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Abstract. The aim of this paper is to lead a practical, ra-
tional and rigorous approach concerning what can be done,
based on the knowledge of magnetic series, in the field of
prediction of the extreme geomagnetic events. We compare
the magnetic vector differential at different locations com-
puted with different resolutions, from an entire day to min-
utes. We study the classical correlations and the simplest
possible prediction scheme to conclude a high level of pre-
dictability of the magnetic vector variation. The results ob-
tained are far from a random guessing: the error diagrams are
either comparable with earthquake prediction studies or out-
perform them when the minute sampling is used in account-
ing for hourly magnetic vector variation. We demonstrate
how the magnetic extreme events can be predicted from the
hourly value of the magnetic variation with a lead time of
several hours. We compute the 2-D empirical distribution
of consecutive values of the magnetic vector variation for
the estimation of conditional probabilities of different types.
The achieved results encourage further development of the
approach to prediction of the extreme geomagnetic events.

Key words. Ionosphere (modeling and forecasting) – Mag-
netospheric physics (storms and substorms)

1 Introduction

Many have tried for a long time to predict the so-called mag-
netic situation or magnetic activity, as characterized, for ex-
ample, by magnetic indices. The objective of better under-
standing of the time evolution of the geomagnetic field is
also of practical interest: the simplest example of application
is the planning of an aeromagnetic survey, which requires a
quiet magnetic situation to be accurate.

The interest for such type of prediction has, of course,
been renewed and amplified since it has been realized that
damages caused by big magnetic storms in power lines and
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other installations (e.g. Kappenman, 1996), have to be miti-
gated. Space navigation, especially manned flights, and the
revolution of communications via satellites also require fore-
casting of space weather (e.g. Hastings, 1995).

The full subject encompasses short-term, middle-term,
long-term predictions, periodic or quasi-periodic cycles. Fur-
thermore space weather forecasting uses additional space in-
formation independent of the magnetic field. The objective
of the present paper may then appear limited. We will eval-
uate the predictability of some long and homogeneous mag-
netic time series by using simple tools whose efficiency can
be easily tested. Our results, however limited, are established
in a rigorous way and, for each prediction, we will clearly
and explicitly say what it means, avoiding any vague state-
ment.

2 The magnetic time series

A magnetic observatory provides recordings of three com-
ponents of the geomagnetic field:X, horizontal northward,
Y , horizontal eastward, andZ, vertical downward. The sam-
pling rate and the accuracy, in absolute value, depend on the
epoch and the observatory. We won’t describe here in any
detail the full set of these magnetic data, but rather refer to
Bellanger et al. (2002b) and Bellanger et al. (2002a). We will
just give the necessary information on the series analyzed in
the present study. The quality of the series used has been
carefully checked: series containing gaps or obvious steps
due to base lines problems were rejected. This selection led
to the retention of series that do not have the same length and
do not cover the same timespan. The long-term control of
absolute values (the so-called problem of base lines), which
remains the most difficult task to achieve in an observatory,
is, contrary to the steps mentioned above, of small influence
here, due to the short-term differences considered (daily, at
most).
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2.1 Minute values

Minute values ofX, Y andZ have been available in a number
of observatories since the introduction of fluxgate variome-
ters (at a date depending on the observatory, after 1970). In
particular, the Intermagnet program has produced each year
since 1992 a CD-ROM containing definitive minute values of
several tens of observatories (80 in 2001); the minute value,
given in tenths of nT, is obtained by applying a Gaussian fil-
ter of 19 coefficients to a set of 19 measurements centered
on the given minute and sampled every 5 s (Trigg, and Coles,
1999).

We will use here theX, Y , andZ components of an 11-
year minute value time series from the Port-aux-Français ob-
servatory and 4 years of minute values from Chambon-la-
For̂et (see Table 1).

2.2 Hourly means

Hourly mean values ofX, Y , Z can be obtained from the
World Data Center (WDC) of Copenhagen or directly from
the observatories. More than twenty 3-component series are
available, which have variable lengths and continuity (see,
e.g. Bellanger et al., 2002b). Hourly means, centered on the
half hour, are computed from minute data when and where
available, by a simple arithmetic averaging. Before minute
values were available, hourly means were scaled by hand
from photographic magnetograms. We will use here the
hourly means of the Chambon-la-Forêt observatory covering
the period 1960–1995.

