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Abstract. We present a statistical analysis of strong tur- one need to make many assumptions (such as the random
bulence of Langmuir and ion-sound waves resulting fromphase approximation for the weak turbulence case) but, more
beam-plasma interaction. The analysis is carried out on datamportantly, the comparison of the solutions against experi-
sets produced by a numerical simulation of one-dimensionamental or numerical data has often remained inconclusive.
Zakharov’s equations. The nonlinear wave interactions aréOne of the reasons for this is that we still lack numerical
studied using two different approaches: high-order spectrdechniques that can extract the key features of Langmuir tur-
and Volterra models. These methods were applied to identifyjpulence, and thereby provide the opportunity to test theory
two and three wave processes in the data, and the \olterragainst experiment.

model was furthermore employed to evaluate the direction The objective of our study is to address this problem of
and magnitude of energy transfer between the wave modes ithe characterization of statistical properties of Langmuir tur-
the case of Langmuir wave decay. We demonstrate that thesgylence. We'll focus on one particular aspect only, which
methods allow one to determine the relative importance Ofis the parametric decay of primary waves by means of non-
strongly and weakly turbulent processes. The statistical vatinear wave-wave interactions. Indeed, it is well known that
lidity of the results was thoroughly tested using surrogatedthe weak turbulence regime can be adequately described in
data set analysis. terms of three-wave and four-wave interactions (Galeev and

Key words. Space plasma physics (wave-wave interactions;Sudan, 1989). The appropriate techniques for quantifying
experimental and mathematical techniques; nonlinear phethe dynamics and the statistical characteristics of such inter-
nomena) actions are higher order spectra and Volterra models. Here

we shall use simulation data to show how these techniques
work, what are their validity limits, and how they can pro-
vide a new insight into the underlying physics. It must be
stressed that these same techniques are applicable to many

The understanding of Langmuir turbulence in space plasmagther processes, whenever nonlinear wave interactions occur
n a conservative system (Kadomtsev, 1965). Examples of

is a longstanding research topic that has received much aft . ) ! :
tention both from a theoretical and from a numerical point such wave-wave interactions can be found in the ionosphere,
of view (see Robinson, 1997: Goldman et al., 1996, for ain ocean waves, in nonlinear optics, in chemical reactions,
review). The classical scenario for the generation of weaketc'

plasma turbulence generally admits three stages: 1) ener-

getic electron beams generate Langmuir waves by means of

the beam-plasma instability, 2) these primary waves transfep  gjmulation data

their energy to lower frequency secondary waves by nonlin-

ear wavet;}iyaver:nteractlons, 3?|.f|nally, \{v?v%—_par_ﬂclg 'nte{?C'Our study is based on a code that simulates 1-D Langmuir
tions stabilize the non-maxwellian particle distribution. The ;|1 1ance in a non-isothermal plasni (> T;), which is

turbulence that is generated that way has traditionally bee%xcited by an electron beam with a frequency ahoye The

divided into weak and strong turbulence. 1properties of this system have been thoroughly investigated,
b

_ This scenario is subject to controversy, and the study Ofy, theoretically and numerically (Shapiro and Shevchenko,
its solutions has proved to be a difficult task. Not only doe51983. Al'terkop et al., 1976).

1 Introduction

Correspondence tal. Soucek (soucek@ufa.cas.cz) The code integrates the Zakharov equations (Zakharov,
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Fig. 1. A time snapshot of the electric field intensitE(x)|2 and
density fluctuatiorp (x) showing the cavities in the density and cor-
responding electric field peaks.

1972) in one spatial dimension
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These equations describe the time evolution of high-
frequency Langmuir oscillations, together with the low-
frequency fluctuations of plasma density. The electric field
E appearing in these equations is a complex quantity relate
to the real physical field as

~ 1 ) '
Eten = 2 (E(x’ ne~'ret + E*(x, t)e""l’et>

andp(x,t) = én/ng describes the electron density fluctua-
tions. The operatoré andys specify the electron and ion
damping rates. The equations are Fourier transformed i
space coordinate (using periodic boundary conditions) an
then integrated using a standard finite difference scheme.
The simulation starts from an initial weak random noise

and the energy necessary to develop the turbulence is deli\}%

ered to the system by the oscillating electron beam. This i
in practice achieved by setting a positive growth rate (invers

J. Soucek et al.: Statistical analysis of Langmuir turbulence

spectrum. At the same time solitary structures called cavi-
tons (areas of density depletion and stronger electric field)
are formed (see Fig. 1). Here the system reaches an “equi-
librium” turbulent state, in which the total integral intensity

/ |E|? dx remains approximately constant in time. It should
be mentioned at this point that the dynamics of the cavitons in
the 1-D case is fundamentally different from the physically,
more realistic 3-D case. In three dimensions the cavitons are
known to be unstable: as the modulation instability devel-
ops, they become deeper and narrower with time until they
collapse (Zakharov, 1972). However, in the one-dimensional
case the ponderomotive force is balanced by the pressure of
the expelled plasma and stable cavitons are formed.

