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Received: 19 March 2003 – Revised: 30 March 2004 – Accepted: 18 May 2004 – Published: 3 November 2004

Abstract. Numerical analysis of the model for cyclotron in-
stability in the Earth’s magnetosphere is performed. This
model, based on the self-consistent set of equations of quasi-
linear plasma theory, describes different regimes of wave
generation and related energetic particle precipitation. As the
source of free energy the injection of energetic electrons with
transverse anisotropic distribution function to the interaction
region is considered. A parametric study of the model is per-
formed. The main attention is paid to the analysis of genera-
tion regimes for different characteristics of energetic electron
source, such as the shape of pitch angle distributions and its
intensity. Two mechanisms of removal of energetic electrons
from a generation region are considered, one is due to the
particle precipitation through the loss cone and another one
is related to the magnetic drift of energetic particles.

It was confirmed that two main regimes occur in this sys-
tem in the presence of a constant particle source, in the case
of precipitation losses. At small source intensity relaxation
oscillations were found, whose parameters are in good agree-
ment with simplified analytical theory developed earlier. At
a larger source intensity, transition to a periodic generation
occurs. In the case of drift losses the regime of self-sustained
periodic generation regime is realized for source intensity
higher than some threshold. The dependencies of repetition
period and dynamic spectrum shape on the source parameters
were studied in detail. In addition to simple periodic regimes,
those with more complex spectral forms were found. In par-
ticular, alteration of spikes with different spectral shape can
take place. It was also shown that quasi-stationary generation
at the low-frequency band can coexist with periodic modula-
tion at higher frequencies.

On the basis of the results obtained, the model for expla-
nation of quasi-periodic whistler wave emissions is verified.

Key words. Magnetospheric physics (plasma waves and in-
stabilities; energetic particles, precipitating; energetic parti-
cles, trapped)
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1 Introduction

Quasi-periodic (QP) whistler emissions are the wide band
emissions that are observed inside or near the plasma-
pause (see, for example, Helliwell (1965); Sato et
al. (1974); Hayakawa and Sazhin (1992); Sazhin and
Hayakawa (1994)). They are characterized by a periodic
modulation of wave intensity with typical periods from sev-
eral seconds up to a few minutes. Generation of QP emis-
sions is usually accompanied by precipitation of energetic
particles, which are also modulated by the same period.

One of the possible mechanisms of such periodic mod-
ulation is connected to geomagnetic pulsations of a corre-
sponding period (Sato et al., 1974). But experimental data
show that generation of QP emissions may occur in the ab-
sence of such disturbances (Oguti et al., 1991). It is believed
that in the latter case, whistler waves are generated by the
cyclotron instability in a region with enhanced cold plasma
density. The free energy for wave excitation is supplied to
the interaction region by the energetic electrons with trans-
verse anisotropic distribution function. The source of these
particles may be related to their magnetic drift to the interac-
tion region or to a local acceleration mechanism, such as the
magnetic tube compression.

Particles can be removed from the interaction region by
two mechanisms: precipitation of energetic particles via the
loss cone and drift of particles away from the interaction re-
gion across the magnetic field lines.

Drift removal of energetic particles is most effective for
interaction in a duct that is outside the plasmasphere or if
the cross section of the interaction region is rather small.
This mechanism was taken into account in the flow cyclotron
maser (FCM) model developed byDemekhov and Trakht-
engerts(1994). Periodic regimes of whistler wave generation
obtained in this model were used for explanation of pulsating
auroras.

In the case of interaction inside the plasmasphere or in
rather large areas of enhanced cold plasma density, losses of
energetic particles due to precipitation are dominant. Such
a mechanism was considered in a simplified, self-consistent
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model of cyclotron interaction byBespalov and Trakht-
engerts(1976) and Davidson(1979), where the so-called
two-level approximation was used. The results obtained on
the basis of this model allow one to explain general proper-
ties and characteristic time scales of whistler wave genera-
tion, but this model does not take into account the evolution
of wave spectrum and energetic particle distribution.

In this paper, we present results of numerical analysis of
both cases mentioned above. The FCM model is general-
ized with loss cone precipitation taken into account. We
performed extensive numerical analysis of this model using
various combinations of parameters for both removal mech-
anisms to find which generation regimes are possible in such
a system. We analyze the properties of these generation
regimes as dependent on the system parameters, such as char-
acteristics of the energetic particle source and wave damping.
Peculiarities of the wave spectra corresponding to each gen-
eration regime are discussed. The results obtained should be
useful for interpretation of many available experimental data
for QP emissions.

