
HAL Id: hal-00329394
https://hal.science/hal-00329394v1

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temperature variations in Titan’s upper atmosphere:
Impact on Cassini/Huygens

B. Kazeminejad, H. Lammer, A. Coustenis, O. Witasse, G. Fischer, K.
Schwingenschuh, A. J. Ball, H. O. Rucker

To cite this version:
B. Kazeminejad, H. Lammer, A. Coustenis, O. Witasse, G. Fischer, et al.. Temperature variations in
Titan’s upper atmosphere: Impact on Cassini/Huygens. Annales Geophysicae, 2005, 23 (4), pp.1183-
1189. �hal-00329394�

https://hal.science/hal-00329394v1
https://hal.archives-ouvertes.fr


Annales Geophysicae, 23, 1183–1189, 2005
SRef-ID: 1432-0576/ag/2005-23-1183
© European Geosciences Union 2005

Annales
Geophysicae

Temperature variations in Titan’s upper atmosphere: Impact on
Cassini/Huygens

B. Kazeminejad1, H. Lammer1, A. Coustenis2, O. Witasse3, G. Fischer1, K. Schwingenschuh1, A. J. Ball4, and
H. O. Rucker1

1Space Research Institute, Austrian Academy of Sciences, A-8042 Graz, Austria
2LESIA-Observatoire de Paris-Meudon, 92195, Meudon Cedex, France
3ESA Research and Scientific Support Department, ESTEC, 2200 AG Noordwijk, The Netherlands
4Planetary and Space Sciences Research Institute, The Open University, Milton Keynes, MK7 6AA, UK

Received: 5 October 2004 – Revised: 11 February 2005 – Accepted: 16 February 2005 – Published: 3 June 2005

Abstract. Temperature variations of Titan’s upper atmo-
sphere due to the plasma interaction of the satellite with Sat-
urn’s magnetosphere and Titan’s high altitude monomer haze
particles can imply an offset of up to±30 K from currently
estimated model profiles. We incorporated these temperature
uncertainties as an offset into the recently publishedVervack
et al. (2004) (Icarus, Vol. 170, 91–112) engineering model
and derive extreme case (i.e. minimum and maximum pro-
files) temperature, pressure, and density profiles. We sim-
ulated the Huygens probe hypersonic entry trajectory and
obtain, as expected, deviations of the probe trajectory for
the extreme atmosphere models compared to the simulation
based on the nominal one. These deviations are very simi-
lar to the ones obtained with the standardYelle et al.(1997)
(ESA SP-1177) profiles. We could confirm that the differ-
ence in aerodynamic drag is of an order of magnitude that
can be measured by the probe science accelerometer. They
represent an important means for the reconstruction of Ti-
tan’s upper atmospheric properties. Furthermore, we simu-
lated a Cassini low Titan flyby trajectory. No major trajec-
tory deviations were found. The atmospheric torques due to
aerodynamic drag, however, are twice as high for our high
temperature profile as the ones obtained with the Yelle maxi-
mum profile and more than 5 times higher than the worst case
estimations from the Cassini project. We propose to use the
Cassini atmospheric torque measurements during its low fly-
bys to derive the atmospheric drag and to reconstruct Titan’s
upper atmosphere density, pressure, and temperature. The
results could then be compared to the reconstructed profiles
obtained from Huygens probe measurements. This would
help to validate the probe measurements and decrease the er-
ror bars.

Keywords. Atmospheric composition and structure (pres-
sure, density and temperature) – Ionosphere (ionosphere -
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1 Introduction