This way of simulating the Langmuir turbulence meets one
additional difficulty, due to the finite size of the simulation
box. When taking a very low damping rate for long-wave
Langmuir and ion-sound waves (corresponding to physical
conditions in space plasmas), one obtains significant growth
of Langmuir and ion-sound waves in the lawpart of the
spectrum. If the box size were very large, the longest wave-
mode in the system would be determined by the balance be-
tween characteristic time of the energy transfer toward the
small wave numbers and the damping rate. In the case of a
finite simulation box, the minimum wave number is defined
by the size of the system, and this cutoff will influence the dy-
namics of the lowk part of the spectrum, where a significant
amount of energy is cumulated, due to the weak dissipation
of low wave number modes.

The cavitons in our simulations become very stationary
and their spatial distribution in the simulation box is al-
most periodic (Fig. 2 shows their temporal evolution). This

tationarity is in a good agreement with theoretical models
Rudakov, 1973) which describe the cavitons in the presence
of ion-sound damping as forced non-propagating density
fluctuations. This phenomenon was later confirmed by nu-
meric simulations by Degtyarev et al. (1979), Al'terkop et al.
(1976), Doolen et al. (1985) and many others. The quasi-
periodic distribution of cavities is mostly a consequence of
the finite size of the system and contributes to the excitation
f standing waves, with wavelengths corresponding to the
verage spacing between the cavities. This effect contributes
significantly to the overall dynamics of the system when the
umping growth rate is small. To ensure that this effect does
ot provide a major contribution to the evolution of the sys-

gem, the pump-wave increment must be chosen to be large

enough.

Landau damping) for one or several chosen wave numbers.

To avoid the influence of boundary conditions and the finite

Our analysis is based on this stationary regime; we shall

size of the system, the growing mode wave number(s) shoul§onsider mainly one data set of 32000 samples, sampled at

not be chosen either too small or too large. In the simulatio

at approximately 25 of the Nyquist wave number.
In the initial stage of the evolution we observe a Langmuir

n
runs analyzed in this article, we used a single pumping wave

the ion plasma frequenay,;. The growth rate of the beam
nstability was set toy = 0.01w,; at a single wave num-

ber ofk = 0.06&51. The Landau damping rate was fixed
to yl = Ck® and the constan® was chosen in such a way

wave spectrum consisting of several peaks, forming a casthat the damping was effective at wave numliets O.lkgl.

cade that transfers energy toward the lowegion. After a

The damping rate of ion-sound waves was set to a value of

certain time, the modulational instability threshold is reachedyks = 0.003w,,; for all wave numbers. The simulation box
and a strong, low wave number component appears in theize was 4000p and a 512-point FFT was used to perform
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Fig. 2. Excerpt of the spatio-temporal dynamics of the electron den-Fig. 3. Wave number power spectrum of demodulated complex
sity. The cavities move very slowly and they conserve their almostelectric field (in dimensionless units) and of normalized density

periodic spatial distribution. fluctuations. The Nyquist wave number ismgl.

the spatial Fourier transforms and to compute the convolu-of the dispersion relation of the Langmuir waves
tions. 3

Results obtained with other growth rates will be briefly w; = . (1+ EA%I@) . 4
discussed in Sect. 7. Unless stated otherwise, we shall always
subtract the time average of the variables prior to analysisin the presence of the slowly varying density fluctuations this
This average is essentially zero for the electric field, but isrelationship includes the frequency dependence upon local

non-negligible for the density. plasma frequency
In Fig. 3 we depict the average power spectrum of the elec- 3 Yo
tric field and the density. We recognize the features describedy, = . (1 + E)\%kz) + a—”e on
n

above, namely a peak at= 0.066 in the electric field spec-
trum, which corresponds to the pump-wave (i.e. the energy 3.2,2, 1én
trum, €. N wpe |14+ 15k% + Z— ). )
input), and the next step of the cascadé at —0.052. The p 2 2no

presence of a small peak/at= 0.036 suggests another step, gice sn/ng < O inside the cavitons, the trapped wave-

but this peak is hidden in the part of the spectrum where thg, qes inside project to frequencies beloy; and the prop-
modulational instability should be dominant. The two peaksagating modes above,.

in the density spectrum &t= +0.118 are signatures of ion- The negative frequency part is a manifestation of the

sound waves that are produced by the Langmuir wave decayaned wave activity that cannot be described in the weak
as will be seen later. Our objective is to investigate the MU~y lence approximation and is closely related to the for-
tual interactions of these waves and quantify the nonlineag, 4tion of the cavities. The frequency localization of these

energy transfers among them. o _ modes is determined by the depth of the cavities by virtue of
Before we start with the wave analysis, it is appropriate t0gq (5) This result is consistent with a similar signature in
comment on the dispersion relation of the electric field waves, _ space previously observed in Vlasov simulations by

shown in Fig. 4. The dispersion relation is inferred _from Goldman et al. (1996). This nonlinear frequency shift rep-
the wave number-frequency power spectrum. It consists Ofggents a bright example of strong turbulence characteristics

two qualitatively different parts. In the positive frequency (hat can be observed without special nonlinear analysis tools.
region the usual dispersion branch of Langmuir waves ap-

pears. In the negative frequency region most of the oscilla-
tion power is concentrated in a featureless region centered o8 Higher-order spectral analysis
the frequency = —0.02w,;. These oscillations correspond _ ) o
main|y to non-propagating wave modes that are trapped inACCOfd|ng to theOW (|.e. Musher et al., 1995), for SUfflClently
side the cavities. Note that since the electric field was de-strong damping of ion-sound waves and small amplitude of
modulated (Eq. 3), the positive (resp. negative) frequencied-angmuir waves, the low frequency density fluctuations are
Correspond to frequencies above (resp_ bebw) essentia”y forced by the electric field oscillations:

This separation of the dispersion relation into a positive .
and a negative part is easily understood from the general formfx = /Gl,m E|E,8(k =14+ m)dldm. (6)
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The total dispersion relation If, for example, an ensemble of waves with Fourier ampli-

/ ‘ tudesUy, Uy, ..., U, interact along the resonanke+ kp +

-+ + k, = 0 then, even though each single mode may have
a randomly varying phase, there should exist a functional re-
lationship between the phases of these waves. This property
provides the basis for the use of HOS, to quantify the relative
importance of possible interactions between Langmuir and
ion-acoustic waves.

