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Abstract. The tangential equilibria are characterized by a
bulk plasma velocity and a magnetic field that are perpendic-
ular to the gradient direction. Such equilibria can be spatially
periodic (like waves), or they can separate two regions with
asymptotic uniform conditions (like MHD tangential discon-
tinuities). It is possible to compute the velocity moments of
the particle distribution function. Even in very simple cases,
the pressure tensor is not isotropic and not gyrotropic. The
differences between a scalar pressure and the pressure ten-
sor derived in the frame of the Maxwell-Vlasov theory are
significant when the gradient scales are of the order of the
Larmor radius; they concern mainly the ion pressure tensor.

Key words. Magnetospheric physics (magnetopause, cusp
and boundary layers) – Space plasma physics (discontinu-
ities; kinetic and MHD theory)

1 Introduction

We define tangential equilibria as monodimensional equilib-
rium structures, where the magnetic field is perpendicular to
the gradient direction and the plasma velocity along the gra-
dient direction is null. When the magnetic field does not keep
a constant direction, these solutions are sometimes referred
to as sheared equilibria. These equilibria can be described
by MHD or multifluid theories (for example, as tangential
discontinuities), but if the gradients are sharp in comparison
to one ion Larmor gyroradius, the fluid models cannot look
inside these structures.

Sharp tangential equilibria are often met in space colli-
sionless plasmas. A solar wind tangential discontinuity was
crossed by the Cluster spacecraft and its thickness was esti-
mated to 600–1000 km (Dunlop et al., 2002). The magnetic
field amplitude was 30 nT; estimating an ion temperature of
100 eV, the thickness of the tangential discontinuity was less
than three ion Larmor radii. The magnetopause is sometimes
found to be a tangential discontinuity, it generally has a sim-
ilar thickness. Tangential discontinuities exist also inside the
Earth’s magnetosphere: tangential current sheet crossings by
Cluster allowed an estimated thickness of 1126 km, and even
400 km (Petrukovich et al., 2003), that is, of the order of the

Correspondence to:F. Mottez
(fabrice.mottez@cetp.ipsl.fr)

ion Larmor radius. Plasma cavities in the auroral zone and
in the solar wind have a tangential equilibria geometry, and
the density gradient sometimes do not exceed 1.4 km, that is,
two or three ion Larmor radii (Hilgers et al., 1992).

Theoretical works on tangential equilibria have shown the
existence of analytical isothermal (Harris, 1962; Channell,
1976), or non isothermal solutions (Attico and Pegoraro,
1999). Other works, mainly focused on the study of the
Earth’s magnetopause and reviewed by Roth et al. (1996),
have shown solutions that satisfy a larger class of constraints,
but where the differential equations are solved numerically.
Another class of tangential equilibria (Mottez, 2003) can ex-
plain the non isothermal equilibrium of deep plasma cavi-
ties in the Earth’s auroral zone. All these equilibria have
been developed in the frame of the collisionless plasma ki-
netic theory; they are solutions of the Maxwell-Vlasov equa-
tions. They all suppose particle distribution functions given,
for each speciess by

fs =

∫ a2

a1

da (
αas

π
)3/2e

(
−

E
Tas

)
Gas(py, pz) , (1)

wherea is a scalar referring to an isothermal (trapped or pass-
ing) particle population,a1 anda2 are arbitrary (sometimes
infinite), andαas=(ms/2Tas)

1/2. The choiceGas is specific
to each solution (Mottez, 2003). The variables

py = vy +
q

m
Ay(x) = vy +

q

m
A(x) cosθ(x)

pz = vz +
q

m
Az(x) = vy +

q

m
A(x) sinθ(x)

E = v2
x + v2

y + v2
z +

2q

m
8(x) (2)

are the invariants of the particle motion in the monodimen-
sional equilibrium (∂y=∂z=0, ∂t=0).

Many studies have been devoted to the stability of these
equilibria. They are generally based on MHD, Hall-MHD, or
multifluid equations. What do we lose when we jump from
the kinetic Vlasov theory to the fluid approach? We shall
investigate this question through an evaluation of the fluid
moments of the tangential equilibria; we will concentrate es-
pecially on the pressure tensor.
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2 The basic equations of tangential equilibria

We consider monodimensional equilibria,y and z are the
directions of invariance. In tangential equilibriaBx=0 but
By(x) andBz(x) are functions ofx. As ∂t=0, the electric
field derives from a scalar potential8(x), and onlyEx(x)

can be different from zero. The vector potential has two com-
ponentsAy(x), Az(x), and

Bz(x) = dxAy

By(x) = −dxAz. (3)

Since the particle distribution functions given in Eq. (1) de-
pend only on the invariants of the motion of individual par-
ticles, they are solutions of the Vlasov equation. IfTas is
independent ofa, the equilibrium is isothermal andTas is the
temperature of the speciess. We consider plasmas formed
of an electron population (s=e) and one ion species (s=i).
In order not to overload the equations, we express the depen-
dence of the parameters ons only when two different species
are treated in the same equation.