Solar occultation and airglow data obtained by the Voyager 1
Ultraviolet Spectrometer (UVS) during the November 1980
flyby of Titan are the primary sources of information we have
on Titan’s upper atmosphere. Solar occultation data consist
of spectra taken before and during atmospheric attenuation,
from which the line-of-sight optical depth of the observed
material is determined. From the optical depth information,
number densities for the various species can be inferred and
the corresponding scale heights of the density profiles yield
temperatures. The altitude dependent temperature profile
of Titan’s thermosphere is driven by two principal energy
sources, solar X-ray and extreme ultraviolet (XUV) radia-
tion and magnetospheric particles (i.e. electrons and ions).
Lellouch et al.(1990) andMüller-Wodarg and Yelle(2002)
calculated the diurnal variation of the vertical structure of Ti-
tan’s thermosphere by using solar XUV heating, low-energy
magnetospheric electron precipitation and IR cooling.Yelle
(1991) provided a physical model for the thermal structure
of the upper atmosphere on the basis of the calculation of
radiative-conductive equilibrium temperature profiles. Those
were then replaced by the empirical functions in theYelle
et al.(1997) Titan engineering atmospheric model, which is
used as the nominal model for the trajectory analysis of the
ESA Huygens probe, which will land on Titan on 14 January
2005 (Lebreton and Matson, 2002).

Recently,Vervack et al.(2004) reanalyzed the Voyager
1 UVS solar occultation data of Titan’s upper atmosphere
to expand on previous analysis. The authors present a new
engineering model which is consistent with their reanalysis
results in the upper atmosphere, merges smoothly with the
Yelle et al.(1997) model in the lower atmosphere, and does
not have a mesosphere.

Titan’s upper atmosphere conditions will influence both
the Huygens probe entry trajectory (Kazeminejad et al.,
2004), as well as all of the currently planned1 21 targeted
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Fig. 1. Voyager 1 Titan flyby and Cassini first three orbits. The Cassini/Huygens data relay occurs

on January 14, 2004 (around 09:00 UTC = 10:30 Saturn LT). The Voyager 1 flyby occured around

13:30 Saturn LT (November 12, 1980).
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Fig. 1. Voyager 1 Titan flyby and Cassini’s first three orbits. The
Cassini/Huygens data relay occurs on 14 January 2005 (around
09:00 UTC= 10:30 Saturn LT). The Voyager 1 flyby occured around
13:30 Saturn LT (12 November 1980).

Cassini low Titan flybys which go down to an altitude of
∼1000 km (N. Strange, private communication). We eval-
uate the impact of temperature uncertainties in Titan’s upper
atmosphere on the atmospheric drag acting on both Huygens
and Cassini. For the sake of simplicity we constrain our-
selves to the Cassini T16 flyby on 22 July 2006. The aim of
our investigation is to conclude whether the different temper-
ature conditions in Titan’s upper atmosphere cause major de-
viations on the Huygens and Cassini trajectories, and if not,
to assess whether they are significant enough to be sensed by
the onboard accelerometers.

We review the possible heating mechanisms in Titan’s
upper atmosphere in Sect.2 and explain how we incorpo-
rated them into the existing atmosphere models (see Sect.3).
We propose two new temperature and corresponding density
profiles which are then ingested into our numerical simula-
tions of the Huygens entry and Cassini flyby trajectories (see
Sect.4 and Sect.5, respectively).

2 Atmosphere heating mechanisms

Titan’s orbital radius of 20.2 Saturn radii is such that the
satellite may be located in the solar wind, in Saturn’s magne-
tosheath or its magnetosphere. In either of these cases differ-
ent particle populations will be present and can act as sput-
tering agents and affect the upper atmospheric temperature
profile. The present observational knowledge of Titan’s at-
mospheric interaction with the surrounding plasma flow is
based on the data from one single encounter of the Voyager
1 spacecraft in 1980. At that time Titan was located inside

Saturn’s magnetosphere (e.g.Hartle et al., 1982). A loss rate
of ∼1024 heavy N+ or N+

2 /H2CN+ ions s−1 has been esti-
mated from the observations (Neubauer et al., 1984). A part
of these escaping heavy atmospheric species form a nitrogen
torus at Titan’s orbit and contribute after ionization to Sat-
urn’s magnetospheric plasma environment. One has there-
fore two different incident particle populations: protons with
energies of∼210 eV and N+ ions with average energies of
∼2.9 keV (Neubauer et al., 1984) and when Titan is outside
Saturn’s magnetosphere, solar wind protons with energies on
the order of∼1 keV act as incident particles. Because Ti-
tan does not possess an intrinsic magnetic field, magneto-
spheric ions can penetrate below Titan’s exobase where they
act again as sputter agents (Lammer and Bauer, 1993; She-
matovich et al., 2003) and can contribute to the heating of the
upper atmosphere.

