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Abstract. Space weather aims at setting operational numer-
ical tools in order to nowcast, forecast and quantify the solar
activity events, the magnetosphere, ionosphere and thermo-
sphere responses and the consequences on our technologi-
cal societies. These tools can be divided in two parts. The
first has a geophysical base (Sun, interplanetary medium,
magnetosphere, atmosphere). The second concerns techno-
logical applications (telecommunications, spacecraft orbits,
power plants ...). In this paper, we aim at giving an overview
of the models that belong to the first class (geophysics) that
might serve in the future as a basis for building global op-
erational codes. For each model, we consider the physics
underneath, the input and output parameters, and whether it
is already operational, whether it may become operational in
the near future, or if it is an academic research tool. Relevant
references are given in order to serve as a starting point for
further readings.

Key words. Interplanetary physics (general or miscella-
neous), Ionosphere (modelling and forecasting), Magneto-
spheric physics (general or miscellaneous)

1 Introduction

Reviewing the current state of scientific models available for
space weather developments is actually an extremely ambi-
tious task. It covers a broad range of topics – from the Sun
to the Earth – and of techniques and methods – from the
ideal Magnetohydrodynamics (MHD) to particle behaviour
modelling. To do a thorough job would have required a
book. However, the range of topics involved in space weather
makes it necessary to have introductory documents that pro-

Correspondence to:C. Lathuillère
(Chantal.Lathuillere@obs.ujf-grenoble.fr)

vide the non-specialist with basic features and relevant refer-
ences on the various issues.

The present work aims at providing an overview of the
models which might serve as a basis to build global opera-
tional codes for practical space weather prediction. Our ob-
jective is to provide the reader with basic features on the vari-
ous issues, and not to deal with each of them in any sufficient
or satisfying detail for a specialist. It is also to give relevant
references that can serve as a starting point for those who are
interested in specific topics.

This paper has been written from the work package enti-
tled “Space Weather Parameters”, prepared as part of a study
conducted by the consortium lead by ALCATEL Space &
LPCE (France) in the frame of an ESA contract aiming at
the definition of an European Space Weather Programme. All
work packages have received the contribution from the dif-
ferent consortium members (see Annex 1 for a presentation
of the consortium). A parallel study has been undertaken by
another consortium led by the Rutherford Appleton Labora-
tories (UK). Among the tasks of the consortium was to define
the parameters and the associated measurements, which are
necessary to describe and monitor the Sun-Earth system in
the space weather context.

Space weather can be considered from two different stand-
points, the numerical modelling of the whole system on the
one hand, and the needs of the users, i.e. monitoring and
forecasting the values of some specific quantities, on the
other hand. Our approach has been to start with a review
of the modelling effort, which is presented in this paper.

The driving source of the Solar Terrestrial phenomena is
the Sun’s magnetic field. The related magnetic energy is con-
verted into thermal and kinetic energy, and gives rise to elec-
tromagnetic and particle solar radiations. The plasma that is
ejected from the upper solar atmosphere is accelerated to su-
personic speeds, and the Sun’s magnetic field lines are frozen
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in the plasma. The Earth’s magnetic field behaves as a solid
obstacle for the plasma. It gives rise to the magnetospheric
cavity around which the solar wind flows, with energy and
material exchange through the magnetosphere boundary. Fi-
nally, both magnetospheric plasma and solar electromagnetic
radiations interact with the Earth’s atmosphere, giving rise
to the ionosphere and thermosphere. This very short sum-
mary shows that the entire Solar-Terrestrial system can be
described and understood in terms of a succession of sub-
systems that exchange material and energy: the Sun’s atmo-
sphere, the interplanetary medium, the magnetosphere, and
finally, the ionosphere-thermosphere system. Figure 1 shows
a schematic description of the solar-terrestrial phenomena in
terms of the interaction between these sub-systems.

The elucidation of the physical processes involved in each
sub-system, and in the interaction between any two of them,
is an important key in any space weather program. Our un-
derstanding of the whole Sun-Earth system is, however, still
incomplete, although research and operational models are
available. There exist research models for each sub-system,
but their maturity is very different, depending on the com-
plexity of physical phenomena and on the available observa-
tions. Operational models have already been developed only
for some sub-systems. Our aim is not to present an exhaus-
tive list of models but rather to give a comprehensive picture
of the modelling effort of the different scientific communities
concerned by space weather.

We have chosen to organise our presentation by classifying
for each sub-system the models in two main classes:

– the empirical models that characterise the relations be-
tween relevant parameters from available observations;

– the physical models that describe a given sub-system on
the basis of quantitative laws between relevant param-
eters. Contrary to the empirical models, the relations
between parameters are expressed in terms of a priori
known physical laws, with relevant simplifications, if
any. They are expressed as a set of partial derivative
equations, with coefficients to be estimated.

Recently developed space weather models based upon arti-
ficial techniques, such as neural networks genetic algorithms
and expert systems, are not presented here, nor are the tech-
nological models which estimate the specified effects of our
environment on a given “system”, for example, those dealing
with radiation doses, spacecraft charging, proton fluences or
atmospheric drag.

In this paper, we consider successively the different sub-
systems that are involved in solar-terrestrial relations: the
Sun, the interplanetary medium, the magnetosphere, and the
ionosphere-thermosphere system. The last section of the pa-
per presents a model synthesis, by means of tables that out-
line their main characteristics, including their input and out-
put parameters.

2 The Sun

Most of the structures and phenomena present in the solar at-
mosphere – in particular eruptive phenomena, such as flares
and coronal mass ejections (CMEs) – result from the pres-
ence of a dominant magnetic field. Eruptive events corre-
spond to a liberation of magnetic energy stored in the solar
corona. This energy is then converted into:

– heating of the environment associated with UV/EUV
and X beams;

– particle accelerations (electrons and ions) associated
with an X emission when those particles interact with
the environment;

– movement of matter.

Solar flares correspond to localised phenomena covering at
most a few percent of the surface of the Sun, while CMEs are
larger scale phenomena that can involve a non-negligible part
of the Sun’s global configuration. Those may have different
origins and associated events, such as global magnetic non-
equilibrium or prominence disruption.

The global solar atmospheric models are developed mainly
in the framework of Magnetohydrodynamics (MHD). The
relevant set of equations describes the interaction of ionised
coronal plasma with the coronal magnetic field in the pres-
ence of the plasma pressure and gravity forces. These models
may be presented in the context of space weather, although
they are still essentially used for theoretical purposes. The
associated numerical codes are mostly research tools due
to the actual state of the art in solar MHD modelling. We
present thereafter two main classes of complementary mod-
els used for different purposes: the static models for equilib-
rium reconstruction of the solar coronal magnetic field and
the dynamic models to describe its evolution:

– the first class of models arises from the impossibility of
measuring the coronal magnetic field. The structure of
the active regions should be estimated before an erup-
tive event, in order to determine the intrinsic properties
of the magnetic configuration. Thus, one has to recon-
struct the coronal magnetic field and, therefore, to solve
the equations of the solar atmospheric physics when the
boundary conditions are the values of the magnetic field
measured in the colder photosphere by vector magne-
tographs;

– the second class of models aims at studying the dynam-
ical evolution of the active regions. The energy storage
and energy release in these regions, as well as their sta-
bility, are described from the evolution of the magnetic
configurations which are constrained by a driver whose
origin may be sub-photospheric (emerging flux), photo-
spheric (boundary motions) or coronal (interaction with
other active regions). These models solve – to a certain
extent – the full MHD equations.
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Fig. 1. Main physical processes that act on space weather (Dudok de Wit, personal communication, 2001).

Both classes of models are complemented by a whole set
of boundary conditions which then define a set of boundary
value problems.

2.1 Reconstruction and study of the active region static
structures

Equilibrium reconstruction of the coronal magnetic field
above active regions using photospheric magnetic data has
been the subject of numerous studies since the first attempts
(Schmidt, 1964). They may range from observational prob-
lems, such as those related to the 180◦ ambiguity resolution,
which remains on the transverse component of the photo-
spheric magnetic field, to crucial theoretical problems related
to the nature and the determination of the correct type of
boundary conditions that have to be used in order to avoid
an ill-posed problem, as was the case for a long time. Details
and numerous relevant aspects of these studies are discussed
in Amari and D́emoulin (1992) and Amari et al. (1997).

In an active region, prior to any eruptive event, typical time
variations are so small that one can then solve the MHD
equations under static hypothesis. The coronal magnetic
pressure is much larger than the gas one, and gravity can be
neglected outside prominences. This is the so-called force-
free approximation. This is equivalent assuming that at any
point the current density and the magnetic field are parallel.
The proportionality factorα(r) and the magnetic field are de-
termined by the boundary conditions defining the boundary
value problem.

In the regions of higher density, the plasma pressure gra-
dients and the gravity have been included. This can be done
self-consistently in full MHD methods or more qualitatively
by seeking magnetohydrostatic solutions of the MHD equa-
tions.

2.1.1 Current free (potential) model

The simplest physical approximation is the so-called “cur-
rent free” approximation (α = 0), which only requires the
longitudinal photospheric component of the magnetic field
as a boundary condition. It was first considered by Schmidt
(1964) and is currently routinely used in most of the terres-
trial solar physics centres, on the basis of observations (Saku-
rai, 1989). It is also used as the initial conditions for funda-
mental MHD studies dealing with synthetic problems. This
kind of reconstruction is performed following a Green func-
tion approach or using a Laplace solver to compute a poten-
tial scalar function and the associated magnetic field (Priest,
1982).

2.1.2 Linear force-free model

The zero-current approximation does not apply to many ac-
tive regions that have a magnetic energy above the minimum
energy, which corresponds to the current free field for the
same distribution of the vertical distribution of the photo-
spheric normal magnetic field. The first step towards a more
realistic modelling consists of considering a nonzero, but
constantα that allows one to introduce coronal electric cur-
rents. Different methods exist that use the longitudinal com-
ponent of the magnetic field. They are based on Green func-
tions (Chiu and Hilton, 1977) or Fourier transform (Alissan-
drakis, 1981), with the latter currently used (Demoulin et al.,
1997). Following the general approach of Low (1992), this
linear constant-α Fourier method has been extended to take
into account gravity and pressure forces by means of a linear
computational program (Demoulin et al., 1997; Aulanier et
al., 1998).
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Although they suffer from several limitations (see be-
low), linear models can be used for some classes of prob-
lems (topology, prominence) in moderately sheared struc-
tures. Their main advantage remains the weak computational
resources they need and their computational speed for the
current free approximation, which explains why they could
be used routinely in a space-weather program.