The equilibria must also verify the Maxwell equations. For
tangential equilibria, they are particularly simple. The Am-
pere condition is

Jy = −
1

µ0
dxBz = −

1

µ0
d2
x2Ay (4)

Jz =
1

µ0
dxBy = −

1

µ0
d2
x2Az.

The contribution of each species to the current densityJy is

Jy(x) = q

∫
dvvyf , (5)

with a similar equation forJz. The dependence ofJy

in x comes from the dependence off on E,py and pz,
which themselves depend on the scalar and vector potentials
8(x), Ay(x) andAz(x). The Poisson equation writes

d28(x)

dx2
= −

e

ε0
(ni(x) − ne(x)) , (6)

where

ni =

∫
dvfi and ne =

∫
dvfe. (7)

3 The first velocity moments of the distribution function

We can express the total energyE in Eq. (1) as the sum of
the electric and kinetic energy:

f =

∫ a2

a1

da
(αa

π

)3/2
e

(
−

2αaq8(x)
m

)
e−αav2

Ga(py, pz). (8)

Eliminatingvy andvz :

f =

∫ a2
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(αa

π

)3/2
e
−αa

[
v2
x+(py−

q
m

Ay )2
+(pz−

q
m

Az)
2
]
×
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(
−

2αaq8
m

)
. (9)

For a given particle species, the particle density is

n(x) =

∫ a2
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(αa

π

) ∫
e−αa [(py−

q
m

Ay )2
+(pz−

q
m

Az)
2
]
×
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(
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2αq8(x)
m

)
dpydpz, (10)

wherepy andpz vary from −∞ to +∞. Let us definena

that depends onx through the potentialsAy(x), Az(x), and
8(x),

na(x) = (
αa

π
)

∫
e−αa [(py−

q
m

Ay )2
+(pz−

q
m

Az)
2
]
×

Ga(py, pz)e

(
−

2αaq8
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dpydpz. (11)

Then,

n(x) =

∫ a2

a1

da na(x). (12)

The contribution of a particle species to the current density
Jy is

Jy(x) = q

∫ a2

a1
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(αa

π

) ∫
e

(
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2αaq8
m

)(
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q

m
Ay
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m
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q
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The relation forJz is analogous. The integralJx includes the
integral of the odd functionvx exp(−αv2

x); therefore,Jx=0.
Let us notice that

Jy =

∫ a2

a1

da q
( m

2αaq

) ∂na

∂Ay

=

∫ a2

a1

da Ta

∂na

∂Ay
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∫ a2

a1

da Ta

∂na

∂Az

. (14)

For a given species, the bulk velocity is simply its contri-
bution to the current density divided byqn :

uy =
1∫ a2

a1
da na

∫ a2

a1

da
Ta

q

∂na

∂Ay

(15)

uz =
1∫ a2

a1
da na

∫ a2

a1

da
Ta

q

∂na

∂Az

. (16)

Theux component, asJx , is null.

4 The pressure tensor

By definition, the contribution of each species to the pressure
tensor is

p = m

∫
(v − u)(v − u)f dv , (17)

where the tensor(v−u)(v−u) is a dyadic product. Consid-
ering that the velocityux is null,

pxx = m

∫
v2
xf dvxdpydpz

= m

∫ ∫ a2

a1

{(αa

π

)
exp

(
−

2αq8

m

)
Ga(py, pz)dpydpz

}
×{(αa

π

)1/2
v2
xe

−αav2
dvx

}
da . (18)
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The terms between braces can be integrated separately. The
first (integrated overdpydpz) is na . The second (integrated
overdvx) is (αa

π
)1/2π1/2/2α3/2

=
Ta

m
. In the end,

pxx =

∫ a2

a1

da naTa . (19)