The mathematical theory of the HOS is based on the notion
of cumulants, that are routinely used to describe the statisti-
cal properties of hydrodynamic turbulence (see, for instance,
Monin and Yaglom, 1963) are defined as follows:

Letui(r1), ..., u,(t,) be random functions and
n
- (p(vl,...,vn):<exp(iZuJ~v./)> 9)
k1 j=1

their characteristic function. Their joint cumulant is then de-

Fig. 4. Power spectral density,, ; of the electric field vs. wave fined by

number and frequency, showing the Langmuir branreh-(0) and
the non-propagating oscillations (< 0). Note thatE is the field o
envelope, so the zero frequency in this plot corresponds,to The Clug, ..., up] = (=) ... 90,
color scale is logarithmic.

(10)

If the u;(z;) are stationary in;, the cumulants are functions

_ _ o of onlyn —1 variablesry, ..., 1,1, wherer; =t; —t,. The
The_ effect described by thl_s equation is called the_z ponderocumulant spectrun® (k1, . . ., k,—1) is defined as the Fourier
motive force. The properties of the Green functiang,, transform of C(t1, ..., t,—1). As shown, in for example,

determining the force are discussed in the cited works. If,Kim and Powers (1979), the cumulant spectra can be ex-
in addition, we assume the validity of the weak turbulencepressed as cumulants of the respective Fourier components
approximation (i.e. if the characteristic time scales associof u j, matching the resonance condition+ - - - + k, = O:

ated with the nonlinearity are much longer than those char-

acteristic periods of the linear waves), then Eq. (1) can bef k1, .., kn—1) = ClUL(k), ..., Un(kn)]- (11)

approximated by In our analysis, we will make use of two important proper-

IE; ties of cumulants which follow directly from the above defi-
? + iwkEk = /Vk[m ,()[Em 3(]( -1 — m) dldm. (7) nitions:
Here, wy is the complex frequency of the Langmuir waves, 1- If an ensemble of random variablés, ..., U, can
with its imaginary part corresponding to the growth rate or b€ divided into two statistically mutually independent
damping of the wave amplitude, arid,;, are quadratic groups, then the cumulagiUs, ..., U,] is zero;
coupllng coefficients. Thls'equa'tlor! desprlbes the evolu'tlon 2. Cumulants (for. > 1) are invariant with respect to con-
of high-frequency Lar_1gmU|r oscnlatl_ons in _terms of nonlin- stant shifts in the variables

ear three-wave coupling of Langmuir and ion-sound waves.

Specifically, it suggests that a dominant processinthe current ¢y, + &, ..., U, + &,]1 = C[Un, ..., Uy]. (12)
scenario is the decay of a Langmuir wave into a Langmuir
and an ion-sound wave & [ + s). By eliminatingo; from For the purposes of our work we consider the two low-

Eqg. (7) using Eq. (6) we can derive an equation describingest order HOS, namely the bispectrum and the trispectrum,
the dynamics of the amplitudes of high frequency waves in awyhich are, respectively, defined as the second and third or-

closed form: der cumulant spectra. Their application to wave-wave in-
teractions is based on the property 1 mentioned above. If

E, . " ' )
TS + ik Ex = [ Wiimn Ef EmEn for example, the cumulant of three Fourier modes (the bis-
X8k +1 —m —n) dl dm dn. (8) pectrum), whose wave numbers (or frequencies) satisfy the

resonance conditioky + k> = ks, is non-zero, the phases
This equation makes it evident that there can appear phase ref the Fourier components are coupled to each other. In the
lationships between different constituents of the wave specsame way, the trispectrum quantifies four-wave interactions.
trum. These relationships can be detected using an appropriAle must stress, however, that a non-zero HOS is necessary
ate technique based on high-order spectra (HOS) which is (abut not a sufficient condition for having nonlinear wave in-
shown by Kim and Powers, 1979) a relevant tool for studyingteractions (Bcseli and Trulsen, 1993). This point will be
such wave-wave interactions. discussed later in this section.
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ten asUy, Vi, Wi, Xi), the estimates of the bispectrum and 0.08f
trispectrum (Kim and Powers, 1979) can be written as

0.4

For an ensemble of four complex Fourier modes (writ- —_———————————

0.06
BUVW(k’ l) = (Uk‘/lW]:+[> (13) 0.04

Tyvwx (k. 1, m) = (U ViW, X)) — (U Vi) (W, X;;)
— (U V) (ViXy) — (U X)) (ViX,) o (14) >