2.1.3 Nonlinear force-free model

As for the reconstruction without current, several limitations
exist regarding the use of the linear reconstruction model:

– the solutions correspond to a minimisation problem for
the energy, constrained by the normal component of the
magnetic field and by the total magnetic helicity, induc-
ing a limited amount of available magnetic free energy;

– the electric currents cannot be locally intense, while
the observations show very clearly important localised
shear concentrated along the inversion line of the nor-
mal component of the photospheric magnetic field.

The only hope of incorporating large localised electric cur-
rents is to assume that the configuration is in a nonlinear
force-free state, that is to say thatα (which now depends on
the positionr) is also an unknown of the problem. Different
types of boundary conditions define different boundary value
problems and codes:

– a first relatively natural method consists of imposing the
three components of the magnetic fieldB measured at
the photospheric level. The problem amounts to pro-
gressively extrapolating the data step by step toward the
corona. This is the vertical integration method intro-
duced by Wu et al. (1990). However, this method is
based on a mathematical formulation associated with
an ill-posed boundary value problem. This lead to an
exponential divergence, which limits the reconstruction
at low altitudes. Some methods have been proposed in
order to avoid this divergence (Cuperman et al., 1990;
Demoulin et al., 1992). Other attempts have been made
to regularise the linear version of this method (Amari et
al., 1998);

– a second class of reconstruction methods is based on a
well-posed formulation, which corresponds to observed
boundary conditions that imply:

– the normal component of the photospheric mag-
netic field (in the local system of reference asso-
ciated with the Sun);

– α at the photospheric level, when the sign of the
normal componentBz of the measured magnetic
field has a given a priori value: as an example,α is
set in the areas whereBz is positive and then com-
puted through transport along the magnetic field
lines to the photospheric zones whereBz is nega-
tive.

This kind of mathematical formulation was introduced
by Grad and Rubin (1958) and consists of a decompo-
sition of the nonlinear problem in two sets of elliptical
(for the magnetic field) and hyperbolic (forα) problems.
It gives rise to two types of numerical codes, which cor-
respond to the Lagrangian and Eulerian approaches:

– Sakurai (1981) uses a Lagrangian approach for each
field line. He injects progressively the photospheric
electric current on each field line;

– Amari et al. (1997) use a global approach in order
to solve the elliptical and hyperbolic problems. The
corresponding codes with their different versions
constitute the EXTRAPOL code.

These two codes, localised in Japan and in France, are
used to reconstruct the configurations of the active re-
gions coming from MITAKA data for the Japanese ver-
sion and from Hawaii (HSP, IVM) and Boulder (ASP)
for the French one. The local Lagrangian approach
(Japan) seems to imply a more important limit for the
reproducible maximum shearing than the Eulerian ap-
proach (France);

– a third class of methods is based on solving the MHD
equations, injecting the vertical component of the elec-
tric current and imposing the normal component of
the magnetic fields as photospheric boundary condi-
tions. The system relaxes toward a state which corre-
sponds to the observed values. This method is called the
“resistive-relaxation” method. It was introduced by Mi-
kic and Linker (1994) and was also implemented in the
French METEOSOL MHD-research code. Although
the mathematical justification for this method is not yet
clear, the corresponding codes have been used on real
cases with relatively good success;

– another method is still at a very experimental state
of development. It is the “weighted residue method”
(Pridmore-Brown, 1981). This method minimises two
residuals: one is associated with the magnetic force,
and the second one is associated with the difference
between the directions of the photospheric transverse
components of the computed and observed magnetic
fields. This method has been used only in theoretical
situations corresponding to fictive periodic data;

– finally, a method called “constraint and relaxation
method” (Roumeliotis, 1996) consists of two repeated
steps:

– impose on the vector potential the minimisation of
the difference between the computed and observed
transverse components;

– relax toward an equilibrium state, using a relaxation
code which incompletely solves the MHD equa-
tions,

– then, back to the first step.
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Table 1. A synthesis of MHD codes for the evolution of the solar magnetic configurations

Laboratories Characteristics Aims

San Diego (USA) 2.5D, 3D coronal MHD
Finite differences

(Mikic and Linker, 1994) Semi-implicit

NRL et NASA (Wash. DC) 2.5D, 3D Coronal and internal MHD
(De Vore et al., 2000) Spectral + finite volumes

Explicit
Boundary conditions (. . .)

Japan NAO/Mikata 2.5D, 3D Chromospheric and internal
(Matsumoto et al., 1993) Explicit MHD

artificial viscosity
anomalous

Observatoire de Meudon 2.5D, 3D coronal MHD
Ecole Polytechnique (France) differences and finite volumes
(Amari et al., 2000) (semi) and implicit

Strasbourg (France) cylindrical coronal MHD
(Baty and Heyvaerts, 1996) Boundary conditions stability

Pisa / Firenze (Italy) cylindrical (3D) San Diego coronal MHD
(Lionello et al., 1998) 2D reduced MHD turbulence

Nice (France) 1D, 2D Turbulence
(Galtier et al., 1997) Finite differences, Spectral Intermittence

Argentina Reduced MHD (2D+) Turbulence
(Dmitruk et al., 1998) Cartesian Flare-heating

Spectral (Fourrier)

University of Michigan (USA) 2D, 2.5D, 3D (?) Comets – wind
(Israelevich et al., 2001) Roe scheme astrophysics

Finite volumes

NCSA (Illinois) 2.5D, (3D ?) Astrophysics
(Stone and Norman, 1992) Finite volumes laboratories

Van Leer, PPM

DAEC + DESPA (France) cylindrical /(Spherical 2.5D) Dynamo + wind
(Grappin et al., 2000) Z-periodic laboratories

Spectral – Finite differences

Chicago (USA) cartesian Astrophysics
(Fryxell et al., 2000) laboratories

This method has been tested with encouraging results on a
theoretical case, as well as on an observed active region.

2.2 Evolution of the magnetic configurations

As far as the evolution of the magnetic configurations is con-
cerned, the MHD codes belong to the domain of research
even more than the reconstruction codes. It concerns the
fundamental numerical research for the codes themselves:
boundary conditions, geometry, temporal scheme, mesh def-
inition, etc., but also the fundamental solar physics. The ob-
jective is to elucidate the fundamental mechanisms that gov-
ern the eruptive phenomena: flux emergence, energy storage,

influence of the photospheric movements such as differential
rotations or magnetic reconnection, etc.

The existing codes depend on the different classes of prob-
lems they address: there is no universal MHD code, in the
same way as there is no universal telescope. However, it will
still be a long time before the MHD codes can be used for
space weather purposes, in order to test the stability of the
magnetic configurations in active regions. These regions may
be first reconstructed by using an equilibrium reconstruction
code. This is the approach followed by some groups.

The existing world wide codes can be distinguished by the
following characteristics:
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– dimension: 2D, 2.5D, where the vectors have 3 compo-
nents but only depend on 2 space variables, 3D;

– geometry: spherical for the global models, Cartesian
for the description of the active regions at local scales,
cylindrical for more specific problems, such as the sta-
bility of the coronal loops or of the coronal heating;

– numerical schemeand space digitisation: finite ele-
ments, finite volumes, spectral methods, collocation,
etc.

– physical approach: heating, resistivity, solar wind in-
clusion facing the particularly important and difficult
problem of breakdown of the MHD approximation.

Table 1 only attempts to synthesize these different ap-
proaches worldwide. We are aware that on-going work may
give rise to new codes in the near future. We only show here
the codes and the associated developing groups and give only
one reference per group, as a starting point. The more nu-
merous groups that only use the codes are excluded from the
table.

3 The interplanetary medium

The solar wind is a prominent part of the Sun-Earth system
that is difficult to model because observations are difficult
and often indirect. The solar wind corresponds to the outflow
from the upward solar atmosphere of the coronal plasma,
heated up to several million K. Its speed ranges between 250
and 950 km.s−1 at the Earth’s orbit (1 AU). It is structured
by the Sun’s magnetic field lines frozen in the flow. The so-
lar wind interacts in the interplanetary medium with galactic
cosmic rays. Since the solar wind expansion does not occur
in a vacuum but in an interstellar space filled with neutral
and ionised gases, galactic cosmic rays and galactic mag-
netic fields, the region where the solar wind dominates is
limited by the heliospheric boundary – a region where the
energy densities of the solar wind and the interstellar space
are equal. This boundary is located between about 50 and
100 AU.

3.1 Solar wind modelling

The main structures or regions present in the solar wind are:

– the high velocity solar wind, associated with the coronal
holes;

– the low velocity solar wind;

– the regions of interactions between high and low veloc-
ity solar winds;

– the heliospheric current sheet;

– the signatures in the interplanetary medium of the
CMEs, associated or not associated with shocks. In
practice, these signatures are observed at large distances
from the Sun near the Earth or the Lagrange point L1.

The influence of the solar wind results from both its very
structure and its interaction with the propagation of solar per-
turbations, such as energetic particles resulting from solar
eruptions or interplanetary shocks or CMEs. The structure
of the interplanetary magnetic field lines, which drives the
particle propagation, may, in given situations, dramatically
affects this propagation and, therefore, the resulting effects
at Earth. This ambivalent action can be illustrated by ex-
amples of major events at the Sun with minor effect’s at the
Earth, or on the contrary, minor events at the Sun resulting in
a major perturbation at the Earth.

Solar wind models have been developed to address many
aspects of its structure. Fairly simple models can be devel-
oped by treating the solar wind from a hydrodynamic point of
view, and thus solving the one-dimensional equations of mo-
tion along a single field line (e.g. Parker, 1963). The main
aim of such models is to obtain accurate expressions for the
plasma density, velocity, and especially temperature at 1 AU.
They are also amenable to adding multiple ion species and
to including quite detailed calculations of different ionisa-
tion states and even the effect of plasma instabilities on the
temperatures.

However, from the point of view of space weather, it
is the large-scale multi-dimensional MHD models that are
the most relevant. One class of these models examines the
global structure of the solar wind plasma and magnetic field
in the heliosphere. These models are quasi-steady state,
but incorporate solar rotation, and a three-dimensional mag-
netic field. For solar minimum conditions – for which they
are best suited – they clearly demonstrate the formation of
the familiar co-rotating interaction regions at distances of
1 AU and beyond (Pizzo, 1982, 1991). The Ulysses mission
has permitted a comparison of these results with the three-
dimensional solar wind structure. The agreement is good,
especially in terms of plasma flows upward and downward
from the ecliptic plane (Riley et al., 1996).

