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Abstract

We present the application of a numerical method to correct electron mo-

ments calculated on-board spacecraft from the effects of potential broadening

and energy range truncation. Assuming a shape for the natural distribution

of the ambient plasma and employing the scalar approximation, the on-board

moments can be represented as non-linear integral functions of the underlying

distribution. We have implemented an algorithm which inverts this system suc-

cessfully over a wide range of parameters for an assumed underlying drifting

Maxwellian distribution. The outputs of the solver are the corrected electron

plasma temperatureTe, densityNe and velocity vectorVe. We also make an

estimation of the temperature anisotropyA of the distribution. We present cor-

rected moment data fromCluster’s PEACEexperiment for a range of plasma

environments and make comparisons with electron and ion data from other

Clusterinstruments, as well as the equivalent ground-based calculations using

full 3-dimensional distributionPEACEtelemetry.
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wakes, charging; Instrumentation and techniques
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1 Introduction

The space physicist – interested in the moments of the electron distribution around the Earth

– must strike a balance between the advantages and disadvantages of on-board calculations

of the moments. Under most circumstances there is insufficient telemetry to transmit sam-

ples from the distribution function itself at a high time resolution, but there is ample band-

width to transmit the moments, which encode basic information about the distribution in

just a few numbers.

Moments calculated on-board spacecraft typically over- or under-estimate the values of

the ‘true’ moments, because they convolve effects caused by the presence of a potential

(from the spacecraft itself) and lower and upper energy truncation imposed by the detector.

Furthermore, the plasma environment determines the formation of photo- and secondary

electrons, which can return to the spacecraft and enter the detector, therefore contaminating

the measured moments. Conversely, full-distribution telemetry can be treated on the ground,

using more sophisticated computation than is available on the spacecraft.

Generation of spacecraft potential is determined by the balance of the currents flowing

away from the craft carried by liberated electrons, and the incident electrons and ions from

the ambient plasma. The value of the potential is therefore determined by the plasma en-

vironment, specifically the density and temperature (Pedersen,1995; Escoubet et al., 1997).

Attempts have been made to dynamically control the potential, such asASPOC(Active

Spacecraft POtential Control) on three of theCluster spacecraft (Riedler et al.. 1997),

which aims to stabilise the potential by emitting a positive (indium) ion beam. Devices

such asASPOCcan limit the build up of potential (which can reach values of 70 V) to just

a few Volts (Schmidt et al, 1995), and in general aim to constrain the potential to less than

10 V (Torkar et al., 2001). While the charging of the spacecraft can be limited, no real

detector is free from the constraints of a finite energy range and calibration defects, the lat-

ter of which are very difficult to correct after convolution by the on-board calculation. All

on-board calculated moments must therefore be treated with caution.

Song et al. (1997) present the concept of a perfect plasma detector, which is free from

calibration defects, for which the uncertainties in the on-board moments are solely caused

by the spacecraft potential, a truncated energy range and the presence of secondary and

photo-electrons. Those authors indicate that in the case of electrons, the lower energy cut-

off should be calculated as the detector’s nominal lower energy limit minus the spacecraft
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potential. However, Song et al. do not pursue further the impact of a non-zero spacecraft

potential on the distribution function arriving at the spacecaft. They restrict their results to

the case of a drifting distribution truncated by a detector but with a null spacecraft potential.

Salem et al. (2001) showed how both the integration limits and, via Liouville’s Theorem,

modifications to the distribution function in the presence of a non-zero potential need to

be taken into consideration. They applied their formalism to the case of a non-drifting

Maxwellian under conditions typical of the solar wind.

Génot and Schwartz (2004, hereafter GS) extend this idea of a perfect detector to the

drifting case under a variety of solar wind and magnetospheric conditions. They present

a method to disentangle the effects of potential and energy range truncation using a non-

linear numerical routine (though it is important to note that this method does not correct for

the contamination of secondary electrons – for a discussion on this topic see Szita et al.,

2001). GS demonstrate that the measured moments can be expressed as functions of the

true moments and the spacecraft potential, where the true moments are those which would

be measured by a perfect detector. We implement the technique proposed by GS such that,

given a set of measured moments and knowledge of the spacecraft potential and detector

limits, the true moments can be recovered; we call these the corrected moments.

The magnitude of the difference between the on-board and corrected moments is a func-

tion of both environment and potential. GS show that the solar wind is a region where the

moments are seriously affected (see also Salem et al., 2001). For a potential ranging from

zero to 10 Volts, the density can be under-estimated by 60% for low potentials to over-

estimation of 75% for high potentials. In general the other moments are over-estimated.

Those authors make the interesting point that there exists a critical potential for which the

on-board density moment equals the corrected one (see GS and Salem et al., 2001), though

no such regimes exist for the other moments for typical plasma environments. In other

regions such as the magnetosheath and magnetosphere, the moments are less severely com-

promised as in the solar wind, but the effects there are by no means negligible, with up to a

40% under-estimation of the density in the magnetosheath and 10% in the magnetosphere

during nominal operating conditions. Fundamentally the presence of a potential affects the

width of the distribution function, such that for a naturally broad (i.e. hot) distribution, the

extra broadening caused by spacecraft effects is slight; the opposite is true for cool distri-

butions.

In this paper we show that it is possible to correct on-board calculated moments from a
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wide range of environments with a high success rate and in excellent agreement to ground

based calculations and data from other instruments. Although the algorithm we present is

general to any on-board moments, we have tested extensively on data taken byCluster’s

PEACE (Plasma Electron and Current Experiment)instrument (Johnstone et al., 1997).

