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Abstract. The tangential equilibria are characterized by aion Larmor radius. Plasma cavities in the auroral zone and
bulk plasma velocity and a magnetic field that are perpendicin the solar wind have a tangential equilibria geometry, and
ular to the gradient direction. Such equilibria can be spatiallythe density gradient sometimes do not exceed 1.4 km, that is,
periodic (like waves), or they can separate two regions withtwo or three ion Larmor radii (Hilgers et al., 1992).
asymptotic uniform conditions (like MHD tangential discon-  Theoretical works on tangential equilibria have shown the
tinuities). It is possible to compute the velocity moments of existence of analytical isothermal (Harris, 1962; Channell,
the particle distribution function. Even in very simple cases, 1976), or non isothermal solutions (Attico and Pegoraro,
the pressure tensor is not isotropic and not gyrotropic. Thej999). Other works, mainly focused on the study of the
differences between a scalar pressure and the pressure tefparth’s magnetopause and reviewed by Roth et al. (1996),
sor derived in the frame of the Maxwell-Vlasov theory are have shown solutions that satisfy a larger class of constraints,
significant when the gradient scales are of the order of theyyt where the differential equations are solved numerically.
Larmor radius; they concern mainly the ion pressure tensor. Another class of tangential equilibria (Mottez, 2003) can ex-

Key words. Magnetospheric physics (magnetopause, Cusrplain the non isothermal equ”ibrium of deep plasma cavi-

and boundary |ayers) — Space p|asma physics (discontinlﬁes in the Earth’s auroral zone. All these equilibl’ia have
ities; kinetic and MHD theory) been developed in the frame of the collisionless plasma ki-

netic theory; they are solutions of the Maxwell-Vlasov equa-
tions. They all suppose particle distribution functions given,
for each species by

1 Introduction

We define tangential equilibria as monodimensional equilib- a2 Yas \3/2 (_TL) 1
rium structures, where the magnetic field is perpendicular tofs = o da (7) e\ "5/ Gas(py, Pz) s @
the gradient direction and the plasma velocity along the gra-

dientdirection is null. When the magnetic field does notkeep,, hare, is a scalar referring to an isothermal (trapped or pass-

a constant direction, these solutions are sometimes referreﬂg) particle populationg; anday are arbitrary (sometimes
to as sheared equilibria. These equilibria can be describeg]ﬁnite) anda,s=(m /2T,s) /2. The choiceG,,, is specific

by MHD or multifluid theories (for example, as tangential to each solution (Mottez, 2003). The variables
discontinuities), but if the gradients are sharp in comparison ’

to one ion Larmor gyroradius, the fluid models cannot look q q
inside these structures. py =vy+ - Ay(x) = vy + - A(x) COSH(x)
Sharp tangential equilibria are often met in space colli- q q ,
sionless plasmas. A solar wind tangential discontinuity was Pz = vz + ZAz(x) =vy+ ZA(X) siné (x)
crossed by the Cluster spacecraft and its thickness was esti- ) ) , 2
mated to 600—1000 km (Dunlop et al., 2002). The magnetic E=vit+vy+v;+ ) 2
field amplitude was 30 nT; estimating an ion temperature of
100 eV, the thickness of the tangential discontinuity was lessyre the invariants of the particle motion in the monodimen-
than three ion Larmor radii. The magnetopause is sometimegjonal equilibrium 9,=0.=0, 3,=0).

.found. tobea tangenua] dls.contm.mty,. I generally h.as asim- Many studies have been devoted to the stability of these
ilar thickness. Tangential discontinuities exist also inside the

. ; X . equilibria. They are generally based on MHD, Hall-MHD, or
Earth’'s magnetosphere: tangential current sheet crossings %ultiﬂuid equations. What do we lose when we jump from

S(I)%Slier aI!O\tNeE an ﬁStitm?tegotg:;Ck?ﬁ sts' of 1f1t2hG kmd andfet;:ertlne kinetic Vlasov theory to the fluid approach? We shall
m (Petrukovich et al., ). that is, of the order o einvestigate this question through an evaluation of the fluid

Correspondence tdr. Mottez moments of the tangential equilibria; we will concentrate es-
(fabrice.mottez@cetp.ipsl.fr) pecially on the pressure tensor.
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2 The basic equations of tangential equilibria

