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Abstract. During several time intervals in 1979–1980 the
satellites GEOS-2 and SCATHA were situated relatively
close on the nightside of the Earth at geosynchronous dis-
tances. Several substorm events were identified during these
periods. The event considered in this paper was recorded on
22 May 1979, when the satellites were separated by less than
30 min in local time around 21:00 LT. The observed 45 to
60 s delay of magnetic signatures observed at the two s/c in-
dicates a westward expansion of∼7.7◦/min. At the two s/c,
the magnetic signatures are, in particular for the azimuthal
magnetic field components, quite different. At GEOS-2, be-
ing close to the magnetic equator, the dominant feature is
a dipolarization with a weak field-aligned current signature
corresponding to a symmetric current which cancels at the
equator. On SCATHA, however, being close to the cur-
rent sheet boundary, the azimuthal magnetic field indicates
a strong field-aligned Birkeland current structure. On both
s/c the first indication of an approaching substorm was an in-
crease in the high energy ion flux followed by a reduction
in the flux intensity of energetic electrons and a further tail-
ward stretching of the magnetic field, starting∼2 min before
the onset of the magnetic field dipolarization. The tailward
stretching, the observed variations of the magnetic field com-
ponents, and the subsequent dipolarization are interpreted in
terms of an azimuthally tilted field-aligned current system
passing the s/c on the tailward side from east to west. The
westward expansion and dipolarization observed at the two
s/c are consistent with the propagation of a Rayleigh-Taylor
type instability. The increased radial ion flux corresponds to
theE×B-drift due to the substorm associated electric field.

Key words. Magnetospheric physics (storms and sub-
storms; plasma waves and instabilities; current systems)
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1 Introduction

The substorm scenario originally proposed byAkasofu
(1964), suggesting that substorms are initiated locally and
subsequently expand globally, has been confirmed by a num-
ber of studies.

Prior to substorm onset, during the substorm growth phase,
there is a tailward stretching of the magnetic field, which is
maintained by an azimuthal neutral sheet tail current. During
the substorm, the magnetic field reconfigures towards a more
dipolar-like structure (Cummings et al., 1968; Fairfield and
Ness, 1970).

Macroscopically, the neutral sheet current is due to the
combined effect of the terrestrial magnetic field and an earth-
ward directed pressure gradient. On the microscopic scale,
however, the origin of the current is the magnetic curvature-
and the gradient drifts of electrons and ions, respectively.
The drift velocities of ions and electrons are in opposite di-
rections and their contributions to the current are energy de-
pendent. The main part of the current is presumably being
carried by the westward drifting high energy ions. As a result
of a fully developed substorm the magnetospheric magnetic
field is reconfigured as a more dipolar structure. At geosta-
tionary distances, substorm onset and subsequent magnetic
field reconfiguration are associated with a localized disrup-
tion of the azimuthal current. These large-scale changes in
the magnetospheric current system have qualitatively been
interpreted as an expanding current wedge (CW) (McPher-
ron et al., 1973). Within the CW the disrupted current can be
described as the original westward current with a superim-
posed equivalent eastward current (McPherron, 1972), with
its counterpart in the ionosphere. The disruption of the az-
imuthal crossfield current is associated with the transition
towards a dipolar magnetic field structure (e.g.McPherron
et al., 1973; Nagai, 1987; Thomsen et al., 2001). At the
CW boundary the current system is supposed to be closed by
field-aligned Birkeland currents (FABCs) to the ionosphere.
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Fig. 1. Schematic illustration of GEOS-2 and SCATHA positions
in the equatorial and meridian planes on 22 May 1979 at 18:40 UT.

These FABCs are indirectly observed by the appearance
of azimuthal magnetic field components during substorms
(Coleman and McPherron, 1976; McPherron and Barfield,
1980; Kokobun and McPherron, 1981). For symmetry rea-
sons, the FABCs should vanish at the magnetic equator, and
hence are most clearly observed some distance away from
the magnetic equatorial surface (MES).

The region of disrupted current subsequently expands both
azimuthally (Nagai, 1991) and radially (Jacquey et al., 1991,
1993), and ultimately, for a fully developed substorm, the
entire magnetic field approaches a dipolar structure.

Substorm developments in the magnetosphere may alter-
natively be visualized as an expansion of a bounded dipolar-
ized region (DPR), with a boundary (or front) separating the
tailward and dipolar-like magnetic field structures, respec-
tively. The signature of a transition from tailward to dipolar
structures can be identified from the meridian magnetic field
components.

A statistical study of 194 substorms recorded at geosyn-
chronous orbit by the GOES-5 and GOES-6 satellites byNa-
gai (1991) indicated, on average, that substorm onsets were
located in a narrow sector centered around 23:30 MLT, with
subsequent expansions both west- and eastwards. The extent
of the disruption region was estimated byOhtani et al.(1991)
to be of the order of, or less than, one Earth radiusRE . In
a later work,Ohtani et al.(1998) found by using data from
AMPTE/CCE and SCATHA, which were closely spaced in
the midnight sector, that the disruption region could be of the
order of the proton gyroradius.

The expansion and subsequent dipolarization of the mag-
netic field is associated with particle injections which are
considered as independent signatures of substorm onset. The

recorded expansion of particle injection fronts exhibits more
detailed structure than the corresponding magnetic dipolar-
ization, with a time separation of electron and ion injec-
tions, depending on the local time. A two-satellite study of
43 substorm events byThomsen et al.(2001) confirmed the
azimuthal expansion of the injection region both west- and
eastwards at geostationary distances.