PEACEcalculates moments on-board every spacecraft spin (∼ 4 s), and transmits the full

3-dimensional distrubution at high resolution as frequently as the telemetry allocation will

allow. During burst mode operation this can be also at spin resolution, providing an ex-

cellent opportunity to compare on-board corrected moments using our routine to ground

calculated ones. We make comparisons with other measurements from both plasma and

wave instruments onClusterto further verify our results, and present the results of a map-

ping survey ofClusterdata over a wide range of environments to show the distribution (in

density-temperature parameter space) of (a) the global deviation of the on-board moments,

(b) electron bulk velocity, (c) spacecraft potential and (d) a simulation of the expected de-

viation from the true moments.

In section 2 we discuss the definitions of the moments; in section 3 we present the nu-

merical method behind the algorithm; in section 4 we present an overview of results from

a survey ofPEACEdata; in section 5 we make comparisons of corrected moments with

those derived from the full 3-dimensional ground integration and with other instruments; in

section 6 we discuss the limitations of, and possible improvements to our method; in section

7 we briefly summarise the correcting procedure and in section 8 we make our conclusions.

2 Moments

2.1 Definitions

Thenth moment of a distributionf(v) is defined as:

Mn =
∫

f(v)vnd3v (1)

Certain combinations of the moments from an electron velocity distribution have a familiar

physical interpretation:

N = M0 (2)

NV = M1 (3)
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P = meM2 (4)

p = P−meM1V (5)

whereN is the density,V the bulk velocity vector,P the stress tensor andp the pressure

tensor. We assume that in free space (i.e. far away from the spacecraft where there are no

effects from the potential), the distribution has a Maxwellian shape at temperatureT , and

drifts with some velocityV:

f(v) = N
( me

2πkT

)3/2
exp

(
− me

2kT
|v −V|2

)
(6)

Integration over all solid angles and energies yields the number densityN . It is easy

to see therefore that in general for a finite integration rangevl < |v| < vu, as used in

real detectors,N will be underestimated. Note that the amount the on-board moments are

under- or over-estimated is also a function of spacecraft potential (see GS), such that for

large potentials the density is over-estimated.

Near the spacecraft the energy conservation of an electron can be expressed:

v2
m = v2 − E (7)

wherev is the electron velocity in free space (hereafter a subscript‘m’ denotes a parameter

as measured by the spacecraft and‘c’ denotes output from the solver;‘sc’ is a value inherent

to the spacecraft, such as potential) andE corresponds to the free space energy of an electron

which arrives at the detector with zero energy:

E = −2eΦsc

me
. (8)

E is negative for most of the plasma environments in space, since typically the spacecraft

potentialΦsc > 0 due to the escape of photo-electrons. Liouville’s theorem tells us that the

distribution function is constant along a phase space trajectory

f(vm, θm, φm) = f(v, θ, φ). (9)

GS make the scalar approximation: namely that only the magnitude of the velocity is

affected by the potential (i.e.θm = θ andφm = φ). Under this assumption the angular

dependence in the moment integrations can be performed analytically, thus reducing the
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problem to one dimension. By changing the integration elementvmdvm = vdv from equa-

tion 7, the measured moments can be written in terms ofv andE . The integration limits are

related to the detector cut-offsvl,u by

vL,U =
√

v2
l,u + E . (10)

In the case ofv2
l + E < 0 where the potential reaches a value greater than the lower energy

cut-off, we setvL = 0. Figure 1 is a schematic representation of the measured part of

the distribution compared to the corrected part and the underlying (assumed) Maxwellian

distribution.

2.2 PEACEmoment sums

TheCluster PEACEexperiment is made up of two sensor heads called LEEA and HEEA

(Low and High Energy Electrostatic Analysers), mounted on opposite sides of each of the

four Clusterspacecraft (Johnstone et al (1997)). Generally LEEA scans the lower energy

range and HEEA the upper range, together covering electrons with0.7 eV < E < 26 keV.

Over the duration of a spin (∼ 4 s), LEEA and HEEA cover 4π steradians of velocity space.

The moment sums can be thought of as combinations of the low energy moments (the B

(BOTTOM) moments,E ∼ 10 eV), the high energy moments (the T (TOP) moments,E &

2 keV), and the moments from where the energy scan of LEEA and HEEA overlap (which

we call L1L2 and H1H2 respectively) as sketched in Figure 2. These separate pieces are

telemetered to the ground, where we can construct moment sums covering the entire energy

range by summing B, L1L2/H1H2 and T moments. The ‘measured’ moments (subscript

‘m’) are the raw, uncorrected sum of, for example B+overlap+T moments, which have not

been corrected.

In practice, if the B moments commence within a user controllable threshold of the space-

craft potential, they are excluded from the moment sum. This minimises the impact of con-

tamination due to photo- and/or secondary electrons at the expense of raisingvL and hence

excluding a larger region of phase-space. Additionally, when inverting our non-linear sys-

tem (see section 3.3) we exclude the T moments.
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3 Method

3.1 Calculation frame

Our choice of calculation frame simplifies greatly the numerical technique. We transform

the spacecraft measurement frame via a rotationR which aligns thez axis with the mea-

sured velocityVm such thatVm = (0, 0, |Vm|). The scalar quantityNm remains the same,

as does the trace of the pressure tensor. The transformed quantities can be directly inferred

from the measured values, so the details of the rotation matrix do not need to be known. As,

due to the scalar approximation, only the magnitude of the velocity is needed in equations

11 – 13, we can use the measured direction of the velocity to recover the corrected velocity

vector from the speed derived in our calculation.

3.2 Inversion

From Figure 1 we see that for a given free space Maxwellian distribution described by (Nc,

Vc, Tc), the measured moments are integrals over the shifted and truncated regions. The

objective is to invert the set of non-linear equations:

g1(Nc, Vc, Tc)−Nm = 0 (11)

g2(Nc, Vc, Tc)−NmVm = 0 (12)

g3(Nc, Vc, Tc)− 3NmkTm −meNmV 2
m = 0 (13)

where the measured moments(Nm, Vm, Tm) are described as functions of the corrected

moments(Nc, Vc, Tc). The Appendix recasts the functionsgi derived in GS into the nor-

malised form we implement numerically. We use a 100-point Gaussian quadrature routine

to handle integration and a Newton-Raphson algorithm (Press et al., 1992) for the non-linear

solver.

