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Abstract. The spectrum of the magnetic fluctuations mea-
sured by the Cluster satellites in the inner magnetosheath is
investigated using the k-filtering technique. On a case study,
it is shown first that the wave vectors calculated from the
Flux Gate Magnetometer (FGM) data fit well with those de-
termined from the Spatio-Temporal Analysis of Field Fluc-
tuations (STAFF) data for their common range of frequency,
which allows one to confirm that the high pass filter applied
to STAFF data does not alter the spatial characteristics of its
spectra. Both analyses confirm the dominance of the mirror
mode for frequencies up to 1.4 Hz. Furthermore, by com-
paring the experimental charateristics of the identified mir-
ror mode to the prediction of the linear theory, it is shown
that the predicted maximum growth rate is observed in the
frequency range 0–0.15 Hz, i.e. the FGM range. All the rest
of the mirror mode, identified for higher frequencies is more
likely to be a non linear extension of the most instable one.
This cascade on the spatial scales is, in turn, observed in the
satellite frame as a temporal spread due to Doppler shift. Fur-
ther implications on the real nature of the observed spectrum
are discussed.

Key words. Magnetospheric physics (magnetosheath,
plasma waves and enstabilities). Space plasma phusics
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1 Introduction

The magnetic turbulence in the terrestrial magnetosheath
plays a key role in the dynamical coupling between the so-
lar wind and the magnetosphere. It has been investigated for
many years both experimentally (Hubert et al., 1989; Gleaves
and Southwood , 1991; Song et al., 1994; Denton et al., 1995;
Constantinescu et al., 2003) and theoretically (Omidi and
Winske, 1995; Ǵenot et al., 2001; Hellinger et al., 2003).
Now, thanks to the availability of the multipoint measure-
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ments of Cluster, we are able to investigate the 3-D proper-
ties of the observed turbulence in a more realistic way, and
to go further in understanding the deep embedded physics.
This, of course, is possible, providing one uses well adapted
tools that take full advantage of the 3-D Cluster data. The
k-filtering technique, which was introduced in the context
of space physics by Pinçon and Lefeuvre (1991), was ap-
plied by Sahraoui et al. (2003) to study the magnetic fluctu-
ations measured by the Cluster-STAFF experiment. In this
first application of the k-filtering technique to STAFF data,
they have discussed the new opportunities that it offers to
study the space plasma turbulence. They have, for the first
time, directly demonstrated the complex behaviour of the
ULF magnetic field fluctuations: each observed frequency in
the satellite frame corresponds to a superposition of several
plasma modes, with different wave vectors, and therefore,
different frequencies in the plasma frame. They have partic-
ularly shown that, in the frequency range 0.35−1.2 Hz, most
of the energy is due to the mirror instability, but this does
not prevent the existence of other plasma modes (Alfvén,
slow, cyclotron, . . . ) with weaker energies. However, they
also pointed out a discrepancy between the identified mirror
mode and the prediction of its linear theory: thek modu-
lus of the most intense mirror mode, observed in the interval
0.35−1.2 Hz, is larger than the theoretical maximum growth
rate. The fundamental aim of the present paper is to explain
the mentioned discrepancy between theory and observations.
In Sect. 2, we present the new data from the FGM experi-
ment that are used in the present work; in Sect. 3 we briefly
recall the principle of the k-filtering method and present its
application to compare wave mode identifications from FGM
and STAFF experiments. Section 4 is dedicated to the com-
parison of the obtained charateristics of the mirror mode to
the prediction of the linear theory. Some new implications
on the observed magnetic spectrum are then discussed.
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Fig. 1. The magnetic field components measured by the FGM ex-
periment in the MFA frame. The continuous components are re-
moved from the data and used to define the MFA frame. The three
first panels (from top to bottom) represent respectively the parallel
and the perpendicular components of the magnetic fluctuations. The
last one shows the modulus of the magnetic fluctuations normalized
to the background magnetic field. The color code is relative to the
four satellites.

2 Observations

The data used in the present study have been gathered by
the Cluster spacecraft on 18 February 2002 in the inner mag-
netosheath around 05:34 (LT). The crossing of the magne-
topause by the spacecraft was about 35 min before. The