Lammer et al.(1998), Lammer and Bauer(1993), andShe-
matovich et al.(2003) used the plasma parameters observed
by the Voyager 1 flyby and showed that incident N+ ions are
responsible for an atmospheric mass loss due to sputtering
on the order of about 0.4−7.0×1026s−1. The bulk of incom-
ing energetic particles are deposited below the exobase at an
altitude of∼1000 km and change the character of Titan’s up-
per atmosphere (Lammer et al., 1998). Energetic N+ ions are
absorbed above an altitude of 800 km and one can therefore
neglect the cooling process due to nonlocal thermospheric
equilibrium (NLTE) by minor constituents, which is consid-
ered as the main cooling process below 800 km (Friedson and
Yung, 1984). Lammer et al.(1998) modelled the magne-
tospheric plasma heating and the resulting rise in tempera-
ture above 1000 km in Titan’s upper atmosphere by solving a
time-dependent heat equation and an estimation of tempera-
ture reduction by horizontal winds to the nightside caused
by pressure gradients. Their model shows that sputtering
induced heating of Titan’s upper atmosphere by magneto-
spheric N+ ions may cause a temperature effect up to∼30 K
above 1000 km of altitude. It should be noted that the addi-
tional heating effects depend on the flux of penetrating ions,
diffusion cross sections and Saturn’s magnetopause location
related to solar wind activity. If particle heating was also in-
volved during the Voyager 1 flyby, the estimated temperature
may be up to 30 K cooler compared to a situation when Titan
is in the solar wind or the incident N+ flux changes along the
orbit. On the other hand, higher N+ flux values may raise
the temperature in Titan’s upper atmosphere. Titan’s orbital
location during the first Cassini flybys (i.e. Ta, Tb) and dur-
ing the Huygens mission (i.e. Tc) differs from that during the
Voyager 1 flyby in 1980 (see Fig.1). One can therefore ex-
pect widely varying and different plasma conditions in the
incident flow (Wolf and Neubauer, 1982). These can result
in different heating effects and imply different temperature
and density profiles in the upper atmosphere.

An additional heat source in Titan’s atmosphere is high
altitude haze. Previous studies byChassefìere and Ca-
bane(1995) andLammer and Stumptner(1999) showed that
monomer haze particles absorb solar radiation, emit in the
infrared, and are energetically linked to the surrounding gas



B. Kazeminejad et al.: Temperature variations in Titan’s upper atmosphere 1185

by thermal conduction. These high altitude monomers may
therefore affect Titan’s thermosphere profile by up to 20 K
in an altitude range from 500–800 km. This depends on
the formation altitude of fluffy non-spherical aggregates, the
monomer size, and their distribution.

3 Titan atmosphere engineering models

Three atmosphere models are so far available for Titan. The
LH90 model (Lellouch et al., 1990; Lellouch and Hunten,
1987) is based on a reanalysis of the radio occultation mea-
surements ofLindal et al.(1983) for the altitudes lower than
200 km. The Y97 model (Yelle et al., 1997) is also based on
the radio occultation data fromLindal et al.(1983) but is fur-
ther constrained by Voyager 1 IRIS measurements (Couste-
nis et al., 1989; Coustenis and Bezard, 1995; Lellouch et al.,
1989, 1990) and, at altitudes above∼1000 km, by the UVS
solar occultation experiment fromSmith et al.(1982) and
Strobel et al.(1992). In order to predict the physical proper-
ties of Titan’s atmosphere and provide an engineering model
for the Huygens project mission analysis efforts,Yelle et al.
(1997) considered the following three uncertainties: uncer-
tainties in the analysis of the Voyager data, temporal and/or
spatial (i.e. latitudinal) variations of the atmospheric struc-
ture and composition that would impact the atmosphere’s
temperature profile, and finally, variations in the surface pres-
sure due to topography and/or weather systems. To take into
account these three categories of uncertaintiesYelle et al.
(1997) provided three versions of the Y97 model: a rec-
ommended model, a model for maximum mass density, and
a model for minimum mass density. Note that the mini-
mum and maximum model have a temperature difference of
roughly 30 K.