2.3 Daily means

From the hourly mean series of the Eskdalemuir observa-
tory (Table 1), covering the 1914–1998 timespan, we build
a series of daily means (daily values are obtained by a sim-
ple arithmetic averaging of the 24-hourly values of the day),
from 1 January 1914 to 31 December 1998 (31 046 days; the
ESK series is the longest and most continuous available).

3 The analysis of predictability

We will analyze the predictability of a magnetic series cor-
responding to the three sampling rates: daily, hourly and
minute. We start the analysis with daily values to conclude
with the most refined, minute sampling.

3.1 Daily first differences

Let E be any ofX, Y andZ; k is the sequential number of
the sample (k = 1, 2 . . . N), and the first difference

Ė(k) = E(k + 1) − E(k) , (1)

and the daily rate of change

R(k) =

(
Ẋ2(k) + Ẏ 2(k) + Ż2(k)

)1/2
. (2)
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daily means at Eskdalemuir.

R, as well as any function ofR, is an invariant measure
of geomagnetic field (does not depend on the choice of lo-
cal coordinatesX, Y andZ). The common line of analysis
will be described in detail for the ESK series of daily means;
the subsequent analysis of hourly and minute data being per-
formed along exactly the same lines will be presented more
succinctly. Note that the daily sampled seriesĖ andR ob-
tained from esk daily means are measured in nT per day. Af-
ter presenting briefly the histograms ofĖ and R, we will
analyze the predictability of theR series.

3.1.1 Histograms

As the magnetic data suggest, it is natural to use bins with
exponentially increasing sizes to describe their distribution.
Specifically, the bin boundaries we use to plot the histograms
are xp+1 = axp = apx0, a > 1, with p being an inte-
ger number, so that in log–log scale they are equally spaced
along the abscissa. Figure 1 displays the distributions of the
absolute values|Ẋ|, |Ẏ | and|Ż| and ofR for the whole pe-
riod 1914–1998, in bi-logarithmic scale (a = 2). The first
three ones show a linear increase in the density up to values
of 3–4 nT/day, over three orders of magnitude, and then a
power law decay, with an exponent between 2 and 3, from
10 nT/day until the “extreme” events with values larger than
100 nT/day. The histogram ofR is almost symmetrical about
the vertical axis through the value of 6–7 nT/day. Although
these histograms contain much information on the process
under study, we won’t comment on them any longer in this
study of predictability.

3.1.2 Autocorrelation ofR

The autocorrelation of theR(k) series can be illustrated by a
few diagrams. Figure 2 displays the 2-D histogram of pairs
of consecutive values ofR, (R(k),R(k + 1)), with the bins
defined bya = 100.05. The horizontal axis is for the “today”
value and the vertical one for the “tomorrow” value. The
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Table 1. Location of observatories: geographic (geocentric) coordinates and corrected geomagnetic (CGM) coordinates in degrees

Name Code Longitude Latitude CGM Long. CGM Lat.

Chambon–La–Forêt CLF 2 48 80 45
Eskdalemuir ESK 357 55 78 53
Port-aux-Français PAF 70 –49 122 –58
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Fig. 2. R for tomorrow vs.R for today at Eskdalemuir (computed
from daily means): 2-D histogram. The color indicates the number
of pairs in a cell, see color bar.

elongation of the cloud of points is indicative of a correlation
in the time series. The histogram, when normalized to the
total number of pairs (N − 1 = 31 045), delivers their em-
pirical distribution, which can be used to determine various
conditional probabilities.

Figure 3 displays, as an example, the graphs of two of the
conditional probabilities:P(R(k + 1) > 50nT/day| R(k)),
i.e. probability of havingR greater than 50 nT/day the day af-
ter the valueR is observed, andP(R(k + 1) > R(k) | R(k)),
i.e. the probability that, given the value ofR(k) today, its
value will be larger tomorrow. The first graph shows that (i)
there is practically no chance forR to reach 50 the day af-
ter its current level is less than 15, (ii ) if its current level is
120 or more, there are more chances forR to stay above 50
the day after than to fall below this level (note, however, that
the number of high value extreme events is small, so that the
statistic is less robust in this range and that the probability
of the extreme values eventually collapses to 0). The second
graph also illustrates some kind of dynamical law of the sys-
tem: if R < 8 today, chances are higher than 50% forR to
be larger the day after; ifR > 80, chances forR to be larger
are limited to 20%–30%. As already mentioned, other condi-
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Fig. 3. Conditional probabilities for Eskdalemuir:(a) P(R(k +

1) > 50nT/day| R(k)); (b) P(R(k + 1) > R(k) | R(k)), and the
empirical distribution ofR (blue line), i.e. unconditional probability
P(R(k + 1) ≤ R).

tional probabilities can be derived from the (R(k),R(k + 1))
2-D histogram.