0.35

103

0.021
-10.25

10.2

wheren = k + 1 — m and where we assume thdf;) =
(Vi) = (Wy) = (Xi) = 0. The latter is possible without loss
of generality due to property 2. The angular brackets denote %
averaging over any ensemble of statistical realizations of the |
random variable. In the following analysis, we will assume
ergodicity of the process and replace the ensemble averagin AR S i
by time averaging (Frisch, 1995). -0.08 -0.06 -0.04 -0.02 « 8o 002 004 006 008
According to Egs. (7) and (8), the relevant HOS for study- e
ing our system are the cross-bispectrBmz, and the auto-
trispectrumTg g g . Itis often more convenient to work with _ _ 1 -
normalized quantities (respectively, bicoherence and tricoNYduist wave number is.@2 ;7 but only the part of the principal
herence), in which the dependence on the spectral amp"gomaln corresponding tp S|gn|f|_cant power density is shown. Not
all of the usual symmetries of bicoherence apply, due to the asym-

tude is eliminated, so that the absolute value allows one tometlry of the power density, |2. The peak value of 0.45 at (0.066,

qugngfy the ri';;'ge [{IE)r\:veL_anﬁlved In thed CO_Uplr']ng (Kim -0.052) identifies a strong three-wave phase coupling of the type
and Powers, ). e bicoherence and tricoherence AR 156 <> 10,052+ 50,118

respectively, defined as

+0.15

0.1

0.05

Fig. 5. The cross-bicoherendsg: g, (k1. ko) betweerp endE. The

_|Buvw(k, D) . . o
buvw(k, 1) = W ——— (15)  contributes to the bicoherence (Eq. 15). This point will be
(U VIW 1) elaborated upon in Sect. 5.
\Tyvwx (k, 1, m)| According to Eg. (8), the Langmuir wave decay
tyywx (k,l,m) = —— (16)  can also be investigated using the auto-tricoherence
VIUVIW, X5519).

teeee (k1, k2, k3), which quantifies the phase coherence re-
The absolute values are bounded between 0 (no correlasulting from the four-wave processes of the type | —
tion) and 1 (full correlation). Note that there exists other / + . Figure 6 (left panel) shows the auto-tricoherence cor-
slightly different normalizations of the bi- and tricoherence responding to the wave interaction involving the pump-wave
(Kravtchenko-Berejnoi et al., 1995). 10.066 4 {(ky+k,—0.066) <> liy +Ik,. This figure reveals that the
The modulus of the cross-bicohererigeg, is shown in  auto-tricoherence reaches significant values onky ibr k2
Fig. 5. The clear peak ak,!) = (0.066, —0.052 attests is close to—0.052, which is the wave number of the sec-
a strong phase coupling between the two strongest Langend strongest Langmuir wave in the spectrum. The main
muir modeslyoes, [—0.052 andsp.118. Since the wavé = difference with respect to the bicoherence is that we now
0.066 is the energy source in our system, it is likely that observe a one-parametric set of phase coupled wave-modes
this phase coupling results from a Langmuir wave decaylooes+ /x <> /—0.052 + lk+0.066-0.052, Which is parametrized
lo.ose — [_0.052 + so.118 Wherein energy is transferred to- by the wave numbek.
ward a lower wave number. The peak in the density spectrum The right panel of Fig. 6 shows the auto-tricoherence for
atk = 0.118 corresponds to the ion-sound wave produced bythe case okz = 0.064 (slight detuning with respect to the
this decay. In the same way, the peak at 0.036 is suppos-  pump wave) corresponding to the procgss-lx, <> lo.0ea+
edly generated by the next step of the cascade. However thi, +«,—0.064. NO significant phase coupling is observed in
bicoherence does not allow one to resolve this decay, due tthis plot or in the remaining part of the three-dimensional
the relatively small amplitude of this wave compared to thetricoherence domain. This overall low level of tricoherence
surrounding wide band spectrum. in regions that do not involve the pump wave again supports
In Fig. 5 the diagonal region of relatively high bicoher- the validity of our description.
ence (reaching levels up to 0.3) corresponds to a phase cou- To summarize, the bi- and tricoherence analysis reveals
pling of the remaining part of th&; spectrum to the strong the existence of a phase coupling between the strongest wave
peaks in the low wave number part of density spectrum. Thisnodes of the system. This result supports the weak turbu-
phase coherence is of a different nature. As mentioned belence approach to the description of the system, but at the
fore, in this region the threshold is reached for the modula-same time several difficulties emerge. First, the phase rela-
tional instability, which then becomes the prevalent processtionship does not necessarily mean that there exists energy
From Eq. (6), which describes the effect of the ponderomo-exchange between the modes, though it gives a strong ar-
tive force on the plasma density, it follows that this effect gument in favor of that. Second, HOS do not allow one to
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A) tricoherence t(kl, kz' 0.066) B) tricoherence t(kl, kz' 0.064) Wlth

0.08[" 0.08]- E]/( = Ey(t + 1)

0.06f 0.06]- 01 Ex = Ex(1) .
0.04f 0.04f Li = (I'xdt + l - i8¢k)el8¢k
0.08 Q;(m = Aklm 5[‘ el(S(Pk
0.02} 0.02}
e Sk = Pr(t + 1) — Py (2). (20)

k1 [)\D
o
1

Equation (19) can be viewed as a causal input-output model,
which predicts the output electric fieltl(r + 8¢) from the
inputs E(t) and p(z). The unknown Volterra kernelem

and L; are estimated using a least-squares scheme (see the
Appendix). We selecteélr to be the sampling periodq{ =