A second family of models deals with the motion of coro-
nal mass ejections in the solar wind. The goal is, for given
plasma and magnetic field conditions at the Sun, to calcu-
late the properties of the CME at 1 AU and beyond. Early
models treated the CME as a pressure pulse, but these are
now viewed as irrelevant. Other purely hydrodynamic mod-
els have been developed by Riley and collaborators during
an investigation of so-called over-expanding CMEs. They
showed that with a large plasma over-pressure at the Sun, the
conditions observed by the Ulysses spacecraft at large dis-
tances could be roughly reproduced (Riley et al., 1997).

The most geo-effective type of CMEs are magnetic clouds.
Models for these have been developed by a number of groups
who have – in general terms – established that magnetic
clouds can propagate from the Sun to the Earth while re-
taining their organised magnetic structure (e.g. Cargill et al.,
2000; Odstrcil and Pizzo, 1999; Vandas et al., 1996). The
clouds interact with the solar wind by two processes. First,
the cloud magnetic field can undergo magnetic reconnection
with the solar wind field, leading to its ultimate destruction at
large distances. Second, the interaction of the cloud with the
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solar wind plasma leads to considerable changes in its shape,
as well as leading shock waves. This modelling is plagued
by difficulties in initialising the solar wind magnetic field
in a way that minimises errors in thedivB = 0 condition.
Proper 3-D modelling actually requires that this problem be
resolved. Further discussion of such CME models can be
found in Cargill and Schmidt (this issue).

Among the empirical models, one can quote Wang-
Sheeley, based upon the discovery of an anti-correlation be-
tween the solar wind velocity and the rate of expansion of the
magnetic flux tubes (Wang and Sheeley, 1992). The model is
based on observations of magnetographs at the Sun’s surface
and on deduced maps of coronal holes, surface magnetic field
sources and solar wind velocity. It forecasts the IMF polarity
and the solar wind velocity at the Earth, two parameters that
are mandatory for geomagnetic activity forecasting1.

3.2 Solar wind – cosmic ray interaction

Cosmic rays at the Earth are high energy particles – from
500 MeV to about 1012 GeV – insensitive to the magneto-
sphere state. The main components are protons, electrons
and light nuclei. Below about 1 Ge V/nucleon, the cosmic
ray flux is strongly decreased due to adiabatic deceleration
with the solar wind, which results a decreasing flux below
this energy at the Earth’s orbit. The intensity of the cosmic
rays on the Earth maximises when solar activity is minimal
(quiet Sun) and minimises vice versa (active Sun), with an
average variation in intensity of about 20%.

Models describing the propagation of the cosmic rays
through the solar wind are based on a second order equation
whose main input parameters are the solar wind characteris-
tics and the interplanetary magnetic field. Fisk et al. (1998)
show that most of the observed phenomena can be accounted
for within acceptable ranges of these parameters. However,
no single model, with a single choice for the input param-
eters, has been able to account for all the observed features
of galactic and anomalous cosmic ray behaviour. The most
highly developed models concern the interpretation of long-
term variations of the flux of cosmic rays at the Earth.

4 The magnetosphere

The magnetosphere is the region of the ionised environment
of the Earth where the Earth’s magnetic field has a dominant
control over the motion of charged particles. The bound-
ary layer between the magnetosphere and the solar wind is
the magnetopause, at which the dynamic pressure of the so-
lar wind is balanced by the magnetic pressure of the Earth’s
magnetic field2. The location of the magnetopause obviously

1http://solar.sec.noaa.gov/∼narge/
2The dynamic pressure of the solar wind is 2ρV 2 cos2 χ , where

ρ andV are the solar wind density and velocity, andχ is the an-
gle between the direction of the solar wind velocity and that of the
normal to the magnetopause; the magnetic pressure of the Earth’s
magnetic field isB2/2µ, whereB is the tangential component of

depends on the status of the solar wind. Under typical solar
wind conditions, the terrestrial magnetosphere extends up to
∼ 10 Earth radii (RE) in the sunward direction and to several
hundredsRE in the antisunward direction. The solar wind
velocity is supersonic at 1 AU, and the magnetosphere be-
haves as a solid obstacle. Therefore, there is a bow shock
upstream from the magnetopause. In the solar direction, the
bow shock is located at a distance in the range of 2–4RE

from the magnetopause. The region between the bow shock
and the magnetopause is the magnetosheath, in which the
shocked solar wind plasma has a lower velocity and a tem-
perature 5 to 10 times higher than in the solar wind.

The inner magnetosphere is the region of major concern
for space weather issues. Three regions have been identified
there following different criteria: the plasmasphere, the radi-
ation belts, and the ring current:

1. the plasmaspherecorresponds to a cold (Te ≈ 1 eV) but
dense (ne ≈ 5 × 102cm−3) plasma which co-rotates
with the Earth. It is a torus-shaped volume in the inner-
most magnetosphere. The outer boundary of the plas-
masphere is the plasmapause, where the density sharply
drops down to about 1 cm−3. On average, the plasma-
pause is located about 4RE in the equatorial plane, i.e.
a McIlwain parameter3 L = 4. It may reach out to
L = 5 − 6 during periods of magnetospheric quietness
and be compressed down toL = 3 during periods of
intense magnetospheric activity;

2. the ring currentrefers to “those parts of the particles in
the inner magnetosphere which contribute substantially
to the total current density” (Hultqvist et al., 1999).
It is then defined with regard to its magnetic signa-
ture, and corresponds to a toroidal-shaped electric cur-
rent that flows westwards around the Earth, with vari-
able density at geocentric distances between∼ 2RE and
∼ 9RE . During magnetospheric storms, the particles
that contribute substantially to the total current density
are mainly trapped ions in the medium energy range
(few tens of keV to few hundreds of keV) that origi-
nate in the solar wind (He++), the plasmasphere and
the ionosphere (O+). During low activity periods, the
particles responsible for the ring current are mostly pro-
tons. This change in composition impacts the evolution
with time of the ring current, because loss mechanisms
(wave-particle interactions, charge exchange, Coulomb
collisions, etc.) depend on the mass and energy of the
particles;

3. the radiation beltsgenerally refer by now to the “high
energy ions and electrons that can penetrate into space-
craft shielding materials and eventually cause radiation
damage to spacecraft instrumentation and to humans”

the Earth’s magnetic field at the magnetopause.µ is the magnetic
permeability of the medium.

3For a given geomagnetic field line, the Mac Ilwain parameter
L is the geocentric distance of the point where it crosses the mag-
netospheric equator. It is expressed in Earth radii (RE).
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(Hultqvist et al., 1999). The radiation belts are defined
with regard to the energy of particles trapped in the geo-
magnetic field lines, above∼ 100 keV and reaching val-
ues of hundreds of MeV. Most of the trapped particles
are protons and electrons, giving rise to the proton and
electron radiation belts:

– the proton belthas generally one maximum, which
corresponds to a McIlwain parameterL that de-
creases with increasing proton energy. For 1 MeV,
the maximum corresponds toL ∼ 2.5 (i.e. field
lines crossing the equatorial plane at an altitudeheq

of ∼ 10 000 km), while it corresponds toL ∼ 1.4
(i.e. heq ∼ 2 500 km) for 50 MeV. The proton
belt is fairly stable. At low altitude, it is mod-
ulated by the solar cycle, in particular in the re-
gion of the South Atlantic magnetic anomaly: its
intensity is maximum during solar minimum, and
minimum during solar maximum. Major magnetic
storms (e.g. March 1991) may significantly impact
the proton belts, in particular for high McIlwain pa-
rameters values;

– the electron belthas generally two maxima, giv-
ing rise to the internal and external electron belts.
The internal belt, with a maximum corresponding
to 500 keV aroundL ∼ 1.4 (i.e. heq ∼ 6 400 km),
does not significantly vary with time. On the con-
trary, the external belt, the maximum of which is
aroundL ∼ 4 (i.e. heq ∼ 19 000 km) fluctuates
dramatically under the control of strong magnetic
storms: short-term variations of the flux, up to 4
orders of magnitude in a few hours, can be ob-
served during periods of intense magnetic activity.
The long-term variation of the external belt fluxes is
driven by the solar cycle: the annual mean values of
the flux are maximum during the descending phase
(about 3 years after the maximum), when coronal
holes are in good conjunction with the Earth.

It is worth noting that ring current, radiation belts and the
plasmasphere partially overlap. For instance, atL = 3, the
density of the cold plasma is about 1000 times higher than
the density of energetic protons (> 100 keV), whereas the
energy density of energetic protons dominates by a factor of
about 1000. It is also worth noting that trapped radiation
belts and the ring current are actually closely related, since
the major part of the ring current is carried by trapped par-
ticles and all the trapped particles contribute to the ring cur-
rent (Hulqvist et al., 1999). For a thorough description of the
present knowledge on these regions of the magnetosphere,
refer to the recently published reviews on the ring current
(Daglis et al., 1999) and the inner magnetosphere (Hultqvist
et al., 1999).

4.1 Global magnetosphere modelling

4.1.1 Empirical models

Empirical models for the bow shock and magnetopause have
been developed for decades, in the case of the Earth, as well
as that of other magnetised planets (e.g. Slavin and Holzer,
1981). Shue et al. (1997) recently published a well docu-
mented model, based on fresh data. It has a simple functional
form driven by two adjustable parameters: the stand-off dis-
tance in the solar direction and the tail flaring.

Empirical models for the magnetic field inside the
magnetosphere are based on a statistical analysis of the avail-
able magnetic field observations, parameterised by geomag-
netic indices. They rely basically on a combination of the
Earth’s planetary magnetic field – usually described by the
IGRF model – and external fields estimated from both in
situ magnetic field measurements and mathematical mod-
elling of the current systems (e.g. Tsyganenko, 1990; 1995;
Hilmer and Voigt, 1995). These models are updated contin-
uously to account for more and more complex processes in
the magnetosphere.

At a given time, the dynamics of the magnetosphere
depends on both the present solar wind conditions and
magnetosphere status. This status, therefore, depends on the
past history of the magnetosphere, and models that only use
the present magnetic field values as input cannot provide re-
liable predictions of the magnetospheric state. In order to
develop better predictors, indicators of the magnetosphere
history should be added to the inputs.

4.1.2 MHD simulations

Fully three-dimensional MHD models of the magnetosphere
have already been developed for scientific use. Their in-
put parameters are typically solar wind density, velocity,
and interplanetary magnetic field. The inner boundary of
the magnetosphere is typically set at somewhat above 3RE ,
and physical quantities are mapped down to the ionosphere
along field lines. The output is the dynamic response of
the magnetosphere-ionosphere system. These models do not
generally provide a proper description of the inner magneto-
sphere, because of (i) the definition of the inner boundary,
and (ii) the presence of dominant non-MHD processes in the
inner magnetosphere.