FGM data are sampled at 23 Hz, and allow one to access the
continuous components of the magnetic field (Balogh et al.,
1997). These continuous components are removed from the
signal and used to define the Magnetic Field Aligned (MFA)
frame, in which this study is performed. The Z axis of the
MFA frame is aligned alongB0. For this event, the STAFF
Search Coil data are sampled at 25 Hz. Once the data are cal-
ibrated and despun, the signal is recovered safely on the full
three components for frequencies above 0.35 Hz (Cornilleau-
Wehrlin et al., 1997). The lower frequencies are also accessi-
ble but this requires much more caution because of the satel-
lite spin at 0.25 Hz. Therefore, to avoid any problems relative
to this last point, we use the FGM data to prolong the study
to frequencies below 0.35 Hz. In the present work, we inves-
tigate the magnetic turbulence in the frequency range 0.2 Hz:
FGM data are used from 0 to 0.35 Hz, whereas STAFF data
are used from 0.35−2 Hz. This will allow one to com-
plete the first study done by Sahraoui et al. (2003), which
used STAFF data only and analysed the frequency range
0.35−1.2 Hz. Now, we will particularly focus on the fre-
quency range 0,0.5 Hz, and two main goals are checked: first
we check whether the high pass filter (withfcut−off=0.35 Hz)
that had been applied to STAFF data did not alter the physi-
cal results provided by the k-filtering method. This is done by
comparing the nature of the identified waves in the frequency
range 0.35−0.5 Hz covered by both experiments. Then, we
will study from FGM data the nature of the new waves that
could appear for frequencies lower than 0.35 Hz. This last
purpose will allow, as we can see below, one to answer some
questions that have been raised in the first work of Sahraoui
et al. (2003).

In Fig. 1 the X, Y, and Z magnetic waveforms from FGM
experiment in the MFA frame over about 164 s are shown. As
one can see, the parallel componentBz shows low amplitude
oscillations of about a 10-s period, more clearly observable
during the first 60 s and between 90 to 150 s.

These dominant oscillations can also be seen on the FFT
spectrum of the parallel component shown in Fig. 2. In fact,
up to 0.2 Hz, the parallel component dominates the perpen-
dicular one with a significant enhancement around the fre-
quency 0.1 Hz. Between 0.2 to 0.6 Hz, the parallel compo-
nent is slightly larger than the perpendicular one and exibits
more oscillations. From 0.6 up to 2 Hz the two components
have comparable levels and both exhibit small peaks. The
dominance of the parallel component in the LF part of the
spectrum can be taken as a signature of compressible waves.
These issues will be clarified in the next section.

3 Wave identification using the k-filtering technique

From the measure of a given wave field simultaneously in
several points in space, the k-filtering technique allows one
to estimate the corresponding energy distribution in the 4-
D Fourier space(ω, k), namely the functionP (ω, k). The
k-filtering method adopts a plane wave decomposition and
requires the time stationarity and space homogeneity of the
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Fig. 2. The FFT spectra calculated from FGM data for the fre-
quency range [0.07, 2] Hz. The parallel component (red line) is
compared to the perpendicular one (blue line), and to the whole
spectrum (black line).

time series. In real data, these two hypotheses are never
strictly fulfilled. However, in practice, we are content with
the concept of weak space (time) homogeneity (stationarity):
the signal should be homogeneous (stationary) on scales that
are larger than the largest spatial (temporal) scale determined
by the k-filtering method. Obviously, the determination of
the wave vectorsk from spatially undersampled data (even
the Cluster ones) is not trivial. The k-filtering technique uses
a sophisticated method to overcome this difficulty: it intro-
duces nonlinear filters for each couple(ω, k), requiring that
all the energy contained in the signal is absorbed except that
related to(ω, k) (Pinçon and Motschmann, 1998). The va-
lidity domain of the technique in the wave vector space is de-
termined from the separations between the Cluster satellites:
all the existing wavelengths have to be larger than the space-
craft separations, which are of the order of 100 km in the
present case. Once the magnetic energy distributionP(ω, k)

is calculated, it can be used to identify the existing propagat-
ing modes (Sahraoui et al., 2003): for each given frequency
ω0, and using an isocontour representation, the distribution
of energy ink-space is displayed as cuts in the(kx, ky) plane
along thekz axis. For eachkz corresponding to an identified
peak, the theoretical dispersion relations of the plasma LF
linear modes (MHD and mirror modes) are then superposed
after being Doppler shifted using the flow velocities from the
CIS experiment (R̀eme et al., 1997). The mirror mode is as-
sumed to have approximately a zero frequency in the plasma
frame, which means that it is observed in the satellite frame
with the dispersionω=k.v. The dispersion relations are
computed using the WHAMP program (Rönnmark, 1982),
where the control parameters are those measured by the dif-
ferent Cluster experiments:B0 from FGM, ion temperatures
from CIS, and plasma density from WHISPER (Décreau
et al, 1997). For more details on the previous results, the
reader is referred to Sahraoui et al. (2003). Application
of the k-filtering technique to the frequency f=0.44 Hz, ac-
cessible on FGM and STAFF data, allows for the identi-
fication of an isolated peak shown in Fig. 3. The energy
distributions determined from the two experiments look al-