Ohtani et al.(1992) modelled the azimuthal disrupted cur-
rent vs. magnetic field and presented a method for analysing
radial substorm expansions in the absence of FABCs. Using
magnetic field data from the closely positioned s/c ISEE 1
and ISEE 2, a statistical study indicated onset positions for
all but one event earthward of the s/c locations at 12–22RE .
Even if the breakup location was known, one would in gen-
eral need several satellites to estimate characteristic expan-
sion properties because the DPR may have different expan-
sion velocities in different directions as schematically illus-
trated byOhtani et al.(1991).

One of the major problems in understanding substorm
onset and development is the substorm trigger mechanism.
Based on experimental evidence recorded at geostationary
distances,Roux et al.(1991) interpreted the substorm devel-
opment in terms of ballooning modes. A number of papers
have addressed the ballooning instability in the near-Earth
magnetosphere<10RE (e.g.Miura et al., 1989; Ohtani et al.,
1989a,b; Ohtani and Tamao, 1993; Lee and Wolf, 1992; Lee,
1998; Hurricane et al., 1997; Bhattacharjee et al., 1998a,b;
Cheng and Lui, 1998; Horton et al., 1999; Hurricane et al.,
1999; Horton et al., 2001).

During several time intervals in 1979–1980 the satellites
GEOS-2 and SCATHA were situated relatively close on the
nightside of the Earth at geosynchronous distances. Several
substorm events have been identified during these periods.
In this paper we investigate a substorm which occurred on
22 May 1979, and was recorded on the two closely spaced
s/c. The two s/c were separated by∼0.65RE in longitude,
and by∼0.9RE in latitude, with GEOS-2 close to the mag-
netic equator and SCATHA close to the current sheet bound-
ary. With this constellation we observe both the longitudinal
rate of expansion and the latitudinal structure of the FABCs
during the substorm.

In Sect. 2 we present the substorm event, and in Sect. 3 we
present the data set which is used in Sect. 4 to discuss the re-
lations between the FABCs and the time development of the
magnetic field components. The possible link between the
substorm and a ballooning instability is discussed in Sect. 5.
Finally, Sect. 6 summarizes the discussion.

2 Substorm event: 22 May 1979

The data available from GEOS-2 and SCATHA only par-
tially cover the same quantities, frequency ranges, and par-
ticle energy intervals. Among the accessible parameters,
we have used the three components of the magnetic field
with a time resolution of 5.5 s for both s/c. On GEOS-2,
the two equatorial components (normal to the satellite spin
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Table 1. Location of Sodankyl̈a, and footprints of GEOS-2 and
SCATHA, respectively.

SOD SCA GEO

18:30 UT E 26◦38′ 31◦51′ 37◦36′

N 67◦22′ 66◦38′ 69◦00′

19:00 UT E 26◦38′ 33◦09′ 37◦36′

N 67◦22′ 66◦54′ 69◦00′

axis) of the electric field with the same time resolution of
5.5 s is available. On GEOS-2 we have high frequency
0.1 Hz≤f ≤12 Hz oscillations of the magnetic field com-
ponents, while on SCATHA we have recordings of the scalar
electric and magnetic fields in different frequency bands in
the range 0.1 Hz≤f ≤ 200 Hz. Differential high energy par-
ticle fluxes of electrons and ions are available on both s/c
with a time resolution of 1 min. On GEOS-2 we use the
equatorial plane components of the integrated high energy
ion flux intensities with a time resolution of 5.5 s. In ad-
dition, we have ground magnetogram recordings of the two
horizontal magnetic field components from Sodankylä.

During the selected substorm event on 22 May 1979 at
∼18:40 UT, SCATHA and GEOS-2 were closely situated
on the evening side of the Earth, as illustrated in Fig.1
and Fig.2. Figure 1 shows schematically the location of
the two s/c in the equatorial plane and in the meridian
(21:00 LT) plane, while Fig.2 shows a more detailed per-
spective of the relative position of the two s/c. At 18:40 UT
(21:04 LT), GEOS-2 was in a geostationary orbit at 6.6RE ,
while SCATHA was in a position 6◦ to the west of GEOS-2 at
20:41 LT. Further, SCATHA was 0.24RE radially earthward
from GEOS-2, and 7.5◦ below the GEOS-2 orbital plane.
The distance between the two s/c was 1.1RE .

The estimated footprints for SCATHA and GEOS-2 and
the location of the Sodankylä station are summarized in Ta-
ble1. The Sodankyl̈a station was located during the substorm
to the west of the footprints of the two s/c. The onset of the
dipolarization event occurred around 18:40 UT. The selected
time period of 30 min begins at 18:30 UT and covers a 10 min
period before the dipolarization onset and the main part of the
dipolarization process as observed on the two s/c.

3 Presentation of data

Below, we present diagrams which show the time develop-
ment of a number of quantities in the selected time inter-
val. The coordinate system used for the data presentation is
a satellite centeredV DH system, withV radially outward,
D in the azimuthal east direction, andH parallel to the spin
axis of the Earth. The general trend is a clear separation into
a quiet pre-substorm period ending around 18:40 UT, fol-
lowed by a period characterized by a transition to a dipolar

Fig. 2. Relative positions of GEOS-2 and SCATHA on
22 May 1979 at 18:40 UT.

magnetic field structure accompanied by large amplitude os-
cillations.

3.1 Magnetic Fields

On both s/c, the recorded magnetic fields cover a wide fre-
quency range from 0 to several Hz. The oscillations which
are seen on the magnetic (and electric) field components are,
to a large extent, associated with the dipolarization process.
The low frequency plots exhibit the ambient magnetic field
variations with superimposed low frequency oscillations.