This field is very active. Several groups are develop-
ing their own model, and have not yet published their re-
sults. The situation is then expected to evolve rapidly during
the next decade. The best known global MHD models of
the magnetosphere are those developed at the University of
Maryland (see Mobarry et al., 1996) and at the University of
California at Los Angeles (see Raeder et al., 1997 for a recent
application). Another model developed at UCLA (Walker
et al., 1993) is worth being mentioned here. In Europe, a
model is currently been developed for scientific use only at
the Finnish Meteorological Institute (Janhunen, 1996).
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4.1.3 Kinetic models

The behaviour of the inner magnetosphere cannot be de-
scribed in the frame of the MHD approximations4. Models
of the inner magnetosphere should take into account:

– the non-local character of the plasma response for any
transport with characteristic time duration longer than
the shorter reflection period;

– the effect of the plasma on the magnetic field;

– the interaction between the different waves in the
plasma.

Self-consistent kinetic methods properly describe the field-
particle interaction and satisfy these requirements at the ex-
pense of very heavy calculations. An example of such an
approach is the model of substorm growing phases recently
developed by Le Contel et al. (1999a, b). Their model is
based on the approach proposed by Pellat et al. (1994) and
Hurricane et al. (1995) to describe electromagnetic perturba-
tions in a non-adiabatic5 plasma. It allows one to estimate
the adiabatic response of the plasma to a given external elec-
tromagnetic perturbation that originates in the solar wind: an
east-west current flowing close to the equatorial plane in the
far tail.

The computations could become significantly simpler if
one neglects the perturbation generated by the motion of par-
ticles, which assumes that the magnetic field model used
takes into account satisfactorily the existence of the currents
associated with the particles whose motion is studied. This
approach uses both an Eulerian approach (global model of
the magnetosphere) and a Lagrangian one (particle trans-
port). In practice, it provides an efficient tool for describing
the trajectories of the particles in the magnetosphere once
an accurate model of the magnetospheric magnetic field, for
example, Smets (1998) used such an approach to study the
particle distribution functions associated with reconnection
processes. Numerical simulation of particle transport then
allowed him to characterize particle distributions associated
inside the magnetosphere to reconnections at sites with dif-
ferent topology and localisation.

4The ideal MHD basically assumes that the plasma is a perfectly
conductive medium.

5Adiabatic responses of a plasma correspond to situations where
the motion invariants defined in the frame of the Hamiltonian me-
chanics are conserved. For a charged particle in the presence of a
magnetic field, the first invariant is its magnetic momentµ, the sec-
ond invariant is the integral along the field line of the component
along the magnetic field of the particle momentum, and the third
one is the magnetic flux encircled by the particle’s periodic drift
shell orbits.

4.2 Specific models

4.2.1 The Magnetospheric Specification and Forecast
Model (MSFM)

The MSFM (Freeman et al., 1994; Lambour et al., 1997) is a
large-scale physical model designed to specify fluxes of elec-
trons, H+, and O+ in the energy range responsible for space-
craft charging,∼ 100 eV to∼ 100 keV. It is being developed
for operational use by the US Air Force, and it is probably, at
present, the closest to being an operational large-scale physi-
cal model. Its description is available on the net6. It is an up-
date of a series of earlier models. Its predecessor, the MSM
(Magnetospheric Specification Model), is routinely used by
NOAA/SEC for space weather services. Its major improve-
ment compared to the earlier models, is the complexity of the
electric and magnetic field models and its capability to run in
real time.

The primary input parameters for MSFM are:

1. theKp andDst geomagnetic indices;

2. the polar cap potential drop and the auroral boundary in-
dex that specify the polar ionospheric electric field dis-
tribution and the auroral precipitation pattern;

3. the solar wind density and speed, and the interplanetary
magnetic field (IMF).

Secondary input parameters include:

1. the sum ofKp;

2. precipitating particle flux and polar cap potential pro-
files from the operational DSMP satellites.

The solar wind density and speed define the magnetopause
stand-off distance, and the IMF is used to select the appropri-
ate convection pattern in the polar cap. All together, the pri-
mary input parameters determine the electric and magnetic
field models used. The sum ofKp is used as an indicator of
the long-term activity level.

The model can operate with reduced sets of input parame-
ters, and in particular, withKp alone. It also includes neural
network algorithms that predict the input parameters from
solar wind measurements. Thus, it has some capability for
short-term space weather forecasting.

MSFM follows particle drift through the magnetosphere
using slowly time-varying electric and magnetic field mod-
els. The electric and magnetic field configurations are up-
dated every 15 min. The particle distribution is isotropic, and
the model keeps track of energetic particle loss by charge ex-
change and electron precipitation into the ionosphere.

MSFM successfully accounts for most major electron
flux enhancements observed at geosynchronous orbit. Flux
dropouts that often precede the flux enhancements are pre-
dicted with less confidence, and they are often missed near
the dawn meridian.

6http://rigel.rice.edu/∼ding/msfm95/msfm.html
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4.2.2 Ring current models

It has already been mentioned that the ring current compo-
sition and dynamic particles is driven by the level of the
magnetospheric activity. During periods of magnetospheric
activity, the ring current dynamics is driven by particle in-
jection: direct ionospheric ion injection, inward transport of
plasma sheet and pre-existing ring current particles. On the
contrary, the behaviour of the quiescent ring current is driven
by diffusion of low energy protons in the presence of con-
vection electric fields (see, e.g. Daglis et al., 1999). Differ-
ent quantitative models have been developed accordingly for
storm- and quiet-time ring currents.

A family of storm-time ring current models neglects direct
injection of ions from the ionosphere. The main source of
ring current particles is then the plasma sheet, and the char-
acteristics of that source enter the models as boundary con-
ditions. At least four groups are working at present along
this path. They are located at the University of Michigan, the
Aerospace Corporation, NASA-Goddard Space Flight Cen-
tre, and Rice University (see Chen et al., 1994 for a review of
these works). Differences between their models are mainly
related to a different selection of aspects of the problem that
are treated at a state-of-the-art level or neglected. One of
the main difficulties for these models in the context of space
weather operational use is the specification of the boundary
condition (i.e. the distribution function of the particles at all
parts of the boundary, where the drift velocity is inward) in
absence of adequate real-time data.

More sophisticated simulations have been developed,
which involve both global magnetospheric models and La-
grangian models of particle transport. They have been de-
veloped to address questions in relation to academic research
rather than to space weather activities. Such a coupled in-
vestigation is, however, very promising for space weather
activities, since it provides an efficient tool for the particle
distribution function determination in a given region of the
magnetosphere.

With the objective of analysing the ring current dynam-
ics, Fok et al. (1993) have developed a kinetic model that
simulates the evolution with time of the distribution func-
tions for the dominant ions (H+, He++, O+), as a result of
charge exchange and Coulomb collisions. Their results show
that during the recovery phase of a magnetic storm, Coulomb
collisions lead to generation of low energy (< 500 eV) ions
and significant heating of plasmaspheric populations. More
recently, the model of Fok et al. (1993) and the particle code
of Delcourt et al. (1990a) have been coupled to investigate
the ring current response to the field line depolarisation ob-
served in the inner magnetosphere during the substorm grow-
ing phase. The code of Delcourt et al. (1990a) computes
the path of charged single particles, given time-varying elec-
tric and magnetic fields, from their injection in the magneto-
sphere – from the magnetosheath or the ionosphere – to their
input in the plasmasphere.

In a more recent study, Fok et al. (1999a) used the parti-
cle code of Delcourt et al. (1990b) to estimate the particle

distribution in the near tail (at a geocentric distance of about
12RE), by means of back propagation of particles to their
sources. The transport and acceleration of these ions in the
inner magnetosphere, as well as their contribution to the ring
current, are then computed using the kinetic model of Fok et
al. (1993), with a magnetic field more realistic than a dipo-
lar one. These simulations account for many characteristic
features of substorms. Further refinements of these investi-
gations will involve an estimate of the initial particle distri-
bution functions from the results of MHD simulations (see,
e.g. Fok et al., 1999b) for given solar wind situations, instead
of semi-empirical modelling.

Understanding the loss process in the region where the hot
ring current plasma coexists with cold plasmaspheric plasma
requires modelling of the interaction between ring current
ions and plasma waves resonantly generated by the coexist-
ing hot and cold plasmas. Modelling wave particle interac-
tion on a global scale is very challenging because it needs a
self-consistent description of wave and particle behaviour.

4.2.3 Radiation belt models

4.2.3.1 Empirical models

Very early in the space era, it became clear that the average
radiation doses received by satellites are key parameters that
should be known. The United States and the former Soviet
Union, therefore, started building empirical models of radi-
ation belts, using data collected for several years on board a
number of satellites.

In the United States, these models were developed for
NASA by Aerospace Corporation. The latest versions are
the AP8 (Aerospace Protons #8) and AE8 (Aerospace Pro-
tons #8) models (Sawyer and Vette, 1976; Vette, 1991). They
have been built at the end of the 1970s, using data from about
40 satellites that were in orbit between 1961 and 1977, a pe-
riod that mostly corresponds to solar cycle #20. They provide
proton flux for energy in the range 100 keV to 400 MeV and
electron flux for energy in the range 40 keV to 7 MeV, for
altitudes up to that of geostationary orbits.

The necessity of updating these models led the United
States to launch a satellite dedicated to radiation measure-
ments: the NASA/DoD CRRES (Combined Release and Ra-
diation Effect Satellite) satellite. It has been operational for
14 months – between August 1990 and October 1991 – that
roughly corresponds to the maximum of solar cycle # 22.
The CRRES data have been used by DoD to develop new
empirical models for the proton (CRRESPRO) and electron
(CRRESELE) radiation belts (see, e.g. Brautigham et al.,
1992; Gussenhoven et al., 1993). These models do not pro-
vide a significant updating of earlier models, because (i) the
altitude and energy ranges they cover are not as wide as those
covered by NASA’s AP and AE models, and (ii) they rely on
data collected by only one satellite during a disturbed period
that is probably not representative of the average behaviour
of the radiation belts.
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On the contrary, the durability of some meteorological
satellites gives the opportunity to improve the models for the
low altitude range. Boeing is presently preparing for NASA
a model using the NOAA/TIROS satellite data (Huston et
al., 1998). This model relies on measurements made since
1978, i.e. over almost two solar cycles. Despite its limitation
with respect to altitude (< 800 km) and energy (3 ranges for
energy larger than 16 MeV), it is a significant improvement
compared to earlier models because it describes the evolution
with solar cycle of high energy proton fluxes. The authors
are now trying to extend the altitude range addressed by the
model.

