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Abstract. The semiannual and annual lines in a long se-
ries of magnetic observatories daily values, as well as in the
aa-activity index series, are investigated. For both periods,
amplitudes and phases of the lines corresponding to the dif-
ferent series present grossly common variations on decadal
time scales; relative phases and amplitude ratios between
the observatories change with the same time constants. The
results are briefly discussed with regards to commonly re-
ceived theories of the semiannual variation of magnetic ac-
tivity, and some possible mechanisms for the observed geo-
graphical variability are suggested.

Key words. Geomagnetism and Paleomagnetism (Time
variations, diurnal to secular) – Magnetospheric physics (cur-
rent systems; solar wind-magnetosphere interactions)

1 Introduction

“One of the earliest recognized patterns in geomagnetic ac-
tivity was its semiannual variation (Cortie, 1912; Chapman
and Bartels, 1940). The various explanations for this vari-
ation, proposed over the years, can be divided roughly into
two classes: the axial hypothesis, in which the heliographic
latitude of the Earth plays a role, and the equinoctial hypoth-
esis in which the orientation of the Earth’s axis of rotation
relative to the Earth-Sun line plays a role.” We quoted here
the first lines of the paper byRussell and McPherron(1973).
In an attempt to reconcile both hypothesis, these authors pro-
posed a new model wherein the semiannual variation is due
to the variation of the angle between the cross-flow compo-
nent of the solar-wind magnetic field and that of the Earth’s
magnetic dipole axis. This model predicts peaks on 5 April
and on 5 October, whereas previous models predicted peaks
either on 5 March and on 5 September (axial hypothesis), or
on 21 March and on 21 September (equinoctial hypothesis).

The Russell and McPherron model agrees the best with the
observations and therefore is now widely accepted. Yet very
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little is known about the long-term variation, not only of the
phase but also of the amplitude of the semiannual variation.
These variations do exist: for example, in their analysis of
theU index series from 1872 to 1930,Russell and McPher-
ron (1973) note that “the dates of the maximums and min-
imums” are “surprisingly variable” between quiet and dis-
turbed years.

In a recent paper (Le Mouël et al., 2004), we focussed on
the time variation of the amplitude of the semiannual vari-
ation. The data includedX- (northward) andY -(eastward)
components of the magnetic field as recorded in 9 observato-
ries around the world since the beginning of the 20th century,
as well as theaa-index series (Mayaud, 1972). Figure 1 gives
an illustration of the semiannual variation of theaa-index.
We showed that the amplitude of the 6-month line forX and
Y presents a smooth, large oscillation over the last 70 years,
with a pseudo-period of some 50 years and a relative varia-
tion reaching 50% at some observatories. The amplitude of
the 6-month line for theaa-index was found to follow a very
similar trend up to 1980 and to diverge after that date. How-
ever, this divergence was due to an error in our data set after
1980.

In the present paper we will focus on the phase of the semi-
annual variation and investigate its time variation. Long se-
ries of both the (correct)aa-index and theX-component of
the magnetic field will be considered. We will also present,
more briefly, the results of a study of the amplitude and phase
of the annual variation of theX-component andaa-index.

2 Data and analysis

The X-component data analysed in the present paper are
daily mean values from 9 observatories around the world.
Name, location and years available for each observatory are
given in Table 1. Observatories were selected according to
the length and quality of the series and to their geographic lo-
cation. Daily mean values were obtained byBellanger et al.
(2002) from hourly means provided by the World Data Cen-
ter in Copenhagen, Danemark (ftp://ftp.dmi.dk/pub/wdcc1),
or directly by the observatories.
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Table 1. Names, codes and coordinates of magnetic observatories used in the study, and years available.

Name Code Geographical Geographical Geomagnetic Geomagnetic Years
latitude longitude latitude longitude available

Chambon-la-For̂et CLF 48.02 2.26 43.36 79.32 1944–2000
Eskdalemuir ESK 55.30 356.80 52.15 76.30 1914–2000
Hartland HAD 50.99 355.22 47.53 74.74 1926–2000
Hermanus HER −34.42 19.23 −42.43 82.62 1940–2000
Honolulu HON 21.32 202.00 21.39 269.92 1904–1976
Kakioka KAK 36.23 140.19 29.33 211.88 1925–2000
Lerwick LER 60.05 358.82 57.86 80.95 1926–2000
Sitka SIT 57.07 224.67 59.71 280.30 1940–2000
Tucson TUC 32.25 249.17 39.80 314.48 1914–1968
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Fig. 1. Annual variation of theaa-index, summed over 22 years
from 1868 to 1890.