3.1.1 GEOS-2 magnetic field

In Fig. 3 the magnetic field components recorded on GEOS-
2 illustrate the combined result of a relatively slow average
trend, associated with the reconfiguration of the overall mag-
netic field, and large amplitude irregular oscillations (Holter
et al., 1995). Each magnetic component exhibits a number of
minima and maxima whose identification is somewhat uncer-
tain due to the superimposed oscillations. After∼18:40 UT
we observe on Fig.3 large amplitude irregular oscillations on
all components, and note the following characteristics:

TheBV -component decreases slowly from an initial value
∼7 nT at 18:30 UT to∼5 nT at∼18:40:15 UT, when it starts
to increase and attains a first maximum at∼18:41:15 UT.
Subsequent large amplitude low frequency oscillations are
superimposed on an average value decaying from 20 to
15 nT.



4302 Ø. Holter et al.: Geosynchronous substorm expansion

     1830 1835 1840 1845 1850 1855 1900
-40

-20

0

20

40

60

80

100

M
ag

ne
tic

 F
ie

ld
 [n

T
]

BV

BH

BD

     1830 1835 1840 1845 1850 1855 1900
102

103

104

105

106

107

108

D
iff

er
en

tia
l F

lu
x 

[c
m

−2
s−1

sr
−1

ke
V

−1
]

15−21 keV
21−27 keV27−35 keV

35−41 keV
41−48 keV
48−57 keV

57−66 keV

66−78 keV
78−90 keV

90−108 keV

108−127 keV

127−151 keV

151−174 keV

174−206 keV

Perpendicular Differential
Electron Flux

     1830 1835 1840 1845 1850 1855 1900
101

102

103

104

105

106

107

D
iff

er
en

tia
l F

lu
x 

[c
m

−2
s−1

sr
−1

ke
V

−1
] 33−43 keV

43−56 keV
56−73 keV

73−96 keV

96−125 keV

125−165 keV

165−219 keV

219−294 keV

294−390 keV

390−3300 keV

Perpendicular Differential
Ion Flux

     1830 1835 1840 1845 1850 1855 1900
10-5
10-4
10-3
10-2
10-1
100

[n
T

2 ]

Bz Integrated Power

GEOS 2  −  22 May 1979

Fig. 3. GEOS-2 measurements as functions of time. From top to
bottom: 1. Three magnetic field components; 2. Differential high
energy electron flux intensity; 3. Differential high energy ion flux
intensity; 4. Integrated power of magnetic field oscillations in fre-
quency range 0.5–11 Hz.

The BD-component is negative (westward) and remains
almost constant around∼10 nT until∼18:40 UT. Following
a temporary drop in magnitude, an increase accompanied by
large amplitude oscillations starts at 18:41:00 UT, and a max-
imum level of∼−20 nT is attained at∼18:41:45 UT. Except
for some low frequency oscillations,BD remains, on aver-
age, almost constant at∼−15 nT after∼18:45 UT. A small
decrease after∼18:57 UT brings theBD-value close to its
initial value∼−10 nT.

TheBH -component remains initially almost constant with
a value∼48 nT. At ∼18:39:45 UT it starts to decrease to-
wards a minimum value∼40 nT around∼18:41:30 UT. At
∼18:42:30,BH starts to increase rapidly in an irregular fash-
ion, and attains an approximate maximum∼85 nT around
∼18:52:40 UT.
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Fig. 4. SCATHA measurements as functions of time. From top to
bottom: 1. Three magnetic field components, 2. Differential high
energy electron flux intensity. 3. Differential high energy ion flux
intensity. 4. Integrated power of magnetic field oscillations in fre-
quency range 1.0–2.0 Hz.

3.1.2 SCATHA magnetic field

In Fig. 4 we have plotted the magnetic field components
recorded on SCATHA. As on GEOS-2, we observe after
∼18:40 UT irregular oscillations on all components, how-
ever, with relative amplitudes smaller than on GEOS-2. From
Fig. 4 we note the following characteristics of the three com-
ponents:

TheBV -component starts at a value∼85 nT and then de-
creases slowly to a value of∼75 nT at∼18:41:20 UT. An
increase to a maximum∼85 nT at∼18:43:00 UT is then fol-
lowed by a slowly decreasing average value around∼77 nT.
At ∼18:54:20 UT theBV -value drops further and attains a
value∼55 nT at∼18:57:30 UT.

TheBD-component on SCATHA starts at 18:30 UT with
a value∼−8 nT close to the value measured on GEOS-
2. However, the magnitude decreases to an average around
zero with superimposed low frequency oscillations. Around
∼18:39:00 UT a slow increase in magnitude commences
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SODANKYLA  −  22 May 1979
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Fig. 5. Ground observations of the magneticH - andD-components
recorded at Sodankylä.

followed at ∼18:41:40 UT by a relatively sharp increase.
A maximum negative value of∼−53 nT is attained at
∼18:43:10 UT. Following a subsequent decrease in its mag-
nitude,BD attains∼−10 nT at 18:46:15 UT and a minimum
magnitude close to zero at∼18:47:30 UT. The magnitude
of BD then increases and remains fairly constant with slow
variations around∼−10 nT fort>18 : 50 UT.

The BH -component remains initially almost constant at
a value∼50 nT until ∼18:40:25 UT, when it starts to de-
crease, reaching a minimum∼ 35 nT at≈18:43:00 UT.BH

then increases and attains a maximum close to∼100 nT at
∼18:57:10 UT.

3.1.3 Sodankyl̈a magnetic field

In Fig. 5 we have plotted theH - andD-components of the
ground magnetic field measured at Sodankylä, which is lo-
cated about 11◦ to the west of the GEOS-2 magnetic foot-
print. On both components we observe a weak beginning of
an intensification at∼18:37 UT, followed by very strong in-
tensifications beginning at∼18:39 UT, and with a maximum
amplitude at∼18:40 UT. The oscillations persist during the
whole time period, however, with amplitudes considerably
below the maximum in the later part.

GEOS-2  −  22 May 1979
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Fig. 6. Electric field V- and D-components recorded on GEOS-2 as
functions of time.