2 a);l.l) and each pair of subsequent samples is used as one
statistical realization. The number of unknown coefficients
was restricted to cover only the part of the spectrum where

, . the power density is significant (approximatel9.07 < k <

Fig. 6. The auto-tricoherenag: g g £ (k1. k2. k3). Left panel shows g o7 for the electric field and-0.13 < k < 0.13 for the

the tr'COher.ence computed for a fixed V.alue]@ - 0.0664p, electron density). Our experience shows that a larger range
corresponding to the strongest Langmuir mode in the spectrum

The above threshold values indicate the presence of four-wavéjoes not |rr]np!’ov|e_ thg ﬁst}mat(;s. i b
phase coupling corresponding to procégs+ ik, — 0,066 + More physical insight into the nonlinear processes can be

Ity +4,—0.066- In the right panel the tricoherence for fixég = gained by introducing.the' kinet.ic quation for the spectral

0.0641 p, is depicted (a wave mode not included in the cascade).POWer Py = (E; Ey), which is easily derived from Eq. (17)

The tricoherence plot shows no significant features and containsap

only random noise. 8_tk = 2Re[T] Pi + Z Tk . (21)
k=l+m

-0.02 -0.02-

-0.04F -0.04

-0.06 -0.06

-0.08 -0.08[ #sts

resolve any subsequent steps in the energy cascade (in olife energy transfer functions
particular case, we cannot unambiguously say whether theTk 2R *

. ; = e[AvmELp E 22
wave atk = 0.036 is a product of Langmuir wave decay [AktmEx prEm] (22)
or not). These problems can be overcome by using Volterraare the main quantities of interest, since they quantify the
modeling. spectral power change that is due to nonlinear interactions.
Energy transfer functions are more informative than HOS,
since they reveal the magnitude of the energy transfer and,
more importantly, its direction. Negative valuesiﬁl cor-
Let us carry the HOS analysis one stepfurtherbyintroducingreSpond to the decaly — Iy + s;, while positive values

the concept of the energy transfers. We follow the Computa_correspond o the inverse procégst s — L. e
In Fig. 7 we plot the energy transfer functldr,j‘z’krkz.

tional framework developed by Ritz and Powers (1986) and_l_h_ it be directly int ted as the rats 5t oh

later improved by Ritz et al. (1989). Since the electric field ftlf\ quJ_an Ity can be direc ylnattaip]rce ed ast N ralle ofchange

is expected to follow Eq. (7), we can describe its dynamics0 € Langmuir wave energy at= ki, due to honiinear in-
teractions of the Langmuir wave fat= k, with the resonant

in terms of a general Volterra model .
g ion-sound wave at = k1 — k». Note the strong energy

J0E -
Bk B+ Z Asim P1Em 17) transfer from the pump-wave to the next step of the cascade

ot lo.o66 — [—0.052 + so.118 (the peaks at0.066, —0.052 and

) ) ) (—0.052 0.066)). We now have direct evidence for an en-

and estimate the linear and quadratic kerlsand A ergy cascade toward smaller wave numbers. This result had
from the simulated data. These kernels contain all the pertiyggp, anticipated by HOS analysis, but only Volterra model-
nent information about the physical process. The figlds  jnq attests it in an unambiguous way. Note also how the en-
expressed as (Ritz et al., 1989) ergy transfer function reveals the next stepos2 — 10,036+
Ep(t) = | Ex(t)] 9@ (18)  s—oo0ssOf the cascade (weaker peakg@0D36 —0.052) and

(—0.052 0.036)). The bicoherence analysis was unable to
and the time derivatives gy (1)| and ¢y (1) which appear  properly resolve this.

on the left side of Eq. (17) after substitution of Eq. (18) are  The strong energy transfers that we observe in the central
approximated by finite differences. We then obtain an equapart of the plot cannot be given a reasonable physical inter-
tion pretation. As explained in Sect. 2 the low wave number part
E| = L.Ex + kooE 19 of the spectrum is strongly influenced by the non-physical
¢ L k:lzr:m Cim £1Em (19) effects of the finite simulation box. Furthermore, the strong

4 Volterra model analysis

k=l+m
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The power transfer functions Mean power transfer functions of surrogated datsets
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Fig. 7. The energy transferfunctioﬁﬁ‘lk _4, quantifying the non- Fig. 9. The mean energy transfer functions obtained by surrogate
linear energy transfer from a Lang%ﬁdir \?vaveI@t to Langmuir  analysis of 30 data sets with phase randomized density fluctuation.
wave atkq. The axes are the same as that of Fig. 7.

The auto—correlation coefficients

the bicoherence results, we can conclude that two qualita-
tively different processes act on the dynamics of the system.
One is the energy cascade, whose dynamics has been ex-
plained and quantitatively described by Volterra model anal-
ysis. This process is a well-known, weak turbulence effect.
One of the necessary conditions that is required for Eq. (17)
to hold is the validity of the random phase approximation
(RPA) (ELE[) ~ 8i.

To check the RPA, we plot in Fig. 8 the normalized auto-
correlation coefficient

(EXE])
VAIEI?) (| Er|?)