We will not recall the definition of the magnetic activ-
ity three hourly indexaa (seeMayaud, 1972, 1980), whose
series goes back to 1868. Theaa-index characterizes the
geomagnetic activity; it has been recently used to recon-
struct the solar irradiance before 1975, i.e. at dates where di-
rect measurements are not available (Lockwood et al., 1999;
Solanki et al., 2002). Here we consider daily averages ofaa

(i.e., for a given dayaa is the average of the 8 indices of
the day) provided by the National Geophysical Data Center
(ftp://ftp.ngdc.noaa.gov). Note that theaa-index is mostly
derived from theX-component (though sometimes from the
Y -component) and that HAD is one of the currentaa-index
observatories (from 1957).

Another time series used in this paper is that of the sunspot
number, which goes back to the 17th century; we used only
data from the last century.

The X-component andaa-index are analysed using the
same method as inLe Mouël et al.(2004). First, a running
mean over 31 days is computed backward for each day of
the series; this eliminates high frequency variations. (The

phase change introduced by this running mean is corrected
at the end of the analysis.) Second, a band-pass linear filter
centered on a period of about 5 months is applied to the se-
ries, filtering out variations of periods larger than 2 years and
smaller than 2 months (see the full description of the filter
in Le Mouël et al., 2004). Third, the 6-month and 12-month
Fourier coefficients are computed on a sliding time window
of length 22 years (i.e. in length two solar cycles):

AN (k) + iBN (k) =

1

2τ + 1

k+τ∑
ρ=k−τ

η(ρ)

(
cos

2π

TN

ρ + i sin
2π

TN

ρ

)
, (1)

whereN=6 or 12,k is the day, 2τ+1=8035 (number of days
in 22 years),η(ρ) is the value at dayρ of the filtered time
series (obtained at the second step) andTN=182.62 days or
365.24 days. The amplitude of this line is

AN (k) = (A2
N (k) + B2

N (k))1/2 (2)

and its phase is

8N (k) = tan−1 BN (k)

AN (k)
. (3)

Note that the length of the window must be a large enough
multiple of one year (in order to detect the semiannual and
annual lines) and a multiple of eleven years (in order to aver-
age out the effects of the solar cycle), but not to exceed a few
decades (in order not to smooth too much the decadal varia-
tions we are looking for). This is the reason why we chose a
sliding window 22 years in length.

3 Amplitude and phase of the semiannual variation

3.1 aa-index

The amplitude of the semiannual variation of theaa-index is
plotted in Fig. 2. The amplitude plot before 1980 is identical
to that published inLe Mouël et al.(2004); after that date it
has been corrected.



J.-L. Le Moüel et al.: Geomagnetic semiannual and annual variations 3585

1880 1900 1920 1940 1960 1980
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

A
m

pl
itu

de
 (

nT
)

Fig. 2. Time variation of the amplitude of theaa-index semiannual
variation, computed using a 22-year sliding window, centered.
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Fig. 3. Time variation of the phase of theaa-index semiannual
variation, computed using a 22-year sliding window, centered. The
phase is reckoned as the date of the first maximum.

The phase, reckoned as the date of the first maximum of
the year, is plotted in Fig. 3. The 21 March would be the
date of the maximum for a purely equinoctial mechanism; 5
April is the date of the maximum predicted by the Russell
and McPherron model. The observed phase seems to ocillate
between these two dates: counting time backwards, the maxi-
mum occurs, on average, two days after 21 March from 2000
to 1950, two days before 5 April from 1930 to 1920, two
days before 21 March around 1900 and on 5 April around
1880. (Let us stress again that the results of the analysis of
a 22-year interval are referred to the center of the interval.)
Also a large peak appears around 1970. Note that the ampli-
tude of this oscillation, about 20 days, is by no means a small
time shift compared to 90 days, the half period of the studied
variation.
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Fig. 4. Time variation of the amplitude of the semiannual varia-
tion of theX-component in nine observatories (left ordinate axis),
computed using a 22-year sliding window, centered. The sunspot
number (right ordinate axis) and the amplitude of the semiannual
variation of theaa-index (left ordinate axis), computed using the
same window, are also represented.
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Fig. 5. Time variation of the phase of the semiannual variation of
theX-component in nine observatories, computed using a 22-year
sliding window, centered. The phase of theaa-index semiannual
variation, computed using the same window, is also represented.
Phases are reckoned as the dates of the spring extrema.

3.2 X-component

Figures 4 and 5 show the time variation ofA6(k) and86(k)

at the various observatories. (Remember that there is an es-
timateA6(k) and86(k) per day and that the length of the
series depends on the observatory.) Amplitude and phase of
theaa semiannual variation have been added to the figure for
easier comparison, as well as the sunspot number.

It is remarkable that the amplitudes at all the observatories
vary the same way and the same way asaa. This result was
already obtained inLe Mouël et al.(2004).
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Fig. 6. Time variation of the amplitude of theaa-index annual vari-
ation, computed using a 22-year sliding window, centered.