3.2 Electric field

For GEOS-2 the measured electric field componentsEV and
ED are presented in Fig.6. Before∼18:40 UT, the measure-
ments are unreliable due a bias current that is too small, and
the average values appear to be constant offsets.

TheEV -component in Fig.6 exhibits irregular oscillations
around zero. The amplitudes attain values∼ ±4 mV/m at
18:42:50, 18:45:00, and 18:47:00 UT.

TheED-component in Fig.6 clearly has an average value
below zero, with irregular superimposed oscillations with
maximum amplitudes∼ ±10 mV/m.

3.3 High energy particle flux intensities

Both on GEOS-2 and SCATHA, measurements of high en-
ergy particle fluxes with a time resolution of 1 min are avail-
able. The measurements on GEOS-2 include both integrated
and differential flux intensities and pitch angle distributions
of electron and ion fluxes. The data from SCATHA covers a
smaller range of parameters, but the differential high energy
particle fluxes are available in energy intervals also covered
by the GEOS-2 measurements.
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Fig. 7. Pitch angle flux intensities for high energy electrons and
ions recorded on GEOS-2.

3.3.1 GEOS-2 particle flux intensities

In Fig. 3 we show for GEOS-2, the integrated differential
fluxes with 1-min resolution for electrons and ions in the
pitch angle range 65–115◦. The energy range for electrons
is from 15 to 206 keV, and for ions from 33 keV to 3.3 MeV.
The energy intervals represented by the curves are indicated.

The 1-min resolution colour diagrams in Fig.7 show the
pitch angle flux intensity distribution for electrons with en-
ergies 16.0–213.5 keV, and ions for the two energy ranges
27.5–59.0 keV and 59.0–402.5 keV, respectively.

3.3.2 Electrons

The injection of electrons on GEOS-2 is seen on Fig.3 as a
simultaneous increase of the electron flux intensity on all en-
ergy channels at∼18:41:30 UT. The flux increase is largest
for the lowest energy channels. Prior to the injection, at
∼18:39:30 UT, we observe a flux intensity decrease which
is most pronounced for the high energy channels. There is
a first maximum, simultaneous an all energy channels, at
∼ 18:43:30 UT.

The electron pitch angle distribution in Fig.7 appears
close to isotropic prior to the large flux increase associated
with the electron injection. At 18:41:30 UT we observe a
transition from the near isotropic distribution to a transverse
distribution with a maximum around∼90◦ pitch angles.

3.3.3 Ions

For ions with the highest energies (>219 keV) in Fig.3, the
initial increasing trend appears as dispersive. For the high-
est energy channel the flux increase starts at∼18:37:30 UT,
while for the two lower energy channels, it starts one and
2 min later at∼18:38:30 UT and∼18:39:30 UT, respec-
tively. For the four intermediate energy channels (73–
219 keV) there is no indication of a dispersive ion injec-
tion. For the lowest energies (<73 keV) there is a flux in-
tensity decay starting at 18:39:30 UT. The first maxima for

energies>96 keV appear to be attained simultaneously at
∼18:41:30 UT.

For the lowest ion energy interval (27.5–59 keV) in Fig.7,
the pitch angle flux distribution is anisotropic with a maxi-
mum around 90◦. The transverse character of the distribu-
tion is maintained during the whole time period, but with
an intensity drop starting at∼18:40 UT. For the high en-
ergy range (59–402.5 keV), the ion flux intensity distribu-
tion is anisotropic. Before the injection, the flux exhibits
a minimum for pitch angles around 90◦, indicating a field-
aligned velocity distribution. After the injection, beginning
at 18:39:30 UT, the anisotropy of the distribution is reversed
and attains a maximum around 90◦.

In Fig.8, top and third panels, the componentsFV - andFD

represent the integrated ion flux intensity in the radial and az-
imuthal directions, respectively. The radial flux,FV , is alter-
natively outwards and inwards. Before onset at∼18:40 UT
the average flux is small and slightly earthward, while later
the amplitudes are larger with a negative average value, in-
dicating an overall inward ion transport. The average of the
azimuthal flux component,FD, is during the whole period
negative, indicating an overall westward ion transport.

3.3.4 SCATHA particle flux intensities

In Fig. 4 we show for SCATHA the differential fluxes for
electrons and ions in the same pitch angle range as for
GEOS-2; i.e. 65◦–115◦. The SCATHA flux data in Fig.4
covers a smaller energy range than for GEOS-2; four energy
channels for electrons from 19.4 keV to 140 keV and four en-
ergy channels for ions from 15.6 keV to 133 keV. The respec-
tive mean energies for the different channels are indicated on
the curves.

3.3.5 Electrons

From Fig.4, the start of the injection associated with the elec-
tron flux intensity increase on SCATHA can be localized to
∼18:42:30 UT for the three highest energy channels. For
the lowest energy channel (19.4 keV), the increase appears
to start 1 min earlier at∼18:41:30 UT. About 2–3 min before
the electron injection, at∼18:40:30 UT and∼18:39:30 UT,
respectively, there is, as on GEOS-2, a flux intensity decrease
on all channels. The first electron flux intensity maximum
occurs simultaneously on all channels at∼ 18:44:30 UT.

3.3.6 Ions

For the two highest energy channels (133 and 71 keV) in
Fig. 4, the start of the ion flux increase is somewhat uncer-
tain, but appears to be at∼18:37:30 UT and∼18:38:30 UT,
respectively. Although the timing is uncertain, the data do
not contradict a dispersive injection of high energy ions. For
the two lowest energy channels (15.6 keV and 36.0 keV), the
fluxes have a decreasing trend.