In this plot we observe that if eithéror [ is close to 0066
or —0.052, then the value of the correlation coefficie(it, /)
becomes close to zero for &l # [ in an agreement with
Fig. 8. The modulus of the normalized autocorrelation coefficient the RPA_' The RPA can indeed be safely a_cce_pted for waves
of the electric fielck(k, [) = <EkE,*)/x/m- that are in the cascade range, Fhereby confirming the Voltt_arra
model approach for the decay instability. However, the valid-
ity of the RPA becomes questionable in the middle diagonal

turbulence effects driving the behavior of the cavitons cannotf €9i0n of the figure, wher(k, 1)| reaches up to the level of
be adequately explained in terms of wave-wave interaction .2. Thls is one of the reasons for the failure of the Volterra
and do not follow our model Eq. (17). Therefore, we cannotModeling in that region. _

expect the Volterra model to properly resolve the wave-field 1 "€ deviation from the RPA essentially comes from the

properties. As we shall see shortly below, the large energ>;nodulational instability, which is responsible for the forma-

fluxes estimated by the model in that region are a conselion of cavitons and the evolution of the low wave number

quence of the model inadequacy and the poorly posed inversBrt Of the spectrum. The finite size of the simulation box
problem. and their consequences (described in Sect. 2) also contribute

to this effect.

Based on our analysis we can now compare the influence
5 Interpretation of the results of the modulational and decay instabilities on the evolution

of the system. The bicoherence (Fig. 5) shows the phase cor-

In the following we summarize the physical significance of relation patterns for both instabilities. The clear lines of low
the results presented so far and use these results to drakicoherence (at; = 0.066 andk; = —0.052) in Fig. 5 cor-
some conclusions on the underlying dynamics of our sys+espond to a weak coupling of the strong modes of the Lang-
tem. From the power spectrum, the dispersion relation andnuir cascade to the low wave number part of the spectrum.

-10.15

-0.02 X - L o1

ek, 1) = (23)

S bt :
-0.08 -0.06 -0.04 -0.02 0,
s
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Fig. 10. The standard deviation of the energy transfer functions ob-Fig. 11. The wavenumber power spectra of the electric field and

tained by surrogate analysis of 30 data sets with phase randomizeglensity for increased pump-wave growth rate= 0.030,,;.
density fluctuation.

o _ _ Let us first consider finite sample size effects. HOS are
This signifies that the phase correlation resulting from pon-yery sensitive to the lack of statistics, especially if the mag-
deromotive forcing (as described by Eq. 6) is negligible for pitude of the coherence functions is much smaller than 1.

these modes and their dynamics is completely driven by therhe variance of the bicoherence (Eq. 15) can be estimated
wave decay. The situation is different for the weaker wave(Kim and Powers, 1979) as

atk = 0.036 where both effects contribute with compara-
ble strength. Unlike the bicoherence, the \Volterra m'odel isvar(b(k, 1) = i [1 . bz(k, l)] ’ (24)
able to reveal the weak decay energy transfer to this wave M

number. This separation of the wave-wave effect from thehere a7 is the number of independent statistical realiza-
background strong turbulence phase coupling is achieved byigns. In our analysis we use 32000 samples, but these are
explicitly assuming the form of interaction (Eq. 17). not independent. It is possible, however, to estimate the
The low wave number phase coupling corresponding tonumber of independent realizations from the ergodic theorem
Eq. (6) is, to a large extent, responsible for the failure of the(Frisch, 1995), by introducing the integral time scale defined

model in this area. The technique for estimating the couplingpy Tkint - f(;X’R(I)d,, where R(7) is the autocorrelation
coefficients is based entirely on the phase correlations (all theynction (>, means a sum over all time samples)

input parameters in the estimation procedure have a form of
high-order spectra) and since these correlations are a result %(T) _ |2 Ex(t + T)E{ ()]
effects not included in the model, we obtain invalid results. >, IEk(1)|?
The ill-conditioning of our regression problem is partly re- ,
sponsible for the high magnitude of these erroneous energ§or our data sef;" ranges from 40 to 100 sampling pe-
transfers, as shall be seen in the following section. riods, depending on the wave number. We have, therefore,
takenM = 3200Q'7;"" = 320 in order to obtain an upper
bound for the variance. In this case the standard deviation of
6 Statistical validation the bicoherence reaches abou@3b. Thus, in areas where
the bicoherence is significant (typically in excess of 0.3), the

Higher order statistical quantities are known to be prone torelative error is less than 15%.

errors. Therefore, there remains an important issue to vali- 1he expression for the variance of the tricoherence
date the statistical significance of our results. We shall sed¢Kravtchenko-Berejnoi et al., 1995) has exactly the same
that the results obtained for the dynamics of the Langmuirform as for the bicoherence (Eq. 24), wheres replaced
wave cascade are significant, but that in the low wave numbePY 7. The relative error of the largest tricoherence peaks we

region the Volterra model analysis is biased by the model'sobserve is about 30%. We conclude that the peaks associated
inadequacy. with the Langmuir wave cascade are statistically significant.