The autocorrelation function ofR,

CRR(t) = 〈R(k)R(k + t)〉 k = 1, . . . , N − t , (3)

where〈 〉 is average andt is the lag time. The Correlation is
0.54 after one day (t = 1), but falls down to 0.22 after two
days.
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Fig. 4. The error diagram for Eskdalemuir. Daily values differ-
ences.

3.1.3 A simple prediction scheme

Suppose we are interested in predicting today “extreme”
events, defined by values ofR > R0, for tomorrow. The
simplest prediction scheme suggests issuing an alert for to-
morrow if R > r0 today;r0 andR0 are parameters. We call
the occurrence of a value ofR larger thanR0 an extreme
event. We count a success if it happens on the alert day, and
a failure-to-predict otherwise.

Figure 4 shows the error diagram, or so-called (n, τ ) dia-
gram (Molchan, 1997), achieved by the described prediction
scheme on Eskdalemuir data, for a large set of values of pa-
rametersr0 andR0. n is the percentage of unpredicted (ex-
treme) events,τ is the ratio of the time covered by alerts, i.e.
of the ratio of the number of alert days to the total time inter-
val considered (N days). The effectiveness of the prediction
is characterized by the distance of the lower envelope0 of the
set of points (n, τ ), from the random guess strategy curve, i.e.
the segment of diagonaln + τ = 1. This diagonal segment
connects the point corresponding to the optimistic strategy
(no alert, and failure to predict any event) to the point corre-
sponding to the pessimistic strategy (full time alert, and no
failure to predict). In general, one tries to minimize some
loss functionγ (n, τ ) depending on preparedness problems
and measures envisioned in response to the prediction. The
point where an isoline ofγ (red line in Fig. 4) touches0
determines both the minimal achievable loss and the optimal
set of adjustable parameters (herer0 andR0) of the predic-
tion algorithm.

Here, for illustration, we adopt the linear cost function
γ = n + τ (note thatγ = 100% at any point of the ran-
dom guess diagonal).

To facilitate further comparison we define here the ex-
treme events withR0 between 98 and 99 percentiles ofR,
i.e. the top 1–2% in a data set, andr0 between 0 and 98 per-
centile. In case of the Eskdalemuir daily data, 41< R0 < 55
nT/day and 0< r0 < 41 nT/day. Each of the 800 (= 20×40 ,
arbitrary sampling ofR0 , r0 variations) pairs (R0, r0) that
are uniformly distributed in the above defined intervals is
mapped on the error diagram according to the score achieved
by the prediction scheme with these parameters, as seen in
Fig. 4. The lower envelope0 of the mapping of the domain
spanned by (R0, r0) pairs is used to determine the optimal
parameters for prediction. We draw level lines of the cost
function γ (segments of a straight line of slope−1 in the
case ofγ = n + τ ); the value attached to the one which is
tangent to0 is the minimum of the cost functionγ . In the
case ofγ = n+τ (e.g. Fig. 4), this value can be read directly
on either axis.

For Eskdalemuir (Fig. 4), the minimal value ofγ = 43%
is achieved (in such definition of theR extremes), when
r0 = 11.3 andR0 = 51.5. Twenty-two percent of alert
days, i.e. 18.6 out of 85 years, is required to predict 287
out of 362 extremes. The score is far from a random predic-
tion and compares with the case of reproducible earthquake
prediction, which came from the 10 years of real-time global
testing of M8-MSc algorithm withγ = 34% (Keilis–Borok
et al., 2001). Of course, one may want to use a more restric-
tive definition of the extremes and issue a smaller number of
alerts. For example, forR0 = 120, andr0 = 60, 25 out of
40 extreme events are predicted by issuing 254 days of alert,
i.e. about 0.8% of the total number of days (γ = 38%).

3.2 Hourly first differences

We now consider hourly mean values ofX, Y , Z at
Chambon-la-For̂et observatory (Table 1) in the 1974–85
timespan, covering a full solar cycle (note that we retained
12 years for the study of CLF hourly means, which cover the
solar cycle number 21, and 11 years for the study of PAF
hourly variations from minute values (Sect. 3.3), which span
the cycle number 22). We define, exactly as above,Ẋ(k),
Ẏ (k), Ż(k), k now being the number of the sequential hour
and the dot meaning the differenceE(k + 1) − E(k) (Eq. 1).
R(k) is given again by Eq. (2). However, noẇE andR are
measured in nT per hour.