The algorithm converges to a solution by improving on a set of initial guesses. The values

of initial guess(η, V ′
c , V ′

Tc) (see the Appendix) we use were derived from a series of tests

in which, given a set of Maxwellian parameters, we simulated measured moments given a

range ofΦsc and energy cut-offs. We ran our algorithm on these inputs to recover the initial

underlying Maxwellian values. The initial guesses were then chosen to be the average

values for which the alorithm converged successfully for a range of parameter space which

7



represents typical plasma environments encountered by spacecraft – our choice of parameter

space is consistent with that tested by GS.

In some circumstances we found that the choice of initial guess was critical in reaching

a convergence. If necessary, we perform a sequence of initial guesses until the Newton-

Raphson scheme can proceed to a converged solution, the most sensitive parameter being

the normalised densityη. We found this simple technique very effective when dealing with

large quantities of data spanning a range of environments. When applied to a time series of

data we try the most recent successful guess prior to reverting to the more general approach

described above.

3.3 Adding high energy moments

In practice, we restrict the inversion of (11–13) to moment sums which exclude the TOP

(i.e. higher energy) moments ofPEACE. This improves the numerical accuracy and speed

of the algorithm, since high energy moments do not require correcting as the presence of a

finite spacecraft potential in the TOP energy regime has neglibible effect. These moments

(described by the TOP moments in the case ofPEACE) are incorporated into the overall

sum in the following way.

Given the meaured onboard moments forv < vu, that is,(Nm, (NV)m,Pm), we use

our correcting algorithm to yield the characterising features(Nc, Vc, Tc) of the Maxwellian

distributionf(v) (equation 6). The direction of the velocity is identical to the measured

velocity direction by virtue of the scalar approximation. We then perform three 1d integra-

tions on the systemg1,2,3 (see the Appendix for details) over the truncated range0 ≤ v ≤ vu

with a null spacecraft potential to restore the corrected moments into the truncated-corrected

form (Ntc, (NV )tc,Tr(Ptc)):

Ntc = g1 [Nc, Vc, Tc,Φsc = 0]vU=vu
vL=0 (14)

(NV )tc = g2 [Nc, Vc, Tc,Φsc = 0]vU=vu
vL=0 (15)

Tr(Ptc) = g3 [Nc, Vc, Tc,Φsc = 0]vU=vu
vL=0 (16)

where

Tr(Ptc) = 3ptc + 2me(NV )tcVc −meNtcV
2
c (17)
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The direction of(NV )tc is restored by the measured velocity direction, and the corrected

stress tensor is reconstructed into a velocity aligned frame thus:

Ptc = ptcI + meNtc(2VtcVc − V 2
c )V̂mV̂m (18)

From here the TOP moments, assumed to reflect the integrals off(v) from vu → ∞, can

be added to the truncated-corrected moments yield the final corrected moments:

Nf = Ntc + NT (19)

(NV)f = (NV)tc + (NV)T (20)

Pf = Ptc + PT (21)

3.4 Temperature anisotropy

The simplification of the method proposed in GS and implemented here lies in the reduc-

tion to a 1d integration, made possible through the use of the scalar approximation and an

isotropic distribution. However we can attempt to estimate the anisotropy – i.e. the ran-

dom velocities parallel and perpendicular to the magnetic field – and interpret the result as

two temperature componentsT‖ andT⊥. We make the assumption that the anisotropy is

unchanged by the presence of a potential, and base our estimation on the anisotropy of the

measured pressure tensor. Here we describe the method.

Theijth element of the measured pressure tensorpm can be expressed

pmij = Pmij −me(NV )miVmj (22)

which can be decomposed in terms of the unit magnetic field vectorb in the case of a

gyrotropic distribution:

pmij = pm‖bibj + pm⊥(δij − bibj). (23)

The trace ofpm is then

Tr(pm) = pm‖ + 2pm⊥. (24)

Finally the measured anisotropyAm is found as

Am =
pm⊥
pm‖

=
Tr(pm)− pm‖

2pm‖
. (25)
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We make the assumption that this measured anisotropy is an approximation to the under-

lying anisotropy and so we can partition the corrected temperatureTf according to:

3Tf = Tf‖ + 2Tf⊥ (26)

with

Tf⊥
Tf‖

≡ A = Am (27)

As a check we rotatepm into a field-aligned frame such that:
pm00 pm01 pm02

pm10 pm11 pm12

pm20 pm21 pm22

 →


pm‖ 0 0

0 pm⊥1 0

0 0 pm⊥2


In practice the off-diagonal terms are not identically zero and we use the ratio of these to

the diagonal terms as an error check. Additionallypm⊥1 6= pm⊥2 provides a second check.

3.5 Estimation parameters

We calculate three estimation parameters which describe how much the measured on-board

moments were over- or under-estimated:

rN =
Nm −Nf

Nf
(28)

rV =
Vm − |Vf |
|Vf |

(29)

rT =
Tr(pm)/3Nmk − Tf

Tf
(30)

Ie =
√

r2
N + r2

V + r2
T . (31)

These parameters trace the effect that various environments have on the measured moments.

A more general estimation parameterIe is yielded by the Pythagorean combination of the

three parameters above (equation 31). GenerallyIe < 1 (that is,< 60% correction on

all moments). As mentioned above, the amplitude of the over- or under-estimation is de-

termined by environment, however their general behaviour is also a function of spacecraft

potential (which itself is somewhat influenced by the characteristics of the ambient plasma).

GS describe how the estimation parameters vary for a range of potentials in three plasma
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environments: the solar wind, magnetosphere and magnetosheath. Those authors conclude

that the moments are affected worst in the solar wind, whereIe can exceed 60%. In the other

regions the moments are affected to a lesser extent, but in general still require correcting.