Let us now look at the phases, reckoned as the dates of the
spring extrema. It appears that:

1. The phases vary grossly the same way at all observato-
ries, and the same way as the phase of theaa-index on
the common time span.

2. The phase variations are of the order of ten days and
are comprised between a few days before 21 March and
a few days after 5 April, as already observed foraa;
however, the oscillatory character is somewhat less pro-
nounced in the observatories.

3. There are significant phase differences between some
of the observatories. For example, from 1991 to 1950
the phase difference between KAK and HON, approxi-
mately constant, is more than 12 days.

4. Phase differences between observatories vary in time.
Apart from HON, all the observatories have phases
close to one another around 1930, whereas later they
could differ by a week.

5. The phase at one observatory, KAK, is strikingly similar
to that ofaa from 1935 to 1970.

6. A sharp and intense peak appears on all phase curves
around 1970, to which corresponds a small but clear
peak on all the amplitudes.

4 Amplitude and phase of the annual variation

4.1 aa-index

Figures 6 and 7 display the amplitude and phase of theaa-
index annual variation. Sinceaa is computed from two an-
tipodal observatories (and adequate corrections applied; see
Mayaud, 1972, 1980), a large annual variation is unexpected.
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Fig. 7. Time variation of the phase of theaa-index annual varia-
tion, computed using a 22-year sliding window, centered. The phase
is reckoned as the date of the maximum.

Amplitude is indeed weak compared to that of the semian-
nual variation (see Fig. 2) or that observed at the observa-
tories (see Fig. 8), except in recent years, where it has in-
creased up to 140 in 1990. These values might be thought
to be unsignificant and represent some noise. Nevertheless,
the amplitude and phase patterns are rather well organized
and present clear similarities. Phase is close to its expected
value, 21 June, except before 1920, where it is always earlier
than June, and around 1920 and 1960. At these epochs the
amplitude is too weak to allow stable estimates of the phase;
hence the one-year high vertical bars. Therefore, we believe
the general patterns of Figs. 6 and 7 to be real.

4.2 X-component

The amplitudeA12 and phase812 of theX-component at the
various observatories are represented in Figs. 8 and 9. Al-
though they resemble each other, the amplitude curves do not
look as similar to each other as in the case of the semiannual
variation. Large variations in amplitude occur; for example,
the amplitude of KAK varies from 50 to 300! There are also
large relative variations; for example, the ratio of amplitudes
at KAK and LER varies from 1.1 to 0.2 in three decades.

Phase curves definitely share a common trend, except for
the beginning of the ESK series. From 1990 to 1970 most of
them follow each other inside a two-week band around the
expected time of summer extremum, 21 June. Going back-
ward in time, phases at KAK and HON take high positive
(ahead of 21 June) values, up to, respectively, 40 days and
20 days. The phase variation at HON reaches 2 months. The
difference in phase between LER and KAK (or HON) goes
from zero to 1 month. Note that the estimation of the phase at
KAK is unstable before 1940 due to the very low amplitude.
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Fig. 8. Time variation of the amplitude of the annual variation
of theX component in nine observatories (left ordinate axis), com-
puted using a 22-year sliding window, centered. The sunspot num-
ber (right ordinate axis) and the amplitude of the annual variation of
theaa-index (left ordinate axis), computed using the same window,
are also represented.

5 Discussion

The first striking result is the large change in theaa 6-month
line amplitude, already pointed out inLe Mouël et al.(2004),
but now corrected and extended backwards in time. The
curve of Fig. 2 has the characteristic shape of the curves rep-
resenting the time averaged variation of various magnetic pa-
rameters (Le Moüel et al., 2004) and the sunspot number, but
with an amplification of the range. If the change in sunspot
number is attributed to a change in solar activity (which is
close to a truism), it can be said that the amplitude of theaa

semiannual line does not react linearly to this change.
The date of the first maximum (Fig. 3) is alternately close

to the value expected from a purely equinoctial mechanism,
21 March, and to that predicted by the Russell and McPher-
ron model, 5 April, using a value of 11◦ for the tilt of the
Earth’s magnetic dipole axis. There seems to be no trace
of a purely axial effect. This result suggests that some part
of the mechanism controlling the semiannual variation is not
explained by the Russell and McPherron model.

The amplitude and phase of the semiannual line of theX-
component, in all observatories, closely follow theaa one,
even often in fine details (Figs. 4 and 5). One can safely
conclude that the ionospheric and magnetospheric currents’
system responsible for theaa and field components is the
same. That is by no means trivial:aa is a three-hourly ac-
tivity index, whereas theX series is composed of the daily
average values of this component. In the first case we have a
semiannual modulation of some measure of short-term com-
ponents of the field components, in the second case a genuine
long-term (6 months) variation of these components.

