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Abstract. Collisionless quasi-parallel shocks are thought
to be composed of a patchwork of short, large-amplitude
magnetic structures (SLAMS) which act to thermalise the
plasma, giving rise to a spatially extended and time vary-
ing shock transition. With the launch of Cluster, new ob-
servations of the three-dimensional shape and size of shock
structures are available. In this paper we present SLAMS
observations made when the Cluster tetrahedron scale size
was∼100 km. The SLAMS magnetic field enhancement is
typically well correlated between spacecraft on this scale, al-
though small differences are observed. The statistical charac-
teristics of these differences contain information on the typ-
ical gradients of magnetic field changes within the SLAM
structure which, in the case studied here, occur on scales
of 100–150 km, comparable with the upstream ion inertial
length.

Key words. Interplanetary physics (planetary bow shocks;
plasma waves and turbulence)

1 Introduction

The observed magnetic field and plasma signatures of a colli-
sionless shock transition depend on both the ambient plasma
conditions, and on the angle between the magnetic field and
the normal to the shock surface,θBN . When the magnetic
field is nearly parallel to the normal: a quasi-parallel shock,
particles are able to escape into the region upstream of the
shock where they generate and scatter from waves (e.g. Le
and Russell, 1992). Under these conditions the shock transi-
tion tends to be extended and unsteady (e.g. Greenstadt et al.,
1982). Embedded in the large variations in magnetic field
magnitude and direction typically associated with this type
of shock are discrete structures which have been called short,
large-amplitude magnetic structures (SLAMS). These have a
relatively smooth magnetic field signature, where the mag-
netic field magnitude|B| is enhanced over the background
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by a factor of 2 or more. SLAMS occur both within relatively
undisturbed upstream plasma (isolated SLAMS) and in par-
tially thermalised plasma (embedded SLAMS). They propa-
gate sunwards in the plasma frame, although they are typi-
cally convected anti-sunwards in the plasma flow (Thomsen
et al., 1990; Schwartz et al., 1992). Study of SLAMS (Thom-
sen et al., 1990; Schwartz and Burgess, 1991; Schwartz et al.,
1992; Mann et al., 1994), together with the results of simula-
tion work (e.g. Scholer, 1990; Thomas et al., 1990; Scholer,
1993; Giacalone et al., 1994; Scholer et al., 2003), support a
picture of the quasi-parallel shock transition as a time vary-
ing, spatially extended and inhomogeneous region composed
of a patchwork of SLAM structures which grow, steepen, and
act as a new shock front (e.g. Burgess, 1989).

Simulation studies of the propagation of ultra-low fre-
quency (ULF) waves into a supra-thermal particle pressure
gradient (Dubouloz and Scholer, 1995) showed that under
these conditions a wave grew into a nonlinear structure with
enhanced magnetic field magnitude, similar to a SLAM
structure. Simulations also showed that SLAMS-like fea-
tures could grow very rapidly from ULF waves, on the time
scale of seconds (Giacalone et al., 1994). Further analysis
of SLAMS showed that they were associated with a gradient
in supra-thermal particle pressure, consistent with theory and
the simulation results (Giacalone et al., 1993).

The scale size and shape of SLAMS structures is relevant
to the understanding of how they interact with the plasma,
but until recently SLAMS observations have been restricted
to those made by single and dual satellite missions. The
SLAMS identified by Schwartz and Burgess (1991) had a
scale size in the flow direction of approximately 0.5RE ,
and the authors proposed that the flow transverse SLAMS
scale might be of a comparable scale size to that of the ULF
waves from which they grow. Le and Russell (1990) used
dual spacecraft studies of the correlation length of ULF fore-
shock waves to infer a flow perpendicular correlation length
of ∼1RE . Simulations, however, also showed that SLAMS-
like structures not only grew as they were convected back to-
wards the shock surface, but that they were also refracted and
became filamentary in nature (Dubouloz and Scholer, 1995).
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In 2000 the four Cluster spacecraft were launched into a
polar orbit with apogee at 19.6RE . The spacecraft fly in a
tetrahedron configuration, allowing simultaneous measure-
ments of the plasma in three independent directions for the
first time. Comparison of the data recorded by the four space-
craft gives information about the plasma on approximately
the scale size of the tetrahedron, which is altered over the
course of the mission, in order study plasma processes on a
range of scales from∼100 to 10 000 km.