Fig. 3. Comparison of the energy distribution ink space of the
most intense identified peak for the frequency f=0.44 Hz from FGM
(top panel) and STAFF (bottom one). The black thin lines are the
isocontours of energy in the(kx , ky) plane, whereas the colored
lines are the theoretical dispersion relations of the LF modes. The
blue line is the Doppler shiftω=k.v and corresponds to the mirror
dispersion relation in the satellite frame. Alfvén and slow modes
(red lines) are very close to the mirror dispersion curve in this case
of a quasi-perpendicular direction of propagation.

most identical: the two peaks are, respectively, centred on
the wave vectorskFGM=(−142.5, 51.7, −7.1)×10−4 rd/km
and kSTAFF=(−127.5, 51.7,−7.1)×10−4 rd/km. The two
wave vectors are separated by an angle less than 3◦. This
similarity is also proven for other frequencies (not shown
here). This very satisfactory result demonstrates that drop-
ping the low frequency part of the spectrum from STAFF
data does not alter the physical results provided by the k-
filtering technique at higher frequencies. By combining data
from the two experiments, this last point allows one to take,
in particular, full advantage of each experiment in the corre-
sponding frequency range where its functioning is the best
(Alexandrova et al., 2004).
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Fig. 4. The linear growth rate calculated from WHAMP using the
measured parameters for the angle(k, B0)=80◦. vth//=154 km/s is
the parallel thermal velocity of the protons,ωcp=2.07 rd/s is their
cyclotron pulsation. The vertical dashed line shows the location of
the experimental wave vector of the most intense identified mirror
mode.

Fig. 5. The most intense peak identifiable on the whole spectrum
0–10 Hz. It is observed at f=0.11 Hz centred on the mirror mode
dispersion curveω=k.v (blue curve). Its wave vectork has an angle
−80◦ with B0 and a modulus k=0.00389 rd/km. Alfvén and slow
modes (straight red curve) are degenerated and very close toω=k.v.

4 Discussion

Now let us look at the physical properties of the whole spec-
trum: 0−0.35 Hz from FGM and 0.35−2 Hz from STAFF.
As we can see in Fig. 3, which shows thek-energy distri-
bution for the observed frequency f=0.44 Hz, the identified
peak is localized on the lineω=k.v which corresponds to the
dispersion relation of the mirror mode in the satellite frame
(ω ∼ 0 in the plasma frame). Its wave vector makes a−80◦

angle with respect to the local magnetic field.

From a theoretical point of view, it is well established
that the mirror instability grows in a hot plasma because of
the protons’ temperature anisotropy and when the criterion
Ap−1≥1/β⊥ is fulfilled, whereAp=Tp⊥

/Tp// is the proton
anisotropy parameter (Hasegawa., 1975; Gedalin et al., 2002;
Hellinger et al., 2003). Using WHAMP and the physical pa-
rameters measured in the context of this study, we calculate
the linear growth rate of the mirror instability. For this pur-
pose, we assumed a maxwellian distribution functions for the
protons. The electrons are assumed isotropic with a temper-
atureTe=10 eV, whereas the measured protons anisotropy is
Ap∼1.28.

In Fig. 4 the linear growth rate of the mirror instabil-
ity is shown as a function of the wave vector for the angle
θ=(k, B0)=80◦.

The theoretical maximum growth rate is obtained for the
value kγmax=0.004 rd/km. Although the measured param-
eters are very close to the marginal instability threshold
(Ap∼1.28, β⊥∼4), the theoretical value is three times less
than the observed modulus of the mirror mode wave vector
k=0.0124 rd/km associated with the satellite frame frequency
(f=0.37 Hz) studied by Sahraoui et al. (2003). This discrep-
ancy between the observations and the basic linear theory of
the mirror mode was pointed out in that work, and has re-
mained unanswered since then.

Now, to solve this problem, we notice first that the mir-
ror mode is observed in the quasi-perpendicular direction, its
dispersion relation can be written asωobs=k.v∼k⊥v⊥. Ac-
cordingly, one may expect to observe increasingk⊥ with in-
creasing frequencies in the satellite reference frame. This
point was indeed verified in Sahraoui et al. (2003), since the
identified peaks have largerk for higher frequencies in the
frequency range 0.35−1.2 Hz. These observations, therefore,
support that the mirror instability would actually develop for
frequencies lower than 0.35 Hz, and would be observable for
higher frequencies only by Doppler shift.