We consider monodimensional equilibrig,and z are the
directions of invariance. In tangential equilibrB=0 but
By (x) and B;(x) are functions oft. As 9,=0, the electric
field derives from a scalar potentidl(x), and onlyE, (x)

F. Mottez: Tangential equilibria

For a given particle species, the particle density is

a
n(x) :/ ® i (“_a)/efaa[(pr%Ay>2+(pzf%A:>2]
a b

1

(x)
) dpydp:,

Ga(py, pz)e(_ 2‘“’;" (10)

can be different from zero. The vector potential has two com-where p,, and p; vary from —oo to +oo. Let us definer,

ponentsA, (x), A;(x), and
B.(x) = d:A

By(x) = —d.A;. 3

Since the particle distribution functions given in Eq. (1) de-

pend only on the invariants of the motion of individual par-
ticles, they are solutions of the Vlasov equation.T}f is
independent of, the equilibrium is isothermal arifj; is the
temperature of the species We consider plasmas formed
of an electron populations&e) and one ion species£i).

that depends om through the potentiald , (x), A;(x), and
@ (x),

[07 2 2
1y (x) = (_“)/efaaupr%fm Hp— LA

aq
Galpy. p2)e "5 ) dpydp.. (11)

Then,

/ :
ay

n(x) dang(x). (12)

In order not to overload the equations, we express the depenLn€ contribution of a particle species to the current density

dence of the parameters oonly when two different species
are treated in the same equation.

The equilibria must also verify the Maxwell equations. For J/y(X) = ¢

tangential equilibria, they are particularly simple. The Am-
pere condition is

Jyz——dez———d A, (4)
140

1
J. = —d\B, = ——deAZ
140 1o

The contribution of each species to the current denkitis

1) =g / dvu, f | 5)

with a similar equation forJ,. The dependence aof,
in x comes from the dependence ¢fon E, p, and p.,

which themselves depend on the scalar and vector potentialg, =

®(x), Ay(x) andA;(x). The Poisson equation writes

d%o
Iz (x) (n (x) — ne(x)), (6)
X

where

n; =/dvf,- andn, = /dvfe. (7)

3 Thefirst velocity moments of the distribution function

We can express the total energyin Eq. (1) as the sum of
the electric and kinetic energy:

3/2 ( Zuatlln‘b(x))

f= / —aa? G, (Py, Pz)- ®)
Eliminatingv, andv, :
F= / 3/ 2 a2ty — a2 (- £ A7)
_ 20qq®
G, (Py, pz)e( " ) (9)

J|s

2049 P
m

)<py - 2Ay> x (13)

/: da (%) / e

o~ al(Py— AP +(p:—

m <

G (Py z)dpydpz-

The relation for/, is analogous. The integrd} includes the
integral of the odd function, exp(—avﬁ); therefore /J,=0.
Let us notice that

as 9 az 9

Jy Z/ daCI( “ ) Ra =/ daTu—na
a 200,/ QA a 0A,
as 9

J. = / da T, 22 (14)
al 8A2

For a given species, the bulk velocity is simply its contri-
bution to the current density divided lgy: :

1 @ T, 9
= / da ~2 2 (15)
f dang Ja; g 9Ay
1 @ T,
iy = / da ~2 e (16)
f dang Ja, q 0A;

Theu, component, ad,, is null.

4 The pressure tensor

By definition, the contribution of each species to the pressure
tensor is

p=m/(v—u)(v—u)fdv,

where the tensofv—u)(v—u) is a dyadic product. Consid-
ering that the velocity, is null,

(17)

Prx = m/vifdvxdpydpz

—m//az { a“ (—aTCD)G (pnpz)dmdpz]
{(;a)l/ vV dvx}da.

(18)



F. Mottez: Tangential equilibria 3035

The terms between braces can be integrated separately. Tfp—:{,y —nT [1 + @i (}a_”ﬂ , (26)
first (integrated overdp,dp;) is n,. The second (integrated qc 9Ay \ndA,
overdv,) is (%)Y271/2/2¢%2=12 "|n the end, T [1+ ml 9 (} on )} 27)
. Pz = 42 9A, \n oA, )|’
Dxx = / dan,T,. (29) mT? 9 1 on mT2 3 (1 on
ap pyz:n_z_ <— > :i’l—z (——)(28)
qc 0A, \ndA; gc 0A; \ndA,
The comp_utation of the other diagonal terms involves afinitelf the magnetic field is everywhere parallel to the off-
bulk velocity, diagonal terms vanishp,, and p,, represent the pressure
az . components in the directions perpendicular to the magnetic
Pz —/ ddm(—) /dpydpzx field, andp..=p,, is the parallel component. The inequal-
“ ity p..#pxx Shows that the pressure tensor is not isotropic.