An earlier paper described the first Cluster observations
of SLAMS when the tetrahedron scale was∼600 km (Lucek
et al., 2002). This study was limited by the observation of
only a few well developed quasi-parallel shocks, but analysis
of a small number of SLAMS-like features showed that al-
though all four spacecraft typically encountered each struc-
ture, significant differences were seen in the magnetic field
profiles at the four spacecraft. In these cases the differences
were not consistent with the growth of the SLAMS as they
crossed the satellite formation. The observations were, how-
ever, consistent with the overall SLAMS size, exceeding that
of the tetrahedron but, unexpectedly, with significant gra-
dients in the magnetic field being present on the spacecraft
separation scale of∼600 km. It was suggested that these dif-
ferences could either arise from the spacecraft sampling the
gradient at the edges of the SLAMS, or from SLAMS having
internal “lumpy” structure. The presence of these differences
made it difficult to estimate the propagation direction of the
SLAMS.

In 2002, when the tetrahedron scale was approximately
100 km, Cluster encountered several well developed quasi-
parallel shocks. In this paper we show several examples of
SLAMS-like features. We present one example in some de-
tail and then use an interval containing multiple SLAMS to
address what can be learnt about the scale size of these struc-
tures transverse to the flow direction. A detailed statistical
study of SLAMS, which is required to draw general conclu-
sions on their 3-dimensional properties, is currently under-
way.

2 Analysis

In this paper we present data from two quasi-parallel shock
transitions: 3 February 2002 (day 34), 04:00–07:00 UT, and
20 February 2002 (day 51), 15:30–17:30 UT. Both were ob-
served when the Cluster tetrahedron scale was∼100 km. The
first crossing was characterised by unusually high ULF wave
activity in the foreshock. Unlike the majority of ULF waves,
those on this day were left-handed in the spacecraft frame
(Eastwood et al., 2003) and hence right-handed in the plasma
frame. The wave activity was persistent on this day and
was interspersed with intervals containing SLAMS, making
this a good example to study when comparing SLAMS and
ULF wave properties, and such a study is ongoing. The sec-
ond crossing contained a number of well developed, isolated
SLAM structures, one of which is presented in the next sec-
tion.

2.1 Example of an isolated SLAMS

Figure 1 shows a well developed SLAM-like structure ob-
served on 20 February 2002. At this time the Cluster tetrahe-
dron scale was∼100 km, and was located at∼14 LT, about
8.3RE above the ecliptic plane. Using the ACE magnetic
field orientation, with a time lag chosen to match up recog-
nisable features in the ACE and Cluster data sets, the pre-
dictedθBN at the location of Cluster (not shown), relative to
a model shock normal (Peredo et al., 1995) was consistently
below 45◦ throughout the crossing, in keeping with Cluster
encountering a quasi-parallel shock transition.