To gain more insight into the statistical significance of the

INote that in the procedure of estimation of nonlinear coupling POWer transfers, we tested the results against those obtained
coefficients, fourth-order spectra are used (see the Appendix) whichvith surrogate data (Kantz and Schreiber, 1997). The pur-
provide extra input information in addition to the bispectrum. pose of this test is to determine if our results are really a

(25)
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Power transfer functions (y= 0.03 ) confirms the negligible contribution of nonlinear wave inter-
actions in that region.

o1 Since the standard deviation of the energy transfer func-
tion can easily be estimated from our model, it is useful to
consider its value as an additional test. In the Langmuir

1008 wave cascade range, the standard deviation is small, thereby

confirming the validity of our Volterra modeling. In the

low wave number region, however, the standard deviation is
relatively large, which means that the energy transfers are

0.06

0.04

0.02

-1
k o]
o
=)

002 strongly dependent on the particular realization. This result,
005 together with the relatively high condition numbe(rang-
-0.04 ing from 900 to 2700 as a function & of the linear system
i that one has to solve to obtain the Volterra kernels, further
-0.06 ot confirms the inadequacy of the Volterra model in that region.

-0.06 -0.04 -0.02 0.02 0.04 0.06

k, [%;11
7 Dependence of the nonlinear energy transfers on the
Fig. 12. The quadratic energy transfer functions for the increased  growth-rate of the instability
growth ratey = 0.03w ;.
Finally, we briefly show how the energy transfers depend on
the growth-rate of the pump-wave instability. Figures 11 and
consequence of a nonlinear deterministic process or if theyl2 show the spectrum and the energy transfer functions of
could result from some linear phenomena (e.g. nonstationwaves generated in a simulation with a growth-rate increased
arity) that has not been properly taken into account. As hagrom 0.0lw,; to 0.03w,;. The deviation from weak turbu-
been said before, all the inputs of the regression proceduréence approximation is stronger than in the previous situ-
for estimating the energy transfers are high-order spectrafition. As a consequence, the energy cascade should have
moments. If we take into account the non-zero mgarmf fewer steps; this can indeed be observed in Fig. 11, where
the density fluctuation spectrum (givipg = 8ox +p;), then  only one step appears. As is demonstrated in the power trans-
the Volterra model (Eq. 17) can be rewritten as fer plot (Fig. 12), the magnitude of the corresponding energy
flow from the pump wave (peak in the top left corner) is sig-
nificantly stronger than in the previous scenario.

On the contrary, if the growth rate is decreased from
0.01w,; to 0.003w,;, more steps of the cascade can be identi-
The last term on the right side corresponds to the nonlin-fied in the spectrum in Fig. 13, namely the peak at 0.036
ear coupling, but the central one represents a non-resonaft Now much more pronounced. Figure 14 clearly shows the
(k # m) linear process. Surrogate analysis was used teenergy transfers between the three peaks, but their magnitude
separate the two parts and compare their contribution to thés weaker proportionally to the decrease in the energy input
energy transfer. We created 30 data sets derived from th&o the system. The two sharp peaks in the density spectrum
original one by phase randomizing the density fluctuationcorrespond to stationary oscillations in the area between the
(but otherwise keeping the power density structure and keepcavities. Their presence is a simulation artifact that appears,
ing the phase information of the electric field). By this we due to the limited number of cavitons in the finite simulation
should have mostly eliminated the coupling correspondingbox. The strong coupling of the cavitons to the Langmuir os-
to the last term of Eq. (26), while the middle one should staycillations (in the sense of Eq. 6) introduces a significant error
unaffected. After that, we have computed the energy transfetn the power transfers in Fig. 14.
functions for all of these data sets and carried out a simple
statistical analysis of the resulting 30 realizations. It is not .
sufficient to use a single realization, because the resulting Conclusions
ene_rgy transfers depend on the particular randomization. The key result of this study is that HOS and Volterra model-

Figures 9 and 10 show the mean energy transfers and the : L -

. Ihg are appropriate statistical tools for gaining a better under-
gstanding of wave-wave processes in weak and in strong tur-

these plpts to Fig. 7 we may gheck that in the range Of.th ulence. These techniques allow one to identify the dominant
Langmuir cascade (the peaks in the top left and bottom righ . . . )
wave-wave interactions and to analyze their properties. For

corners of Fig. 7), the mean energy transfers of the surro-
gate data reaches at most 15% of the original values. We 2Tthe condition number gives a measure of ill-conditioning of a

conclude that the dynamics of the peaks is really associatefhear system. The higher the condition number is, the more the
with the nonlinear last term of Eq. (26). The central part of solution of the system is sensitive to a perturbation of the matrix
the plot, on the contrary, shows relatively large values, whichcoefficients (Golub and Van Loan, 1989).

dEx 1 — 2
5 =TeBit Y A DiEn+ Y Ay, 501 En. (26)
k=l+m k=Il4+m
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Fig. 13. The wavenumber power spectra of the electric field and Fig. 14. The quadratic energy transfer functions for the decreased

density for decreased pump-wave growth fate: 0.003v ;. growth ratey = 0.003v); .
o o tion
the successful application of Volterra modeling, it is impor- L2
tant that the model adequately describes the interactions dfc = (IEx — E"[%), (A1)

interest. However, this method allows one to extract the specypere £ « is the output field as predicted by the model and
tral energy transfers, even in conditions where other physicay;l/{ is the true experimental value of the output. Since the

mechanisms affgct the dynamics, as we demonstrated in thg/stem (Eq. 17) is linear in the unknowr@fm andL;, the
case of Langmuir turbulence, where both W_eak and StrorI%roblem of minimizing (Eq. Al) is reduced to a multiple lin-
turbulence effects were present. The analysis _shpuld, ther Sar regression fol unknown parameteerm andL;.
fore, be always complemented by careful statistical valida- £, "o 0h fixedk we obtain an over-determined set of
tion, to distinguish the.phy5|cally significant results from a Ns — 1 (N stands for the number of samples in the data
bias introduced by the inadequacy of the model. set) equations

