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from Diffusion MR Signal
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GREYC (CNRS UMR 6072), 6 Bd Maréchal Juin, 14050 Caen Cedex, France ⋆

Abstract. We address the problem of robust estimation of tissue mi-
crostructure from Diffusion Magnetic Resonance Imaging (dMRI). On
one hand, recent hardware improvements enable the acquisition of more
detailed images, on the other hand, this comes along with a low Sig-
nal to Noise (SNR) ratio. In such a context, the approximation of the
Rician acquisition noise as Gaussian is not accurate. We propose to es-
timate the volume of PDF-based characteristics from data samples by
minimizing a nonlinear energy functional which considers Rician MR ac-
quisition noise as well as additional spatial regularity constraints. This
approach relies on the approximation of the MR signal by a series ex-
pansion based on Spherical Harmonics and Laguerre-Gaussian functions.
Results are presented to depict the performance of this PDE-based ap-
proach on synthetic data and human brain data sets respectively.

1 Introduction

Water molecules exhibit Brownian motion which might be constraint by internal
micro-structure of the brain white matter. Diffusion-Weighted Imaging (DWI)
measures this local displacement using the pulse gradient spin echo sequence [1]
in each voxel and thus provides images of the architecture of the brain. These
images provide valuable information to diagnose early stages of stroke, brain
diseases or neurological disorders [2]. However, this molecular displacement is
not directly measured. Indeed, when the diffusion gradient pulse duration δ is
negligible compared to diffusion time ∆, the MR signal E defined in Q-Space is
related to the average displacement probability P by the Fourier transform [3]

P (p) =

∫

q∈R3

E(q) exp(−2πiqpT )dq, with E(q) =
S(q)

S0
, (1)

where p is the displacement vector and q stands for the diffusion wave-vector of
the Q-Space. The symbols S(q) and S0 respectively denote the diffusion signal
at gradient q and the baseline image at q = 0.

Eq.(1) naturally suggests to use the Fourier transform to numerically esti-
mate the PDF (Probability Density Function). This technique known as Diffu-
sion Spectrum Imaging (DSI) [4] is not clinically feasible due to the huge acqui-
sition time required to retrieve the whole Q-Space coefficients. As a result of DSI
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constraints, High Angular Resolution Diffusion Imaging (HARDI) [5] comes as
an interesting alternative and suggests to sample the signal on a single sphere
of the Q-Space.

Prior methods of the literature based on HARD images [6–10] use a single
shell acquisition and have thus to assume strong priors on the radial behav-
ior of the signal, i.e. mono-exponential decay. Nonetheless, sampling schemes
on several spheres in the Q-Space have been proposed recently [10–14]. Since
the number of samples still remains too low to allow a precise Fourier transform,
some methods rather consider computed tomography methods [14] or an approx-
imation of the MR signal radial attenuation by a multi-exponential function [10,
12]. Note that these methods use a larger set of data but are still based on a
priori models of the radial behavior of the input signal.

Nonetheless, a recent method [15] tackles this problem with a continuous
representation of data from multiple shells and a fast method for computation
of functions of the PDF. It involves a damped least square estimation of the
best-fitting coefficients in the Spherical Polar Fourier basis. However magnitude
MR data are corrupted by a Rician noise not a Gaussian one, and consequently
introduces a bias in intensity at low Signal-to-Noise Ratio (SNR) which reduces
the tissue contrast. This arises from complex Gaussian noise in the original fre-
quency domain measurements named K-Space [16–19]. In this study we propose
to extend the previous approach to robustness to Rician noise within a varia-
tional framework.

In section 2, we overview the mathematical background of the method intro-
duced in [15]. Then, we present an variational framework extension of previous
method for a robust estimation in section 3. Section 4 shows validation results
on both numerical and real human data-sets. Finally, we draw conclusions of the
proposed approach in section 5.

2 Mathematical background

To be as self-contained as possible, we briefly overview the method introduced
in [15] using the Spherical Polar Fourier (SPF) expansion. In order to be able
to reconstruct the PDF from Eq.(1) even with few samples, we seek a basis in
which the acquired signal is sparse. For convenience, a list of common notations
used in this paper is reminded in Table 1.

2.1 Spherical Polar Fourier Expansion

Let E be the MR signal attenuation, we propose to express it as a serie in a
spherical orthonormal basis named Spherical Polar Fourier (SPF) [20]

E(q) =
S(q)

S(0)
=

∞
∑

n=0

∞
∑

l=0

l
∑

m=−l

anlmRn(||q||)ym
l

(

q

||q||

)

, (2)

where anlm are the expansion coefficients, ym
l are real Spherical Harmonics (SH),

and Rn is an orthonormal radial basis function.