Figure 1 shows magnetic field data from the FGM instru-
ments (Balogh et al., 2001) in the top six panels, with the pro-
ton number density (NP ) and plasma speed (|V |) measured
by the CIS instruments (R̀eme et al., 2001) in the bottom two
panels. The SLAMS-like magnetic field enhancement started
just before 17:07:15, lasted for∼6 s, and had a very similar
profile at all four spacecraft, with significantly higher corre-
lations between the spacecraft than was observed when the
tetrahedron scale was∼600 km. |B| peaked at a value 3.5
times the background magnetic field value, and the structure
contained a clear rotation of the magnetic field vector, with
mixed left- and right-handed polarisation sense. The order
in which the spacecraft encountered the structure is related
to its orientation and velocity relative to the plasma flow.
By assuming that the structure was planar on the tetrahedron
scale, and that it was moving with constant velocity, the rel-
ative timings can be used to determine a normal defining the
SLAMS orientation, and a velocity along this normal. In
this case the timings implied that the SLAMS was convected
anti-sunward over the tetrahedron, but that the SLAMS was
moving sunwards in the plasma frame, and hence the mag-
nitude of the SLAMS spacecraft frame velocity was lower
than the background plasma velocity. The exit edge, which
was therefore the leading edge of the SLAMS in the plasma
frame, had a clear high frequency wave associated with it.
This wave was left-hand polarised in the spacecraft frame,
consistent with a whistler wave propagating against the solar
wind flow. These characteristics are all consistent with those
of previously identified SLAMS (e.g. Schwartz et al., 1992;
Mann et al., 1994).

The timing of the spacecraft as they entered the SLAMS
was different from that when they exited: this can be seen
most clearly in the comparison of Cluster 3 (green) with the
other spacecraft. Comparison of the entry and exit showed
that the spacecraft signatures were consistent with an expan-
sion of the SLAMS structure under internal pressure, but that
they could also have arisen from the SLAMS having signifi-
cant curvature on the spatial scale of the tetrahedron, i.e. the
change in time delay represents the three-dimensional struc-
ture of the SLAMS.

Before the spacecraft encountered the SLAM structure
they passed through a region which appeared to contain par-
tially thermalised plasma, with enhanced proton number den-
sity and decreased plasma velocity. The magnetic field mea-
sured by the four Cluster satellites in this region showed a
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Fig. 1. An example of a well developed SLAM structure. Panels
show magnetic field elevation and longitude angles,θ andφ (de-
grees),BX, BY , BZ in GSE co-ordinates, magnetic field magni-
tude|B| (nT), proton number densityNP (cm−3), and plasma flow
speed|V | (km/s). The different colours show data from the four
spacecraft: 1 (black), 2 (red), 3 (green) and 4 (magenta).

lower level of correlation, suggesting that significant varia-
tions in the plasma occurred on scales of 100 km in this re-
gion. Such small-scale processes might be related to plasma
thermalisation.

2.2 Signatures of SLAMS scale size

Another quasi-parallel shock occurred on 3 February 2002
while Cluster was located near noon,∼8.3RE below the
ecliptic plane. The region upstream of the shock was pop-
ulated by exceptionally well developed ULF waves, visi-
ble most clearly in the magnetic field elevation and longi-
tude angles (Fig. 2), and by SLAMS, visible as increases in
|B|. When the tetrahedron scale was∼100 km, the time de-
lay between the different spacecraft observing an enhance-
ment in magnetic field magnitude was significantly shorter
than the duration of the SLAMS. The shape of the magnetic
field enhancement was also generally similar at these scales,
although the peak amplitude typically showed small differ-
ences between spacecraft. Therefore, we are confident that at
this tetrahedron scale we identify events which were sampled
by all four spacecraft. Since this interval contained multiple
SLAMS, small differences between pairs of spacecraft can
be analysed statistically: these differences contain informa-
tion on the gradients at SLAMS, and on their overall shape
and size.
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Fig. 2. Part of an interval containing both well developed ULF
waves and SLAMS. Panels show the same information as in Fig. 1.

Between∼04:00 and 05:30 UT 28 SLAMS were identi-
fied. The duration of each event was estimated from the time
for which the magnetic field magnitude exceeded half the
maximum|B| observed within the event. This method un-
derestimated the total duration of the event, but avoided the
analysis being influenced by high frequency whistler waves
which can occur at either the leading or trailing edges of the
SLAMS. The integrated flux at each spacecraft was estimated
by integrating|B| through each event. The differences in to-
tal flux between the different pairs of spacecraft, relative to
the maximum observed, were calculated. These differences
were then plotted as a function of the separation of the space-
craft pair perpendicular to the solar wind velocity vector, i.e.
transverse to the plasma flow, in order to look for evidence of
a spatial gradient in the magnetic field signature. Also of in-
terest is whether the SLAMS show significant time evolution
between the spacecraft. We might expect to see evidence for
this effect more clearly in the distribution of differences or-
dered by spacecraft separation along the plasma flow vector,
since this determines the time delay between the same struc-
ture crossing the different satellites. We have found some ev-
idence for time evolution, and these results will be presented
in a later publication.