GS and Salem et al (2001) also describe the existence of a critical potential,Φcrit, for which

the ratiorN is zero, and no correction is required (no such critical point exists in general for

the temperature or velocity). In this circumstance the energy range truncation (resulting in

an under-sampled distribution) is compensated by the potential broadening caused byΦcrit

such that, despite truncation and the presence of a potential, the density integration over

f(v) returns the correct value.

4 Overview of results

Clustertraverses a diverse range of environments, allowingPEACEto sample a wide range

of parameter space. Consider the parameter space defined by(Nf , Tf ). We have corrected

PEACEon-board calculated moments from all four of theClusterspacecraft over the du-

ration of 2002 scientific operations. This is an extensive survey, but small gaps in the data

remain due to, for example, data availability, failure of the solver, etc. Plotting the distribu-

tion of various parameters in(Nf , Tf )-space provides a map of those parameters in terms

of the plasma environment. In the context of this paper, Figure 3 shows the overall coverage

of the survey in this space together with the corresponding regions of the magnetosphere.

In total, approximately1.5× 107 data points contribute to each map, requiring a total of 11

days of CPU (2.66 GHz, 4 GB RAM) time.

Theoretically, if the correcting algorithm is successful then no features of the potential

(Figure 4) should appear in the maps of corrected parameters, since the corrector aims to

find free-space values which are unperturbed by spacecraft effects. This appears to be the

case. For example, Figure 5 shows the distribution of the bulk corrected velocity magnitude

Vf . The main features are the high-velocity streams (i.e.Vf > 1000 km/s) atTf & 107 K,

and swathes of relatively high-velocity electrons amongst a generally low majority (Vf <

200 km/s). Note that the well-covered region atNf > 1 cm−3 shows a high-Vf structure at

aroundTf ∼ 105 K (corresponding to the solar wind), which disappears at aroundNf > 10

cm−3 andTf > 5 × 105 K – the potential throughout this region is stable at about 10 V.

Similarly the swathe of high potential (the shape of which is likely due to the data coverage)

at low densities does not seem to influence the corresponding region of the velocity map.
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We now turn to more specific datamaps of the various estimation parameters to assess the

degree to which the raw and corrected parameters differ. These maps should be considered

against Figure 3 which shows the data coverage, or more precisely, the number of data-

points which contribute to each(Nf , Tf )-bin. Figures 6–9 show the variablesrN , rV , rT , Ie

in the space constrained by (0.01 ≤ Nf ≤ 100 cm−3) and (104 ≤ Tf ≤ 108 K).

Figure 9 plots the global deviationIe of the on-board moments to the true moments.

Comparing this with maps of other variables such as bulk velocity and spacecraft potential,

we can gain an overview of the interplay between many of the dominant factors involved

in the correction process over many of the regionsCluster encounters. In the case ofIe

(Figure 9), for (106 . Tf . 107 K), the overall correction is generally less than 20% for all

densities. In contrast, forTf . 106 K andNf → 0 cm−3, the moments become severely

affected and the overall correction required rapidly exceeds 300% – this is dominated by

the over-estimation of the density and temperature moments (velocity in general is not so

badly affected in this region) these individual patterns can be seen in the maps forrN , rT ,

rV (Figures 6–8).

To complement the survey, we simulate the behaviour of the general estimation parameter

Ie by passing a model truncated Maxwellian distribution through the algorithm with a bulk

velocity range (10 ≤ Vsim ≤ 1000 km/s) which has been shifted with potentials over the

range (0 ≤ Φsc ≤ 30 V). The truncation in energy was between 10 eV and 1 keV, in accor-

dance with previous simulations (e.g. GS) and typicalPEACEoperating parameters. The

simulated estimation parameter is a minimal value since the effects of calibration defects

are not dealt with, but which in reality contribute to the accuracy of the on-board moments.

The results of this simulation are shown in Figure 10 revealing an insensitivity to density,

since the normalised inputs to the non-linear system (see the Appendix) are independent

of Nm. Furthermore, as the temperature of the plasma increases, a significant portion of

the distribution function is missed, since it lies beyond the upper integration limit, therefore

we expect at aroundTf ∼ 107 K (corresponding toEU ∼ 1 keV) the overall correction

required will increase – this results in a banded structure to the simulation map.

In theIe distribution, we should expect to see strong correlation with the potential, and

while there is correspondance at low-(Nf , Tf ) in Figure 9,Ie is dominated by a band of low-

correction which is almost independent of density (as shown in Figure 10), and constrained

around (106 ≤ Tf ≤ 107 K). The low-correction band is situated such that sufficient range

of the distribution is sampled and so only a slight correction is required, and this appears
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to be consistent even forΦsc & 20 V. By contrast, in the simulation reported in Figure 10

Φsc andVsim are scanned uniformly over parameter space). The rapid increase inIe at high

potentials is consistent with the findings of GS, who simulaterN for potentials exceeding

the lower energy cut-off in various regions. To a lesser extent, forTf & 107 K, Ie rises to

around 100% in this high-temperature/low-density region (e.g. the lobe/plasmasheet). The

reason for the rise inIe in this high-temperature regime is due to the truncation in energy

at the high-end of the range, which is typically between 1–2 keV as expected from theIe

simulation. The strong correction required at low densities and temperatures is dominated

by the presence of a potential (which tends to be high compared toEL in this regime),

whereas as the temperature increases and the extra broadening byΦsc becomes negligible,

it is the upper cut-off which becomes important, since large portions of the population are

missed.

The data maps can only give an overall impression of the behaviour of the algorithm,

since the exact outcome can depend on a number of factors which are averaged out of the

maps. Such factors could include the precise mode of the detector, or unusual plasma char-

acteristics which do not conform to the parameter space we present. Nevertheless, the map-

ping exercise provides a useful guide which can be built on to give a general model which

helps us to better understand, and what to expect from, on-board moment calculations.