In addition to the models described above, nucleus of
models appear at many places in the world. Most of them
rely on data from only one satellite, and their representative-
ness is limited accordingly. As a result of these limitations,
the AP8 and AE8 empirical models will probably still
remain the standard to be used for mission planning during
the next few years, despite their own limitations.

4.2.3.2 Physical models

Physical models have also been developed very early, in or-
der to elucidate the radiation belt sources and their dynamics.
Due to the limitation in the computer capacities, they did not
significantly evolve during the 1980s. The increasing effi-
ciency of computers allowed one to restart their development
at the beginning of the 1990s. During the last few years, they
allowed us to make possible significant breakthroughs in our
understanding of the sources and dynamics of the proton and
electron belts.

They rely basically on the resolution of the Fokker-Planck
diffusion equation in adiabatic conditions. They take into
account more and more different physical phenomenon:

– particle-particle interactions;

– wave-particle interactions;

– Coulomb interactions;

– plasma influence.

An example of such code is Salammbô, a set of codes de-
voted to the understanding of high energy charged particle
transport in the inner part of the magnetosphere, in partic-
ular during magnetic activity periods. The first one, called
Salammb̂o-3D, solves the classical Fokker-Planck diffusion
equation, either for proton or electron radiation belts, in the
3-D phase space. The equation is classically written in terms
of the three adiabatic invariant, corresponding to energy,
pitch angle andL McIlwain parameter, so this version is a
real 2-D one in space, where the results are averaged with re-
spect to the longitude (local time) (Beutier et al., 1995; Beu-
tier and Boscher, 1995). The Salammbô-4D version is an
extended version of Salammbô-3D, taking into account the
longitude (local time), so it is a real 3-D one in space. It was
developed to understand injections during substorm periods,
and their effects, such as drift echoes or the growth of the

ring current. In this version, it is possible to follow particles
in their drift around the Earth (Bourdarie et al., 1997).

Tests made on the prediction of the time dependence of
the lifetime of trapped electrons (i.e. the time needed to have
the initial flux decreased by a factore) have shown that ra-
diation belt models are very sensitive to the waves (Baus-
sart et al., 2000). The elaboration of a physical radiation
belt model, therefore, requires the introduction of a wave
model. The two models presently used are the Abel and
Thorne semi-empirical model (Abel and Thorne, 1998a, b)
and the LPCE/CEA empirical model (Baussart et al., 2000;
Lefeuvre et al., 2000) based mainly on statistics performed
from 3 years of DE-1 data and on wave normal directions
estimated from GEOS-1 and ISEE-1 data.

5 The ionosphere-thermosphere system

Above 90 km altitude, the upper thermosphere is character-
ized by a large density decrease, that implies a decrease in
the collision frequency between molecules. The temperature
increases rapidly from about 180 K to the thermopause value
of about 1000 K. This value, constant above 300 km, is also
called the exospheric temperature. It is directly dependent
on the solar energy in the UV and EUV bands and on the
auroral energy inputs. The main atmospheric constituents,
nitrogen and molecular oxygen, are dissociated and ionised
by the absorption of EUV solar radiation and particle precip-
itation to form the ionosphere. The resulting ionised species
are mainly molecular ions (N+2 and O+

2 ) at low altitude (be-
low 200 km) and atomic ions (O+) at high altitude (above
200 km). N+ is created by N2 dissociative ionisation, H+

by charge exchange reactions between O+ and H. Finally,
NO+ arises from chemical recombination with neutrals. It is
a major ion of the E-region, although its neutral parent NO
is a minor constituent of the atmosphere in that region. The
ionosphere can, therefore, be said to be composed of three
molecular ions (N+2 , NO+ and O+

2 ), three atomic ions (H+,
N+ and O+) and electrons. The altitude of the maximum of
the electron density is close to 250 km.

The understanding of the behaviour of this solar-terrestrial
sub-system and its effects on technological operations is de-
termined by the ability to model at least the height, geograph-
ical and time distributions of the electron concentration and
the neutral densities. The modelling effort has started a long
time ago, due to the development of our technological soci-
ety (telecommunications, orbitography, etc.). However, there
is no numerical code or model that is able at the present
time to describe accurately both the three-dimensional and
time-dependent distribution of the ionospheric plasma, and
the thermospheric densities during quiet and disturbed con-
ditions. In other words, no model is able to reproduce in
a satisfactory way both the climate and the weather of the
Earth’s ionosphere-thermosphere. In addition, there is no
well established experimental database that can be used to
verify and test the existing models, in order to generate the
improvements needed.
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At present, most models are able only to reproduce con-
sistently the climate of the ionosphere and the thermosphere,
as defined mostly by diurnal, seasonal and solar cycle vari-
ations. Serious theoretical and computational efforts, sup-
ported by complex combinations of experimental techniques,
are being done to model and predict the weather. This
weather is defined as the hour-to-hour, day-to-day, week-to-
week variability of the electron and neutral concentrations
within the framework of the climatology.

Three different types of models can be identified, each of
them having implicit limitations and advantages:

– semi-empirical and empirical models;

– physical models;

– in the case of ionospheric modelling only, analytical
“profilers” based on routinely scaled ionospheric data.

The physical models of the ionosphere and the thermo-
sphere use as inputs results from empirical models of the
convection electric field and auroral precipitations, in order
to describe the coupling with the magnetosphere. Such mod-
els are also presented at the end of this section.

5.1 Empirical and semi-empirical models

5.1.1 Ionospheric models

These models are based on a description of the ionosphere in
terms of analytical functions. These functions are estimated
either from experimental data or from the results of physical
models.

A well-known empirical model widely used for different
applications is the International Reference Ionosphere (IRI)7

(Bilitza, 1990). This is the result of an international project
sponsored by the Committee on Space Research (COSPAR)
and the International Union of Radio Science (URSI), which
aimed at producing a reference model of the ionosphere
based on available experimental data sources. For a given
location, time and date, IRI describes the electron concentra-
tion, electron temperature, ion temperature, and ion composi-
tion in the altitude range from about 50 km to about 2000 km,
as well as the total electron content (TEC). The solar activ-
ity is represented by the sunspot number index. IRI provides
monthly averages in the non-auroral ionosphere for magnet-
ically quiet conditions; it can also be used for estimating the
profile of electron concentration using the experimental val-
ues of F2 peak electron concentration (i.e.foF2) and height
as inputs.

The major IRI data sources are the coefficients (foF2 and
M(3000)) produced by the Radiocommunication Sector of
the International Telecommunication Union (ITU-R)8 on the
basis of a large set of ground vertical ionosonde data, the

7Available on the NSSDC site: http://nssdc.gsfc.nasa.gov/space/
model/modelshome.html

8http://www.itu.int/ITU-R/index.html

powerful incoherent scatter radars (Jicamarca, Arecibo, Mill-
stone Hill, Malvern, St. Santin), the ISIS and Alouette top-
side sounders, and in situ instruments on several satellites
and rockets. IRI is updated periodically and has evolved over
a number of years.

At present, the major limitation of IRI appears to be its
description of the electron distribution in the region above the
peak of the F2-region (topside ionosphere). Such distribution
gives vertical total electron contents that have values above
the expected ones, particularly at middle and high latitudes
for high solar activity. The height limit of 2000 km for the
electron concentration calculation is a major limit for the use
of IRI to provide TEC estimates for satellite heights, such as
those of the GPS constellation.

A group of semi-empirical models have been developed by
D. N. Anderson and colleagues of the Phillips Laboratory of
the USAF. There are based on the combination of databases
of coefficients that reproduce theoretically calculated profiles
based on physical models:

– the Semi-Empirical Low-Latitude Ionospheric Model
(SLIM) (Anderson et al., 1987) is based on a theoret-
ical simulation of the low-latitude ionosphere. Electron
concentration profiles are determined for different lati-
tudes and local times by solving the continuity equation
for O+ ions. The profiles are normalised to the F2-peak
concentration and are then represented by a Modified
Chapman function using six coefficients per individual
profiles. Input parameters used in the theoretical calcu-
lation include the MSIS model neutral temperatures and
densities (see below), the IRI model temperature ratios,
and the diurnal ion drift patterns observed by the Jica-
marca incoherent scatter radar for the different seasons;

– the Fully Analytical Ionospheric Model (FAIM) (An-
derson et al., 1989) uses the formalism of the Chiu
model (Chiu, 1975) with coefficients fitted to the SLIM
model profiles. The local time variation is expressed by
a Fourier series up to order 6, and the variation with dip
latitude by a fourth order harmonic oscillator function
(Hermite polynomial);

– the same group developed a Parameterised Real-time
Ionospheric Specification Model (PRISM) (Daniell et
al., 1995) that consists of two segments. One is the
Parameterised Ionospheric Model (PIM) and the other
incorporates near-real-time data from ground and satel-
lite sensors. PIM is a relatively fast global ionospheric
model. It is based on the output of physical iono-
spheric models developed by the Utah State Univer-
sity and Boston College. It consists of a source code
and a large database of runs of ionospheric specifica-
tion codes. From a given set of geophysical condi-
tions (day of the year, solar activity indexf10.7, geo-
magnetic activity indexKp . . .) and positions (latitude,
longitude, and altitude), the model can produce critical
frequencies and peak heights for the ionospheric E- and
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F2-regions, as well as electron concentration profiles
from 90 to 1600 km and TEC.

5.1.2 Thermospheric models

Thermospheric semi-empirical models are based on the hy-
pothesis of independent static diffusive equilibrium of the
different thermospheric constituents above 120 km altitude.
The density of each constituent decreases exponentially with
altitude, according to its own scale height that depends on its
mass and on the temperature. The temperature variation is
described by the Bates profile that is a function of the exo-
spheric temperature, and the temperature and its gradient at
the lower limit. The temperature and the gas concentration
evolve depending on season and solar local time, latitude, so-
lar flux represented by thef10.7 index, and magnetic activity
represented byAp orKp indices. Periodic functions are used
to represent the diurnal and seasonal variations. Latitudinal,
solar activity and magnetic activity variations are represented
by non-periodic functions that may differ from one model to
another.

