and Zubelli (2008) and they
propose modifications to the Nowak-Baugham models enabling the longer term evolution
modeling.

What is the advantage of our model ?

Notice that the only physical field is T =
∑

j Tj and not T1 (when N = 1). As a
consequence, the widening of antigenicity support is a phenomenon not included in the
case N = 1 nor in any other well-known “macroscopic” model reviewed above.

Since our model takes the antigenicity into account, its macroscopic version should be
more realistic.

5 Conclusion

We have thoroughly studied different models of HIV multiplication by systems of differen-
tial equations. Some of them were reduced to be single-antigenic. With such a reduction,
all of these models have fixed points that prohibit modeling of the last phase of the disease
where the T count vanishes. This is also criticized in recent research (Pastore and Zubelli,
2008).

Moreover, we propose in this contribution a new model taking into account new phe-
nomena among which lymphocytes generation by the immune system according to the
presence of specific viruses, and immune effect against each virus strain. We model infec-
tion and mutation/generation through new algebraic terms. This model is derived due to
explicit arguments. It will be tested further in forthcoming research.

Although the reduced version of our model has the same drawback of not enabling the
immunity exhaustion, its general version takes into account the strains’ diversity (here
denoted as antigenicity) and the specificity of the immune response. So our full model can
account for the last phase of the HIV infection where the lymphocytes’ count vanishes.
This will be studied in a forthcoming article.
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