To check the validity of this interpretation, we look at the
results of the k-filtering technique obtained in the frequency
range 0,0.35 Hz from FGM data. The most intense peak is
identified at the frequency f=0.11 Hz in the satellite refer-
ence frame, which corresponds to the 10-s period oscillating
waves previously seen on the parallel component of the fluc-
tuations (Fig. 1) and explains the energy enhancement on the
parallel spectrum atf ∼0.1 Hz (Fig. 2). This most intense
peak, shown in Fig. 5, lies on the dispersion curve of the mir-
ror modeω=k.v. The corresponding wave vectork makes
a −80◦ angle withB0 and its modulus is k=0.00389 rd/km.
These experimental characteristics compare very favorably
to the prediction of the linear kinetic theory of the mirror in-
stability. As it is shown in Fig. 4, the measured wave vector
of the mirror mode at the frequency f=0.11 Hz is very close
to the one associated with the theoretical maximum growth
rate of the mirror instability. Although this mirror mode is
generated at such a spatial scale for the zero frequency in
the plasma frame, it is still observed in the satellite frame up
to 1.4 Hz with decreasing wavelengths and energy (Figs. 5
and 3). This nonlinear extension of the mirror spectrum turns
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out to be observed in the satellite frame as a temporal effect
by Doppler shift. The mirror mode spectrum could also ex-
tend to frequencies higher than 1.4 Hz, but the corresponding
wave vectors are not accessible to measurement because of
the limitation imposed by the Cluster separations.

Besides the previous mirror mode, other modes, with
lower intensities, are also identifiable by the k-filtering
method (Sahraoui et al., 2003). The existence of other
modes, having a shear magnetic component, is indeed ex-
pected from Fig. 2, where the perpendicular component of
the spectrum exhibits small fluctuations and reaches the level
of the parallel one around f=0.7 Hz. This was indeed con-
firmed by identifying Alfv́en/cyclotron modes above 0.6 Hz,
their intensities compete with that of the previous mirror
mode for increasing frequencies. The identification of these
cyclotron modes is based only upon the calculation of their
frequencies in the plasma frame, which are multiples of the
proton gyrofrequency. The cylotron modes also exist for fre-
quencies up to f=1.8 Hz∼6fcp (fcp∼0.3 Hz is the proton gy-
rofrequency), but their study requires much caution because
of the weak level of energy at such high frequencies. A more
refined study of these cyclotron modes, including their pos-
sible interaction with the mirror one, is postponed to a future
work.

5 Conclusions

A case study of a magnetic spectrum in the magnetosheath
using the k-filtering method is presented. It is shown that
magnetic data from STAFF and FGM experiments are com-
plementary and provide very similar results concerning the
modes that propagate the magnetic energy. Thanks to this
continuity of the results over the frequency range covered
by each experiment, a new image of a high beta magnetic
spectrum is obtained. In the same line with the results pub-
lished by Sahraoui et al. (2003), it is shown that the LF part
of the observed spectrum is dominated by the mirror mode
having quasi-perpendicular wave vectors with respect to the
static magnetic field. It is shown that the magnetic energy
seems to be injected at a spatial scale that is in very good
agreement with the predicted maximum growth rate of the
mirror instability. Even if this energy injection, via the linear
mirror instability, is observed at the lowest frequency part of
the spectrum, the mirror mode is nevertheless still observed,
at higher frequencies in the satellite frame, with decreas-
ing wavelengths. This spatial extension, from the longest
wavelength corresponding to the maximum growth rate to
the shorter ones, is certainly due to nonlinear effects. It can
indeed be viewed as a classical turbulent cascade, from large
to small scales, or as a nonlinear saturation of the mirror in-
stability, evoking more coherent effects.

The logical continuations of the present work are, first, to
carry out such a continuousk-spectrum by integrating over
all the frequencies for which the mirror mode is observed.
The second step will be to try to answer the question of the
origin of the resultingk-spectrum (turbulent cascade or sat-

uration). If the cascade scenario is confirmed, a theoretical
explanation of this new “hydrodynamic mirror turbulence”
will have to be built to interpret the observed spatial cascade.
This work is in progress, and will be the subject of a future
publication.
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Pinçon, J.-L. and Motschmann, U.: Multispacecraft filtering: gen-
eral framework, in: Analysis methods for multi-spacecraft data,
65–78, Int. Space Sci. Inst., Bern, Switzerland, 1998.

Rème, H., Bosqued, J. M., and Sauvaud, J. A., et al.: The cluster
ion spectrometry (CIS) Experiment, Sp. Sci. Rev., 79, 303–350,
1997.
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Sahraoui, F., Sahraoui, F., Pinçon, J. L., Belmont, G., et al.: ULF

wave identification in the magnetosheath: The k-filtering tech-
nique applied to cluster II data, J. Geophys. Res., 108(A9), 1335,
2003.

Song, P., Russell, C. T., and Gary, S. P.: Identification of low-
frequency fluctuations in the terrestrial magnetosheath, J. Geo-
phys. Res., 99, 6011–6025, 1994.