The DTM-78 model (Drag Temperature Model; Barlier
et al., 1978) has been developed at the Centre d’Etudes et
de Recherches Geodynamiques (CERGA, France) in a co-
operative effort with the Institut d’Áeronomie spatiale in Bel-
gium and the Service d’Áeronomie du CNRS in France. It
is based on temperature measurements by the OGO-6 satel-
lite and density data from drag observations. The DTM-94
version (Berger et al., 1998) include data from the micro-
accelerometer CACTUS (1975–1979) and from the Dynamic
Explorer 2 satellite (1981–1983). This version is actually
used for various applications: trajectory computation for
satellites such as SPOT or TOPEX/POSEIDON and devel-
opments of gravity models. A new version is under devel-
opment by CNES/GRGS and Service d’Aéronomie, in order
to better describe the variations in the lowest altitude region
(120 to 150 km).

MSIS (Mass Spectrometer and Incoherent Scatter) is the
most widely used model in the scientific community. It has
been developed by GSFC (Goddard, Maryland) and is based
on satellite mass spectrometer data and ground incoherent
scatter data. The MSIS-86 version (Hedin, 1987) became
the highest part (altitude above 90 km) of the COSPAR In-
ternational Reference Atmosphere (CIRA). The MSISE-90
version9 (MSIS Extented, Hedin, 1991) describes the atmo-
sphere from the ground level. Above 72.5 km altitude, it is
a revised version of MSIS-86 that includes new data. Above
120 km, MSIS-86 and MSISE-90 are identical.

An empirical model of the thermospheric winds has also
been developed by GSFC. The first version, HWM-87 (Hor-
izontal Wind Model), is based on data from the AE-E and
DE-2 satellites. Ground-based measurements by incoher-
ent scatter radars and Fabry-Perot interferometers have been
added in the version HWM-90 (Hedin et al., 1991) to lower

9Avalaible on the NSSDC site: http://nssdc.gsfc.nasa.gov/space/
model/modelshome.html

the altitude limit down to 100 km. The last version HWM-
9310 (Hedin et al., 1996) describes the winds almost from
the ground using data from MF and meteor radars.

The MSIS and HWM models are often used as inputs for
physical modelling, for example, the ionospheric and radia-
tion belt models. MSISE-90 will be used for orbit prediction
of the TIMED spacecraft. Current development efforts have
been transferred at NRL (Washington, D. C.) and are focused
on the improvement of the solar and geomagnetic input spec-
ifications, and on the incorporation of new data sources (Pi-
cone et al., 2000).

5.2 Physical models

The macroscopic behaviour of the ionospheric molecular
ions (N+

2 , NO+ and O+

2 ) and atomic ions (H+, N+ and
O+) is described through the “fluid approach”. The set of
transport equations (continuity, momentum, energy and heat
flow) corresponding to this approach is derived from Schunk
(1977). It solves the temporal evolution of the concentration,
the field-aligned velocity, and the temperature and the field-
aligned heat flow of each species.

On the other hand, precipitating electrons or primary pho-
toelectrons move along the magnetic field lines, producing
heat, excitation and ionisation. A cascade may occur, pro-
ducing secondary electrons through electron impact colli-
sions. These microscopic collisions and absorption are de-
scribed through a kinetic approach. Some outputs of the ki-
netic equation are the ion and electron productions, and the
thermal electron gas heating rate.

Therefore, a physical description of the ionosphere re-
quires the coupling of the two approaches. Global or lim-
ited area models that use basic physical principles controlling
the ionospheric plasma have been developed in recent years.
They make use of empirically specified input data. The
main ones are the solar EUV/UV radiation (see Sect. 5.5),
the ion convection pattern (see Sect. 5.4) and the auroral
precipitation pattern (see Sect. 5.4). The accuracy of these
inputs limits the ability of these physical models to repro-
duce climatic and space weather conditions. One finds in
Schunk (1996) an extensive review on the situation up to
1996. In 2002, the main ionospheric models that follow
this approach are the Utah State University model of the
global ionosphere (Schunk and Sojka, 1996), the University
of Alabama Field Line Integrated Plasma (FLIP; Richards
and Torr, 1996), the Phillips Laboratory Global Theoretical
Ionospheric Model (GTIM; Anderson et al., 1996), and the
TRANSCAR model (Lilensten and Blelly, 2002). Zhang et
al. (1993) and Zhang and Radicella (1993) developed a time
dependent ionospheric model essentially limited to middle
latitudes, but with the advantage of being fast in comparison
with global model calculations.

All of these models are suitable for the investigation of the
influence of different physical processes on the ionosphere.

10Avalaible on the NSSDC site: http://nssdc.gsfc.nasa.gov/space/
model/modelshome.html
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Their main outputs are the electron concentration distribu-
tion, electron and ion temperatures, ion velocity, with all
parameters measurable by incoherent scatter radar. There
are several other outputs, such as electron heating rate, ion
and electron production, or ion and neutral excitation rates.
From this last parameter, it is possible to compute the electro-
magnetic emissions due to the deactivation. As an example,
Witasse et al. (1999) have added the calculation of the ther-
mospheric red and green oxygen emission lines, in order to
use TRANSCAR as a diagnostic tool for the thermosphere.

The physical description of the upper atmosphere re-
quires the need to raise the question of the ionosphere-
thermosphere coupling, and possibly the coupling with the
lower atmosphere. Coupled approaches necessitate solving
self-consistently the 3-D time-dependent equations of mo-
mentum, energy and continuity for neutral particles and ions.
Parameters relevant to the ion-neutral and neutral-ion cou-
pling are exchanged at every few time steps between the ther-
mospheric and ionospheric codes.

The Coupled Thermosphere-Ionosphere-Plasmasphere or
CTIP (Fuller-Rowell et al., 1996; Millward et al., 1996)
is one of the most comprehensive upper atmosphere mod-
els currently available. It covers the region from 80 km
to 450 km altitude in the neutral atmosphere, 120 km
to 10 000 km in the ionosphere. This model has been
used extensively to study the response of the iono-
sphere/thermosphere system to geomagnetic storms (Co-
drescu et al., 1997; Fuller-Rowell et al., 2000). In 1998, it
was used in the frame of space weather in an effort to set
a network for ionospheric predictions (Szuszczewicz et al.,
1998). Different recent code developments have been per-
formed. They include the addition of tidal and planetary
wave forcing at the CTIP model’s lower boundary (Fuller-
Rowell et al., 1999; Muller-Wodarg et al., 2000); self-
consistent calculation of the E-region dynamo electric field
(Millward et al., 2000); flexible high-latitude auroral precipi-
tation and convection electric field (Schoendorf et al., 1996),
including the proton precipitation (Galand et al., 2001); and
extension of the lower boundary below the stratopause down
to 30 km (Harris, 2000, personal communication).

The NCAR TGCM’s are three-dimensional, time-
dependent models of the Earth’s neutral upper atmosphere
(Roble and Ridley, 1994 and references herein). Recent
models in the series include a self-consistent aeronomic
scheme for the coupled Thermosphere/Ionosphere system,
the Thermosphere Ionosphere Electrodynamic General Cir-
culation Model (TIEGCM), and an extension of the lower
boundary from 97 to 30 km, including the physical and
chemical processes appropriate for the mesosphere and up-
per stratosphere, the Thermosphere Ionosphere Mesosphere
Electrodynamic General Circulation Model (TIME-GCM).
The outputs of the TIME-GCM consist of 30 neutral atmo-
spheric parameters on a three-dimensional latitude, longi-
tude, pressure grid. Geographic longitude begins at−180◦

west and continues around the globe with a 5◦ resolution.
Geographic latitude resolution is also 5◦, from −87.5 south
to +87.5 north. The vertical dimension is in a log pressure

scale from−17.0 at the bottom (approximately 30 km) to 5.0
at the top (varying in altitude up to about 400 km). The ap-
plications are numerous, and a very large number of papers
have been published in the past years based on the use of this
model and comparison with experimental data. Recent ap-
plications include a comprehensive study of the atmospheric
tides (Hagan and Roble, 2002).

The next step in the physical description of the upper at-
mosphere is to couple the TIE codes with the upper boundary
conditions, i.e. magnetospheric/protonospheric codes. This
has been achieved for the first time by the numerical model of
the Earth’s upper atmosphere (Namgaladze et al., 1991) con-
structed at the Kaliningrad Observatory of IZMIRAN and at
the Polar Geophysical Institute in Murmansk. This model
covers the height range from 80 km up to a geocentric dis-
tance of 15 Earth radii. It consists of three main blocks: ther-
mospheric, ionospheric-protonospheric and an electric field
computation block. The exchange of information between
these blocks is carried out at every time step of the numerical
integration of the modelling equations (typically 2 min). The
electric fields, both of thermospheric dynamo and magneto-
spheric origin, and protonospheric parameters are calculated
consistently. For the thermospheric and molecular ion pa-
rameters, the latitudinal integration steps vary from 10◦ at
the geomagnetic equator to 2◦ at the auroral zones. For the
electric field, ionospheric F2-region and protonospheric pa-
rameters, they vary, respectively, from 5◦ to 2◦. The longi-
tude step is 15◦. The thermosphere is computed between 80
and 520 km at 30 altitude levels. This model has been used
in several applications. Recently, the effect of geomagnetic
storms on both the thermosphere (Förster et al., 1999) and
the ionosphere (Namgaladze et al., 2000) have been investi-
gated.

The Magnetosphere-Thermosphere-Ionosphere-Elec-
trodynamics-General circulation model (MTIE-GCM;
Peymirat et al., 1998) couples the TIE-GCM (Richmond
et al., 1992) and the Ionosphere-Magnetosphere model of
Peymirat and Fontaine (1994). It calculates self-consistently
the 3-D structure of the thermosphere and of the ionosphere,
the 2-D structure of the magnetospheric plasma convection
in the equatorial plane of the magnetosphere, and the
couplings between the thermosphere, the ionosphere and
the magnetosphere. Once given as inputs, the distribution
of the electric potential along the polar cap boundary, and
the density and temperature of the magnetospheric plasma
source, the magnetospheric part computes the motion of the
magnetospheric plasma, from which it deduces the auroral
precipitation and the region’s two field-aligned currents.
These are transmitted to the TIE-GCM part, which computes
the 3-D dynamics of the thermosphere and ionosphere. The
ionospheric electric field is also computed considering the
effect of auroral precipitation, the effect of the region’s two
field-aligned currents and the effect of the neutral winds.
The ionospheric electric field is then transmitted to the
magnetospheric part, in order to calculate the motion of the
magnetospheric plasma. This model is used to evaluate the
feedback coupling among the magnetosphere-ionosphere-
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thermosphere system and specifically to check the influence
of the neutral winds on this coupling. A coupling of
the magnetospheric part to the physical ionospheric code
TRANCAR, described above, is under way (Peymirat and
Blelly, personal communication, 2001).