Ø. Holter et al.: Geosynchronous substorm expansion 4305

     1830 1835 1840 1845 1850 1855 1900
-100

-50

0

50

100

150

[1
09  m

-2
 s

-1
]

Integrated High Energy Ion Flux
(V Component)

     1830 1835 1840 1845 1850 1855 1900
-150

-100

-50

0

50

100

(E
 ×

 B
 / 

B
 2
) V

  [
km

 s
-1
]

E × B Drift Velocity
(V Component)

     1830 1835 1840 1845 1850 1855 1900
-80

-60

-40

-20

0

20

40

[1
09  m

-2
 s

-1
]

Integrated High Energy Ion Flux
(D Component)

     1830 1835 1840 1845 1850 1855 1900
UT

-100

-50

0

50

100

(E
 ×

 B
 / 

B
 2
) D

  [
km

 s
-1
]

E × B Drift Velocity
(D Component)

GEOS 2  −  22 May 1979

Fig. 8. GEOS-2 measurements as functions of time. From top
to bottom: 1. High energy (>33 keV) radial ion flux intensity; 2.
Calculated radialE×B-drift velocity; 3. High energy (>33 keV)
azimuthal ion flux intensity; 4. Calculated azimuthalE×B–drift
velocity.

3.4 High frequency oscillations

The oscillations associated with the dipolarization extend
over a large frequency range from a few mHz to several Hz,
and are observed on both s/c.Perraut et al.(2000) interpreted
the oscillations with frequencies in the range around∼1 Hz,
the ion cyclotron frequency, as current driven Alfvén waves,
and pointed out that they are consistently observed in con-
nection with substorms. The onset of these oscillations is
simultaneous with the onset of the substorm and they persist
during the selected time interval.

3.4.1 GEOS-2 oscillations

In the lowest panel of Fig.3 we have plotted the power of
the magnetic fluctuations integrated between 0.5 and 11 Hz
for the B-components on GEOS-2. The power is approxi-
mately constant until 18:40:40 UT when a fast growth starts.
These oscillations exhibit several successive maxima; around
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Fig. 9. Vector plots of the meridian plane magnetic field,BH vs.
BV , for GEOS-2 and SCATHA as functions of time.

∼18:43 UT,∼18:45 UT,∼18:47 UT, and∼18:53 UT. The
average amplitude regains its pre–substorm level around
∼18:57 UT.

3.4.2 SCATHA oscillations

The bottom diagram of Fig.4 illustrates the magnetic power
variations recorded on SCATHA in the frequency inter-
val 1.0–2.0 Hz. The onset of these oscillations occur at
∼18:41:30 UT. They persist during the selected time inter-
val, however, with a reduced amplitude after∼10 min at
∼18:50 UT.

4 Discussion

During the substorm growth-, onset-, and recovery phases,
there are large variations in the magnetic and electric fields,
electron and ion flux intensities, together with large oscilla-
tions over frequency ranges from a few mHz to several Hz.
Simultaneous with these magnetospheric processes magnetic
Pi2-oscillations are observed on the ground close to the s/c
footprint.

4.1 The magnetic field

The variation of the magnetic field during the dipolariza-
tion can be illustrated by the vectorial magnetic fields in the
meridianV H -plane in Fig.9 and in theDH -plane in Fig.10,
for GEOS-2 and SCATHA, respectively. To emphasize the
overall trend, filtered values have been used (periods>50 s
retained). Before the dipolarization, the magnetic field at
GEOS-2 is smaller and considerably less tailward directed
than at SCATHA. This is consistent with GEOS-2 being be-
low, but close to the CS midplane, and SCATHA is presum-
ably close to the CS boundary.
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Fig. 10. Vector plots of the magnetic field normal to the meridian
plane,BH vs.BD , for GEOS-2 and SCATHA as functions of time.

4.1.1 Westward expansion

The local commencement of the substorm and the subse-
quent magnetic field dipolarization is observed as directional
changes of the meridian magnetic fields on GEOS-2 and
SCATHA in Fig. 9. The initial indications of a developing
substorm on the respectiveBH -components is first seen on
GEOS-2 at∼18:39:45 UT, and about 40 s later on SCATHA
at∼18:40:25 UT. The delay indicates an azimuthal westward
expansion of the substorm, since an inward radial expansion
would first be expected at SCATHA, whose field lines inter-
sect the MES farthest from the Earth. The delay observed on
SCATHA is also apparent on the other recorded quantities:
The ion injection, the initial electron flux decrease, and the
electron injection are all delayed by 1 min, which is the reso-
lution for the measurements of these quantities. For the quan-
tities with higher resolution we estimate the delay between
GEOS-2 and SCATHA to be:∼40 s for the initialB-field
stretching,∼50 s for the onset of high frequency oscillations,
and∼40 s for the dipolarization onset. Further, a westward
expansion is not contradicted by the Sodankylä ground ob-
servations presented in Fig.5 which, although the initial am-
plitudes are small, may indicate a substorm breakup occur-
ring earlier than the first indications on the two s/c. Together
with the observed ion flux dispersion, this suggests that the
substorm break-up was initiated at a position to the east of the
two s/c, and that the subsequent expansion was westward in
accordance with the normal tendency established by the find-
ings ofNagai(1991), Ohtani and Tamao(1993), andThom-
sen et al.(2001). With an angular s/c separation of 5.75◦ at
18:40 UT, we find, with an estimated time delay of∼45 s,
the azimuthal substorm expansion velocity to be∼7.7◦/min,
corresponding to∼94 km/s at geostationary distances and
∼14 km/s in the ionosphere. Thus, with a breakup in the lo-
cal time sector 23:00–24:00 LT, the substorm would, with a

constant expansion velocity, arrive at the GEOS-2/SCATHA
position(s) with a delay of about 4–5 min.