2 Description of the model

As it was mentioned above, we assume in our model that
QP emissions are generated in the region with enhanced cold
plasma density, where the cyclotron resonance condition is
satisfied for most of the energetic particles (see below). Out-
side this region, the development of cyclotron instability is
impossible and the distribution of energetic electrons may
remain anisotropic. The magnetic drift of such particles into
the region with dense plasma serves as the source of free en-
ergy for wave generation.

To describe the cyclotron instability development in this
region we use the self-consistent set of equations of quasi-
linear plasma theory for the distribution functionF(µ, v, t)

of energetic electrons and whistler wave spectral energy den-
sity ε(ω, t). To study processes with characteristic time-
scales greater than periods of oscillations of waves and parti-
cles between mirror points (which is true for QP emissions),
it is possible to use equations averaged over these oscilla-
tions (Bespalov and Trakhtengerts, 1986). Below we shall
consider only a low-frequency bandω�ωB , whereωB is
the electron gyrofrequency. In this case pitch angle diffusion
dominates over the energy diffusion and equations of quasi-
linear theory can be written in the following form (Bespalov
and Trakhtengerts, 1986):

∂F

∂t
+ VD

∂F

∂x
=

1

Tb

∂

∂µ
µD

∂F

∂µ
− δ · F (1)

∂ε

∂t
=

2

Tg

(0 − | ln R|) ε . (2)

Hereµ= sin2 2L, 2L is the equatorial pitch angle,v is the
electron velocity,Tb is the bounce oscillations period,Tg is
the period of wave-packet oscillations, andR is the effective

reflection coefficient, describing wave energy loss. The co-
efficientD of pitch angle diffusion and the amplification0
of whistler waves on the pass between conjugate ionospheres
are defined below.

The second term on the left-hand side of Eq. (1), where
VD is the velocity of magnetic drift, andx is the coordinate
across the magnetic field lines, describes the drift of energetic
particles. Energetic particle losses due to their precipitation
via the loss cone are taken into account by the last term in
Eq. (1), where

δ =

{
0 µ ≥ µc

(Tb/4)−1 0 ≤ µ ≤ µc
(3)

andµc is the loss cone boundary.
In this paper we restrict our consideration to the case of

ducted whistler wave propagation, in which the waves prop-
agate parallel to the geomagnetic field (i.e.k‖B). Taking
into account oblique electromagnetic whistler waves would
not change the obtained results quantitatively. Direction find-
ing studies confirm that whistler waves propagating at small
angles in the near-equatorial region are typical in the near
plasmapause region (seeHayakawa et al.(1986); Hayakawa
and Sazhin(1992)). Quasi-electrostatic or unducted elec-
tromagnetic whistlers require a more complicated analy-
sis, which is beyond the scope of this paper. In the case
of longitudinal wave propagation, we can assume quasi-
homogeneous distribution of the wave energyε across the
interaction region and average the kinetic Eq. (1) over the
cross section of this region:

∂8

∂t
=

1

Tb

∂

∂µ
µD

∂8

∂µ
+ J − δ · 8 (4)

J = (VD/S0)

∫ y2

y1

(Fin − Fout) dy , (5)

where8=S−1
0

∫
Fds, S0 is the area of the duct cross section,

J is the effective source,Fin and Fout are the distribution
functions of electrons entering and leaving the duct, respec-
tively, andy1 and y2 are the boundaries of the interaction
region in the direction transverse toVD.

Taking into account that the energy diffusion is negligi-
ble in the considered frequency rangeω�ωB , we can sim-
plify the analysis of this model by using a distribution with
a narrow energy spectrum, parameterized by the character-
istic energyW0=mv2

0/2. The use of this approximation is
possible due to the fact that the inhomogeneous geomagnetic
field provides a spread in resonant energies: a wave with a
given frequencyω interacts with particles whose velosity is
v>vmin(ω, µ), wherevmin is determined from the cyclotron
resonance condition in the equatorial plane (see Appendix
and the integration limits in Eqs. (6) and (7) below). Due
to that, the growth rate of ducted whistler waves is deter-
mined by integral parameters of the energy distribution, such
as characteristic energy (Bespalov and Trakhtengerts, 1976;
Demekhov and Trakhtengerts, 1994). This approximation al-
lows us to obtain correct integral characteristics, such as the
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particle flux and the wave amplification without analyzing
the evolution of the particle energy spectrum. Hereafter,8

will denotes the distribution function overµ, i.e. the distri-
bution integrated over its narrow energy spread nearW0.