Recently,Vervack et al.(2004) reanalyzed the Voyager
1 UVS solar occultations by Titan to expand upon previous
analysis and to resolve inconsistencies that have been noted
in the scientific literature. The proposed V04 engineering
atmosphere model assumes an atmosphere composed of N2
and CH4 and is well-mixed at all altitudes (i.e. no diffusive
separation). Below the reference “surface” level at 330 km,
the V04 model is identical to the Y97 model. The most strik-
ing difference with respect to the Y97 model is the lack of
a mesosphere.Vervack et al.(2004) provides two temper-
ature profiles, one based on the UVS ingress and the other
on the UVS egress occultation data. We adopted the sim-
ple engineering equation ofVervack et al.(2004) to simulate
the V04 ingress temperature profile. Furthermore we intro-
duced a minimum and maximum V04 profile with a constant
temperature offset of±30 K to take into account the possible
heating effects by magnetospheric N+ ions and high altitude
haze (see Sect.2) and to join the minimum and maximum
Y97 profiles below 330 km. The upper panel of Fig.2 depicts
the temperature profiles of the three Y97 profiles and the cor-
responding V04 (ingress) profiles. The shaded areas show
regions where the V04 temperature profiles exceed the enve-
lope of the Y97 minimum and maximum profiles. The lower

60 80 100 120 140 160 180 200 220
0

200

400

600

800

1000

1200

1400
Titan Atmosphere Temperature Profiles

Temperature [K]

A
lti

tu
de

 [k
m

]

Model Merging Altitude

Y97 min
Y97 rec
Y97 max
V04 ingr. rec
V04 ingr. min
V04 ingr. max

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

0

200

400

600

800

1000

1200

Titan Atmosphere Density Profiles

Mass Density [g/cm3]

A
lti

tu
de

 [k
m

]

Y97 min
Y97 rec
Y97 max
V04 ingr. rec
V04 ingr. min
V04 ingr. max

Model Merging Altitude

Fig. 2. Comparison of the Y97 and the V04 temperature (upper panel) and density (lower panel)

profiles. The profiles merge at an altitude of 330 km as depicted by the horizontal line. The shaded

areas in the upper panel correspond to the areas where the V04 temperature values exceed the Y97

min and max profiles.

17

Fig. 2. Comparison of the Y97 and the V04 temperature (upper
panel) and density (lower panel) profiles. The profiles merge at an
altitude of 330 km, as depicted by the horizontal line. The shaded
areas in the upper panel correspond to the areas where the V04 tem-
perature values exceed the Y97 minimum and maximum profiles.

panel of Fig.2 shows the corresponding derived density pro-
files. One can see that the different thermosphere gradient
and the lower V04 temperatures at 1300 km implies higher
densities for the V04 model compared to the Y97 profiles. In
the subsequent sections we will apply the three versions of
the V04 model to our trajectory simulations of both the Huy-
gens probe during its entry phase and Cassini during its low
flyby on T3.

4 Huygens entry simulations

The Huygens probe entry trajectory spans from the defined
interface altitude of∼1270 km down to the initiation of
the parachute sequence at nominally∼158 km. During this
phase the probe is protected from the atmospheric induced
radiative and convective heat fluxes by a 2.7-m diameter
front heat shield as it decelerates from about Mach 22.5 to
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Fig. 3. Upper panel: difference in altitude between the Huygens tra-
jectory simulations using the V04 minimum and maximum density
profiles with respect to the V04 nominal one. Lower panel: differ-
ence in probe aerodynamic drag (expressed in Earth gravity units)
for the upper part of the entry phase.

Mach 1.5 in just under five minutes (Clausen et al., 2002).
Detailed simulations of the Huygens entry and descent tra-
jectory were recently published byKazeminejad et al.(2004)
which are entirely based on the Y97 atmosphere model. The
authors consider extreme case scenarios of parameters that
drive the entry and descent mission sequence. The most im-
portant are the Titan atmosphere model in its three versions,
i.e. minimum, recommended and maximum model, the probe
entry angleγ=−(65±3)◦, and the entry and descent drag co-
efficient with a 1σ error of 5%. As our aim was to evaluate
the impact of different atmosphere models on the probe tra-
jectory, we constrained ourselves to the nominal entry condi-
tions (i.e.γ =−65◦) and drag coefficients.