5.3 Ionospheric profilers

Another way to estimate the electron concentration distribu-
tion with height is based on data assimilation techniques. It is
based on adjustments of a parameterised profile, expressed in
terms of simple mathematical functions, to ionospheric char-
acteristics routinely scaled from the ionograms. The advan-
tage of this type of “profile modelling” is that it can, in prin-
ciple, use as inputs experimental values of basic ionospheric
characteristics for both quiet and disturbed conditions. The
so-called “profilers” share with the other types of models the
difficulty of describing well the topside ionosphere. This is
essentially due to the absence of a well-established experi-
mental database of topside profiles, which is necessary to ob-
tain a clear description of the topside ionosphere behaviour.

The Bradley and Dudeney (1973) “profiler” describes the
electron concentration profile up to the peak of the F2-region.
It consists of two parabolic layers for the E- and F2-layer and
a linear segment in between. This profile generation is still
used by the ITU-R HF propagation prediction method. Du-
deney (1978) has later proposed a more refined profile that
uses routinely scaled characteristics, incorporates combina-
tions of trigonometric-function segments, and provides op-
tional valley and an F1-ledge description. The main advan-
tage of this profile over the previous one is the continuity of
the gradient of electron concentration with height across the
segment boundaries.

The DGR model, a “profiler” originally introduced by Di
Giovanni and Radicella (1990) and improved by Radicella
and Zhang (1995), is able to describe the electron concen-
tration profile in the E, F1, F2-regions of the ionosphere by
using simple analytical expressions. It is essentially based on
the Epstein layer introduced by Rawer (1982) and considers
the existence of characteristic points in the profile with co-
ordinates (values of electron concentrations and their height)
calculated by means of empirical expressions. The model is
constructed as the sum of three Epstein layers that are for-
mally identical. The model calculates the electron concen-
tration profile above the F2 peak, making use of an effective
shape parameterempirically derived for the topside iono-
sphere. The total electron content is computed with an ana-
lytical expression obtained from the Epstein layers formula-
tion of the model. This model of electron concentration pro-
file has been adopted by the European Commission COST
238 (PRIME) action and it is part of the computer program
produced by the action.

A new family of electron concentration “profilers”, which
differ in complexity and which have different but related ap-
plication areas, has been developed (Hochegger et al., 2000).
They are based on the DGR “profiler” concept and also allow
for the use of median or instantaneous values, or maps based

on regional or global experimental data. The three models
are:

– NeQuick is a quick-run model for ionospheric applica-
tions. This model has been adopted in the ionospheric
specifications for the European Space Agency EGNOS
project;

– COSTprof is a model that can be used for ionospheric
and plasmaspheric satellite to ground applications. This
model has been adopted by the COST 251 action of
the European Commission as the profiler for its electron
concentration distribution;

– NeUoG-plas is a model that can be used particularly in
assessment studies involving satellite to satellite propa-
gation of radio waves.

The basic input parameters are valuesfoF2 and
M(3000)F2. The output of the models is the electron concen-
tration in the ionosphere as a function of height, geographic
latitude and longitude, solar activity (given by sunspot num-
ber or by 10.7 cm solar radio flux), season (month) and time
(Universal Time UT or local time LT). The models also per-
mit one to calculate electron concentration along arbitrarily
chosen ray paths and slant, or vertical total electron content
up to heights in the plasmasphere, such as those of GPS satel-
lites. The profiles are continuous in all spatial first derivatives
(a necessity in applications like ray tracing and location find-
ing).

Above 100 km and up to the F2-layer peak, all three mod-
els are identical using a modified DGR formulation. They
use the ITU-R coefficients forfoF2 and M(3000)F2, and sim-
plified models forfoF1 andfoE, which take into account solar
zenith angle, season and solar activity. The topside F-layer
for the NeQuick model is again a semi-Epstein layer, but
with a height dependent thickness parameter (Radicella and
Zhang, 1995). For the COSTprof, the topside ionosphere for-
mulation uses three physical parameters, namely the oxygen
scale height at the F2 peak, its height gradient, and the O+

– H+ transition height. These three parameters are modelled
according to solar activity, season, local geographic latitude,
and “modified dip latitude”. NeUoG-plas has an additional
geomagnetic field-aligned third part for the “plasmasphere”
to model this region in a more realistic way.

5.4 Convection electric field and auroral precipitation
models

Such empirical models are used as inputs of the physi-
cal ionospheric and coupled ionospheric thermospheric 3-D
models. Only the most recent and well-known models are
presented below.

The Heppner-Maynard-Rich Electric Field Model is a
software package11 that includes several empirical electric
convection field models, and the AFGL Precipitation and

11Avalaible on the NSSDC site: http://nssdc.gsfc.nasa.gov/space/
model/modelshome.html
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Conductivity Model; the latter for obtaining conductances,
currents, and heating. The Heppner-Maynard models are
based on OGO 6 and DE 2 electric field measurements and
provide the electric potential and field poleward of 60◦ ge-
omagnetic latitude (Heppner and Maynard, 1987). Seven
different models were generated for different Interplanetary
Magnetic Field (IMF) conditions. Spherical harmonics to or-
der 11 in magnetic local time and latitude are used in each
case. For southward IMF, an explicit variability with geo-
magnetic activity is included. The Heelis Electric Convec-
tion Field Model (Heelis et al., 1982) is included in this pack-
age for comparative purposes. Rich and Maynard (1989) il-
lustrate the improvements of their model in relation to the
Heelis model and point out the differences to the Millstone
Hill Electric Field Model (Holt et al., 1987) in the region of
the Harang discontinuity and near the dayside cleft.

Based on the same set of satellite data, the UAF Eulerian
Polar Ionosphere Model (Weimer, 1996) is formulated in the
corotating frame and has a scaleable horizontal resolution (up
to 100× 100 km). It derives the electric potentials in the
high-latitude ionosphere, resulting from any arbitrary com-
bination of the IMF magnitude and orientation, solar wind
velocity, and dipole tilt angle. It is currently used to prepare
ionospheric convection maps.

The Izmiran Electrodynamic Model (IZMEM, Feldstein et
al., 1984) is based on the inversion of geomagnetic ground-
based observations. The 1985 version is parameterized by
the interplanetary magnetic field (IMF) strength and direc-
tion and is available for the three seasons (summer, win-
ter, equinox). Seven parameters of the high-latitude iono-
spheric electrodynamics can be determined for the specific
IMF strength and orientation (Bx , By , Bz): geomagnetic per-
turbation vectors at the Earth’s surface, electrostatic field po-
tential at the ionospheric altitude, as well as electric field
vectors, field-aligned currents, ionospheric current vectors,
equivalent current vectors, and Joule heating rate. The new
IZMEM/DMSP12 model produces patterns obtained after re-
calibration of the IZMEM model by the observed DMSP
electrostatic potentials (Papitashvili and Rich, 2002). It uses
real-time IMF data from the ACE satellite.

The AFGL Electron Precipitation Model (Hardy et al.,
1987) and the AFGL Ion Precipitation Model (Hardy et al.,
1989) provide the integral energy and number flux of precip-
itating auroral electrons and ions as a function of corrected
geomagnetic latitude, magnetic local time, and magnetic ac-
tivity (Kp). These are based on millions of spectra from the
DMSP-F2, F4, F6, and F7 satellites and the P78-1 satellite.
At each level of activity, the high-latitude region was sepa-
rated into 30 zones in corrected geomagnetic latitude (from
50◦ to 90◦) and 48 one-half-hour zones in magnetic local
time. The electron model also provides Pedersen and Hall
conductivities, using empirical relationships between con-
ductivities, electron energy flux, and average energy.

For space weather applications, it should be noted that
real-time global convection maps, or the equivalent electro-

12http://www.sprl.umich.edu/MIST/spw.html

static potential maps, constrained by SuperDARN radar mea-
surements, have recently been made avalaible13 (Shepherd
and Rhuohoniemi, 2000). Convection pattern and the auroral
precipitation pattern can also be deduced from all available
data (geomagnetic and radar ground-based observations and
in situ measurement of electric field and auroral precipita-
tion) using the AMIE procedure (Richmond, 1992) which to-
day is not a real-time procedure. The use of such time depen-
dant auroral inputs has dramatically increased the physical
model’s reliability for describing the ionosphere and thermo-
sphere during disturbed conditions.

5.5 EUV/UV models for aeronomy

The ultraviolet (UV)/extreme ultraviolet (EUV) solar flux is
energetic enough to ionize the upper atmosphere. It consti-
tutes the major source for the diurnal ionosphere. Most of the
current models rely on a few experiments taken on board the
Dynamics Explorer missions (Hinteregger et al., 1973). A
first representation of solar EUV fluxes for aeronomical ap-
plications was given by Hinteregger (1981), and Hinteregger
and Katsura (1981). A first reference flux SC#21REF was
assembled from measurements performed in July 1976, at a
period wheref10.7 = 70, and given for 1659 wavelengths.
An extrapolation model (SERF 1) allows one to estimate the
flux during other periods of solar activity.

Torr and Torr (1979, 1985) proposed two reference fluxes
for aeronomy called F79050N – corresponding tof10.7 =

243 – and SC#REFW – corresponding tof10.7 = 68. The
UV spectrum was divided in 37 bins. Some bins corre-
spond to intense spectral lines, but the bright Lymanα line
at 121.565 nm does not show up because it is not energetic
enough to ionise the terrestrial ionosphere. This work proved
to be extremely useful. One of its qualities was that the au-
thors proposed the corresponding absorption and ionisation
cross sections for the major thermospheric species. Its main
limitation is that the measurements do not allow one to reach
a good estimate of the flux variability for different solar ac-
tivity conditions.