Table 1. A list of major notations used in this paper

Symbol Description Symbol Description

PDF Probability Density Function p,k Displacement vectors in R
3

ODF Orientation Density Function P (p) Average displacement probabilities
FRT Funk-Radon Transform q Diffusion space vector in R

3

SH Spherical Harmonics S(q) MR signal at diffusion gradient q

SPF Spherical Polar Fourier E(q) MR signal attenuation S(q)/S(0)
anlm SPF expansion coefficient G(k) PDF characteristic at point k

at order n, l and m hk(p) projection function of G(k)

The angular part of the signal E is reconstructed by the complex SH Y m
l

which form an orthonormal basis for functions defined on the single sphere. For
this reason, they have been widely used in diffusion MRI [21, 22]. Indeed, as the
diffusion signal exhibits real and symmetry properties, the use of a subset of
the complex basis made of real and symmetric SH ym

l strenghten the robust-
ness of the reconstruction to signal noise and reduces the number of required
coefficients [21, 22].

The radial part of the signal E is reconstructed by the elementary radial
functions Rn. A sparse representation of the radial signal should approximate it
in a few radial order N . Based on these observations, we propose to estimate E
using the normalized generalized Gaussian-Laguerre polynomials basis Rn [20,
23]:

Rn (||q||) =

[

2

γ3/2

n!

Γ (n+ 3/2)

]1/2

exp

(

−
||q||2

2γ

)

L1/2
n

(

||q||2

γ

)

, (3)

where γ denotes the scale factor and L
(α)
n are the generalized Laguerre polyno-

mials. The Gaussian decay arises from the normalization of the Laguerre poly-
nomials in spherical coordinates.

The SPF forms an orthonormal basis on Spherical Harmonics (SH) and
Gaussian-Laguerre polynomials. Consequently a low order truncation assumes
a radial Gaussian behavior as in [10, 12] and a high order truncation provides
a model-free estimation. Besides, the square error between a function and its
expansion in SPF to order n <= N and l <= L converges to zero as N and L
go to infinity.

2.2 Fast Computation of Characteristics on the PDF

As we have a continuous representation of E from the SPF coefficients, let
G(k) =

∫

P (p)hk(p)dp be a characteristic G of the PDF at point k, where
hk denotes a projection function at point k. Table 2 represents several popular
characteristics G which can be evaluated using this computational scheme. A
natural way to retrieve G would be to reconstruct E from the SPF coefficients,
compute a Fast Fourier Transform (FFT) and finally calculate G on the PDF



Table 2. A non-exhaustive list of some PDF characteristics G and their projection
function hk at point k. FRT stands for the Funk-Radon Transform used in QBI, where
J0 is the Bessel function of the first kind and ||q′|| is the radius of the q-ball shell.
ISO stands for isoprobability profiles. SD and FD respectively stands for slow and fast
diffusion, where ||p′|| is the radius limit between intra and extra cellular diffusion.

G ODF FRT ISO SD FD

hk(p) δ(1 − |p·k|
||p||||k||

) J0(2π||q
′||||p||) δ(k)

ODF if ||p|| < ||p′||
0 if ||p|| > ||p′||

0 if ||p|| < ||p′||
ODF if ||p|| > ||p′||

volume; however such a scheme would induce cumbersome computations and
raise numerical accuracy issues. So, any characteristic G defined from Eq.(4) can
alternatively be computed directly from the SPF coefficients. Indeed, since the
SPF are an orthonormal basis the following relation holds:

G(k) =

∫

p∈R3

P (p)hk(p)dp =

∫

q∈R3

E(q)Hk(q)dq =
∞
∑

nlm

anlmb
k
nlm (4)

where Hk is the inverse Fourier transform of hk and anlm, b
k
nlm respectively

denote the SPF expansion of E and Hk. Therefore, the numerical computation
of G(k) which is an integration over an entire volume simply turns into a very
fast dot product between two vectors of SPF coefficients.

We seek the SPF coefficients that represent the best the MR data samples
E. However, E is strongly corrupted by noise and may lead to distortion of
computed characteristics on the PDF.

3 Robustness to noise

Since the acquisition noise on the MR signal is not Gaussian, a least square fit
is definitely not the best choice for such an estimation process. This issue arises
especially when dealing with low SNR data as this is the case for very high-q
values. Furthermore, independent voxel estimation does not reflect the spatial
regularity of the diffusion function. We propose to tackle these issues with a
variational framework which is adaptable to noise distribution and is able to use
valuable information given by the neighbour voxels.