Our first goal was to simulate the probe entry trajectory
using the V04 maximum density profile (this is the only one
that exceeds the Y97 maximum envelope, as shown in the
lower panel of Fig.2) and to compare it to the corresponding
trajectory based on the Y97 maximum profile. Our results

show that the higher V04 density profile implies a minor tra-
jectory deviation (up to∼0.67 km at an altitude of 340 km)
with respect to the Y97 (maximum) simulation. This corre-
sponds to a delay of∼0.18 s in the probe parachute sequence
initiation time, which is defined asT0. Note thatT0 is sched-
uled exactly 6.375 s after the detection of the limit decelera-
tion of 10 m s−2 on the trailing edge of the deceleration pulse.

Our second goal was to evaluate the aerodynamic drag
forces and corresponding trajectories using the V04 mini-
mum and maximum model and to compare them to the corre-
sponding values obtained from the V04 nominal model. The
upper panel of Fig.3 shows the altitude residuals (i.e. dif-
ference between the min/max and the nominal V04 model)
vs. the nominal trajectory altitude profile. One can see that
the different densities of the two extreme profiles produce a
deviation of up to∼50 km for the minimum and∼30 km for
the maximum V04 profile. The nominalT0 time for the V04
model is 4.57 min past interface epoch (the defined epoch at
which the probe is at an altitude of 1270 km) and occurs at
an altitude of∼158 km. These values correspond very well
to the corresponding values published for the Y97 model by
Kazeminejad et al.(2004). The V04 extreme models intro-
duce time shifts (with respect to the nominal epoch) to the
parachute sequence starting time (T0) of ∼+4.4 s for the min-
imum (T0 occurs at∼133.9 km altitude) and−12.4 s (T0 oc-
curs at∼185.4 km altitude) for the maximum model.

The lower panel of Fig.3 depicts the differences in aero-
dynamic drag for the minimum and maximum V04 density
profiles with respect to the nominal V04 profile.

The Huygens Atmospheric Structure Instrument (HASI)
(Fulchignoni et al., 2002) comprises one servo and one piezo
accelerometer, which are aligned to the principal axes of
the probe. The HASI accelerometers will be the only sci-
entific instrument switched on during the high speed en-
try phase, which is characterized by a very wide range
of accelerations from the limiting resolution of around
0.3µg up to a maximum of more than 12 g. The ef-
fective sampling rate will be 3.125 Hz (Zarnecki et al.,
2004). Assuming a probe entry mass of 320 kg, a free
molecular flow drag coefficient ofCD=2.09 (Thierry Blan-
quaert (ESA/ESTEC), private communication), and a cross-
sectional area ofA=5.73 m2 (Clausen et al., 2002) one ob-
tains a limit density ofρ∼4.2834×10−15 g/cm3. This limit
is shown as a vertical line, together with the V04 and Y97
density profiles, in Fig.4. One can see that the density de-
tection limit is at an altitude of∼1050 and 1100 km for the
Y97 and V04 minimum density profiles respectively. For the
recommended version the detection altitude is even higher
than 1350 km. The limit altitude is for all three versions of
the V04 and the Y97 models above the altitude range where
temperature variations due to plasma interaction are expected
to take place (see Sect.2).
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5 Cassini low Titan flyby simulation

The Huygens probe mission occured during the Cassini Tc
flyby at an altitude of 60,000 km on 14 January 2005. In
the 040 622 reference trajectory (the baseline trajectory at the
time this study was initiated) the subsequent flyby (i.e. T3)
on 15 February 2005 had a planned altitude of only 1000 km,
which would have navigated Cassini through the upper layers
of Titan’s atmosphere (Strange, 2002, and private communi-
cation). Our initial low altitude flyby study was therefore
done for the T3 flyby.