4.1.2 Field-Aligned Birkeland Currents (FABC)

At the MES, there is, except for a small azimuthal compo-
nent, only an axial magnetic field componentBH . By def-
inition BV is zero. The magnetospheric currents can be di-
vided into currents normal to the magnetic field and Field
Aligned Birkeland Currents (FABC). The azimuthal current
component at the MES generates magnetic field components
BV andBH in the meridian plane which at the two s/c are
observed as a tailward stretching of the magnetic field dur-
ing the substorm growth phase. In situations where FABCs
are present, the current-magnetic field relationship is rather
complicated. For symmetry reasons, the FABCs vanish at
the MES, but off the MES, however, FABCs can generate
magnetic fields with all components present. In particular,
1BD changes in theBD-component off the MES, are inter-
preted as a signature of FABCs, e.g.Coleman et al.(1976),
McPherron and Barfield(1980), andKokobun and McPher-
ron (1981). Weak FABCs before the substorm onset flow
mainly in the meridian plane, but as the substorm devel-
ops, and the FABCs become strong, they are tilted in the
azimuthal direction along with the magnetic field. The mag-
netic field azimuthal tilt, which is seen in Fig.10 between
∼18:41 UT and∼18:46 UT, is, as expected from the s/c po-
sitions relative to the MES, most pronounced on SCATHA.

4.1.3 Magnetic field variations

For the discussion of the magnetic field variations, we qual-
itatively separate the substorm time sequence into four pe-
riods which are closely related to the behaviour of the az-
imuthalBD-component on SCATHA.

4.1.4 BD small and positive

According to Fig.3, the variations of the GEOS-2 magnetic
field components are quite small before the substorm on-
set. On SCATHA, Fig.4, however, small but recognizable
variations can be identified prior to∼18:40 UT on all three
components. In particular, there is an increase in theBD-
component from a negative value to a value close to zero.
For undisturbed conditions at geostationary distances, the az-
imuthal BD-component normally exhibits a small negative
offset (a few nT). Thus, before dipolarization onset, while
the s/c is located to the west of the DPR, the increase inBD

indicates the presence of FABCs. The modest magnetic field
changes on SCATHA,1BD>0, 1BV <0, and1BH >0, are
consistent with weak downward FABCs, both tail- and east-
ward of the s/c.

4.1.5 BD negative and decreasing

Starting at ∼18:39:00 UT the SCATHA azimuthal
BD-component becomes negative followed by a large
(negative) increase,1BD∼-50 nT. A negativeBD change
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can be generated either by an upgoing current tailward, or a
downgoing current earthward of the s/c. TheBD-component
thus added to the (meridian) magnetic field results in an
azimuthally tilted magnetic field, as seen in Fig.10, which
below the MES conducts azimuthally tilted FABCs. These
currents in turn, generate meridian plane magnetic field
components. On SCATHA, beginning at∼18:40:25 UT,
we observe a decreasing axialBH -component (1BH ∼-
20 nT), and, beginning at 18:41:20 UT, an increasing radial
BV -component (1BV ∼15 nT). These changes represent
an additional tailward stretching of the magnetic field, and
are consistent with the initial 2-min directional magnetic
field change beginning at∼18:39:45 UT on GEOS-2 and at
∼18:40:25 UT on SCATHA, as seen in Fig.9. This kind
of tailward magnetic field stretching is a common feature
at substorm onset (Kokobun and McPherron, 1981; Nagai,
1982, 1987; Nagai et al., 1987). With the s/c to the west
of the approaching substorm, we interpret the observed
tailward stretching of the magnetic field (1BV >0; 1BH <0)
on SCATHA as the result of a westward tilted upgoing
FABC tailward of the s/c.

4.1.6 BD negative and increasing

The transition towards a more dipolar-like structure (Fig.9)
begins at∼18:42:30 UT on GEOS-2 and at∼18:43:10 UT
on SCATHA. The beginning of the dipolar recovery coin-
cides with the minimum values of the axialBH -components
on both s/c as observed on Fig.3 and Fig.4 for GEOS-2
and SCATHA, respectively. At SCATHA it closely coincides
with both the large maximum magnitude of the negative az-
imuthal componentBD at 18:43:10 UT, and the maximum of
theBV -component at 1842:45 UT (Fig.4). The subsequent
relative variations of the SCATHA magnetic components are:
1BV <0, 1BD>0, and1BH >0, which are consistent with
an azimuthally receeding upgoing FABC tail- and westward
of SCATHA. As seen in Fig.3, the changes in the magnetic
field components are qualitatively similar on GEOS-2, but,
except forBH , less pronounced. The weaker response to the
FABCs is consistent with the position of GEOS-2 being close
to the MES.

The variations of the magnetic field components suggest
that the strong upgoing FABC region moved past SCATHA
from east to west on the tailward side. Further, the observed
maxima/minima indicate that the central part of the FABC
system passed SCATHA at∼18:43:10 UT and about 45 s
earlier for GEOS-2.

4.1.7 BD small and positive

After the passage of the strong FABC region, the effect of
the FABCs diminish, as clearly observed from the SCATHA
BD-component in Fig.4, which at∼18:46 UT attains its ini-
tial value centered around−10 nT. There is, however, a fur-
ther decrease in its magnitude to aBD-value around zero, as
observed during the pre–substorm growth period, indicating
a possible weak downward FABC tailward of SCATHA for

a 4-min period from∼18:46 to∼18:50 UT. The magnetic
fields on both s/c approach a dipolar structure, indicating a
partially disrupted azimuthal current in the vicinity of the
s/c. On SCATHA the final transition towards dipolarization
begins at∼18:55 UT.

A partially disrupted westward azimuthal current can be
regarded as the result of a superimposed equivalent eastward
current. Below the MES and earthward of this current, the re-
sult would be variations1BH >0 and1BV <0, while at the
MES, 1BV ∼BV ∼0. On GEOS-2, a small but long lasting
positive shift1BV ∼10 nT at 18:41 UT is observed, indi-
cating a northward shift of the MES, and thus bringing the
relative position of GEOS-2 somewhat below the MES.