Applying these simplifications to the full expressions for
the diffusion coefficient and the wave amplification (Be-
spalov and Trakhtengerts, 1986), we obtain the following ex-
pressions (Demekhov and Trakhtengerts, 1994):

D = D∗ · (2 − µ)−1/2

1∫
µ

ε(ξ − µ)−1/2dξ (6)

0 = 0∗ ·
1 − ξ

√
2 − ξ

ξ∫
0

(
µ

∂8

∂µ
−

ω

ωBL

8

)
(ξ − µ)−1/2dµ , (7)

where

D∗ =
32

√
2π2e2LR0

3m2c2v0β∗

, 0∗ =
πaω2

pLv0

ωBLc2ncL

(8)

ξ = 1 − ω0/ω, β∗ =

(
ωpLv0

ωBLc

)2

, ω0 = ωBL/β∗ , (9)

whereωB andωp are the electron gyrofrequency and plasma
frequency, respectively, the subscriptL refers to the values
in the equatorial plane,e andm are the electron charge and
mass, andc is the velocity of light in free space. The parame-
terβ∗, proportional to the cold plasma density and character-
istic particle energy, determines which fraction of particles
are in resonance: the number of resonant particles increases
with an increase inβ∗, and forβ∗�1 almost all particles are
resonant; the valueω0 corresponds to the lowest frequency of
whistler waves interacting with electrons having the energy
W0. The parabolic approximation for both the magnetic field
B and cold plasma density distributionnc along the geomag-
netic field line near the equatorial region was used, i.e. the
proportionalitync∝B was used:

B

BL

=
nc

ncL

=

(
1 +

z2

a2

)
, (10)

where z is the coordinate along the magnetic field line,
a=

√
2R0L/3 is the characteristic scale of the Earth’s mag-

netic field at the magnetic shellL, andR0 is the Earth’s ra-
dius.

A more detailed explanation of how the expressions for
wave amplification (7) and diffusion coefficient (6), obtained
from the full formulation of Bespalov and Trakhtengerts
(1986), is given in the Appendix.

3 Numerical results

In this section, we present the results of numerical analysis of
the model described above. The main attention was paid to

study the dependence of the generation regime on the proper-
ties of the energetic particle source (i.e. characteristics of the
distributionFin of drifting particles), such as the shape and
amplitude of pitch angle distribution, and on the frequency
dependence of the wave dampingR(ω).

The following values for other parameters were used in our
simulations: L=4.4 (fBL≈10.3 kHz),ncL=55 cm−3, and
W0=45 keV.

As it was mentioned above, two different mechanisms of
energetic particle removal from the generation region are
taken into account in the kinetic equation (4). In this paper
we analyse these mechanisms separately, i.e. two cases are
studied: (1) where only losses due to precipitation are signif-
icant (in this caseFout≡0 ), and (2) where only drift losses
are taken into account (in this caseδ≡0).

3.1 The case of losses due to precipitation

We performed extensive numerical analysis of this case us-
ing various combinations of parameters. According to results
obtained, the crucial parameter determining the generation
regime in the system is the intensity of source, i.e. the num-
ber of particles supplied in time unit. A variation in other
characteristics of the particle source and wave damping af-
fect the generation regime much lesser. Thus, for this case
we discuss only the dependence of generation regime on the
source intensity. In particular examples presented below, the
source with moderate pitch angle anisotropy was used:

Fin(µ) = C
√

µ, (11)

where the valueC is defined by the normalization condition∫ 1

0
Fin

dµ
√

1 − µ
= n0 (12)

andn0 is energetic electron density. It is convenient to char-
acterize the intensity of the source by the value

J0 = v0

∫ 1

0
Findµ . (13)

It is equal to the flux of precipitating electrons provided by
the source in the stationary state (i.e. when the number of
precipitating particles is equal to that supplied by the source).

As a dimensionless characteristic of the source inten-
sity, one can use the valuej0=(ντJ )−1, whereτJ =N/J0 is
the time scale of energetic particle supply,N is the num-
ber of energetic electrons in the magnetic flux tube, and
ν=2| ln R|/Tg is the wave damping rate.