By the time the review comments were sent to the authors,
two new reference trajectories had, in the meantime, been
provided by the Cassini Navigation team, i.e. the 041 001
and the 041 001 reference trajectories (Strange, 2005). The
release of the 041 001 trajectory was motivated by con-
cerns that uncertainties in the IapetusGM would cause risk
to the Huygens probe mission (the distance of the probe’s
Iapetus flyby was therefore increased from 62 282 km to
121 128 km). This was done by lowering Tb from 2197 km
to 1200 km and raising T3 from 1000 km to 1577 km. During
the Ta flyby, Cassini experienced a higher thruster duty cycle
than expected and due to concerns of spacecraft tumbling at
low altitudes the first two 950 km flybys (T5 and T7) were
raised. The first 950 km targeted flyby in the 041 210 trajec-
tory is currently T16 on 22 July 2006; see Table 1 inStrange
(2005).

The aerodynamic drag that Cassini will experience from
Titan’s upper atmosphere will have to be compensated for
by the spacecraft attitude and articulation control subsystem
(AACS), in order to avoid Cassini tumbling out of control.
The per-axis atmospheric torqueMa acting on the spacecraft
can be derived from (Lee, 2002)

Ma =
1

2
CD ρ V 2

rel A (cp − cm), (1)

whereCD is the drag coefficient which was estimated for
the Cassini spacecraft in a free molecular flow field as
CD=2.1±0.1 (Lee, 2004). ρ is the atmospheric density and
Vrel is the spacecraft relative velocity with respect to Titan’s
atmosphere (taking into account the planet’s rotation and an
assumed constant velocity of 140 m/s for Titan’s high altitude
prograde winds).A (cp−cm) is the product of the projected
area and offset of the center of pressure with respect to the
center of mass. Thecp−cm depends on the orientation of
the spacecraft during the flyby and can take the following
values about the Y-axis and Z-axis, depending on the space-
craft orientation: 0.829 and 0.985 m for ORS2 to Titan and
INMS3 along ram orientation (BMX configuration), 1.113
and 0.140 m for ORS to Titan and HGA4 along ram orienta-
tion (BMZ configuration), and 0.829 and 0.985 m for HGA
to Titan and spacecraft +Y-axis perpendicular to ram direc-
tion (BMX configuration), respectively. The projected area
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Fig. 4. HASI servo accelerometer detection limit for the three ver-
sions of the V04 and the Y97 atmosphere profiles. The vertical
line shows the density detection limit of the HASI-ACC servo ac-
celerometer.

was assumed asA=16.396 m2 for the BMX andA=15.48 m2

for the BMZ configuration (Price, 1992).
We numerically integrated Cassini’s T16 flyby trajectory

using initial conditions from the Cassini reference trajectory
kernel5. Our simulation included gravitational forces from
Saturn, Titan and the Sun, as well as aerodynamic drag from
the V04 and Y97 minimum, recommended, and maximum
density profiles. We used a spacecraft mass of 2986.8 kg,
according toSeal (2001). From the integrated spacecraft
velocity vector we derived the per-axis atmospheric torque
acting about Cassini’s Z- and Y-axis for the BMX configu-
ration. As expected we obtained the maximum torque at an
altitude of 1000 km for the V04 maximum model with val-
ues of∼4.5 Nm and∼5.4 Nm, respectively, about the Y- and
Z-axis. Figure5 summarizes the Z-axis torque profiles for
the various atmosphere models. One can see that the V04
torque values are more than twice as high as the Y97 results.
Comparing our results with the Cassini AACS worst case es-
timations fromLee (2000) andLee (2002) we see that our
worst case estimations are more than 5 times higher for the
V04 maximum profile and more than 2.5 times higher for the
Y97 maximum profile. Our simulations also showed that the
V04 maximum atmosphere implies a minor (up to∼150 m)
deviation of Cassini’s trajectory from the reference trajectory
(which does not take into account any aerodynamic drag).

