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Abstract. An isolated plasma sheet flow burst took
place at 22:02 UT, 1 September 2002, when the Clus-
ter footpoint was located within the area covered by the
Magnetometers-Ionospheric Radars-All-sky Cameras Large
Experiment (MIRACLE). The event was associated with a
clear but weak ionospheric disturbance and took place during
a steady southward IMF interval, about 1 h preceding a ma-
jor substorm onset. Multipoint observations, both in space
and from the ground, allow us to discuss the temporal and
spatial scale of the disturbance both in the magnetosphere
and ionosphere. Based on measurements from four Cluster
spacecraft it is inferred that Cluster observed the dusk side
part of a localized flow channel in the plasma sheet with a
flow shear at the front, suggesting a field-aligned current out
from the ionosphere. In the ionosphere the equivalent cur-
rent pattern and possible field-aligned current location show
a pattern similar to the auroral streamers previously obtained
during an active period, except for its spatial scale and ampli-
tude. It is inferred that the footpoint of Cluster was located in
the region of an upward field-aligned current, consistent with
the magnetospheric observations. The entire disturbance in
the ionosphere lasted about 10 min, consistent with the time
scale of the current sheet disturbance in the magnetosphere.
The plasma sheet bulk flow, on the other hand, had a time
scale of about 2 min, corresponding to the time scale of an
equatorward excursion of the enhanced electrojet. These ob-
servations confirm that localized enhanced convection in the
magnetosphere and associated changes in the current sheet
structure produce a signature with consistent temporal and
spatial scale at the conjugate ionosphere.
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1 Introduction

High-speed plasma flows in the near-Earth and mid-tail
plasma sheet are considered to play a key role in the flux
and energy transport in the magnetotail. Most likely, these
fast flows are due to acceleration in the reconnection re-
gion. The flows near the boundary of the plasma sheet con-
sist of field-aligned beams, whereas the flows in the cen-
tral plasma sheet tend to have a large bulk flow component.
The latter flows organize themselves in 10-min time scale
flow enhancements, which are called bursty bulk flow (BBF)
events, embedding velocity peaks of 1-min duration, which
are called flow bursts, and have characteristics distinctly dif-
ferent from plasma sheet boundary layer flows (Baumjohann
et al., 1990; Angelopoulos et al., 1992).

To understand the magnetic flux transport process or to
discuss the energy budget problems in the magnetosphere, it
is crucial to quantify the bursty bulk flow signatures. Many
studies using quite different methods with single spacecraft
have come to the conclusion that a BBF is expected to be
limited in dawn-dusk extent with a spatial scale of 3–5RE

(Angelopoulos et al., 1997; Kauristie et al., 2000; Nakamura
et al., 2001). These results were obtained by comparison be-
tween satellite and ground-based data, and low-altitude ob-
servations of convection, equivalent current, and auroral pat-
tern. In-situ multi-point observations by ISEE and Cluster
provided more direct evidence on the spatial scale, which in-
ferred a scale size of 1–3RE (Sergeev et al., 1996; Nakamura
et al., 2004).
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Close relationships between the bursty bulk flow and the
auroral signatures were reported by a number of studies
(Fairfield et al., 1999; Sergeev et al., 1999; Zesta et al., 2000;
Nakamura et al., 2001; Grocott et al., 2004). The relationship
between the ionosphere and magnetosphere during fast flows
is also essential to understand the role of these fast flows in
larger-scale processes such as substorms. A review of the
current understanding of the various ionospheric phenomena
related to fast flows is given by Amm and Kauristie (2002).
One major question they pose concerns the difference be-
tween substorm and non-substorm events. They also point
out, however, that many of the observed ionospheric effects
can be shielded or greatly obscured during substorm expan-
sions, by the inherent large-scale electrodynamics. In fact,
Grocott et al. (2004) obtained for the first time an iono-
spheric flow pattern consistent with the BBF observed by
Cluster during a small pseudobreakup. These observations
suggest that during quiet conditions, in the course of a sub-
storm growth phase, some 10 min after a southward turning
of the IMF, the BBF associated convection pattern could be
observed as a mapped pattern in the ionosphere. Therefore,
localized precipitation and associated field-aligned currents
inferred from the IMAGE auroral data and electric potentials
were not significant to affect the mapping of the electric field.