Figure 5 represents the 2-D histogram of the current hour
next hour values (R(k),R(k + 1)) determined by all (more
than 315 000) sample pairs in 1960–1995. The presence of
local extrema for small values ofR is due to the essential
discreteness of the measurements and narrower bin sizes at
small values ofR.

Two conditional probabilities have been computed
(Fig. 6), using all the hourly means at CLF from 1960 to
1995. The first one shows, for example, that ifR < 40
nT/hour, its chances of being larger than 50 in the next hour
are rather small; but ifR > 100 nT/hour, it will not drop
below 50 nT/hour during the next hour in most of the cases.
The second one (Fig. 6) gives the probability forR(k + 1) to
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Fig. 5. R for next hour vsR for current hour at CLF (computed from
hourly means): 2-D histogram. The color indicates the number of
pairs in a cell, see color bar.

be larger thanR(k), R(k) given. It appears that this proba-
bility stabilizes after 60 nT/hour, but eventually collapses for
the most extreme values (> 300 nT/hour).

We have also computed the error diagram (Fig. 7) for the
simplest prediction scheme aimed at the extreme events de-
fined as above (Sect. 3.1.3) in the range from 2 to 1% of
the top values ofR. The minimalγ = n + τ = 42% is
reached whenR0 = 49.4 andr0 = 17.1 nT/hour. If we take
R0 = 112 andr0 = 24 nT/hour, thenγ = 24%, which cor-
responds to 8.1% of alert and prediction of 249 out of 295
extreme events (i.e. 84.1%). Again, the choice of parameters
r0, R0 depends on what we want to do with the prediction.

3.3 Hourly indices from minute values

The last two series considered are derived from minute val-
ues recorded at the Chambon-la-Forêt (France) and Port-aux-
Français (Kerguelen Islands; see Table 1) observatories. The
PAF data cover a full Solar cycle, i.e. 1985–1995 and the
CLF one the period 1992–1995.

We compute the first difference (Eq. 1),̇E(k), for each
minute with the sequential numberk (5.77 · 106 values at
Port-aux-Français, 2.10 · 106 values at Chambon-la-Forêt).
Accordingly, the unit measure is nT/min. From the minute
differences relative to the hour interval with sequential num-
berm, we compute the average:

R∗(m) =
1

60

∑
i∈ I (m)

(
Ẋ2(i) + Ẏ 2(i) + Ż2(i)

)1/2
, (4)

whereI (m) = {i : 60 · (m − 1) < i ≤ 60 · m}. R∗(m) can
be denoted as the vectorial total variation of the geomagnetic
field (sampled with one-minute resolution) over the hour
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Fig. 6. Conditional probabilities for Chambon-la-Forêt: (a)
P(R(k + 1) > 50nT/hour| R(k)); (b) P(R(k + 1) > R(k) | R(k)),
and the empirical distribution ofR (blue line), i.e. unconditional
probabilityP(R(k + 1) ≤ R).

m. In this definitionR∗ can be viewed as an extension of
the mathematical total variation of a real-value function that
characterizes the volatility of the process (in the sense used in
financial markets).R∗(m) can also be viewed as an invariant
hourly magnetic activity index computed from minute data.
We will processR∗ the same way as we did for the hourly
first differenceR(m) in the previous section.

Figures 8 and 9 present the 2-D histograms
(R∗(m),R∗(m + 1)) determined from 95 000 PAF and
35 000 CLF data points. They are clearly more elongated
and narrower than the previous ones (Figs. 2 and 5), indicat-
ing better correlation, which implies better predictability.

The conditional probabilities shown in Figs. 10 and 11
were computed from the 2-D histograms (Figs. 8 and 9). One
may conclude from the graphs that (i) there is practically no
chance forR∗ observed at PAF to reach 50 nT/min in the next
hour if its current level is less than 10 nT/min (Fig. 10, top);
(ii) if such a level (R∗(m) = 10 nT/min) is reached at CLF,
it will not drop below 2 nT/min in the next hour (Fig. 11,
top); (iii) at both observatories there are more chances (i.e.
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Fig. 8. R∗ for next hour vsR∗ for current hour computed from
minute values at PAF: 2-D histogram.