Equation (1) provides a means to infer the atmospheric
density (and with the assumption of hydrostatic equilibrium
the pressure and temperature profiles) from the measured
torque according to Eq. (1). This was done for the Ta flyby
when the Cassini spacecraft experienced a higher thruster
duty cycle than expected (Lee, 2004). The inferred density
profile was considerably larger than the one derived from

5NAIF trajectory kernel: 041210APSCPSE0432908189.bsp



1188 B. Kazeminejad et al.: Temperature variations in Titan’s upper atmosphere

0 1 2 3 4 5 6

1000

1050

1100

1150

1200

1250

1300

C
as

si
ni

 A
lti

tu
de

 w
rt

. T
ita

n 
S

ur
fa

ce

Cassini Atmospheric Z−Axis Torque [Nm]

Y97−REC
Y97−MIN
Y97−MAX
V04−REC
V04−MIN
V04−MAX

Fig. 5. Simulated atmospheric torque about Cassini Z-axis during T16 low altitude flyby on July 22,

2006 00:25:27 UTC (041210 reference trajectory) for the Y97 and V04 recommended, minimum,

and maximum density profiles; assumptions: projected area = 16.396 m2, CD=2.2,cp-cm distance

= 0.985 m, BMX configuration.

20

Fig. 5. Simulated atmospheric torque about Cassini Z-axis during
T16 low altitude flyby on 22 July 2006, 00:25:27 UTC (041 210
reference trajectory) for the Y97 and V04 recommended, minimum,
and maximum density profiles; assumptions: projected area=16.396
m2, CD=2.2,cp-cm distance=0.985 m, BMX configuration.

orbiter instrument measurements such as the Ion and Neutral
Mass Spectrometer (INMS). The uncertainty of the AACS
inferred atmosphere density profile stems mainly from the
combination of uncertainties of the drag coefficientCD, the
location of the center of pressure and mass, and the projected
spacecraft area. From those the error on the reconstructed
density profile was estimated byLee(2004) to be in the range
of 15–20%.

6 Concluding remarks

Titan’s upper atmosphere temperature profile is not only
shaped by solar XUV radiation and magnetospheric electrons
but can also be influenced by magnetospheric N+ ions and
high altitude monomer haze particles. We have incorporated
these heating effects as temperature uncertainties into the
V04 model and introduced two extreme profiles with a con-
stant temperature offset from the nominal (published) one.
We then derived corresponding density profiles and used
them in our numerical trajectory simulation for both the Huy-
gens entry trajectory and the Cassini low flyby trajectory at
T16.

Our simulations show that the upper atmospheric temper-
ature profiles will have an impact on the upper altitude limit
at which the HASI servo accelerometer will be able to de-
tect the atmosphere. This upper altitude limit can range from
more than 1350 km down to only 1050 km. The two extreme
temperature profiles that were considered in our study leave
a clear signature in both the integrated probe entry phase tra-
jectory, as well as the aerodynamic drag force which will be
measured by the HASI instrument aboard Huygens. Those
measurements will be used to reconstruct the upper atmo-
spheric properties of Titan and are therefore an important

means to study the outlined atmospheric heating processes.
One has to keep in mind, however, that this inversion depends
on input parameters like the probe drag coefficient (currently
with an uncertainty of 5%), the atmospheric composition
(this will only be measured during the probe descent phase),
and the probe attitude (i.e. the angle-of-attack). A compar-
ison of probe results with corresponding results as derived
from Cassini instruments is therefore very important.

Our simulation results for the Cassini T16 low flyby pro-
vided us with a fairly accurate estimation of the atmospheric
torque on the Cassini spacecraft. We obtained torque values
for the Cassini Z-, and Y-axis that are twice as high for the
newly introduced V04 maximum profile with respect to the
Y97 corresponding model, and 4 times as high as the worst
case estimation fromLee(2000) andLee(2002).

We point out the possibility to infer an atmospheric den-
sity profile of Titan’s upper atmosphere from the measured
Cassini torque values, which will be provided by the AACS
subsystem. This method was applied for the Cassini Ta flyby
torque measurements and provided density profiles with a
non negligible error bar (i.e. on the order of magnitude of
±15%, due to the uncertainties of input parameters) (Lee,
2004). We still encourage to apply this method to future Ti-
tan low flyby trajectories. This would not only provide addi-
tional density, pressure, and temperature profiles to validate
the Huygens and INMS results but also complementary pro-
files, which could help to reveal the latitudinal and diurnal
behaviours of Titan’s upper atmospheric temperatures.
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