[vzz — 2uu; + uf}e‘“[”.\z*”zz]e(‘mTw)Ga (py, p.).(20)  Moreover, the perpendicular terms are differgnt #py,;
therefore, the pressure tensor is non gyrotropic.
The development ofv, — u.)? (in braces) can be cutinto ~ These non isotropic and non gyrotropic effects can be
three parts, ang,. is the sum of the three corresponding attributed to the finite Larmor radius,: From a dimen-
integrals. The second and the third integrals are simplysional point of view, the term@_. — p.)/ px. deduced from
—mnu?. The bulk velocityu. can be eliminated using Eq. EQ. (26-27), scale ag'5)*=(p,k)?, wherek is the inverse

(16). In the first integralp, is eliminated withp, and Ay, of tpe characteristic sizé of the density gradient. As long
and as T"<%, the non isotropic and non gyrotropic terms are
) pre&ominantely carried by the ions.
(pz _ iAZ) e*aa[(P)'*%A,\')ZJF(PZ*%AZ)Z] — (21)
m
2 42 5 Firstexample: the Harris current sheet in the Earth’s
m ad 1 _ _9 402 RY: '
5 sz ta | al(py =3 AV "+ (p2 =3 A2, magnetotail
Qaq z a

In the simple example of the Harris current sheet, the
pressure tensor can be expressed with elementary func-

az 2 42 tions. This equilibrium corresponds 6, (py, p;)=no +
/ da | T mT; 9%n, y
Pzz = a ng +
2z B a'ta

Therefore, Eq. (20) can also be written

2 52 Aong €xpvpy/m in Eq. (9), whereAq is the Dirac distribu-
1 z tion. The density:g is the density far from the discontinuity;
m @2 T (ong\1° it is arbitrary (it is null in the Harris paper (1962)). Defin-
_fda ng [/al d ; <3Az )} : (22) ing Bzv(%), the magnetic field and the contribution of each
particle species to the density are
The relation forp,, is analogous (some minus signs appear (8B0x>

1

at different places but the final result is the same). The off-B,(x) = —Bgtanh

diagonal termg,, and p,, are equal to zero, because they

include a product by the integral oveéw, of an odd inte- n(x) = no+ Noexp(8A,(x)) = no + No (30)
, = 5

(29)

grand. As COSh(aBTOX>
9 9 —aal(py— & A +(pe— £ A)?) -
(Py - Z%) (Pz - ZAZ) e TRy m Ty ¢ omue The finite pressure components g =p.,=nT and
2 2 2
m 3 —a(py— L AP (p— L AL)? 8T\ (n — no)no
=<20!aq> R A A CORN LTS ER il e b (31)
the off-diagonal ternp, ., is In the caseip=0 of a bounded plasma (null density at in-
finity), the pressure tensor is a simple scalar tensor. It is
_ _m | [ da T? %n, a non gyrotropic tensor in all the other cases. Figure 1
Pye =Py ="021 | *JALIA, shows an example of the Harris current sheet directly in-
1 a an a an spired from a tangential current sheet crossing studied by
— / da T,—= / da Ta—“} . (24)  Petrukovich et al. (2003), and mentioned in the Introduction
Jdang Jo Ay Jay 94, of this article. The parameters are inferred from the Clus-

. . . _ _ _ -3
Obviously, the pressure tensor contains four different terms!er measurementsTi_%S(z(iJ eV, Bo=20nT, no=1.5 cnm*.
For the sake of simplicity, let us consider the case of theWWe have se§&=1200m~T~%, in order to set the layer thick-

isothermal equilibria, set whef,=T is constant. Then the N€SS to 400 km (case of the 23:10 crossing (Petrukovich et al.,
pressure terms simplify into 2003). We can see the magnetic fididreversal on a scale

of 400 km. The thep,,=p.; (dashed line) ang,, (contin-
Pxx =nT, (25) uous line) plasma pressure terms are significantly different,
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20 ations. With the (very accurate) approximatiép=B.x, the
La ] contribution of each particle species to the density is

or n(x)=ng + Noe §85" (32)

Bz (nT)

where ¢ is an (almost) arbitrary factor scaling the sharp-
ness of the density gradient. The pressure tensor is given
by pxx=p..=nT and

I
N
(@)

500 1000

I
o
o
)

I
oL
o
o
o

—2mT N
2 o e—SBZZxZ X
q
E 1— 2 B%x? N 2x2£ Nge € B¥? (33)
no + Noe B2+ (no + Noe_“EBszz)2 .