In the case of a weak source, the regime of relaxation os-
cillations in wave generation takes place. In this regime, af-
ter the system reaches the threshold of the cyclotron insta-
bility, several spikes in the wave intensity with diminishing
amplitude are generated. After that, the system goes into the
stationary generation regime. An example of such a gener-
ation regime is presented in Fig. 1. The wave spectrogram
is shown on the left panel, and the snapshots of electron dis-
tribution function corresponding to the minimum and maxi-
mum wave intensity are shown on the right panel.
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Fig. 1. Relaxation oscillations regime in the model with losses due to precipitation. Spectrogram of the wave intensity is on the left panel and
snapshots of pitch angle distribution of energetic electrons in the duct (solid lines) and distribution in the source defined by Eq. (11) (dashed
line) are on the right panel, time marks for snapshots are given in the corresponding color at the top of the spectrogram. System parameters
areL=4.4,ncL=55 cm−3, W0=45 keV, lnR=2ω/ω0, J0=106 cm−2s−1.
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Fig. 2. Dependence of period of relaxation oscillations on the inten-
sity of the energetic particle source. Results from simplified “two-
level approximation” model and from numerical analysis of the full
system Eqs. (1) and (2) are presented. The same system parameter
values (except the source intensity) as in Fig. 1 were used.

As one can see, this generation regime is characterized by
almost constant shapes of the wave spectrum and electron
pitch angle distribution, whose amplitudes change in time.
With an increase in the source intensity, both the oscillation
period and the characteristic relaxation time decrease.

A simplified analytical model for such a generation regime
has been developed byBespalov and Trakhtengerts(1976)
(see also the reviewBespalov and Trakhtengerts, 1986). To
obtain this model, the so-called two-level approximation is
used, where the shapes of wave spectrum and electron pitch
angle distribution remain constant in the process of cyclotron
instability development. This assumption allows one to ob-
tain from Eq. (1) the system of ordinary differential equations
for new variables: the numberN of energetic electrons in the
magnetic flux tube and the wave energy densityE. Analysis
of this simplified model yields the following expression for
the period of relaxation oscillations:

T = 2π

√
N0/J0

ln R/Tg

, (14)

whereN0 is the average number of trapped energetic elec-
trons in the magnetic flux tube with a unit cross section at
the ionospheric level. We performed a comparison of this re-
sult from the simplified model with the results obtained from
the numerical solution of the full system Eqs. (1)–(2). As
one can see from Fig. 2 these two approaches are in good
agreement.

With further increase in the energetic particle source inten-
sity, another generation regime occurs – the regime of self-
sustained oscillations. In this regime, periodic undamped
oscillations of wave intensity and precipitating particle flux
take place (Fig. 3). An important feature of this regime is
a positive frequency drift during a single spike in the wave
intensity (see Fig. 3, the left panel). This happens because
new particles with higher values of the pitch angles become
involved in the interaction as the cyclotron instability devel-
ops. This is also seen in a different time evolution of the
energetic electron distribution function as compared to relax-
ation oscillations: one can note stronger variation in the pitch
angle distribution shape from the maximum to the minimum
of wave intensity (Fig. 3, the right panel).

An increase in the source intensity leads to a decrease
in the oscillation period, but there is no more qualitative
changes in the generation regime. On the whole, generation
regimes in the case of precipitation losses are characterized
by rather small modulation of wave intensity and small vari-
ation in the energetic electron pitch-angle distribution.

3.2 The case of drift losses

As it was mentioned above, this case was studied byDe-
mekhov and Trakhtengerts(1994) as an application to pul-
sating aurora phenomenon (FCM model). The main atten-
tion was paid to the analysis of temporal parameters of the
generation regime (such as spike duration and repetition pe-
riod), and mainly integral characteristics of the system were
considered (such as wave energy density). Dependence of
these parameters on the plasma properties (magnetic shell,
cold plasma density) was studied. In this paper, we focus on
analysis of how the dynamics of wave spectra and electron
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Fig. 3. Regime of self-sustained oscillations in the case of losses due to precipitation. The source of energetic particles is 10 times greater
then in Fig. 1 (J0=107cm−2s−1), all other parameters and time marks legend are the same as in Fig. 1.
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Fig. 4. Periodic generation of wave intensity spikes in the case of losses due to drift and monotonic pitch angle distribution in the
source Eq. (18). System parameters areL=4.4, ncL=55 cm−3, W0=45 keV, lnR=2ω/ω0, the density of drifting energetic particles
nhL=0.04 cm−3, the duct radius in the equatorial plane 100 km; source parameters are æ=0.1, δ=2. The same time marks legend as
in Fig. 1 is used. The pitch angle distribution in the source is shown by the dashed line.

pitch angle distribution depend on the properties of the ener-
getic particle source.