5 Comparison with ground calculations and other instruments

When telemetry allows, full 3-dimensional distribution data can be transmitted. Integrations

are then performed on the ground using a more sophisticated technique than is available on-

board, such that the potential shift can be corrected before the moment sum takes place.

These integrations scan over individual energy bins and angles (which are telemetered in

discrete azimuthal zones), and in addition, a more detailed calibration model can be ap-

plied. Compared to the procedure presented in this paper, in which the distribution has to

be inferred from its moments, 3d ground moments represent the most accurate technique to

extract moment data from spacecraft. Despite the benefits of the ground calculation, they

are only intermittently available, since the 3d data requires much more bandwidth than the

transmission of the few numbers which encode all the basic information about the distribu-

tion – the on-board moments – which are available more frequently. Here we discuss the

comparison between the results of the methods.
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5.1 Density

Density is most sensitive to the presence of a potential, and typically requires the most

correcting. In addition to the truncation and potential broadening of the distribution, care

must be taken to avoid contamination from photo-electrons, which contribute to the num-

ber count on-board the spacecraft to varying degrees, depending on the environment. Our

method does not deconvolve this contamination analytically, however we attempt to min-

imise the problem by comparing the lower energy cut-offEL with the spacecraft potential

Φsc (as described in section 2.2). Lower energy moments (i.e. the B moments) are not in-

cluded ifΦsc falls within a threshold limit∆Φ of the lower energy cut-offEL, such that the

B moments are not included ifΦsc ≥ EL −∆Φ (in all the examples shown,∆Φ = 0 V).

This has the drawback of excluding a significant portion of phase-space, since eliminating

the B moments typically removes natural electrons also. This leads to errors in the final

moments under conditions for which the excluded population has different characteristics

to those at overlap and higher energies. Note that this technique is not possible when the

detectors are in complete overlap mode (see Figure 2), in which case there are no B mo-

ments, so the lower energy cut-off is fixed at around 10 eV irrespective of the value ofΦsc.

The 3d calculation applies a similar, but more precise, method by only removing electrons

from a certain number of energy bins which are above the spacecraft potential. This has the

benefit of only eliminating electrons which are likely to be photo-electron contaminants,

and minimising the elimination of natural electrons.

The major difference between the ground 3d treatment and the correction procedure is

the handling of the unsampled region off(v) below the lower velocity cut-off. In the 3d

calculation, the moment sum can be tailored to a certain range of energy bins, such that

v3D
l tends to be lower than thevl used in the on-board calculation, since the potential is

subtracted before the integration. For the corrected moments however, the algorithm fills

the unsampled phase-space with a model Maxwellian distribution, fit from the truncated

region, which we assume represents the nature of the ambient plasma. On this premise, we

expect a slight disparity between not only the density results, but the other moments too,

since the non-linear system involves functions of all three moments.

It is also possible that the correction method we employ does not fully correct the on-

board moments at low potentials because of our under- or over-estimation of the spacecraft

potential.Φsc is determined by empirically correcting theEFW (Electric Fields and Waves)
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probe value of the potentialUEFW by one Volt: Φsc = 1 − UEFW. If we under-estimate

the potential then we will typically under-correct the moments, and vice versa; however this

potential difference estimate becomes less important at higherΦsc (note, the 3d calculation

is also susceptible to such an error).

In Figure 11 we show a specfic example of a time-series of the un-corrected on-board cal-

culated moments in comparison to the corrected ones and the 3d derived results. The main

correction required is in the density and temperature (little correction is required for the ve-

locity, and for clarity we have not shown the on-board trace here). The density was under-

estimated and the temperature over-estimated – the correcting algorithm has improved the

on-board values to concur with the 3d ground calculations. The temperature is in near per-

fect agreement, and while the corrected density is good, it is still somewhat lower than the

3d density. We discuss reasons for these differences in the next section.

Figures 12–14 (top panels) show density results from the two methods from different

plasma environments: Figures 12, and 14 show results predominantly from the magne-

tosheath, but also the less dense solar wind. Figure 13 is from the plasmasheet. In Figure

14 we also plot results from two otherClusterinstruments.WHISPER (Waves of HIgh fre-

quency and Sounder for Probing of Electron density by Relaxation)experiment (D́ecŕeau

et al.,1997) infers the electron density from the plasma frequency, providing a reliable and

unambiguous measurement in the range (0.25 ≤ NWHI ≤ 80 cm−3); and theCIS (Cluster

Ion Spectrometry)experiment (R̀eme et al (2001)), which measures the hot ion distribution,

from which some measure of the electron density can be inferred. In Figure 14,Clusteris in

the magnetosheath, prior to exiting into the solar wind near the end of the plot. We choose

the NWHI as a reference, and plot the ratiosNf/NWHI, N3D/NWHI andNCIS/NWHI in

the bottom panel. Generally all three ratios are close to unity, indicating instrument (and

method)-wide agreement, suggesting that any of these techniques could be used to gain an

accurate value for the density. The mean difference in this interval(N3D −NWHI) is +3.4

cm−3, and for(Nf −NWHI) the mean difference is−2.3 cm−3.

As well as the correctable effects, at low-density the limitations of the detector itself

cause problems as the signal-to-noise ratio falls and the charge of the spacecraft increases,

so the corrected moments in regions such as the plasmasheet (e.g. Figure 12) must still be

used with caution. It is the temperature, however, which is the major factor governing the

outcome of the algorithm. For hot distributions, the extra broadening of the distribution

(e.g. Figure 1) by the spacecraft potential and truncation is negligible compared to the
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nominal width. Conversely, broadening of cooler distributions has a non-negligible effect,

and we expect that in general more correction will be required as the temperature falls.