Since then, several authors developed their codes in order
to take better advantage of the AE database. Amongst them,
two are worth noting here:

– Tobiska (Tobiska, 1991; Tobiska and Eparvier, 1998)
developed a model called EUV, which takes data from
other sources into account: SME, OSO; AEROS; rock-
ets and ground-based facilities. This model takes into
account the solar emission zone of each line, through
a parameter. It proposes a formula to retrieve a solar
flux from the gift of the decimetric index and its aver-
age. A new version, SOLAR2000, has been recently
developed. It uses a new input parameter named E10.7,
computed from a previous version of the code (Tobiska
et al., 2000);

– The second improved model is EUVAC (Richards et
al., 1994). Its main difference with previous models is

13http://superdarn.jhuapl.edu/index.html
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Table 2. Synthesis of model inputs and outputs of pre-operational and operational models. Only the ones most often used in a given category
are indicated. A column indicates if the model is a physical one (P ) or a semi-empirical or empirical one (E) and 2 columns state whether
development of the model itself or availability of new observations is the most crucial for its improvement

P Model Observations
Models Based on Inputs Outputs or develop- needed for Remark

E ment improving
needed the model

Torr DE F10.7 EUV/UV E X New models under
Sun satellite data spectrum construction

Shue et al. Satellite data IMF Bz magnetopause X
Solar wind density size and shape E

and velocity
IGRF Geomagnetic indices

Tsyganenko Satellite magnetic IMF Magnetic Field E

field data Solar wind density
and velocity

Magneto- Geomagnetic indices Magnetospheric particle
sphere IMF fluxes: 0.1–100 Kev Next

MSM IGRF Solar wind density Magnetospheric E and BP generation:
and velocity Precipitating electrons MSFM

Ionospheric convection
Satellite data Solar activity: Particle fluxes Magnetic storm

AP8-AE8 from 1960–1975 min or max Protons: 0.1–400 MeVE X effects
Electrons: 0.1-7 MeV non included
Magnetic field power

LPCE/CEA Satellite data: Geomagnetic indices density spectrum E X Presently only
Wave model DE-1 Wave distribution 2 Kp classes

Function
Heppner- Satellite data Geomagnetic indices Convection E

Maynard-Rich IMF electric field
SuperDARN Radar data IMF Convection E X Real time

assimilation SuperDARN radar data electric field
AFGL Ion and electron

precipitation Satellite data Geomagnetic indices auroral precipitationE
models Conductivities

Iono- Ionosondes, F10.7 or Electron and ion Valid in
sphere IRI IS data Sunspot number densities and E X Mainly topside non auroral zone

Topside sounders [NmF2 and HmF2, temperatures densities and for quiet
or TEC] conditions

SLIM-FAIM outputs of F10.7 Electron density E X
PIM physical models Geomagnetic indices profiles

Profilers Data assimilation F10.7 or Electron densities Mainly topside Development
(DGR derived) (Ionosondes) Sunspot number profiles E X density co-ordination by

Ionosondes data COST271 and ESA
MSIS Satellite data F10.7 Neutral densities Mostly valid at mid
DTM from 1975–1983 Geomagnetic indices and temperature E X and low latitudes

Thermo- + IS data for MSIS
sphere Satellite data

HWM from 1975–1983 F10.7 Neutral wind E X Mostly valid at mid
IS and inter- Geomagnetic indices and low latitudes

ferometer data

the reference flux chosen, and the interpolation formula.
The coronal flux is also constrained to be at most 80%
of the total.

Those models are very important for aeronomic computa-
tion. They allow one to develop fairly good physics. How-

ever, they cannot take into account the variability at different
wavelengths. Indeed, specific full measurements (for exam-
ple, on board the space shuttle) clearly show that there is no
linear variation with the decimetric index. On the contrary,
some lines of the solar flux may increase with solar activity
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Table 3. Summary of non-operational physical model classes. The last column states their operational potentialities as foreseen today, if
resources are available for operational development

Models Method Inputs Outputs Operational
potentialities

Sun Solar atmosphere MHD Photospheric magnetic field Coronal magnetic field; Long term
Eruptive phenomena

Solar Wind MHD Plasma and magnetic field IMF, Plasma velocity, density Long term
Interplanetary Global Structure at the Sun and temperature at 1 AU

medium propagation of MHD Plasma and magnetic field Properties of CMEs at 1 AU Long term
CMEs at the Sun and beyond

IMF, solar wind velocity Magnetic field and particle
Global models MHD and/or and density at 1 AU distribution in the Depend on

Kinetic Present status of the magnetosphere the model
magnetosphere

Magnetosphere Adiabatic Geomagnetic indices
invariants Thermospheric Particle fluxes Short term

Radiation belt Fokker Planck neutral densities Protons: 0.1–300 MeV for Salammbô
diffusion Cosmic neutron flux, Waves Electrons: 0.1–10 MeV
equation Plasmaphere position

F10.7
Fluid Thermospheric neutral Electron and ion densities

Ionosphere description densities, temperature and winds and temperatures
1D and 3D models (+Kinetic Geomagnetic indices Ion velocity Short term

Ionosphere Transport) or Convection pattern
Thermosphere and Auroral Precipitation

3D Coupled Fluid F10.7
Ionosphere description Geomagnetic indices Neutral densities, Mid term

Thermosphere Eulerian or Convection pattern temperature and wind
approach and Auroral Precipitation

or decrease, sometimes drastically.
Finally, a radically different approach has been considered

by Warren et al. (1996, 1998). They combined a spectral
emission line database, solar emission distributions, and es-
timates from ground-based solar images of the fraction of
the Sun covered by the various types of activity, to synthe-
sise the irradiance. The aim was to provide a way to esti-
mate the irradiance by means of the model, from the EUV
line emission formed in the upper chromosphere, and in the
lower transition region from the Ca II K-line. This approach
made it possible for them to estimate the emission measure
from a spectrum of a portion of the quiet solar disk measured
with the Harvard instrument on Skylab, and compilations of
atomic data (Warren et al., 1998). The irradiance spectrum
from 50–1200̊A was then computed for the quiet Sun, with
the contributions of optically thick emission lines and con-
tinua included empirically. A comparison with the empirical
models described above indicates relatively good agreement
among fluxes of emission lines formed in the solar chromo-
sphere and transition region. A factor of typically 2 is found
with the fluxes for coronal emission lines.

6 Model synthesis

Tables 2 and 3 summarise the main models described in
Sect. 1, their inputs and their outputs. Table 2 presents the

pre-operational and operational models. It is not restricted
to the models that are effectively used in operational centres,
but includes those that could be used operationally today, as
are, for example, most of the empirical models. This table
does not, however, include all the models described in the
previous sections, but is limited to either recent models or
the ones most often used for the same outputs. A letter indi-
cates if the model is a physical one (P ) or a semi-empirical or
empirical one (E). We have also indicated whether develop-
ment of the model itself or availability of new observations
is the most crucial for its improvement. The type of data
for which the model is based upon is also indicated (column
3), and finally, some remarks are added (column 4). Most
of these models use the geomagnetic indices as inputs. The
SuperDARN convection model and the ionospheric profilers
are based on data assimilation techniques, in order to provide
a 3-D description of a given parameter using localised obser-
vations as inputs. It should be noted here that new meth-
ods are now developed for extracting thermospheric parame-
ters (neutral composition, temperature, total density, winds)
from routine ionospheric observations (ground-based verti-
cal sounding, TEC data).

Table 3 presents a summary of non-operational physical
models. Contrarily to Table 2, this table deals with classes
of models and not with specific models. All models require
either improvements or new observations – including for val-
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Table A1: Members of the consortium lead by ALCATEL Space and LPCE

Companies Key personnel

ALCATEL Space Industries, Cannes, FranceB. HUET1; O. PANSART; P. KAMOUN

Laboratoire de Physique & Chimie de F. LEFEUVRE1; P. GILLES; T. DUDOK DE WIT

l’environnement, Orĺeans, France

British Antartic Survey, Cambridge, U.K. R. HORNE1

Swedish Institute of Space Physics – H. LUNDSTEDT1

IRF, Lund, Sweden

Mullard Space Science Laboratory – A. COATES1; R. BENTLEY; N. CROSBY

UCL, London, U.K.

ESYS, Surrey, U.K. A. SHAW1

Observatoire de Paris – M. PICK1

LPSH, Meudon, France

Laboratoire de Plańetologie de Grenoble, J. LILENSTEN1; C. LATHUILLERE

Grenoble, France

Imperial College, London, U.K. P. CARGILL1

University of Greifswald – EMAU, F. JANSEN1

Greifswald, Germany

(1): contact persons

idation purposes – or both. Most of them are today scien-
tific codes developed for research purposes. The last col-
umn states their operational potentialities as foreseen today,
if resources are available for operational development. Ring
current models, as defined in Sect. 1, are not included in this
table, because the data needed at the boundary make it almost
impossible to use for operational space weather applications.

7 Conclusion

The large variability of the solar terrestrial system limits
the efficiency of empirical models, while progress in space
weather requires the development of models that rely on ba-
sic physical principles controlling the behaviour of the Sun-
Earth interaction. Achieving the development of such quan-
titative physical models is one of the main challenges for
space weather issues, and more generally, for solar terres-
trial physics. However, one can foresee a long time before
this is achieved. The short overview of the state of the art
presented in the previous sections shows that this delay is
highly dependant on the considered sub-system.

Space weather aims at routinely producing forecasts of rel-
evant parameters. Before the development of operational ver-
sions of physical models, this will be achieved by means of
hybrid models involving simultaneously physical codes, arti-
ficial intelligence-based codes, and empirical models. Such a
hybrid approach is presently, and likely to remain for a long
time the most promising way of development of operational

models. More developments and improvements of empirical
models remain, therefore, mandatory.

These developments imply routine availability of relevant
direct measurements or scientifically agreed proxies. In
many cases, homogeneous and long enough data series are
necessary to assess the models in the various situations that
can be encountered in solar terrestrial physics. This is al-
ready the case for some ground-based measurements, for ex-
ample, ionosonde measurements and in space for the GPS
satellite data over the last few years. However, it is not yet the
case for most in situ measurements on board satellites, inside
or outside the magnetosphere. In addition, the indices mon-
itoring solar and geomagnetic activity have not, at present,
the required characteristics to comply with the requirements
of space weather: for example, time and/or space resolution
are not good enough (magnetic indices), measured quantity
is not well suited (solar decimetric index). The development
of new indices with a better time and/or space resolution, or
based on more relevant quantities has already been initiated
in the scientific community.
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Annex 1:

ESA study for a space weather program – ALCATEL
driven consortium

Areas addressed within this ESA study include:

• the user’s requirements assessment and market analy-
sis; the parameters needed for space weather and their
associated measurement requirements;

• the combined space segment/ground segment scenarios
and hardware assessment for meeting the specific needs
of an operational space weather system;

• the prediction service definition and its prototyping, in-
cluding models evaluation;

• the programme development assessment with its Euro-
pean organisation.

The main outcomes expected are comprehensive answers to
the following fundamental questions:

• For which user shall a space weather service be devel-
oped and in which time frame?

• Which components shall be deployed and with which
complexity?

• When shall/can a space weather service be operational?

• How shall a space weather service be implemented, i.e.
with which organisation and coordination within Eu-
rope and which level of autonomy?

For any further information concerning the tasks performed
by the consortium, the reader may refer to the following web
site: http://www.european-space-weather-at.com.
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