To solve Eq. (4) for the distribution function8 it is nec-
essary to know the distributionFout of energetic particles at
the exit from the duct. The shape of this distribution is de-
termined by the evolution of initial distributionFin during
particle drift across the duct and depends on the dynamics
of cyclotron instability development in the duct. Following
Demekhov and Trakhtengerts(1994), we assume that the dis-
tributionFout is isotropic at allµ and its amplitude is defined
from the particle conservation law:∫

FoutTbdµ =

∫
FinTbdµ . (15)

Such an assumption can be justified if the loss cone is small
enough, the wave intensity is rather high, and the main free
energy source is due to the pitch angle anisotropy of trapped
particles.

Wave generation in this case is possible if the intensity
of the source is higher than some threshold value, which is
determined from the condition that the cyclotron instability
threshold is exceeded if the whole duct is filled by energetic
electrons:

00 ≥ ln R , (16)

where the value of00 is calculated from Eq. (7) using the
distributionFin. This is different from the case of a large in-
teraction region (Sect. 3.1), in which the instability threshold
may be reached due to constant accumulation of energetic
particles.

In contrast to the previous case, much wider variety of gen-
eration regimes exists in the case of drift losses, and the de-
pendence of their characteristics on the system parameters is
much stronger. In particular, the shape of the source (the ini-
tial pitch angle distribution of drifting electrons) is one of the
crucial parameters determining the generation regime. Three
different types of pitch angle distribution in the source are
studied here. The first type corresponds to the monotonic
pitch angle distribution with moderate anisotropy:

Fin = Cµα , (17)

where the parameterα characterizes the anisotropy. Our
analysis showed that in this case the generation regimes are
rather similar to those discussed in the previous section: sta-
tionary generation, relaxation oscillations, and self-sustained
oscillations with small modulation of wave intensity. Thus
we refer the reader to the Sect. 3.1 for a discussion of these
regimes.
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The second type of the source has the form (see Fig. 4, the
right panel)

Fin =

{
C sinδ(π

2 æ/æ0) , æ≤ æ0
C , æ> æ0

, (18)

where æ≡
√

µ. This distribution can model, for example,
the loss cone distribution if we put æ0≈

√
µc, or any other

anisotropic source. The parameterδ characterizes the sharp-
ness of the slope of the distribution.

A typical spectrogram for low intensity of the source (but
still high enough to satisfy Eq. (16)) is shown in Fig. 4.
This is the regime with periodic generation of wave intensity
spikes. This regime is characterized by rather high modula-
tion of wave intensity and by excitation of relatively narrow
band waves in comparison with the regimes discussed above.
Generation of a spike is accompanied by a shift in the maxi-
mum wave amplitude to higher frequencies. Such generation
occurs due to formation of rather sharp gradient in the ener-
getic electron pitch angle distribution (Fig. 4, the right panel)
at the boundary between resonant and non-resonant particles,
which moves toward higher pitch angles as the cyclotron in-
stability develops (Demekhov and Trakhtengerts, 1994).

The duration of a spike is mainly determined by the pitch
angle distribution of the source and is of the order of the in-
verse initial growth rate(2 lnR/Tg)

−1. The interval between
spikes is determined by the source intensity and is equal to
the time needed to supply enough energetic particles with
anisotropic distribution to satisfy condition Eq. (16). Ac-
cordingly, the period of spike generation decreases with in-
crease in the source intensity. This is seen from Fig. 5, where
the intensity of the source is 4 times higher than in Fig. 4.

Another interesting feature that appears with an increase
in the source intensity and is seen in Fig. 5 is the intermis-
sion of spikes with two different shapes – one is similar to
the case of a weak source (Fig. 4), and the second has a
shape with much faster frequency shift but lower wave am-
plitude. It is also seen that generation of a spike of the second
type starts immediately after the fade of the previous one, but
there is a pronounced gap between the pairs of spikes. The
corresponding evolution of energetic electron distribution is
shown in Fig. 5, the right panel: the sharp gradient exists

during generation of the first spike and is absent during gen-
eration of the second spike.