The computation of the other diagonal terms involves a finite
bulk velocity,

pzz =

∫ a2

a1

da m
(αa

π

) ∫
dpydpz×{

v2
z − 2vzuz + u2

z

}
e−α[v2

y+v2
z ]e

(
−

2αq8
m

)
Ga(py, pz) . (20)

The development of(vz − uz)
2 (in braces) can be cut into

three parts, andpzz is the sum of the three corresponding
integrals. The second and the third integrals are simply
−mnu2

z . The bulk velocityuz can be eliminated using Eq.
(16). In the first integral,vz is eliminated withpy andAy ,
and(
pz −

q

m
Az

)2
e−αa [(py−

q
m

Ay )2
+(pz−

q
m

Az)
2
]
= (21)[(

m

2αaq

)2
∂2

∂A2
z

+
1

2αa

]
· e−αa [(py−

q
m

Ay )2+(pz−
q
m

Az)
2].

Therefore, Eq. (20) can also be written

pzz =

∫ a2
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[
Tana +

mT 2
a

q2

∂2na

∂A2
z

]

−
m∫
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q

(
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)]2

. (22)

The relation forpyy is analogous (some minus signs appear
at different places but the final result is the same). The off-
diagonal termspxy andpxz are equal to zero, because they
include a product by the integral overdvx of an odd inte-
grand. As(

py −
q

m
Ay

) (
pz −

q

m
Az

)
e−αa [(py−

q
m

Ay )2
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q
m

Az)
2
]
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(
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)2
∂2

∂Az∂Az
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[
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q
m

Ay )2
+(pz−

q
m

Az)
2
]
, (23)

the off-diagonal termpyz, is

pyz = pzy =
m

q2

[∫ a2

a1

da T 2
a

∂2na

∂Ay∂Az

1∫
da n2

a

∫ a2

a1

da Ta

∂na

∂Ay

∫ a2

a1

da Ta

∂na

∂Az

]
. (24)

Obviously, the pressure tensor contains four different terms.
For the sake of simplicity, let us consider the case of the
isothermal equilibria, set whenTa=T is constant. Then the
pressure terms simplify into

pxx = nT , (25)

pyy = nT

[
1 +

mT

q2

∂

∂Ay

(
1

n

∂n

∂Ay

)]
, (26)

pzz = nT

[
1 +

mT

q2

∂

∂Az

(
1

n

∂n

∂Az

)]
, (27)

pyz = n
mT 2

q2

∂

∂Ay

(
1

n

∂n

∂Az

)
= n

mT 2

q2

∂

∂Az

(
1

n

∂n

∂Ay

)
.(28)

If the magnetic field is everywhere parallel toz, the off-
diagonal terms vanish,pxx andpyy represent the pressure
components in the directions perpendicular to the magnetic
field, andpzz=p// is the parallel component. The inequal-
ity pzz 6=pxx shows that the pressure tensor is not isotropic.
Moreover, the perpendicular terms are differentpxx 6=pyy ;
therefore, the pressure tensor is non gyrotropic.

These non isotropic and non gyrotropic effects can be
attributed to the finite Larmor radiusρL: From a dimen-
sional point of view, the terms(pzz−pxx)/pxx deduced from
Eq. (26–27), scale as(mv⊥

qBL
)2

=(ρLk)2, wherek is the inverse
of the characteristic sizeL of the density gradient. As long
as Ti

Te
<

mi

me
, the non isotropic and non gyrotropic terms are

predominantely carried by the ions.

5 First example: the Harris current sheet in the Earth’s
magnetotail

In the simple example of the Harris current sheet, the
pressure tensor can be expressed with elementary func-
tions. This equilibrium corresponds toGa(py, pz)=n0 +

10ng expνpy/m in Eq. (9), where10 is the Dirac distribu-
tion. The densityn0 is the density far from the discontinuity;
it is arbitrary (it is null in the Harris paper (1962)). Defin-
ing δ=ν(

q
m

), the magnetic field and the contribution of each
particle species to the density are

Bz(x) = −B0 tanh

(
δB0x

2

)
(29)

n(x) = n0 + N0 exp(δAy(x)) = n0 +
N0

cosh
(

δB0x
2

)2
. (30)

The finite pressure components arepxx=pzz=nT and

pyy = nT

[
1 + m

(
δ2T

q2

)
(n − n0)n0

n2

]
. (31)