P > 50%) to record an increase inR∗ during the next hour,
if its present level is 1 nT/min (Figs. 10 and 11, bottom). The
level of 1 nT/min or less is observed at PAF 55% of time,
while at CLF it happens 80% of time (see the empirical distri-
butions ofR∗,P(R∗(m) < R∗), plotted in the same figures).
The probability graphP(R∗(m + 1) > R∗(m)) for CLF
(Fig. 11 bottom) is much steeper and collapses to nearly no
chance at 10 nT/min; for PAF, it extends above 100 nT/min.
As already said, the two graphsP(R∗(m+1) > R∗(m)) and
P(R∗(m) < R∗) determine the dynamics of the system and
can be used for a proper statistical simulation of magnetic
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Fig. 9. R∗ for next hour vsR∗ for current hour computed from
minute values at CLF: 2-D histogram.

indices at a given location.

Figures 12 and 13 illustrate the predictability of the ex-
treme events defined byR∗ and how it differs at the two
sites: the minimal value ofn + τ is much smaller than in
the previous two cases. Table 2 summarizes the results of
predicting magnetic field extremes. Specifically,n + τ for
the magnetic rate prediction at CLF is reduced by a factor
of 2 whenR∗ is used instead ofR. This score is outper-
formed for another factor of 2 by the prediction of theR∗

extremes at PAF. The predictability of geomagnetic series
by the simple scheme was comparable in the first two cases,
whereas it is by far better in the latter two cases than the re-
producible intermediate-term prediction of the largest earth-
quakes (Keilis–Borok et al., 2001).

Finally, we show how the magnetic extreme events can be
predicted from the hourly values of the magnetic variation,
R∗, several hours in advance. We consider the 11-year series
from PAF, define extreme events values asR0 = 20 nT/min,
and compute the error diagrams for the simple prediction
scheme applied with a lead-timet = 1, 2, 3, and 4 h (Fig. 14).
Results are summarized in Table 3. Naturally, the optimal
value of the cost functionγ = n + τ is growing with lead
time, although at a decreasing rate: from a factor of 1.6 from
1 h to 2 h and 1.1 from 3 h to 4 h. Similarly, the optimal alert
threshold decreases from 5.0 nT/min for a lead time of 1 h
to 3.0 for 4 h. We also give in Table 3 a decomposition of
γ = n + τ presenting the percentages of failures-to-predict
n in the whole set of 823 extreme events and of the relative
alarm time over the 11 years (= 95 474 h) considered.
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Table 2. Summary of the simplest prediction ofR

Station data Extreme event size Optimal
Upper 2% Upper 1% r0 R0 η + τ

ESK, dailyR (nT/day) 41 55 11.3 51.5 43%
CLF, hourlyR (nT/hour) 38 50 17.1 49.4 42%
PAF, hourlyR∗ (nT/min) 10.8 18.1 4.3 17.8 11%
CLF, hourlyR∗ (nT/min) 2.7 3.2 1.4 3.2 22%

Table 3. Optimal threshold for issuing an alarmr0, cost valueγ = n + τ , failure ration and number of failures to predict (Nf ), alarm ratio
τ and total hours of alarm (Na) for an extreme event thresholdR0 fixed to 20 nT/min and for a prediction with a lead timet

Lead time,t η + τ r0 (nT/min) η(Nf ) τ(Na)

1 hour 10.4% 5.0 4.4%(36) 6.0% (5726)
2 hours 16.4% 3.9 7.8%(64) 8.7 (8268)
3 hours 20.9% 3.3 9.9%(81) 11.0% (10495)
4 hours 23.9% 3.0 11.0% (90) 12.9% (12321)

4 Discussion and conclusion

We have investigated the predictability contained in geomag-
netic data using unusually long series, which allow for a firm
statistical analysis. Two samplings have been used: daily and
hourly, with two different variables in the last case. The sim-
ple tools we use allowed us to quantify in different manners
the predictability of the series. The simplest of them focus on
what can be said about the next value of the variable knowing
its current value, e.g. what can be said for tomorrow know-
ing the situation for today. We have chosen two examples of
conditional probabilities; many other ones can be computed
in the same way, making use of the statistically firm empiri-
cal distributions. In every case, the answer is clear and rigor-
ously established. The error diagram of our simple prediction
scheme delivers comprehensible, data supported answers, in
terms of chances of failures-to-predict and percentage of alert
time, to questions concerning costs and benefits, which can
be formulated in various ways. The simple tools used are
limited in their forecasting capacity. Nevertheless, the same
techniques can be easily generalized at will: for example,
without changing the structure of the algorithm, tomorrow
can be replaced by the day after tomorrow and so on. The
functional form for theγ cost function has to be determined
for each practical situation. In this paper, for illustration, we
assumed that the cost (e.g. financial cost) of a failure to pre-
dict was the same as the cost of a false alarm. It is likely that
a failure to predict would have a larger cost since a failure
to predict may lead to damages, whereas a false alarm may
only induce a loss of profit. In such a case, a greater weight
should be attributed to the percentage of unpredicted extreme
events (n) in the cost function.