The existence of such a generation regime is explained as
follows. When the intensity of the source is rather small, its
contribution during the generation of a single spike is neg-
ligible. With an increase in the source intensity, the source-
related modification of the distribution of energetic electrons
during spike generation becomes more significant. This leads
to an increase in the distribution anisotropy at low (æ∼æ0)
pitch angles, but the pitch angle diffusion due to waves gen-
erated by a sharp gradient at higher æ values does not allow
the system to reach the instability threshold at lower frequen-
cies. As a result of joint action of the source and diffusion, at
the end of the first spike the system comes to the state close to
the threshold at all frequencies and with rather smooth pitch
angle distribution (Fig. 5, the right panel). Thus, after the
end of the first spike a rather small addition of anisotropic
electrons by the source is required to initiate the generation
of the next spike. According to that said above, simultane-
ous generation in a wide frequency band occurs, resulting in
a different spectral shape of the second spike. Smaller in-
tensity of this spike is explained by a smaller amount of free
energy accumulated during a shorter time interval before the
spike and by a wider distribution of the wave spectral energy
in the spike. Generation of this short second spike results in
an additional release of free energy after which the system
returns to the initial state below the threshold.

Variation in other source parameters (i.e. the values of æ
andδ) does not change the generation regime qualitatively.
An increase in either æ orδ leads to a decrease in the gener-
ation period and to an increase of the lowest wave frequency
in a spike. This occurs because for the same source intensity
(n0 value), such a change in the source parameters results in
an increasing positionµopt and a value of the maximum of
µ∂Fin/∂µ, which actually determine at which frequency and
how fast the generation threshold Eq. (16) is exceeded.

The dependence of the generation characteristics on the
wave damping frequency profileR(ω) was studied. It should
be noted that the actual dependenceR(ω), which is deter-
mined by reflection properties at the magnetic tube ends and
by properties of wave propagation along the magnetic field is
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Fig. 6. Periodic generation of wave intensity spikes in the case of losses due to drift and nonmonotonic distribution (19) of energetic electrons
in the the source;1=0.5, δ1=1, æ1=0.05, all other parameters as in Fig. 4.
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Fig. 7. The same as in Fig. 6 but for wider peak on the source pitch angle distribution: æ1=0.1. More intense and longer generation of low
frequency waves at the beginning of the spike occurs.

not known. This problem requires special analysis, which is
beyond the scope of this paper. To study the role of this sys-
tem parameter, we consider two cases: an increase (lnR∼ω)
and decrease (lnR∼ω−1 ) of wave losses with frequency.
With an increase in wave losses, the period of spike genera-
tion increases, because more time is needed to supply enough
energetic particles to reach the instability threshold Eq. (16).
The main difference between the cases of increasing and de-
creasing dependenciesR(ω) is that in the latter case, the up-
per limit of generation frequency increases.

The third type of the source pitch angle distribution which
we study in this paper is:

Fin =

C· [1+1] · sinδ(π
2 æ/æ0) , æ≤æ0

C·
[
1+1−1· sinδ1(π

2 (æ−æ0)/æ1))
]

, æ0<æ≤æ1+æ0
C , æ>æ1+æ0 ,

(19)

with maximum at æ0; the parameter1 characterizes the ele-
vation of the maximum, while the parameters æ1 andδ1 char-
acterize the width and steepness of the back slope. It is clear
from Eq. (7) that the negative derivative of the distribution
function (∂8/∂µ<0) leads to wave damping, and this may
give some interesting effects during wave generation.

The case of wide negative slope (i.e. large æ1 and values of
δ1 which are not too high) is not very interesting. It may be

considered as the case with monotonic source (Eq. (18)) and
some additional effective damping term on the right-hand
side of Eq. (2). Small values of1 give almost no change
to the generation regime. Extremely high1 leads to very
strong wave damping at high frequencies, so the generation
is possible only in the low frequency band:

ω < ωmax = ωBL/β∗/(1 − æ0) . (20)