In this work we applied the technigues to simulation data, ,
where we took advantage of unprecedented spatial resolutiolfk Hk = Ej. (A2)
and of the large statistical content of the data set. The methwhereUy is a rectangulatNg — 1) x N¢ matrix. Each real-
ods were also previously applied to experimental data (Kimjzation (one pair of subsequent samples) allows one to form
and Powers, 1979; Ritz et al., 1989; Dudok de Wit et al.,one equation by substituting the experimental valueg/gf
1999), where the spatial resolution was limited to severalg;, p; into Eq. (19).
observation points. The Volterra model analysis of experi- This linear regression problem is solved using the conven-
mental data requires the field to be measured at two or moréonal approach (Golub and Van Loan, 1989), where Eq. (A2)
spatial points (to estimate the spatial derivative), which is of-is multiplied on the left byJ, to obtain a linear system with
ten a limiting factor, especially in the context of satellite ob- a square matrix
servations of space plasmas. From this point of view, the
CLUSTER experiment (involving four satellites) opens new (kU Hi = Ui Ey. (A3)
perspectives for the application of similar models, possiblyNote that the matrixJx contains the values df; andp; E,,
generalized to two or three dimensions. for all the samples in our data set. Therefore, the coeffi-
cients of the matrixﬁU;Uk are, in fact, the HOS of the
types(EyE}), (Exp E;,) and{p, Exp E;,,). The estimation
of the quadratic coupling coefficients is, therefore, entirely
based on the HOS. The system (Eqg. A3) with a positive def-
inite Hermitian matrix can be cheaply solved by Choleski
In this Appendix we describe the actual method used to eStidecomposition (G0|ub and Van Loan, 1989) Neverthe|e53,
mate the linear and quadratic coupling coefficients and comin the quadratic case the number of unknowns rarely exceeds
pare the growth rate and linear dispersion estimates with th@everal hundreds; therefore, its solution does not represent
true values. a significant numerical obstacle. The main numerical com-

The unknown Volterra kernelg¥, andLy, are estimated plication related to the solution of this problem is the ill-
using the least-squares method by minimizing the error func-conditioning of the square matrix, as noted in Sect. 6.

Appendix — Linear dispersion and growth rate estimation
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Once the coefficients; and Qé‘m are determined, itis pos- Dispersion relation estimates
sible to compute the more physically relevant quantifigs 0al ‘ ‘ ‘ — e |
and A using the relations (Eq. 20). In these formulas the | "~ quaratc |
linear phase shift appears between the subsequent sample 2 b~ |
S¢r = widt which needs to be estimated first. Ritz etal. = N ‘”"/ N
(1989) suggest to estimate this quantity by a linear approxi- 7| // ]
mation o4t ‘ ‘ ‘ ‘ ‘ ‘ ‘ ]
. -0.08 -0.06 -0.04 -0.02 K [}?71] 0.02 0.04 0.06 0.08

618¢k — <E]/( Ek)/ |<E]/( Ek>| (A4) 002 Growth rateDestimates

— true
The linear dispersion relatiany, estimated in this way is de- 0.01f e e :
picted in Fig. Ala (red line) in comparison with the true value —_, o} - S — J\ 1
(green line). It is evident that due to the strong contribution ,,,| T
of the nonlinear terms, this estimate, based on a linear ap- | v“u\ﬁ\& |
proximation, is inapplicable. This point is often overlooked: ‘ ‘ ‘ ‘ ‘ ‘ ‘

anonlinear model is needed to fit the linear contribution. For- 608 -006 -004 -002 Sy 002 004 005 008
tunately, the model (Eq. 19) allows one to determine the lin- °
ear part of the dispersion relation directly aglimy; ], which
can be easily seen from the third relation in Eq. (20) by taking
into account thad¢; = Im[I";]18¢. The blue line in Fig. Ala
represents this approximation and confirms that, in the case
under consideration, this method is particularly effective.
The linear coefficienl';, is conventionally decomposed as

Fig. Al. Estimates of the linear growth-rate and linear dispersion
relation as obtained by the linear and quadratically nonlinear model.

Doolen, G. D., DuBois, D. F., and Rose, H. A.: Nucleation of cavi-

tons in strong langmuir turbulence, Phys. Rev. Lett., 54, 804,
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Pk =y +ion. (AS) Dudok de Wit, T., Krasnoselskikh, V., Dunlop, M., andir, H.:
Idetifying nonlinear wave interactions in plasmas using two-
point measurements: A case study of short large amplitude ma-
gentic structures (slams), J. Geoph. Res., 104, 17 079-17 090,

Herew; = 8¢ /8t gives the estimate for the linear disper-
sion relation, as discussed above, apds the average linear
growth-rate of the wave with wave numbker Figure Alb 1999

shows the estimate fo obtained from oqr quadratic m'odeI., Frisch, U.: Turbulence, Cambridge University Press, Cambridge,
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Processes nOF explr?llned by th.e model. Nevertheless, F_Ig' Ai!(antz, H. and Schreiber, T.: Nonlinear time series analysis, Cam-
shows that this estimate is still much better than the linear
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