The upward FABCs clearly attain a maximum and then di-
minish while the (increasing) equivalent eastward azimuthal
current, representing the disrupted part of the original cur-
rent, gradually becomes dominant. The main part of the
upward FABCs lasts for∼3–4 min, and with the estimated
azimuthal expansion velocity of∼7.7◦/min may cover an
azimuthal range of∼22–31◦. As already pointed out, the
SCATHA BD-component (Fig.4) indicates weaker downgo-
ing field-aligned current structures both before and after the
arrival of the upward FABC structure.

4.2 Particle injections

Before the onset of the local dipolarization, the current which
maintains the tailward structure is, on the microscopic scale,
carried by azimuthally gradient- and curvature-drifting parti-
cles. The electrons drifting towards the s/c from the west, are
not accelerated prior to the encounter with the DPR, while
the ions drifting towards the s/c from the east have traversed
the boundary of the DPR.

When the DPR encounter the s/c, the observed electrons
(at all energies) are passing from a region of weak tailward
magnetic field to a region with stronger dipolar-like field.
The expected dispersionless electron flux intensity increase,
or electron injection, is confirmed by the differential flux in-
tensities presented in the second panels in Figs.3 and4 for
GEOS-2 and SCATHA, respectively. The estimated electron
injection at∼18:41:30 UT on GEOS-2 and at∼18:42:30 UT
on SCATHA, represents a delay of∼1 min, which is compa-
rable to the time resolution of the measurements.

About 2 min before the electron injection, the flux intensi-
ties decrease by almost an order of magnitude for some en-
ergy channels on both s/c.

Although the time resolution does not allow a precise tim-
ing, these electron “ejections” apparently coincide with the
tailward stretching of the magnetic field observed on both s/c
about 2 min prior to the start of the dipolarization.

Compared with the electrons, the situation is quite dif-
ferent for the westward drifting ions. The ion gradient-
and curvature-drifts in the dipolarized magnetic field are
in the same direction as the westward expansion of the
DPR. The first indication of injected ions at GEOS-2 is
at ∼18:37:30 UT for the highest energy channel (Fig.3),
while on SCATHA, at a lower energy, it is at∼18:38:30 UT
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Table 2. Timing of parameter changes at SCATHA and GEOS-2.

GEOS-2 SCATHA
∼UT ∼UT

High energy ions1 18:37:30 18:38:30
Start upward FABC 18:39:00
B-field stretching 18:39:45 18:40:25
Electron flux decrease1 18:39:30 18:40:30
HF-waves 18:40:40 18:41:30
Strong increase in FABC 18:41:40
Electron injection1 18:41:30 18:42:30
Dipolarization start 18:42:30 18:43:10
Max upward FABC 18:43:10

1 1 min resolution

(Fig. 4). On both s/c there appears to be a dispersion for the
highest energy ions which are injected about 4-5 min before
the injection of the electrons. It is not possible to identify the
time delay between the two s/c from the energy dependent
dispersive ion injections.

4.3 Event sequence

Even with a somewhat uncertain timing of the different pro-
cesses observed, we may qualitatively and to some extent
quantitatively, identify the sequence of events preceeding the
substorm dipolarization.

At the position of the two s/c, the first indication of an
approaching substorm is the arrival of dispersive high en-
ergy ions, with the highest energy arriving at GEOS-2 at
∼18:37:30 UT and at SCATHA about 1 min later. Then,
on SCATHA at∼18:39 UT we deduce from the recorded
BD component a change to an upward directed FABC.
At ∼18:39:45 UT on GEOS-2 and about 40 s later, at
∼18:40:25 UT on SCATHA, we observe a tailward stretch-
ing of the meridian magnetic field, whith a simultaneous
electron flux decrease on the two s/c. About one min later,
we identify on both s/c the onset of high frequency waves;
at 18:40:40 UT on GEOS-2 (0.5–11 Hz) and at 18:41:30 UT
on SCATHA (1.0–2.0 Hz). Simultaneous with these waves
we note, on basis of the SCATHABD–component, a rapid
increase in the upward FABC, beginning at∼18:41:40 UT.
At ∼18:41:30 UT and at∼18:42:30 UT on GEOS-2 and
SCATHA, respectively, a strong increase in the electron flux,
i.e. electron injection, is observed. The electron injection
starts about 1 min prior to the dipolarization onset, which
appears on GEOS-2 at∼18:42:30 UT and on SCATHA at
∼18:43:10 UT. When the dipolarization starts on SCATHA,
we observe a simultaneous minimum ofBD, corresponding
to a maximum upward FABC. The event sequence is sum-
marized in Table2.

4.4 Ballooning instability

There has been a number of suggestions related to the mech-
anisms which are at the origin of substorm onset and devel-
opment. The drift ballooning instability, originally suggested
by Roux(1985) andRoux et al.(1991), has clearly been the
major candidate to explain the onset and development of sub-
storms (e.g.Ohtani et al., 1989a,b; Miura et al., 1989; Ohtani
and Tamao, 1993; Lee and Wolf, 1992; Lee, 1998; Hurri-
cane et al., 1997; Cheng and Lui, 1998; Bhattacharjee et al.,
1998a,b; Horton et al., 1999; Hurricane et al., 1999; Horton
et al., 2001).

The ballooning instability mechanism associated with a
substorm is qualitatively similar to the Rayleigh–Taylor in-
stability. With ion and electron diamagnetic drifts in oppo-
site directions and normal to the respective pressure gradients
and the magnetic fieldB, the resulting electron and ion dia-
magnetic currents flow along the respective constant pressure
surfaces. Prior to substorm onset, during the growth phase,
the current sheet is in quasi–equilibrium with the azimuthal
diamagnetic current withj being related to the pressure gra-
dient∇p by j=B×∇p/B2.