The most interesting is the case of moderate1 values and
æ1∼æ0. Three examples for1=0.5 and different values of
æ1 are shown in Figs. 6 to 8; all other parameters are the
same as in Fig. 4. The first example (Fig. 6), correspond-
ing to narrow peak at the source pitch angle distribution, is
quite similar to the case of monotonic source (Fig. 4). The
main difference is at the initial stage of a spike generation,
when a wider frequency band is excited. The period of spike
generation is slightly higher than in the case of Fig. 4, which
is explained by the effective increase in wave energy losses
(see the discussion above). With an increase in æ1, the gen-
eration of low frequency waves becomes more intense and
takes longer time (Fig. 7). It is accompanied by a decrease
in the maximum frequency of the generated waves and an
increase in the generation period, which may be explained
by an increase in effective wave losses. These generation
regimes are qualitatively similar to the case of monotonic
source (Eq. (18)). But for higher values of æ1, the genera-
tion regime changes (Fig. 8). As one can see, a persistent
low frequency band with periodic modulation of its intensity
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Fig. 8. The same as in Figs. 6 and 7 but for even wider peak on the source pitch angle distribution: æ1=0.2. Permanent generation in the
low-frequency band is accompanied with periodic spike generation at higher frequencies.
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Fig. 9. The boundary between resonant and nonresonant regions for
energetic electrons in the phase space.

and periodic spikes at higher frequencies is generated in this
case. The period and the maximum frequency in the spike in
this case are significantly smaller than in the case of smaller
æ1 values.

4 Conclusions

Computer modeling of cyclotron instability in the Earth’s
magnetosphere in the framework of the self-consistent quasi-
linear theory reveals different regimes of ELF/VLF gen-
eration, including stationary generation, relaxation oscilla-
tions, and self-sustained oscillations of wave intensity. These
regimes appear for both mechanisms of removal of energetic
particles, i.e. due to the loss cone precipitation and due to the
magnetic drift through the generation region. The main pa-
rameter determining the type of wave generation in the case
of losses due to precipitation is the intensity of the energetic
particle sourceJ0 (or, more exactly, the dimensionless in-
tensityj0). Relaxation oscillation of ELF/VLF wave inten-

sity take place for smallJ0 values. Relaxation oscillations
characteristics, such as period and quality factor, constant
shapes of wave spectrum and pitch angle distribution during
a spike, are in good agreement with the analytical model in
the two-level approximation, considered earlier byBespalov
and Trakhtengerts(1976). An increase inJ0 results in the
transition to self-sustained oscillations of wave intensity with
notable growth of wave frequency during a spike. The ap-
parent cause of the self-sustained oscillations is involvement
of new resonant electrons into the instability; this result is
in agreement with previous studies byBespalov and Trakht-
engerts(1986) andDemekhov and Trakhtengerts(1994).

In the case of drift losses, the shape of energetic par-
ticle distribution in a source becomes more significant for
the generation regime. In this case, a new type of dynamic
spectra was obtained in computer modeling, which demon-
strated alteration of spikes with constant and rising frequency
(Fig. 5). It would be interesting to search such spectra in ex-
perimental data. In the case of drift removal, an important
dynamical feature of an electron distribution function has
been obtained−the formation of a step-like distortion, which,
according to recent theoretical studies, can be a source of dis-
crete ELF/VLF emissions (see in this relationTrakhtengerts,
1995, 1999).

Appendix A

The general expression for the kinetic growth rate of elec-
tromagnetic waves in a magnetized plasma due to cyclotron
interaction is given by the following expression (Shafranov,
1967; Bespalov and Trakhtengerts, 1986):

γ =
4π3

m

+∞∑
s=−∞

∫
Gk,s

(
sωB

ωv⊥

∂

∂v⊥

+
k‖

ω

∂

∂v‖

)
f d3v , (A1)

wherek is wave vector,v⊥ andv‖ are the perpendicular and
parallel components of the electron velocity with respect to
the magnetic field,f is electron distribution function;Gk,s

determines the efficiency of cyclotron interaction of an elec-
tron with whistler wave on thes-th cyclotron harmonic. We
refer the reader to the review byBespalov and Trakhtengerts
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(1986) for the general expression ofGk,s for whistler waves.
Other notations used in the Appendix are defined in Sect. 2.

In the case of waves propagating along the inhomogeneous
geomagnetic field, the use of the local value of the growth
rate (A1) for the analysis of wave generation is not quite
correct. The one-hop amplification of a wave qualifying the
growth of a wave amplitude on the entire path of the wave
packet between conjugate ionospheres is required, which is
defined as

0(ω, k) =

l∫
−l

γ (ω, k, z)

Vg‖

dz , (A2)

wherez is the coordinate along the magnetic field line (with
the origin being at the equatorial plane),±l are coordinates
of the feet of the field line in the conjugate ionospheres,Vg‖

is the component of the group velocity parallel to the geo-
magnetic field.