Several mechanisms have been proposed to account for the
auroral precipitation or field-aligned current directly associ-
ated with the fast flows. The bursty bulk flows, which are
usually limited in cross-tail scale and are often underpopu-
lated flux tubes, called “bubbles”, are considered to become
electrically polarized and thereby launching Alfvén waves in
a sense where the upward field-aligned current is created at
the duskward edge, similar to the substorm current wedge
(e.g. Chen and Wolf, 1993, 1999). Birn and Hesse (1996)
and Birn et al. (1999) showed that the earthward reconnec-
tion flows are diverted dawnward and duskward in associ-
ation with the dipolarization of the magnetic field. Conse-
quently, flow shear is created well inside the closed field
line region and generates magnetic shear corresponding to
the field-aligned currents of the current wedge in a bubble
(Birn et al., 2004). The observed equivalent current pattern
during flow bursts also supports the direct connection of the
transient plasma sheet flows to the ionospheric current via a
small field-aligned current wedge (Kauristie et al., 2000).

Cluster multi-point observations of BBFs combined with
conjugate observations on the ground allow us to discuss the
spatial structure of the disturbances simultaneously in the
ionosphere and the magnetosphere to further compare with
the theories. In this paper an isolated flow burst at 22:02 UT,
1 September 2002, is studied when the Cluster footpoint was
located within the MIRACLE area. With a tetrahedron scale
of 4000 km during summer 2002, Cluster is in an ideal con-
figuration to study the spatial structure of the flow. We exam-
ine the spatial and/or temporal scale of the flow burst and its
relevant counterparts in the ionosphere and discuss the elec-
trodynamics of the flow-associated disturbance in the iono-
sphere and the magnetosphere.

2 Overview of the event

Figure 1 shows the location of the Cluster spacecraft in (a)
theX−Y plane, (b) theX−Z, and (c) theY−Z plane in the
top three panels. Unless noted, the geomagnetic solar mag-
netospheric coordinate (GSM) system is used throughout this
paper. Cluster was located near midnight atX=−18RE . The
relative location of the four Cluster spacecraft to the refer-
ence spacecraft (SC3) in (d) theX−Y plane, (e) theX−Z

plane, and (f) theY−Z are shown in the next three panels
in Fig. 1 for 22:00 UT, 1 September 2002. SC 2 was the
most western satellite, SC 3 the most southward, SC 4 the
most tailward and SC1 the most earthward. Figure 1g shows
the geographic location of the MIRACLE magnetometer sta-
tions between latitude 64◦ and 71◦. Also shown are the foot-
points of the four Cluster spacecraft calculated using the Tsy-
ganenko (1989) model (T89). For this event, the footpoints
were calculated also using the Hybrid Input Algorithm (HIA)
model (Kubyshkina et al., 1999), which uses input from sev-
eral spacecraft measurements to modify the tail and ring cur-
rents of the T89 model, in order to obtain a best fit to the
satellite observations. For this particular event data from the
Cluster, POLAR and LANL satellites were used to modify
the model. Yet the mapped location for this event did not
differ significantly from the T89,Kp=4 mapping. The ex-
pected errors are<0.1◦ in latitude and<0.5◦ in longitude.
KIL was the station closest to the Cluster footpoints.

Magnetotail data from Cluster, solar wind data from Geo-
tail and ground magnetograms from selected MIRACLE sta-
tions ordered with increasing latitude are shown in Fig. 2.
Cluster observations from the fluxgate magnetometer (FGM)
experiment (Balogh et al., 2001) obtained by the four space-
craft, and proton data from the Composition and Distribution
Function Analyser (CODIF) of the Cluster ion spectrometry
(CIS) experiment (R̀eme et al., 2001) from Cluster 4 are also
shown in Fig. 2. For the ion data we use proton data from the
CODIF instrument for Cluster 1 and 4, while ion data from
the Hot Ion Analyser (HIA) instrument are used for Cluster 3.
Geotail was located atX=18, Y=23, andZ=0.4RE in the
solar wind. Data from the Geotail magnetic field measure-
ment (Kokubun et al., 1994) showed quite stable southward
IMF after 21:00 UT. It can be seen that the total pressure in
the magnetotail observed by Cluster, gradually increased un-
til around 23:00 UT, suggesting that a pileup of the magnetic
flux took place. The pressure dropped significantly, associ-
ated with the enhancement of the westward electrojet in the
MIRACLE stations, which is a typical signature of the ex-
pansion phase of a major substorm. Cluster stayed mainly in
the plasma sheet until 23:05 UT when the spacecraft went out
into the lobe associated with the major substorm expansion
phase onset. The details of the substorm expansion phase
onset at 23:05 UT were studied in Draper et al. (2004). The
bursty bulk flow event which will be studied in detail in this
paper occurred at around 22:00 UT, as shown as a grey bar
in Fig. 2. The event took place about 1 h before the major
onset during a prolonged interval of southward IMF with a
very weak signature in the auroral electrojet in the midnight
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Fig. 1. Location of the four Cluster spacecraft in(a) X−Y plane and(b) X−Z, plane and(c) Y−Z plane, and location relative to the
reference spacecraft (Cl 3) in(d) X−Y plane and(e) X−Z, plane and(f) Y−Z plane in the GSM coordinates.(g) Location of the
MIRACLE stations and that of the Cluster footpoints in geographic coordinates. Clusters 1, 2, 3 and 4 data are indicated with black, red,
green, and blue, respectively.

region. This rather steady magnetospheric/ionospheric con-
dition allows us to investigate the BBF related disturbance
without any significant contamination from other activities.
In the following sections, we will first investigate the tem-
poral and spatial characteristics of the bursty bulk flows and
then examine the associated ionospheric signatures.