E Pyy :nT|:1+

P (nPa)

| OO0 = = NG
~ OO O Lo
‘ \

000 -500 0 500 1000
X (km) If no=0, p,, becomes very simple. Let us defireby

] £=q2/2mT;h?; it caracterizes the size of the structure com-
pared to the ion Larmor radius because (see Eq. (32))
n=Ngexp(x/hpi)?. The p,, pressure component is

3 E 2mT 1
E ‘ ‘ E pyy:nT|:1— . ] :nT[l—ﬁiI. (34)

000 -500 0 500 1000
X (km) As long as the structure is large compared to the ion Larmor
radius ¢>>1), the pressure is nearly scalar. If the structure
Fig. 1. The spatial dependence of physical parameters associatei$ of the order of a few ion gyroradiizt-1), the pressure
with a Harris current sheeta) the magnetic field; in nano Tesla;  tensor becomes strongly non gyrotropic, gng< p,,=p::.
(b) the pressure.y=p:. (dashed line) angyy (continuous line)  (The fact thatp,, becomes negative fdr<1 confirms that

in nano Pascal; ant) the ratiopyy/pxx=pyy/pzz- Thex com-  the structure cannot be smaller than one ion gyroradius.)
ponent corresponds to the gradient direction, arahdz are tan-

gential (it is not the GSM coordinate system). The parameters are
inspired from a narrow current sheet crossing seen on board Clu
ter on 14 September 2001, at 23:10 UT, interpreted by Petrukovich
et al. (2003) as a tangential discontinuity very similar to a Harris
current sheet.

Pyy/Pxx
L O~ N W AO

Conclusion

The above computation of the pressure tensor associated with
tangential equilibria shows that we must be very carefull

when using a set of fluid equations to describe a tangen-
tial plasma structure: even in the simple cases given here

‘(’)\'f'tt?];h;;;?ﬂ;r?riceheg )é)ﬁ/] Z i ztI; o / ]|7 ZZ;;:] Iir;c:thr(e) r:z(;(:]lg o for illustration, the pressure tensor is non isotropic and non
. : P gy ISOtrop gyrotropic. Moreover, when the magnetic field direction
gyrotropic. In the case of a larger discontinuity, 1200 km,

(case of the 22:54 current sheet crossing), the ratio reach changes (a very common situation with tangential disconti-

er?uities), the off-diagonal terms cannot be neglected: this re-

a smaller value: 1.3. Although less impressive than in theinforces the non gyrotropic character of the plasma pressure

Ereeg\?eocligdcase, the plasma pressure non gyrotropy cannot bt%nsor. Ther_efore, considering only the and p . compo-

' nents of a diagonal pressure tensor cannot provide a good
description of the plasma. This is not a problem for a static
description, because only the, component plays a role in
the fluid equations of the equilibrium. But when the stability
of the equilibrium or the magnetic reconnection are investi-
gated, for instance, through a perturbative analysis, the other

Let us now briefly examine the case of a density Structurecomponents of the equilibrium pressure tensor come into ac-

in a low 8 plasma. Such structures where shown by Mot- tion. Not considering them can be misleading.

te.z (20.03) to mod’el the plasma cawpes encountered in th%\cknowledgementsThe author gratefully acknowledges stimu-
high altitude Earth’s auroral zone. A simple case corres;pond§ating and useful discussions with G. Belmont. \er@t. and A.
t0 G4 (py, p:)=nc€xp(—n(py/m)?). In such structures, the Roux. ' '

size can reach the order of a few ion Larmor raglii but Topical Editor T. Pulkkinen thanks two referees for their help
cannot go below one ion Larmor radius. The magnetic fieldin evaluating this paper.

remains quasi-uniform, in spite of large plasma density vari-

6 Second example: density cavities in the Earth’s auro-
ral zone
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