Furthermore, asNf → 0 cm−3, there are insufficient ambient electrons to balance the

current flow of liberated electrons from the spacecraft surface, hence (without control)Φsc

will build up to potentials exceeding 50 V. It has been shown with active potential control

experiments that the excessive charging of the spacecraft can be constrained to acceptable

levels (i.e.Φsc < 10 V), and while improvements in detector technology may be made (e.g.

in sensitivity and energy range coverage), the natural characteristics of the plasma one is

trying to measure will always place a limit on the accuracy of the on-board moments.

5.2 Temperature

Generally, the overall correction of the temperature is small (|rT | < 0.2) , but increases as

Tf becomes comparable to the upper and lower energy cut-off (see Figure 8 and discussion

of Ie in section 5.1).Clusterencounters a range of (electron) temperatures which typically

range from (104 . Tf . 108 K), which is within the operating capabilities of the cor-

recting algorithm. In the magnetosheath and solar wind (Figures 12 and 14), the corrected

temperature generally agrees well with the 3d derived temperature. In some parts of the hot

plasmasheet the two are nearly identical (Figure 13). As mentioned above, for disparities

between the density results of the two methods, we expect to see differences of a similar

magnitude in the temperature since the correcting algorithm uses a function of all three of

the moments. Indeed, the behaviour of the correction required for the temperature is very

similar to the density. For example, in Figures 6 (rN map) and 8 (rT map) both param-

eters indicate large over-estimation in the low-density and low-temperature region, lesser

correction required in the (106 < Tf < 107 K) band, and regions of under-estimation at

higher temperatures. The fact that the temperature can be under-estimated by the on-board

calculation is interesting since it suggests that in certain regions the upper-energy cut-off is

too low to sample the significant high-energy population.

5.3 Velocity

Generally, the magnitude of the velocity requires little correction as evidenced in Figure 7.

This is not true in the solar wind and lobe/plasmasheet regions, where the overall correc-

tion Ie can be dominated byrV . At high-temperature/low-density (lobe/plasmasheet) the

velocity tends to be under-estimated since the sum starts to miss portions of the distribu-

16



tion beyond the upper cut-off, and at low-temperature/high-density the broadening caused

by the spacecraft potential results in an over-estimation. The major difference in the be-

haviour ofrV (Figure 7) compared to the other moments is the lack of correction required

at low-density and low-temperatures. In this region the density and temperature require the

most correcting, but the velocity requires little. Instead, forTf < 105 K the velocity is

over-estimated as the density increases into the solar wind region, and forTf > 107 K is

under-estimated for the lobe/plasmasheet region.

Our assumption that the direction of the velocity vector is not changed by the spacecraft

potential appears to be a good approximation, since the corrected and 3d results are in good

agreement – note all velocity data shown is in the GSE frame. In the case of the plasmasheet

region (Figure 13) we found that to get good agreement, we had to systematically discard

the low-energy B moments, since they appear to contain a population of photo- or secondary

electrons which result in a large disparity in the velocity result caused by erroneous inclu-

sion of these electrons which are returning to the detector. Spacecraft-related electrons are

particularly problematic in regions where the ambient density is low.

5.4 Temperature anisotropy

To estimate the temperature anisotropyA, we assume thatT⊥/T‖ is not affected by the

spacecraft potential. We then contract the measured pressure tensor with the direction of

the magnetic field (using data fromCluster’s Fluxgate Magnetometer (FGM)experiment

(Balogh et al (2001)) as described in scetion 3.4. Compared to the anisotropy derived from

the 3d ground calculation, this appears to be an effective strategy since both techniques are

in excellent agreement (e.g. Figure 12 and 13).

6 Limitations

The technique presented here provides an efficient method to correct on-board calculated

moments from the dominant spacecraft effects of non-zero potential and energy range trun-

cation to an estimate of their true values. The simplicity of the algorithm afforded by virtue

of several underlying assumptions (e.g. isotropic Maxwellian distribution, scalar approxi-

mation, etc.) also introduces several limitations, of which some could be improved upon in

future:

17



– The present model does not fully accommodate the effects of contamination from

photo- and secondary electrons which become a dominant problem when the space-

craft potential exceeds the lower energy cut-off. Grard (1973), for example, proposes

a model of a photo-electron distribution as a bi-Maxwellian distribution with compo-

nent thermal energies of∼ 2 eV and∼ 7 eV.

– Given the numerical nature of the algorithm, another model distribution function

could be used instead of the drifting Maxwellian we employ.

– We do not model the non-spherical aspects of the spacecraft potential, which could

improve accuracy, but at the cost of abandoning the scalar approximation which sim-

plifies analytical handling. Indeed, in general particle trajectories are not purely radial

even in a spherically-symmetric potential,

– The myriad sources of calibration defects all contribute to the overall over- and under-

estimation of the on-board moments. The instrument-specific details (energy-binning,

gain corrections, etc.) require user-intervention to incorporate their overall effect into

the on-board moment corrector.

– It would be possible, at the cost of considerable added complexity, to pass a model

distribution through a full detector response simulation to replace the functions ofgi

in equations (11–13) in the inversion algorithm.

7 Summary of numerical method

The algorithm presented here can be summarised as follows:

1. The measured moments (Nm, Vm, Tm) can be described as functions of the moments

(N , V , T ) of an idealised drifting Maxwellian, the velocity cut-offsvl,u and the

spacecraft potentialΦsc. The measured moment function triplet must be inverted to

derive the values of the Maxwellian moments.

2. A normalised non-linear system is set-up and primed with a set of three initial guesses

which are to be iteratively improved using a Newton-Raphson algorithm.

3. For speed and numerical accuracy, we treat the measured high energy (v > vu) partial

moments in a separate stage, whereby we do not correct them, but sum them with the

lower energy corrected moments.
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4. The direction of the velocity vector can be determined from the input velocity moment

vector, as we make the scalar assumption to simplify the calculation, whereby only the

magnitude of the particle velocities, and hence also the thermal velocity are affected

by potential.