3 BBF signatures in the magnetosphere

Figure 3 shows the Cluster magnetic field and ion obser-
vations during the flow interval. Earthward flow with a
speed exceeding 700 km/s was observed for the three space-
craft between 22:00 and 22:04 UT associated with a sharp

enhancement inBz, indicating dipolarization, which is vis-
ible also on SC2; but since CIS is not operational on SC2,
we discuss on plasma flows on SC2, later using other ob-
servations. The flow burst was accompanied by a decrease
in density and an increase in magnetic field pressure, which
is a typical signature for a plasma bubble (Sergeev et al.,
1996). Compared to the high-speed flow features, mag-
netic field fluctuation lasted somewhat longer. The fluctu-
ations in all three components were visible already starting
before 21:58 UT. All spacecraft entered the neutral sheet re-
gion by the end of the flows and the fluctuations ceased after
22:08 UT. The enhanced difference among the traces of the
four spacecraft suggests that the local current density con-
tained small-scale structures.
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Fig. 2. Cluster, Geotail and ground magnetogram from selected MIRACLE stations between 20:00 and 24:00 UT, on 1 September 2002.
Cluster observation of(a) X, (b) Y , and(c) Z component of the magnetic field from the four Cluster spacecraft,(d) X component of the
ion flow, (e) proton beta,(f) total pressure (thick line) and magnetic pressure (thin line) for Cluster 4. Clusters 1, 2, 3 and 4 data are shown
in black, red, green, and blue, respectively.(g) Geotail magnetic field data in the solar wind.(h) X component of the ground magnetic field
data from selected MIRACLE stations. The grey vertical line indicates the bursty bulk flow event around 22:00 UT.

The bottom three panels of energy flux spectra and angular
distribution data from SC 1 show that the distribution at
the maximum flow interval (22:01–22:02 UT) has a signifi-
cant perpendicular component (close to 90◦) to the magnetic
field. Before this flow, some enhancement in the tailward
(180◦) component can be seen in the low-energy part be-
tween 21:58–21:59 UT. Between 21:59 and 22:00 UT, the
energetic component (>10 keV) consists of a tailward field-
aligned beam and a perpendicular component, whereas for

the lower energies, the perpendicular component is domi-
nant. The energy of the field-aligned component is therefore
increased. The ion velocity distribution significantly changes
between 22:00 UT and 22:01 UT, which will be discussed
later. There is also a signature of a beam (180◦) after the bulk
flows. The field-aligned beam weakens between 22:04 and
22:05 UT. Taking into account all of these features, we can
say that the time period of the ion flow and beam disturbance
at Cluster was between about 21:58 and 22:05 UT, which has
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Fig. 3. X, Y andZ component of the magnetic field from the four Cluster spacecraft,X component of the ion flows from Clusters 1, 3, and
4, and proton density and pressures obtained by Clusters 1 and 4 between 21:55 and 22:10 UT. The thick lines in the pressure panel represent
to the total pressure, whereas the thin lines the magnetic field pressure. The bottom three panels show the proton energy spectra, pitch angle
distribution of high energy (10–40 keV) and low energy (100 eV–10 keV) protons for Cluster 1.

a somewhat shorter time scale than the current sheet distur-
bance discussed before.

Both the flow and magnetic field traces showed differences
among the spacecraft. Cluster 3 was about 3000 km south of
the other spacecraft but still over the Northern Hemisphere,
which is consistent with the small values inBx before and
after the event. But during the flow burst interval, the traces
are more complicated. It can be seen that Cluster 2 stayed
in a largeBx region longer than the other three spacecraft.
Note that Cluster 2 was located most duskward and therefore
the difference implies a dawn-dusk localized structure of the
flow. Since there is no ion data from Cluster 2, we use the
electric field data from the Electric Field and Wave (EFW)
instrument (Gustafsson et al., 2001) to further investigate the

spacecraft difference. A detailed in-flight calibration of the
electric field measurements was done by comparing with the
quiet time CIS moments for Clusters 1, 3, and 4 before and
after the BBF event. On Cluster 2, the calibration was based
on a typical default value, and so one needs to remember
that the electric field in the Sun direction on this spacecraft
may still contain a small error. The three components of the
electric field are obtained by assumingE·B=0.