3.1 Variational Framework

The key idea is to estimate and regularize the whole volume of voxels at the
same time. Indeed, it enables to take into account correlation between all parts
of the processing pipeline instead of doing the different parts separately. Let
E be the acquired dMRI volume corrupted by Rician noise, we seek the SPF
coefficients A of the filtered dMRI volume Ê = MA, where the symbol M =
(Rn(||qj ||)y

m
l (

qj

||qj ||
))nlm×j∈N3×N denotes the SPF basis matrix. We propose to



robustly estimate and regularize the SPF coefficients field from the dataset vol-
ume simultaneously by minimizing the following nonlinear functional energy:

min
A

{

∫

ΩE

[

ns
∑

k

ψ(Êk)

]

+ αrϕ(||∇A||)dΩE

}

(5)

where ΩE ⊂ R
3 is the domain of datasets voxels. The likelihood term ψ(Ek)

measures the dissimilitudes at voxel x ∈ ΩE between E and its reconstruction
Ê at gradient direction k, ψ : R → R

+ and ϕ : R → R
+ are real and positive

functions, αr ∈ R is the regularization weight and ||∇A|| the gradient norm
defined as

||∇A|| =
∑

nlm

||∇Anlm|| (6)

Note that if ψ(s) = s2 and αr = 0 in Eq.(5), we minimize the least square
criterion. As the minimization cannot be computed straightforwardly, the gra-
dient descent coming from the Euler-Lagrange derivation of Eq.5 leads to a set
of multi-valued Partial Differential Equation (PDE) as described in Eq.(7). In
practice, we first set A(t=0) to U0, an initial estimate of SPF coefficients. In

order to estimate a solution, SPF coefficients velocity ∂A
∂t giving the direction

from the current A to a solution is computed. The latter is done several times
until convergence (typically when ε ∈ R

+, ε→ 0, ∂A
∂t < ε),







At=0 = U0

∂Aj

∂t =
∑ns

k Mk,jψ
′(Êk) + αr div(ϕ(||∇A||))

(7)

The initial estimate U0 is computed either by considering a random field or a
more structured one. A good choice is to start from an initial set which is not
so far from the global minimum; so the linear least square estimation seems
to be an adequate alternative. Indeed, least square minimization is the global
minimum when ψ(s) = s2 and αr = 0. One can expect the minimum to be close
enough to the least square minimum through variations of ψ and ϕ; and should
consequently bring down the number of iterations required to converge.

3.2 Likelihood function ψ

The diffusion MR magnitude images are corrupted by noise and the best ψ
function is the one specific to the MR scanners, that is to say the Rice distribution
whose probability density function is:

p(E|Ê, σ) =
E

σ2
exp

(

−(E2 + Ê2)

2σ2

)

I0

(

E · Ê

σ2

)

(8)

where σ is the standard deviation of the noise and I0 is the modified zeroth-
order Bessel function of the first kind. We adapt the Rician bias correction



Fig. 1. Energy associated to respectively Gaussian and Rician likelihood ψ functions.
Note the bias introduced by the Rician function on low SNR data. E = 1 and σ = 0.5.

filter introduced in [24] from 2nd-order DTI to the SPF basis. It is based on
a maximum a posteriori approach so we construct the filtered volume Ê that
maximizes the log-posterior probability:

log p(Ê|E) = log p(E|Ê) + log p(Ê) − log p(E) (9)

where p(E|Ê) is the likelihood term, p(Ê) is the prior or the regularization term
and p(E) is the normalizing constant. We are interested in the likelihood term,
thus combining Eq.(8) and Eq.(9) the pointwise log-likelihood becomes

log p(E|Ê, σ) = log
E

σ2
−

(E2 + Ê2)

2σ2
+ log I0

(

E · Ê

σ2

)

= ψ(Ê) (10)

Fig.3.2 illustrates variation of the opposite function with scalar values of Ê
when E = 1 and σ = 0.5. The energy is low when E ≈ Ê and increases with
their dissimilitudes. Note that σ has to be known a priori and can be either
retrieved as a parameter specific to the MR scanner, or can be either computed
from a uniform area as described in [19]. Combining Eq.(7) and the derivative
of Eq.(10) with respect to Aj gives the PDE adapted to Rician noise,

∂Aj

∂t
=

∑ns

k Mk,j

σ2



−Êk + Ek





I1

(

Ek·Êk

σ2

)

I0

(

Ek·Êk

σ2

)







+ αr div(ϕ(||∇A||)) (11)

3.3 Regularization function ϕ

Regarding the spatial regularization, various functions ϕ of the image processing
literature can be proposed as long as it preserves important features of the image.
Indeed, regularization should be strong on homogeneous area (low ||∇A||), and
preserve contours not only between isotropic and anisotropic regions but also
among voxels with different number of fibers (large ||∇A||). We drop the angular



and radial regularization step of Eq.4 in [15] since the spatial regularization puts
sufficient constraints on the diffusion signal to be estimated. Our experiments
have confirmed that combining these regularization to the spatial one is useless.