With density perturbations of the equilibrium the oppo-
site directions of the electron and ion fluxes tend to create
space charges. The associated electric fieldsE, combined
with the ambient magnetic fieldB, result in additional drifts,
vE=E×B/B2, which amplify the perturbation. To maintain
quasi–neutrality, any tendency to accumulate space charges
is, however, counteracted by neutralizing currents along the
magnetic field lines. If these FABCs constitute part of closed
current circuits (via the ionoshere), they will tend to neu-
tralize the electric fields and thus inhibit the growth of an
instability.

Although GEOS-2 and SCATHA are well outside the re-
gion of substorm onset, signatures which are associated with
ballooning instabilities are observed. These signatures may
be of relevance for an understanding of the substorm expan-
sion mechanism.

4.4.1 Birkeland currents

The FABCs necessary to maintain quasi-neutrality produce
additional magnetic field components. From symmetry rea-
sons, these components, as the FABCs, vanish at the MES
and increase away from the MES. FABCs in the meridian
plane will produce azimuthal magnetic field components,
earth- and tailward of the currents, which, in turn modify the
direction of the FABCs, which, away from the MES, attain
significant azimuthal components.

The difference in the azimuthal magnetic components
recorded on the two s/c is evident from Figs.3 and 4 for
GEOS-2 and SCATHA, respectively. Clearly SCATHA,
which is farthest away from the MES, records the largest val-
ues in accordance with what is expected for azimuthal mag-
netic field components produced by symmetric FABCs. The
temporary, strongBD-component at SCATHA implies that
below the MES the magnetic field, in addition to the tailward
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direction, is strongly tilted azimuthally across the meridian
plane. A FABC will also generate magnetic field components
in theV - andH -directions. The recorded changes,1BV <0
and1BH >0, are consistent with the s/c being earthward and
initially westward of the FABCs.

4.4.2 E×B dominated radial particle flux

The ballooning instability is associated with ion fluxes in
the radial direction composed of bothE×B-drifts due to
the ED-component, and diamagnetic drifts caused by the
azimuthal pressure gradient of the perturbation. These ion
drifts are 90◦ out of phase. Hence, if one of the drifts dom-
inates, the measured ion flux oscillations would be either in
phase or 90◦ out of phase with theE×B-drift. In Fig. 8
we present four panels related to the particle fluxes recorded
on GEOS-2. The first and the third panel from the top rep-
resent the integrated ion flux intensity in the radial and az-
imuthal directions for energies>33 keV, respectively, while
the second and the fourth panel represent theE×B-drifts in
the corresponding directions. Prior to the substorm onset (at
∼18:40 UT) the GEOS-2 electric field cannot be used with
confidence because of a satellite current that is too small.

A comparison of the radial ion flux intensity (Fig.8, top
panel) with the radialE×B-drift (Fig. 8, second panel),
shows a distinct in phase correlation for the period after
18:40 UT. Thus, the azimuthal electric field, with the associ-
atedE×B-drift, dominates the radial particle transport and
hence the development of the substorm, as discussed in de-
tail by Le Contel(2001) for two other events recorded on
GEOS-2. The observed correlation of theE×B-drift and
the radial ion flux intensity represents supporting evidence
for the presence of ballooning modes during the azimuhal
expansion of the substorm.

A similar comparison for the azimuthal ion flux intensity
(Fig. 8, third panel) andE×B-drift (Fig. 8, bottom panel),
does not reveal similar correlations as for the radial direction.
We note, however, the westward azimuthal ion flux, related
to the ion curvature and gradient drifts.

5 Summary

A substorm on 22 May 1979 was simultaneously observed
on the geosynchronous satellite GEOS-2 and SCATHA when
they were separated by less than 30 min in local time, close
to 21:00 LT, with SCATHA somewhat earthward of GEOS-
2. GEOS-2 was close to the current sheet midplane at the
magnetic equatorial surface, while SCATHA was close to
the current sheet southward boundary. The first indication
of an approaching substorm was the injection of dispersed
high energy ions, consistent with high energy ions drifting
westward, with a velocity above the substorm expansion ve-
locity. The first indication on the magnetic field was recorded
about 2 min later as an initial tailward magnetic field stretch-
ing, which coincided with a decay of the measured flux inten-
sity of ∼ 90◦ pitch angle electrons. Apparently, large pitch

angle electrons are first “ejected” before being injected when
the magnetic field begins the recovery of a more dipolar-
like structure. These substorm onset indications were first
recorded on GEOS-2. The estimated delay of 45 to 60 s be-
tween the GEOS-2 and SCATHA recordings was consistent
with a westward expansion of the substorm boundary, with
a velocity of about∼7.7◦/min. Following the substorm on-
set, the most apparent difference in the recordings at the two
s/c, was the significantly larger magnitude of the azimuthal
magnetic field component recorded on SCATHA. The strong
BD-component at SCATHA lasted about 3 min and was, to-
gether with the variations of the other componentsBV and
BH , consistent with a strong upward field-aligned Birkeland
current structure below the magnetic equatorial surface. The
current structure was moving past the s/c on the tailward side
from east to west.

Both before and after the passage of the current structure,
the azimuthalBD-component on SCATHA indicates weak
downward field-aligned currents.

As the large amount of cited papers suggest, the balloon-
ing instability is, as suggested byRoux (1985) andRoux et
al. (1991), a major candidate for understanding the substorm
onset and development. A simple qualitative (Rayleigh–
Taylor) instability model at the magnetic equator suggests
possible ballooning instability signatures. The strong tem-
porary azimuthal magnetic field component recorded well
below the magnetic equatorial plane at SCATHA, represents
a clear signature of strong substorm associated field-aligned
currents; the measured radial high energy ion flux is highly
correlated with the instability generatedE×B-drift during
the substorm.

Topical Editor T. Pulkkinen thanks two referees for their help in
evaluating this paper.
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