The amplitude of the annual line varies with the observa-
tory (Fig. 8), which is not a surprise (although the geograph-
ical distribution of this amplitude is poorly understood). But
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Fig. 9. Time variation of the phase of the annual variation of theX

component in nine observatories, computed using a 22-year sliding
window, centered. Phases are reckoned as the dates of the summer
extrema.

the phase varies too (Fig. 9), from an observatory to the other,
with differences reaching a month. This is less expected and
reflects some rather complex generation mechanism. All the
more, since the phase varies on the considered time span in
all observatories, as the amplitudes do (so phase differences
between observatories cannot be interpreted simply as induc-
tion effects, for example, induction in the oceans). More in-
triguing, the relative phases (i.e. the phase differences be-
tween the observatories) evolve with time.

The variation of the solar activity responsible for the mean
variation of the lines’ amplitudes cannot produce directly the
time variations of the relative phases and amplitude ratios
(between the different observatories). The responsible direct
mechanism is linked to the Earth: the ionospheric and mag-
netospheric current systems generating the annual and semi-
annual lines (whatever they are) change their geometry and
characteristics on the observed decadal time scales. How can
this be?

1. These geometry changes could be due to the time
changes in the solar activity and solar wind themselves,
through complex MHD interactions. That would ex-
plain why relative changes seem to have the same time
constants as the average trend in Figs. 3 and 4.

2. They could be due to changes in the internal magnetic
field. The secular variation (SV) of the main field is
not (despite its name) that slow and regular. It con-
tains decadal time scales (e.g.Hulot and Le Moüel,
1994); and non-dipolar components of the field may
change by their order of magnitude in some 200 years;
in some places the field changes by more than 100 nT/yr
(i.e. 10% on some 20 years). Note that the peaks in
the phases of the semiannual variation in 1970 (Figs. 4
and 5) correspond to a brutal acceleration of the north
magnetic pole velocity associated with the 1969 geo-
magnetic jerk (Mandea and Dormy, 2003).
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3. Less plausible, some coupling with a dense lower atmo-
sphere could be invoked. Note that the rapid and accel-
erated increase in theaa-index annual line amplitude in
the last decades (Fig. 6) is somewhat analogous to that
of the global temperature (Solanki, 2002).

Remark: When dealing with the annual variation of the
field components, one may be concerned by the possibility
of a spurious temperature effect on the ancient magnetome-
ters (the observation that phases are less scattered in recent
years might buttress this view). However, we are confident in
the data for the following reasons: a) the temperature effect
used is to be taken into account by regular absolute measure-
ments in good observatories, among which the listed ones; b)
the temperature effect is more critical for the vertical com-
ponent recording (the magnetic balance was equipped with
a big magnet). X variometer was much easier to manage;
c) most of all, the resemblance between the curves (ampli-
tude and phase) from the different observatories makes this
hypothesis untenable (in the case of the semiannual line we
have the definitive argument of the close similarity withaa;
such a clue cannot be expected in the case of the 12-month
lines as discussed below).

The existence of theaa annual line shows that the balance
between the two antipodal observatories is not perfect, which
is not surprising. And the time variation of its amplitude over
120 years (Fig. 6) indicates that the balance evolves, which is
quite expected from the above discussion of the time changes
of the various amplitudes and phases.

6 Conclusions

In the present paper we have analysed the long-term vari-
ations of the amplitude and phase of the 6-month and
12-month lines in the spectrum of theaa-index andX-
component at various observatories. These variations are
complicated and sometimes difficult to interpret, but three
results stand out.

The amplitude of the 6 months line varies in the same way
at all considered observatories and in theaa-index. This
variation appears correlated with that of the sunspot number,
which confirms that it originates in variations of the solar ac-
tivity. (Note that a similar trend has been observed in global
temperature by Solanki, 2002.)

The phase of the 6-month line, in theX-component at var-
ious observatories as in theaa-index, oscillates between 21
March and 5 April, i.e. between the date predicted by a
purely equinoctial mechanism and the model byRussell and
McPherron(1973). This variation does not seem to be cor-
related with solar activity. Significant time variations of the
relative phases between observatories are also observed. This
phenomenon could be caused by variations in non-dipolar
components of the Earth’s internal magnetic field; the sud-
den phase shift occuring in 1970 might then be explained by
a sudden acceleration of the variations of these components.

The phase of the 12-month line varies in time in a coherent
manner at all considered observatories, but at the same time

the relative phases between various observatories vary signif-
icantly. Here again, this observation could be explained by a
modification of the ionospheric and magnetospheric current
systems due to variations in the non-dipolar components of
the internal magnetic field.

Whatever the value of these tentative interpretations, we
think these observations are worth attention.
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