4 Experiments

In this section, we present results of our method on both synthetic simulations
and real human brain data-sets. We first focus on a comparison between the
damped least square estimation introduced in previous work and the robust
variational framework introduced in this paper. Then we illustrate the flexibility
of the proposed approach with a comparison of ODF computed with QBI method
as proposed in [25] and with our method [15] on an in-vivo dataset.

4.1 Numerical Simulations

We have applied the above scheme to the simulations of a single fiber and cross-
ing fiber configurations. The following synthetic multi-exponential model was
used to generate data, E(q) =

∑Nb

k=1 fk exp
(

−qTDkq
)

where
∑Nb

k=1 fk = 1. The
symbol Nb stands for the number of fibers and Dk is a 3× 3 symmetric definite
positive matrix defining the diffusion anisotropy. Diffusion images were synthe-
sized following 3 sampling protocols: low resolution (1 shell b = 3000 s/mm2),
medium resolution (2 shells b = {1000 , 3000} s/mm2) and high resolution (5
shells b = {500 , 1000 , 1700 , 2400 , 3000} s/mm2) along with a single baseline im-
age acquired at b = 0 s/mm2. Each shells is composed of 42 directions along the
edges of a subdivided icosahedron. Estimation parameters were chosen empiri-
cally for each sampling protocol: low resolution {N = 0, L = 4, γ = 100, λN = 0,
λL = 6× 10−5}, medium resolution {N = 1, L = 4, γ = 70, λN = λL = 0}, high
resolution {N = 4, L = 4, γ = 50, λN = λL = 0}.

In order to assess the robustness to noise of our proposed variational frame-
work, we produced a synthetic phantom of crossing fibers (horizontal and vertical
networks) surrounded by water regions (upper left area) (c.f . Fig.3a). To sim-
ulate dMRI acquisitions, we added Rician noise of variance σ to the signal E
which was then sampled using medium resolution protocol as described above.

Fig.2 shows the results of a comparison between the reconstruction of E with
Gaussian and the Rician likelihood functions on a noisy dataset (Fig.2b). A post-
processing contrast enhancement with the same parameters was applied to all
images (a-f) to highlight artifacts. Although the Gaussian function is classically
used in the least square minimization [15], it is not robust to noise and creates
undesirable radial oscillations at high q values (Fig.2c). On the contrary, the
Rician likelihood function strongly attenuate this drawback and gives a correct
estimation of E (Fig.2d).

The Generalized Fractional Anisotropy (GFA) measure [5] in Fig.3 is a gen-
eralization of the fractional anisotropy (FA) measure of DTI. Each image was
normalized independently to enhance visualization contrast. This qualitative
comparison highlights the need for spatial regularization within the estimation



a) Truth b) Noisy c) Gaussian d) Rician e) Diff.Gauss. f) Diff.Rice

Fig. 2. Qualitative comparison between Gaussian and Rician likelihood functions influ-
ence on reconstruction of an noisy dataset. PSNR(noisy,original)=18.5. Graphics (e,f)
are the absolute difference between respectively (c,d) and (a).

a) Phantom b) Original data
PSNR: ∞

c) Without regul.
PSNR: 12.8

d) With regul.
PSNR: 16.6

Fig. 3. Effects of spatial regularization on the GFA [5]. Isotropic area are black,
anisotropic area are white. PSNR(noisy,original)=18.5. (a) The ODF of the synthetic
phantom which is composed of two groups of fiber, horizontal and vertical, and sur-
rounded by water. (b) GFA of the perfect dataset. (c) GFA of the LS estimation on
a noisy dataset (without regularization). (d) GFA of the PDE estimation on the same
noisy dataset (with regularization).

process. Indeed, GFA is an adequate measure to have insight on the global co-
herence of the dataset volume estimation since every voxel is summarized by a
scalar value. When it comes to noisy input data, regularization greatly improves
the spatial coherence of the volume estimation as illustrated in Fig.3(c,d). It is
worth noting that the gradient norm ||∇A|| is an adequate measure to set apart
isotropic area from anisotropic area and subsequently, divergence div(ϕ||∇A||)
performs well in regularizing homogeneous area without degrading the contours.