Figure 4 shows the flow perpendicular to the magnetic
field and the electric field and density profile between 21:55
and 22:10 UT using measurements from CIS and EFW. The
three upper panels show the ion flow velocity perpendicu-
lar to the magnetic field (thick lines) andE×B drift velocity
(thin lines). It can be seen that although there are some minor
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discrepancies in the magnitude, the general trend between
CIS and EFW coincides during the flow event, suggesting
that the perpendicular flow moment from CIS is mainly due
to theE×B velocity. It can also be seen that it isEz that
deflects the BBF toward the azimuthal direction rather than
Ex for this event. The bottom two panels show the density
profile from Clusters 1 and 4 and the negative value of the
spacecraft potential,−Vsc, from Clusters 1 and 2. The latter
is a good indicator of the density, which can be seen in the
similar temporal profile between the Cluster 1 traces in the
two bottom panels. The profile shows that Cluster 2 also en-
countered the plasma bubble. Yet the electric field plot from
EFW, as well as the flow plots, show that Cluster 2 observed
significantly smaller velocities and electric fields compared
to the other spacecraft during the BBF event.

One can see that theVy andEz values on Cluster 2 be-
fore the BBF event also differ a little from the values on the
other spacecraft. As given above,Ex calibration cannot be
quite accurately performed for Cluster 2, which may explain
these negativeVy andEz offsets. The differences could be,
however, also real and due to spatial changes. Nevertheless,
these differences at non-BBF times are small enough so that
one can conclude that both theEy andEz, or Vx andVy , are
significantly smaller for Cluster 2 during the BBF.

There is also a clear spacecraft difference in the timing
of the dipolarization in Fig. 3. The dipolarization started at
Cluster 4, followed by Clusters 1 and 2, and then Cluster 3.
Note that Cluster 4 was located most tailward, as shown in
Fig. 1. Cluster 3 was located about 3000 km south of the
other three spacecraft. Thus, a disturbance in dipolarization
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Table 1. Minimum (maximum) variance direction of the magnetic (electric) field of the dipolarization front.

SC UT min, max n1 n2 n3 λ2,1 or λ3,2

C1 22:00:20–22:00:40 min 0.79 0.27 −0.54 12
C2 22:00:21–22:00:41 min 0.34 0.53 −0.78 10
C2 22:00:21–22:00:41 max 0.41 0.76 −0.51 3
C3 22:00:30–22:00:50 min 0.96 0.08 −0.26 11
C4 22:00:13–22:00:33 min 0.75 0.31 −0.58 8
C4 22:00:13–22:00:33 max 0.67 0.53 −0.52 7
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direction, corresponds to the flow vector at the time of the first maximum deflection before the dipolarization front. Clusters 1, 2, 3 and 4
data are indicated with black, red, green, and blue, respectively.

was propagating toward Earth and toward the equator. Such
motion of the dipolarization front was also obtained by Clus-
ter during a dawnside flow burst (Nakamura et al., 2002).

The structure of the fast flows can be determined by ex-
amining the orientation of the dipolarization front by per-
forming the minimum variance analysis of the magnetic field
(Sergeev et al., 1996; Nakamura et al., 2002). We used the
1-s averaged FGM data to determine the orientation of the
boundary. We performed also the maximum variance anal-
ysis of the electric field (Sonnerup and Scheible, 1998, and
references therein), using 1-s averaged EFW data for Clus-
ters 2 and 4 from which high resolution data were avail-
able. The resulting normal vectors to the dipolarization front
are shown in Table 1. As a quality check of the minimum
(maximum) variance analysis, the ratio between intermedi-
ate (maximum) and minimum (intermediate) eigenvalues is
also given in the table. In spite of the fact that the quality of
the analysis is rather poor for the electric field data, agree-
ment between the two methods of boundary determination

for Cluster 2 and 4 is quite good. The projection of the dipo-
larization front in (a) theX−Y plane, in (b) theX−Z plane
and in (c) theY−Z plane are shown in Fig. 5 as dotted lines
for the orientation obtained from minimum variance analysis
of the magnetic field data and as dashed lines for the orienta-
tion obtained from maximum variance analysis of the electric
field data. The normal direction is presented with a thin line
crossing the dotted or dashed lines. The orientation of the
dipolarization front of the three northern spacecraft, Clus-
ters 1, 2, and 4, shows a clear dependence in theY direction,
that is, the dipolarization front of Cluster 2, which is located
most duskward, is more tilted toward theX direction com-
pared to Clusters 1 and 4, which have a dipolarization front
more aligned in theY direction. The difference suggests that
Cluster 2 sees the edge effect of a localized flow channel.
The difference in orientation can also be seen in theX−Z