5. To estimate the anisotropy, we contract the measured pressure tensorpm with the unit

magnetic field vectorb to extract the ratioAm = pm⊥/pm‖. We can then partition the

final temperatureTf into parallel and perpendicular components:3Tf = Tf‖ +2Tf⊥

so thatAm = Tf⊥/Tf‖.

8 Conclusions

In this paper we have demonstrated the implementation of the procedure proposed by Génot

and Schwartz (2004). On-board moments must be corrected because they convolve space-

craft effects such as a non-zero potential and finite energy cut-offs, as well as the effect of

numerous calibration defects. We have tested the correcting procedure extensively on data

taken byCluster’s PEACEexperiment (though the algorithm is generic), and shown that the

corrected moments compare well with ground based calculations and data from otherClus-

ter instruments, demonstrating that on-board calculated moments can be corrected to gain

accurate data from orbital detectors, despite the physical limitations of flying such devices

in space. This has significant benefits, since the 3d ground moment calculations are not

available as frequently as the on-board moments, which provide substantial high-resolution

data coverage. Thus, by implementing the procedure we present here, the operational ca-

pabilities of existing and future experiments such asPEACEcan be fully exploited to yield

useful scientific results which might otherwise be lost.
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Appendix The normalised non-linear system

We normalise the unknown moments in terms of the measured ones as:

V ′
c =

|Vc|
Vm

(A1)

V ′
Tc =

VTc

VTm
(A2)

η =
1√
π

Nc/Nm

V ′
cV ′

Tc

. (A3)

whereVTc is the corrected thermal speed, from which the temperature can be inferred:

Tc =
meV

2
Tc

2k
(A4)

The inputs to the solver are the normalised quantities

ζsc =
Vm

VTm
(A5)

εsc =
E

V 2
Tm

(A6)

VL,U =
vL,U

VTm
(A7)

For the inputsvL = 0, vU = ∞, E = 0, the exact solution yields unity for equations A1 &

A2 and1/
√

π for equation A3.

The set of non-linear equations which must be inverted are:

g1(Nc, Vc, Tc)−Nm = 0 (A8)

g2(Nc, Vc, Tc)−NmVm = 0 (A9)

g3(Nc, Vc, Tc)− 3NmkTm −meNmV 2
m = 0 (A10)

That is, the measured moments are functions of the real moments. We recast to a normalised

system such that we wish to find the triplet (η, V ′
c , V ′

Tc), given the normalised inputs (ζsc,

εsc, VL,U ). The equations to be solved are

1− η

ζsc

∫ VU

VL

√
V 2 − εsc

(
E− − E+

)
dV = 0 (A11)
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ζ2
sc − η

∫ VU

VL

(V 2 − εsc)
[
E− + E+

−
V ′2

Tc(E
− − E+)

2V V ′
c ζsc

]
dV = 0 (A12)

3
2

+ ζ2
sc −

η

ζsc

∫ VU

VL

(V 2− εsc )3/2

×(E− − E+)dV = 0 (A13)

where

E± = exp

[
−

(
V ± V ′

c ζsc

V ′
Tc

)2
]

(A14)
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Décŕeau, P. M. E., P. Fergeau, V. Krannosels’kikh, M. Lévêque, Ph. Martin, O. Randriamboarison,
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Figure Captions

Fig. 1. Schematic showing the effect of a positive spacecraft potential on an idealised drifting

Maxwellian electron distribution (dotted curve). On-board calculated moments are integrals un-

der the shifted segments (solid grey) which can be writtten, with the help of Liouville’s Theorem, in

terms of the idealised distribution. Inverting this then yields the Maxwellian parameters.

Fig. 2. Schematic representation of thePEACEsensor coverage. The two sensor heads HEEA and

LEEA are split into an energy range which is divided into 88 bins. The sensor coverages can overlap

by some amount (left), leaving a low energy portion (BOTTOM) and a high energy portion (TOP).

The sensors can be made to overlap completely (right) leaving no BOTTOM or TOP moments.

Fig. 3. Data map of a survey of all fourClusterspacecraft over the duration of 2002PEACEop-

erations: approximately1.5 × 107 data points contribute to each map. White regions indicate lack

of coverage – a more complete survey will result in a more detailed map. The total computer time

required for these corrections was approximately 11 days. The colour in this map corresponds to

the number of points per(Nf , Tf )-bin showing the overall coverage of the survey, labelled roughly

according to magnetospheric region.

Fig. 4. Format as in Figure 3 showing the spacecraft potential in(Nf , Tf )-space (if theEFW probe

potential was unavailable, we used a constant spacecraft potential of 7 Volts).

Fig. 5. Format as in Figure 3 showing the bulk corrected velocity magnitudeVf .

Fig. 6. Format as in Figure 3 showing the density estimation parameterrN . The value ofrN indicates

the fractional correction applied to the density moment. Positive(negative) values indicate that the

on-board moments are over(under)-estimates of the true (i.e. corrected) moments.

Fig. 7. Format as in Figure 3 showing the velocity estimation parameterrV (see Figure 6 caption).

Fig. 8. Format as in Figure 3 showing the temperature estimation parameterrT (see Figure 6 cap-

tion).
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Fig. 9. Data map of global estimation parameterIe. The value ofIe indicates the magnitude of the

fractional correction applied to all three on-board calculated moments.

Fig. 10. Simulation ofIe from a truncated, potentially broadened model Maxwellian distribution

(see text for precise details of simulation).

Fig. 11. Comparison between ground 3d moments (dotted red trace), corrected moments (black

trace), and un-corrected on-board moments (dashed black trace). These data were observed by

Cluster 1on 2002/09/10 in the cusp. The velocity in this case required little correction and we do

not plot the un-corrected values. In addition to the moments we plot the temperature anisotropyA

and spacecraft potential.