We computed statistics on the performance of the PDE estimation with var-
ious likelihood and regularization functions ψ and ϕ. The PSNR (Peak Signal
to Noise Ratio) between the reconstruction and the original data stands for the
PSNR between the ground truth dataset volume E and its estimation Ê. Values
of Ê were restricted to [0, 1] in order to reflect the signal attenuation properties.
Fig.4a, illustrates the PSNR(E,Ê) of the reconstruction versus the quality of
input datasets. Out of the results, the Rician likelihood function outperforms
the Gaussian function and greatly improves the PSNR of the estimation. This
gap can be explained by a more robust radial fit thanks to the Rician likelihood
function as shown in Fig.2(c,d). Indeed, the number of radial sample in this



a) Comparison of likelihood functions. b) Comparison of regularization functions.

Fig. 4. Synthetic phantom of networks of crossing fibers (c.f . Fig.3a). a) Performances
of likelihood functions on increasing levels of noise. b) Performances of regularization
functions on increasing regularization strength αr.

experiment is very limited (2 shells) whereas the number of angular samples is
sufficient (42 directions).

Fig.4b shows influence of regularization function ϕ on the PSNR of the re-
construction Ê. Although this brings modest improvements, the spatial regular-
ization ensures numerical stability of the estimation by adding constraints when
there are only very few samples available. Besides, this also brings stability to
the fiber-tracking algorithms and helps to better estimate the white matter nerve
fibers tracks [26].

4.2 In vivo experiments

Diffusion-weighted images were acquired in two shells along 32 directions at
b = 1000 s/mm2 and b = 3000 s/mm2, and a single image at b = 0 s/mm2. Thus,
there were a total of 65 images acquired in a sequence of 15 minutes on a 3T
Philips scanner. The SENSE parallel imaging protocol was used with a factor of
acceleration set to 2; and only 80% of the k-space was acquired. Matrix size was
112× 112× 60 and the image resolution was 2× 2× 2 mm3. Repetition time was
TR=11490 ms, echo time was TE=85ms. Time between two pulses and time of
diffusion gradients were respectively ∆ = 42.2 ms and δ = 26.3 ms. Terms up to
N = 1 and L = 4 were used in the calculations. Computations were done in less
than an hour on a 3Ghz processor, and includes calculations of SPF coefficients
and projections along the 642 directions for the whole data-set 112 × 112 × 60
volume.

Representative images of GFA on the data are presented in Fig.5 and reveals
microstructures around the genu of the corpus callosum. The first line of Fig.5
are the results from previous work [15] and shows how it compares to standard
dMRI methods. DTI performs well in corpus callosum but fails in voxel with
orientational heterogeneity as shown in Fig.5b. QBI can successfully retrieve
multiple fibers orientations using the analytical stable ODF reconstruction de-



a) S0 b) DTI [27] c) QBI [25] d) G=ODF [15]

e) Rice f) Soft Reg. g) Med. Reg. h) Strong Reg.

Fig. 5. Comparison of GFA [5] on region of corpus callosum and lateral ventricles. (a)
Baseline image, q = 0. (b) DTI anisotropy map. (c) Q-Ball Imaging. (d) Previous work
using damped least-square estimation. (e) Variational approach using Rician likelihood
function. (f-g) Variational approach using Rician likelihood function + Hyper Surface
regularization function.

scribed in [25] but is sensitive to noise, especially in region of cerebrospinal fluid
(c.f . Fig.5c). On the contrary, the ODF obtained by the SPF estimation ap-
proach does not fall into this pitfall (Fig.5d), it successfully retrieves anisotropic
shapes in brain white matter fibers regions and isotropic shape in cerebrospinal
fluid area (c.f . Fig.5d). The second line of Fig.5 shows the performances of the
proposed variational framework. Out of the results, Rician likelihood function
does not modify much the GFA map computed on ODF (c.f . Fig.5(d,e)). It
was expected as artifacts on Ê are mostly radial distortion and GFA focuses
on angular variations. However, spatial regularization strongly influence results,
depending on the regularization strength αr as illustrated in Fig.5(f-h).

5 Discussion and conclusion

In this paper, we proposed a variational approach which robustly estimates at
a stretch the whole volume of PDF functions as a set of Spherical Polar Fourier
(SPF) coefficients. This is done by minimizing an energy that simultaneously
considers the Rician model of the MRI noise and the regularization on spatial
constraints. Results demonstrate that the ability to reconstruct a voxel tak-
ing the whole neighborhood information into account strongly improve the spa-
tial coherence of the reconstruction. Besides, fiber-tracking is unstable on noisy
datasets and this last property may greatly improve the ability to recover reliable
and accurate intra-voxel fibers distributions within the human brain.
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