plane, which comes from the fact that the field configuration
of Cluster 2 is more tail-like (largeBx). There is no ion data
for Cluster 2. But this edge effect was also obtained in the
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Fig. 6. Clusters 1, 3, and 4 observations of the ion flow speed and direction of the flow relative to the normal direction of the dipolarization
front in theX−Y plane and in theX−Z plane. Here the relative azimuth angle corresponds to the angle between the flow and the normal
direction in theX−Y plane, whereas the relative latitude angle corresponds in theX−Z plane. The left panels are for the total ion flow,
whereas the right panels for the perpendicular component of the flows. The vertical dashed lines show the period of the dipolarization for
each spacecraft presented with the same color (Clusters 1, 3 and 4 data are indicated with black, green, and blue) as the velocity profile.

electric field measurement (Fig. 4) in which theE×B drift
for Cluster 2 was significantly smaller compared to the other
spacecraft.

Since the shear of the flow could be directly related to the
field-aligned current, it is of interest to examine how the flow
direction is oriented relative to the dipolarization front. Fig-
ure 6 shows the ion flow direction change relative to the nor-
mal direction in theX−Y plane and in theX−Z plane for
total flow (left panel) and flow perpendicular to the magnetic
field (right panel). Here the azimuth angle corresponds to the
angle between the flow and the normal direction to the dipo-
larization front in theX−Y plane, whereas the latitude angle
corresponds to the relative angle in theX−Z plane. The
vertical dashed lines show the period of the dipolarization
(rapid change inBz) for each spacecraft presented with the
same color as the velocity profile. It can be seen that domi-
nant changes in the direction around the boundary took place
in the azimuthal angle. It became positive before and dur-
ing the dipolarization, but changed rapidly to negative just
after the dipolarization and then changed to a positive di-
rection for the perpendicular component of the flow. The
fast flow direction then became more aligned with the nor-
mal direction to the dipolarization front. These three steps of
changes in the direction are presented in Fig. 5 with the ar-
rows for the total flow marked with 1–3. For each spacecraft,
the longest arrow corresponds to the maximum flow during
the BBF event and is marked with 3. The thin arrow, which
is marked with 2 and drawn from a point locating earthward
along the normal direction, corresponds to the flow vector

at the time of the minimum azimuth angle after the dipo-
larization front. The short thick arrow drawn from a point
further earthward along the normal direction, corresponds to
the flow vector at the time of the first maximum azimuthal
deflection before the dipolarization front and is marked with
1. It can be seen from Figs. 5 and 6 that the BBF is preceded
by deflections near the dipolarization front, which is first to-
ward dusk before the front (arrow 1) and then toward dawn
(arrow 2), or toward the radial direction to the Earth, after
the passage of the front. As shown in Fig. 5, the flow deflec-
tion produced by the arrows 1 and 2 around the dipolarization
front is then anticlockwise looking into theX−Y plane from
north (Fig. 5a), or clockwise looking from the tail into the
Y−Z plane (Fig. 5c). This is consistent with the flow shear
associated with the magnetic shear producing field-aligned
current out from the ionosphere (Birn et al., 1999; Birn et al.,
2004). An opposite sense of the shear near a dipolarization
front dawnside of a flow burst was reported by Nakamura et
al. (2002), which suggests that a current wedge like a field-
aligned current may be created and associated with the flow
burst if we take into account both observations.

4 Ionospheric features

As shown in Fig. 1, the Cluster footpoint was located at the
middle of the MIRACLE observation area. We examine the
temporal and spatial change in the equivalent current pat-
tern around the time interval of the bursty bulk flows. In
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order to examine the latitudinal variation of the currents, we
use a technique described by Vanhamäki et al. (2003) that
performs the upward field continuation for a 1-D meridional
chain of magnetometers using spherical coordinates. In this
technique the magnetic field immediately below the iono-
sphere is derived from the magnetic field measured on the
ground, assuming that the atmosphere in between is current-
free. Figure 7 shows the 1-D-upward field continuation of
the X component of the magnetic field, corresponding to
the east-west equivalent current, to the ionosphere performed
for the north-south IMAGE magnetometer chain. The black
rectangle shows the time of the disturbance and footpoint
area of the Cluster. The solid rectangle shows the inter-
val of the flow disturbance at Cluster, whereas the dashed
one presents the interval of the entire current sheet distur-
bance at Cluster which was discussed in the previous section.
It can be seen that a westward equivalent current centered
around 70.5◦ latitude suddenly jumps to 68.5◦ starting at
21:59:50 UT with the most equatorward maximum between
22:03 and 22:04 UT, after which the maximum jumps back
polewards. It is interesting to note that the Cluster BBF activ-
ity coincides temporally as well as spatially with this sudden
equatorward movement of the westward electrojet. The west-
ward electrojet center located poleward of the spacecraft took
place earlier than the Cluster BBF observations, whereas the
equatorward one took place later, suggesting that there is an
equatorward propagating disturbance observed both at Clus-
ter and on the ground.