For whistler waves propagating along the magnetic field
(k‖B) only the interaction at the first cyclotron harmonic
(s=1) is possible, and in this case

Gk,1 ≡ Gk,1 =
e2ωVg

4πc2k
v2
⊥
δ(ω − kv‖ − ωB) , (A3)

whereδ is a Dirac delta function.
Using variablesµ and v the one-hop amplification for

field-aligned whistler wave can be written as

0(ω) =
4π4

m

∫ l

−l

∫
∞

0

∫ ωBL/ωB

0

Gk,1ω
2
B

Vgω
2
BL

×

(
1

v

∂f

∂v
+

2

v2

(ωBL

ω
− µ

) ∂f

∂µ

)
v2dµdvdz

√
1 − µωB/ωBL

.

(A4)

After substitution of Eq. (A3) into this expression, we can
remove the derivative∂f/∂v by integrating this term by parts
and obtain:

0(ω) =
2π3e2

mc2ωBL

×

l∫
−l

ω2
B

k

∞∫
0

ωBL/ωB∫
0

((
1 −

ω

ωB

)
µ

∂f

∂µ
−

ω

ωB

f

)
×

v2δ(ω − kv‖ − ωB)
√

1 − µωB/ωBL

dµdvdz ,

(A5)

wherev‖ = v
√

1 − µωB/ωBL.
Changing the integration sequence and making integration

over coordinatez we obtain:

0(ω) =
2π3e2

mc2ωBL

×

1∫
0

∞∫
vmin

((
1 −

ω

ωBL

)
µ

∂f

∂µ
−

ω

ωBL

f

)
leffv

3dvdµ ,

(A6)

where

vmin =
ωBL − ω

k
√

1 − µ
(A7)

is the boundary between resonant and nonresonant electrons
(Fig. 9), which is determined from the cyclotron resonance
condition at the equatorial plane, and

leff(k, µ, v) =

∣∣∣∣∣ωB − ω

ω2
B

∂

∂z
(ω − kv‖ − ωB)

∣∣∣∣∣
−1

z=zres

(A8)

is the effective path of cyclotron interaction; herezres is the
root of the equationω−ωB(zres)−kv

√
1−µωB(zres)/ωBL=0.

The general expression forleff(k, µ, v) is rather compli-
cated. It can be written in a simple form ifω�ωBL and the
parabolic approximation Eq. (10) for the magnetic fieldB

and cold plasma density distribution along the geomagnetic
field line is used:

leff ≈

∣∣∣∣ 1

ωB

∂

∂z
(kv‖ + ωB)

∣∣∣∣−1

z=zres

≈ a
1 − ξ

√
2 − ξ

1
√

ξ − µ
, (A9)

whereξ(ω, v)=1−ω2
BL/(k2v2). To obtain these expressions

we also used the fact that the cyclotron resonance condition
is fulfilled near the equatorial plane, i.e.zres/a�1.

Substituting Eq. (A9) in Eq. (A6) and neglecting small
terms we obtain

0(ω) =
2π2aω2

pL

ωBLc2ncL

×

1∫
0

∞∫
ωBL

k
√

1−µ

1 − ξ
√

2 − ξ

(
µ

∂f

∂µ
−

ω

ωBL

f

)
v2 dvdµ
√

ξ − µ
.

(A10)

And finally, to model the distribution with a narrow spread
in energies we use the monoenergetic distribution function

f (µ, v, t) = (2πv2
0)−1δ(v − v0)f̃ (µ, t) . (A11)

Substituting this distribution in Eq. (A10) and taking the in-
tegral over velocityv we obtain

0(ω) =
πaω2

pLv0

ωBLc2ncL

×

1 − ξ
√

2 − ξ

∫ ξ

0

(
µ

∂f̃

∂µ
−

ω

ωBL

f̃

)
dµ

√
ξ − µ

,

(A12)

where

ξ ≡ ξ(ω, v0) = 1 −

(
ωBL

kv0

)2

= 1 −
ω0

ω
; (A13)

here the following approximation for whistler wavevector
k=ωp/c

√
ω/ωB is used, andω0 is defined in Eq. (9).

Actually, Eq. (A13) is valid for any magnetic flux tube. In
the case of the distribution functioñf , depending on the co-
ordinate across geomagnetic field, we obtain the expression
(7) after averaging Eq. (A13) over the interaction region.
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A similar technique is used to obtain Eq. (6) for diffusion
coefficient. It includes averaging of the general expression
(seeBespalov and Trakhtengerts(1986)) over the bounce os-
cillations of electrons and the use of approximation forleff
(A9).
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