Fig. 12. Comparison between ground 3d moments (dashed red trace) and corrected moments (black

trace). These data were observed byCluster 1on 2002/03/27 in the magnetosheath and solar wind.

There is generally good agreement in this interval, with only slight disparities in, for example the

temperature, corresponding to spikes in the spacecraft potential (e.g. 0920–0925).

Fig. 13. Comparison between the electron moments (ground 3d moments (dashed red trace) and

corrected moments (black trace)) , observed byCluster 3on 2002/09/06 in the plasmasheet. Note

that periodic spikes in the spacecraft potential caused byWHISPERsounding propagate into the

on-board and hence the corrected moments, therefore for clarity the corrected moment traces have

been smoothed with a 30-second wide boxcar. The 3d moments have not been smoothed. Also

shown are components of theCIS (HIA)derived velocity (green dotted trace). The low-density con-

ditions make an accurate density measurement difficult, but there is good agreement on the velocity

vector, despite the high temperature. After the jump in potential at around 1435, there is excellent

agreement between the temperature moments. In this interval the low-energy B moments had to

be discarded since they contain a non-Maxwellian population dominated by photo-electrons which

adversely affect our correction.

Fig. 14. Comparison between ground 3d moments (dashed red trace), corrected moments (black

trace),WHISPERdensity (dotted blue trace) andCIS data (dotted green trace). These data were

observed byCluster 1on 2002/04/28 in the magnetosheath until the spacecraft crossed the bow-

shock just after 0757. The bottom panel shows the ratio of the various densities and highlights the

success of our correcting algorithm. Note theWHISPERdata has been averaged to spin-resolution.
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Figures

Fig. 1. Schematic showing the effect of a positive spacecraft potential on an idealised drifting

Maxwellian electron distribution (dotted curve). On-board calculated moments are integrals un-

der the shifted segments (solid grey) which can be writtten, with the help of Liouville’s Theorem, in

terms of the idealised distribution. Inverting this then yields the Maxwellian parameters.

Fig. 2. Schematic representation of thePEACEsensor coverage. The two sensor heads HEEA and

LEEA are split into an energy range which is divided into 88 bins. The sensor coverages can overlap

by some amount (left), leaving a low energy portion (BOTTOM) and a high energy portion (TOP).

The sensors can be made to overlap completely (right) leaving no BOTTOM or TOP moments.
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Fig. 3. Data map of a survey of all fourClusterspacecraft over the duration of 2002PEACEop-

erations: approximately1.5 × 107 data points contribute to each map. White regions indicate lack

of coverage – a more complete survey will result in a more detailed map. The total computer time

required for these corrections was approximately 11 days. The colour in this map corresponds to

the number of points per(Nf , Tf )-bin showing the overall coverage of the survey, labelled roughly

according to magnetospheric region.

Fig. 4. Format as in Figure 3 showing the spacecraft potential in(Nf , Tf )-space (if theEFW probe

potential was unavailable, we used a constant spacecraft potential of 7 Volts).
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Fig. 5. Format as in Figure 3 showing the bulk corrected velocity magnitudeVf .

Fig. 6. Format as in Figure 3 showing the density estimation parameterrN . The value ofrN indicates

the fractional correction applied to the density moment. Positive(negative) values indicate that the

on-board moments are over(under)-estimates of the true (i.e. corrected) moments.
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Fig. 7. Format as in Figure 3 showing the velocity estimation parameterrV (see Figure 6 caption).

Fig. 8. Format as in Figure 3 showing the temperature estimation parameterrT (see Figure 6 cap-

tion).
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Fig. 9. Data map of global estimation parameterIe. The value ofIe indicates the magnitude of the

fractional correction applied to all three on-board calculated moments.

Fig. 10. Simulation ofIe from a truncated, potentially broadened model Maxwellian distribution

(see text for precise details of simulation).
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Fig. 11. Comparison between ground 3d moments (dotted red trace), corrected moments (black

trace), and un-corrected on-board moments (dashed black trace). These data were observed by

Cluster 1on 2002/09/10 in the cusp. The velocity in this case required little correction and we do

not plot the un-corrected values. In addition to the moments we plot the temperature anisotropyA

and spacecraft potential.
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Fig. 12. Comparison between ground 3d moments (dashed red trace) and corrected moments (black

trace). These data were observed byCluster 1on 2002/03/27 in the magnetosheath and solar wind.

There is generally good agreement in this interval, with only slight disparities in, for example the

temperature, corresponding to spikes in the spacecraft potential (e.g. 0920–0925).
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Fig. 13. Comparison between the electron moments (ground 3d moments (dashed red trace) and

corrected moments (black trace)) , observed byCluster 3on 2002/09/06 in the plasmasheet. Note

that periodic spikes in the spacecraft potential caused byWHISPERsounding propagate into the

on-board and hence the corrected moments, therefore for clarity the corrected moment traces have

been smoothed with a 30-second wide boxcar. The 3d moments have not been smoothed. Also

shown are components of theCIS (HIA)derived velocity (green dotted trace). The low-density con-

ditions make an accurate density measurement difficult, but there is good agreement on the velocity

vector, despite the high temperature. After the jump in potential at around 1435, there is excellent

agreement between the temperature moments. In this interval the low-energy B moments had to

be discarded since they contain a non-Maxwellian population dominated by photo-electrons which

adversely affect our correction.
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Fig. 14. Comparison between ground 3d moments (dashed red trace), corrected moments (black

trace),WHISPERdensity (dotted blue trace) andCIS data (dotted green trace). These data were

observed byCluster 1on 2002/04/28 in the magnetosheath until the spacecraft crossed the bow-

shock just after 0757. The bottom panel shows the ratio of the various densities and highlights the

success of our correcting algorithm. Note theWHISPERdata has been averaged to spin-resolution.
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