Figure 8 shows the equivalent current pattern using the full
2-D set of IMAGE magnetometer measurements based on
the 2-D magnetic field continuation technique to the iono-
sphere (Amm, 1997; Amm and Viljanen, 1999) for every
2 min between 21:56 and 22:10 UT. Although the amplitude
of the disturbance in the equivalent current associated with
the flow is not exceeding several tens nT, a clear localized
pattern can be seen: development of a south-westward di-
rected current at the Cluster footpoints region and south-west
side of it, and a north-westward directed current at the north-
eastside of the former, starting around 22:00 UT and last-
ing until 22:08–22:09. A similar equivalent current pattern
was also obtained for an N-S aurora during a major substorm
time (see Fig. 7a, Amm et al., 1999), except for the much
larger amplitude of the current and wider extent of the pat-
tern. Based on Amm et al. (1999), the south-westward equiv-
alent current region that was located at the south-west side
of the north-westward directed equivalent current region cor-
responded to the upward field-aligned current region. This
was aligned with the edge of the N-S auroral structures cor-
responding to the location where the south-westward equiva-
lent current changed to a north-westward equivalent current.
At the eastern side of it where the equivalent current was
north-westward, a downward current was widely distributed.
Although the conductivity as well as the electric field pattern
may differ between these active and quiet times, development
of the region of the south-westward equivalent current and
north-westward equivalent current can also be clearly iden-
tified in Fig. 8 (in 22:02–22:06 UT plots). If we apply the
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Fig. 7. One-dimensional upward field continuation of theX compo-
nent of the magnetic field to the ionosphere performed for the north-
south IMAGE magnetometer chain. Here the color code shows the
east-west equivalent current (westward equivalent current expressed
in negative values in nT). The black rectangle shows the time of the
disturbance and footpoint area of the Cluster. The solid rectangle
shows the interval of the flow disturbance at Cluster, and together
with the dashed rectangles, present the interval of the entire current
sheet disturbance at Cluster.

equivalent current and the field-aligned current pattern of the
N-S aurora by Amm et al. (1999) to the 1 September event,
the Cluster footpoint, which was located in a region mainly
south-westward equivalent current near the changing loca-
tion to the north-westward equivalent current, corresponds to
the upward field-aligned current at the auroral region. The
upward field-aligned current in the ionosphere is consistent
with the field-aligned current out from the ionosphere, in-
ferred from the Cluster observation discussed in the previous
section.

The height-integrated conductances obtained from the Eu-
ropean Incoherent SCATter (EISCAT) facility for two VHF
beams from the Tromso radar are shown in Fig. 9: Beam 1
looks (almost) to the geographic north, beam 2 (almost) to
geomagnetic north. Black points are6H , blue quadrants6P

(scale to the left), and red circlesα=6H /6P (scale to the
right). Both beams see a clear conductance maximum around
22:03 UT, in good agreement with the expected occurrence
of the streamer current system. (The sudden drop at around
22:04 UT for the beam 2 plot is an artifact because the con-
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beam 2 beam 1

Fig. 8. Equivalent current pattern using full 2-D set of IMAGE magnetometer based on the 2-D magnetic field continuation technique to the
ionosphere for every 2 min between 21:56 and 22:10 UT. Cluster footpoint is also shown in each plot.

ductance fitting has failed at several altitudes.) Beam 2 sees
larger conductances than beam 1. This is obvious from the
plots of equivalent currents between 22:00 and 22:07 UT in
which the location of the two beams is superposed to the
equivalent current vectors in 22:04 UT plot in Fig. 8. Beam 2
is closer to the westward flank of the streamer where we ex-
pect an upward field-aligned current and the largest conduc-
tances. The absolute maximum values of∼90 S and∼140 S
are rather high. Note, however, that the previous result by
Amm et al. (1999) indicated that most of the current system
related to a streamer is magnetically invisible, that is, for this
event EISCAT measures conductances with a smaller spatial
scale than the detectable scale by the method of characteris-
tics determined from the magnetic field measurements.