When the differences are plotted against the spacecraft
separation perpendicular to the solar wind flow vector, they
form a triangular shaped scatter plot (Fig. 3). Therefore,
when the spacecraft have a small separation perpendicular to
the solar wind flow vector the probability of two spacecraft
observing large differences in SLAMS signature was much
lower than when the spacecraft were more widely separated.
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Fig. 3. Differences in SLAMS’ integrated flux measured by the dif-
ferent Cluster pairs, normalised by the maximum value observed
at each event, plotted as a function of the separation of the two
satellites perpendicular to the flow direction. Vertical lines indi-
cate the division of the points by spacecraft separation transverse
to the plasma flow used to generate Fig. 4. Horizontal dashed lines
indicate the thresholds used to characterise the distribution of dif-
ferences between spacecraft.

The lack of a large population of points exceeding 0.5, even
for the largest separations of∼250 km, suggests that the
overall extent of the SLAMS perpendicular to the solar wind
flow was greater than the tetrahedron scale, consistent with
previous Cluster observations.

The solid vertical lines in Fig. 3 divide the points into
5 bins in spacecraft separation perpendicular to the solar
wind velocity vector. These values were chosen to give
a fair sample of points within each separation range. The
dashed horizontal lines indicate four thresholds in observed
difference between a pair of spacecraft. The scatter distri-
bution can be crudely characterised by counting the fraction
of points in each vertical bin which exceed each difference
threshold. These fractions are plotted in Fig. 4.

The distributions in Fig. 4 show that for about half of the
time two spacecraft separated by only 25 km observed a dif-
ference in SLAMS’ normalised flux exceeding 0.05. This
fraction increased with increasing distance between space-
craft, as expected. In contrast, the likelihood of two space-
craft at 25 km separation observing a large difference, such
as 0.5, was zero within this small sample. Large differ-
ences were not observed unless the spacecraft were separated
across the solar wind flow by more than 150 km.

The distribution of differences contains information about
the shape, size and gradients of SLAMS, but a larger sam-
ple of data is required to characterise these properties more
completely. For example, with only a small number of events
we are not able to investigate the time variation of the gradi-
ent scale, which might be expected to evolve as the SLAMS
are convected towards the shock. Also, using data from a
single shock means that we cannot consider the dependence
of the gradient scale on the background plasma conditions
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Fig. 4. The change in occurrence of observed differences between
spacecraft as a function of spacecraft separation perpendicular to the
flow. Each trace shows the fraction of observed differences between
pairs of spacecraft which exceed a certain threshold: 0.05, 0.1, 0.2,
and 0.5, each plotted as a function of flow transverse separation.

or variations in shock orientation. The distributions could
also usefully be compared with simulations of SLAMS-like
structures.

3 Summary

Cluster observations of SLAMS within quasi-parallel shocks
have now been made at scales of 100 and 600 km. Earlier
observations at scales of∼600 km showed that although the
overall SLAMS extent exceeded 600 km, significant differ-
ences were observed between spacecraft at these separations.
Shocks observed at scales of 100 km now show that SLAMS
are much better correlated on these scales, although regions
with smaller scale variations downstream of the SLAMS (in
the plasma frame) might be associated with thermalisation
processes. Statistical analysis of the small differences in
|B| measured by multiple spacecraft suggest that while the
SLAMS extent is significantly greater than 100 km, as ex-
pected, the gradient scale in|B| appears to be of the order of
100–150 km, which is comparable with the ion inertial length
in the undisturbed upstream solar wind at this time.
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