The classical autocorrelation functions ofR andR∗ drop
quickly, at least by a factor of 2 in the first two days for daily
series and by a factor of 2 in the first 4–12 h for hourly se-

ries. The correlations and predictability may depend on ge-
omagnetic location: the first are higher at CLF than at PAF,
whereas the simple prediction scheme is much more efficient
at PAF than at CLF. The magnetic vector rate is more pre-
dictable when measured by theR∗ index. However, Bel-
langer et al. (2002b) and Bellanger et al. (2002a) showed that
R∗ is almost identical, within a constant factor, in all low-
and mid-latitude observatories;R∗ at CLF, as considered in
this paper, is thus expected to describe the predictability of
magnetic series at most of the surface of the Earth. PAF, an
observatory in the auroral zone, has been studied to allow
comparison. Bellanger et al. (2002b,a) also showed thatR∗

characterizes the variation of the external field and can thus
be considered as an activity index. In the present paper,R∗

has been preferred to any other index because it is an invari-
ant characteristic of the magnetic field activity whose time
sampling can be easily changed by adjusting the width of the
averaging window (one hour in this paper); but considering,
for example,aa or am (3-hour range indices, see Mayaud,
1980) would have given similar results.

We did not search for geomagnetic precursors stricto
sensu. The data suggests that it is dubious that a peculiar
magnetic variation observed in quiet time might warn of an
approaching sudden burst of activity, like a disastrous mag-
netic storm. On the other hand, recurrences of enhanced
probability of magnetic activity induced by the Sun’s rota-
tion of about 27 days and the solar cycle of about 11 years
are well known.

Hopes in predicting sudden bursts of activity rather rely
upon the real-time observations of solar wind and coronal
mass ejections (CMEs) (Joselyn, 1995). However, due to the
complexity of the involved physical processes (e.g. Boaghe
et al., 2001), no complete quantitative theory of the magne-
tospheric dynamics is available at the present time, and thus
no fully reliable prediction of magnetic activity is possible.



1108 E. Bellanger et al.: Predictability of geomagnetic series

P
ro

b
a

b
il

it
y

P
ro

b
a

b
il

it
y

R*, nT/min

R*, nT/min

a

b

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 1 10 100 1000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100 1000

Fig. 10. Conditional probabilities for PAF (hourly variation
R∗ computed from minute values): (a) P(R∗(k + 1) >

50nT/min| R∗(k)); (b)P(R∗(k+1) > R∗(k) | R∗(k)), and the em-
pirical distribution ofR∗ (blue line), i.e. unconditional probability
P(R∗(k + 1) ≤ R∗).

Moreover, the efficiency of forecasts of geomagnetic activity
from solar and interplanetary conditions is not systematically
estimated a posteriori (Thomson, 2000), although prospec-
tive and retrospective validation is applied in other fields of
geophysics (Mulargia, 1997; Kossobokov et al., 1999).

Our aim was to lead a practical, rational and rigorous ap-
proach concerning what could be done, based on the knowl-
edge of magnetic series, in the field of extreme geomagnetic
activity events prediction. Space weather extreme conditions
have an important financial impact on a wide domain of ac-
tivities (see, e.g. Allen & Wilkinson, 1993; Maynard, 1995,
for a summary). The prediction scheme studied here, via the
adjustment of theγ function to each specific customer, de-
pending on the cost of an alarm vs. the cost of a failure to
predict an extreme event, provides a quantitative tool in a
decision theory perspective (Matthews, 1997; Keilis–Borok
et al., 2001; Thomson, 2000). Despite that this method is
far from covering all the needs of the large variety of cus-
tomers interested in space weather forecasting (Feynman and
Gabriel, 2000), it gives at least a simple, statistically robust
and quantitative way for short-term prediction of geomag-
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Fig. 11. Conditional probabilities for PAF (hourly varia-
tion R∗ computed from minute values):(a) P(R∗(k + 1) >

50nT/min| R∗(k));(b) P(R∗(k + 1) > R∗(k) | R∗(k)), and the em-
pirical distribution ofR∗ (blue line), i.e. unconditional probability
P(R∗(k + 1) ≤ R∗).

netic extreme events.
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