Figure 10 shows two-dimensional maps of the Co-
operative UK Twin Auroral Sounding System (CUTLASS)
Finland flow data over the interval 21: 56− 22 : 10 UT. The
Cluster footpoint location is indicated in the 22:04 UT plot.
Since there was no area where both of the two radars were
observing scatter, we cannot deduce the 2-D ionospheric
flow vectors for this event. Yet we can deduce the possible
change in the convection pattern from the line-of-sight ve-
locity shown in the figure. Here positive (for example, blue)
velocity is towards the radar, whereas negative (for example,
red) is flow away from the radar. The 21:56 UT plot with
change of color from blue to yellow shows the feature of the
dawn-side cell, most likely related to a south-eastward drift.
This pattern is modified due to a retreat of the blue area at

the western side and an appearance of a blue area at the cen-
ter north-eastward of the Cluster meridian region, which is
clearest at 22:04 UT plot. This pattern suggests that strong
equatorward convection is developed, taking over the previ-
ous dawnward drift. Afterwards, the central blue area retreats
and the western blue area appears to reform the initial pattern
between 22:08 and 22:10 UT. These plots suggest, therefore,
that a localized strong equatorward convection pattern ap-
peared, around the Cluster meridian, centered north-east of
the Cluster region, during the similar time interval as the
equivalent current and conductivity enhancement showed.
Grocott et al. (2004) observed a similar localized equator-
ward ionospheric flow enhancement but in the dusk cell of
the global convection region obtained by SuperDARN, asso-
ciated with a bursty bulk flow and pseudobreakup.

5 Discussion

The Cluster spacecraft observations of an isolated flow burst
with the spacecraft tetrahedron scale of 4000 km showed a
clear difference among the spacecraft, indicating the flow
channel to be spatially localized. As shown in Fig. 5a, the
dipolarization front of Clusters 1, 2, and 4, that were lo-
cated almost in a plane parallel to theX−Y plane, showed
hardly any difference along theX direction, but a clear edge
effect along theY direction. There were also some differ-
ences in the dipolarization front along theZ direction, as
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can be seen in Fig. 5b., that is, the dipolarization front is
more tilted against theX−Y plane at Cluster 3 near the neu-
tral sheet, compared to the other three spacecraft. Further-
more, the dipolarization front in the Cluster 3 direction sug-
gests that theY dimension of the flow channel could have a
somewhat different shape close to the equatorial plane. Since
Clusters 1 and 2 observed the dipolarization front within 1 s
in nearly the sameZ, we can assume that the difference is
mainly spatial, and the front structure is observed by these
two spacecraft, as illustrated in Fig. 11a, and we can deduce
the spatial scale of the flow. If we simply assume a circular
surface, for simplicity, then the radius corresponds to the half
size of the flow. From the Cluster 1 and Cluster 2 difference
in theY component of the normal direction and spacecraft lo-
cation, we can deduce a radius of 1.1RE , whereas from the
X component of the normal direction and spacecraft location
the radius was 0.75RE . Although the actual front cannot be
a circular surface, and the fronts were observed not exactly
simultaneously, this simple estimation provides a typical di-
mension of the fast flow, 1.5–2.2RE . This is comparable
to the statistical studies of the flow burst (Nakamura et al.,
2004) which showed that on average its spatial scale is 2–
3RE in the dawn-dusk direction and 1.5–2RE in the north-
south direction.

All three Cluster spacecraft with plasma measurements,
Clusters 1, 3, and 4, showed a systematic change of the flow
direction relative to the dipolarization front, as illustrated in
Fig. 11a. There is a strong flow shear at the front: at the
earthward part flows direct more toward dusk, whereas the
flow right behind the front was directed rather toward mid-
night (or more radial direction). The flow shear at the dipo-
larization front is expected to cause a field-aligned current
out from the ionosphere, consistent with the simulation of
the bubble (Birn et al., 1999; Birn et al., 2004). It is interest-
ing to note that this strong shear at the dipolarization front is
due to the deflection of the flow toward radial direction (or
conversion of the flow direction) but not due to the diversion
of the fast flow as was predicted in the simulation. An op-
posite sense of the rotation is created between this radially
deflected flow and the major flow behind, although this ro-
tation involves much larger spatial scale and therefore may
contribute to weaker and broader field-aligned current flow-
ing into the ionosphere.