In the casen0=0 of a bounded plasma (null density at in-
finity), the pressure tensor is a simple scalar tensor. It is
a non gyrotropic tensor in all the other cases. Figure 1
shows an example of the Harris current sheet directly in-
spired from a tangential current sheet crossing studied by
Petrukovich et al. (2003), and mentioned in the Introduction
of this article. The parameters are inferred from the Clus-
ter measurements:Ti=1500 eV,B0=20 nT, n0=1.5 cm−3.
We have setδ=1200 m−1T−1, in order to set the layer thick-
ness to 400 km (case of the 23:10 crossing (Petrukovich et al.,
2003). We can see the magnetic fieldBz reversal on a scale
of 400 km. The thepxx=pzz (dashed line) andpyy (contin-
uous line) plasma pressure terms are significantly different,
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a

b

c

Fig. 1. The spatial dependence of physical parameters associated
with a Harris current sheet:(a) the magnetic fieldBz in nano Tesla;
(b) the pressurepxx=pzz (dashed line) andpyy (continuous line)
in nano Pascal; and(c) the ratiopyy/pxx=pyy/pzz. Thex com-
ponent corresponds to the gradient direction, andy andz are tan-
gential (it is not the GSM coordinate system). The parameters are
inspired from a narrow current sheet crossing seen on board Clus-
ter on 14 September 2001, at 23:10 UT, interpreted by Petrukovich
et al. (2003) as a tangential discontinuity very similar to a Harris
current sheet.

with their ratio reachespyy/pxx=pyy/pzz=4 in the middle
of the structure. The plasma is strongly non isotropic and non
gyrotropic. In the case of a larger discontinuity, 1200 km,
(case of the 22:54 current sheet crossing), the ratio reaches
a smaller value: 1.3. Although less impressive than in the
previous case, the plasma pressure non gyrotropy cannot be
neglected.

6 Second example: density cavities in the Earth’s auro-
ral zone

Let us now briefly examine the case of a density structure
in a low β plasma. Such structures where shown by Mot-
tez (2003) to model the plasma cavities encountered in the
high altitude Earth’s auroral zone. A simple case corresponds
to Ga(py, pz)=nc exp(−η(py/m)2). In such structures, the
size can reach the order of a few ion Larmor radiiρi , but
cannot go below one ion Larmor radius. The magnetic field
remains quasi-uniform, in spite of large plasma density vari-

ations. With the (very accurate) approximationAy=Bzx, the
contribution of each particle species to the density is

n(x)=n0 + N0e
−ξB2

z x2
, (32)

where ξ is an (almost) arbitrary factor scaling the sharp-
ness of the density gradient. The pressure tensor is given
by pxx=pzz=nT and

pyy = nT

[
1 +

−2mT N0ξ

q2
e−ξB2

z x2
×{

1 − 2ξB2
z x2

n0 + N0e
−ξB2

z x2 +
2x2ξN0e

−ξB2
z x2(

n0 + N0e
−ξB2

z x2
)2

}]
. (33)

If n0=0, pyy becomes very simple. Let us defineh by
ξ=q2/2mTih

2; it caracterizes the size of the structure com-
pared to the ion Larmor radius because (see Eq. (32))
n=N0 exp(x/hρi)

2. Thepyy pressure component is

pyy = nT

[
1 −

2mT ξ

q2

]
= nT

[
1 −

1

h2

]
. (34)

As long as the structure is large compared to the ion Larmor
radius (h�1), the pressure is nearly scalar. If the structure
is of the order of a few ion gyroradii (h∼1), the pressure
tensor becomes strongly non gyrotropic, andpyy<pxx=pzz.
(The fact thatpyy becomes negative forh<1 confirms that
the structure cannot be smaller than one ion gyroradius.)

7 Conclusion

The above computation of the pressure tensor associated with
tangential equilibria shows that we must be very carefull
when using a set of fluid equations to describe a tangen-
tial plasma structure: even in the simple cases given here
for illustration, the pressure tensor is non isotropic and non
gyrotropic. Moreover, when the magnetic field direction
changes (a very common situation with tangential disconti-
nuities), the off-diagonal terms cannot be neglected: this re-
inforces the non gyrotropic character of the plasma pressure
tensor. Therefore, considering only thep‖ andp⊥ compo-
nents of a diagonal pressure tensor cannot provide a good
description of the plasma. This is not a problem for a static
description, because only thepxx component plays a role in
the fluid equations of the equilibrium. But when the stability
of the equilibrium or the magnetic reconnection are investi-
gated, for instance, through a perturbative analysis, the other
components of the equilibrium pressure tensor come into ac-
tion. Not considering them can be misleading.
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