The current sheet disturbance associated with the flow
burst in the magnetosphere coincides with a sudden jump in
the westward ionospheric equivalent current and the develop-
ment of a localized ionospheric equivalent current (obtained
from the MIRACLE magnetometers) and electric field pat-
tern (inferred from the line-of-sight velocity of SuperDARN)
and their recovery within 1–2 min. The onset of the bursty
bulk flow, on the other hand, was observed after the cur-
rent sheet and ground magnetic field disturbances broke out,
but still before the maximum of the ionospheric disturbance.
This could be related to the fact that initially the center of the
westward electrojet was located at a higher latitude than the
Cluster footpoint but then it moved equatorward of the foot-
point, possibly indicating that the magnetospheric source re-
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Fig. 9. The height-integrated conductances with time obtained from
EISCAT radar for two VHF beams from the Tromso radar: Beam 1
looks (almost) to the geographic north, beam 2 (almost) to geomag-
netic north. Black points are6H , blue quadrants6P (scale to the
left), and red circlesα=6H /6P (scale to the right).

gion was moving equatorward. The current sheet disturbance
seems to be therefore directly coupled with the ionospheric
activity, whereas the flow itself could cause the equatorward
jump of the electrojet reaching the maximum of the iono-
spheric activity.

Figure 11b shows the curl of the equivalent current at
22:02 UT. This quantity would be proportional to the field-
aligned currents if there were uniform conductances. This is
not exactly the case since EISCAT observed some local con-
ductance enhancement. Yet the observations indicated a very
localized enhancement, and it is therefore expected that such
a localized conductivity feature would not affect the overall
structure of the equivalent current pattern. The Cluster foot-
point location is at the south-western edge of this negative
curl, corresponding to the region of an upward field-aligned
current, as also expected in the magnetosphere. A devel-
oped positive curl region can be seen at the further north-
east side, forming a possible downward current region. Yet
it should be noted that this structure starts to build up al-
ready at 21:56:40 UT, with a detached patch of negative curl
equatorward of the background system. These observations
in the magnetosphere and ionosphere suggest that the 2-min
long observation of bursty bulk flow at Cluster could be due
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to the spacecraft passing the flow channel, while a current
system and electric field pattern were activated, expanding
the area and recovering again in about 10 min. Cluster also
observed tailward field-aligned beams before and after the
flow burst. Tailward flows have been predicted in the flux
tube behind the earthward moving bubble (Birn et al., 2004).
The field-aligned tailward flows behind the flow burst could
be explained by such a mechanism. Since the energy spec-
tra in Fig. 3 suggests that spacecraft moved from the outer
plasma sheet to the inner plasma sheet, the preceding beam
may also be interpreted due to the same mechanism.

The BBF event in this study, with an enhanced equa-
torward flow in the ionosphere, suggests that the magneto-
spheric electric field pattern directly mapped into the iono-
sphere could possibly be observed. Due to the low (or
very localized) conductance enhancement, as can be seen
from the small, overall magnetic disturbance, the resultant
Hall-current pattern was reproduced in the equivalent cur-
rent pattern. Grocott et al. (2004) determined the curl of the
ionospheric convection, which could correspond to the field-
aligned current region in a uniform conductivity. A similar
pair of curls is seen in the equivalent current, suggesting that
the current wedgelet was also observed in this study. Based
on a model of a bubble-associated electric field in the mag-
netosphere mapped to the ionosphere and uniform Hall con-
ductivity, Chen et al. (2004) predicted a similar south-west
equivalent current pattern at the south-west of the bubble, as
was observed in this study. Figure 11c illustrates the pos-
sible spatial relationships between the flow channel in the
magnetosphere and conjugate ionospheric disturbance. Tak-
ing into account the equivalent current pattern from magne-
tospheric and ionospheric observations, the area surrounded
by the pink curve shows the expected area conjugate to the
flow channel. It is interesting to note that the alignment of the
possible region of the auroral streamer is directed northwest-
southeast, whereas the main fast flow direction is mapped
to a more northeast-southwest direction, meaning that it is
the dipolarization front that creates the magnetic shear and
causes the possible precipitation and field-aligned current
and, therefore, aligned to the auroral streamer direction.

6 Conclusion

The ionospheric and magnetospheric signatures of a plasma
sheet fast flow have been determined using simultaneous
Cluster and ground-based observations during a steady IMF
period with small background ground magnetic activity in
the midnight sector. From the orientation of the dipolariza-
tion front, it was inferred that Cluster was located at the dusk-
side part of a localized plasma sheet flow channel of scalesize
1.5–2RE , with a shear in the flow, suggesting a field-aligned
current out from the ionosphere at the front. This struc-
ture was consistent with the ground-based equivalent current
pattern and possible field-aligned current location. These ob-
servations confirm that the localized enhanced convection in
the magnetosphere and the associated changes in the cur-

rent sheet structure produce consistent ionospheric signa-
tures with the similar temporal and spatial scale size at the
conjugate region. This example also shows the strength and
importance of the inversion technique to identify the iono-
spheric 3-D currents related to the localized signatures in the
tail, because otherwise, one would have missed the signa-
tures in the ionosphere for this very localized and weak event.
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