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Characteristics from Diffusion MR Signal
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GREYC (CNRS UMR 6072), 6 Bd Maréchal Juin, 14050 Caen Cedex, France ⋆

Abstract. We present a general method for the computation of PDF-
based characteristics of the tissue micro-architecture in MR imaging. The
approach relies on the approximation of the MR signal by a series ex-
pansion based on Spherical Harmonics and Laguerre-Gaussian functions,
followed by a simple projection step that is efficiently done in a finite di-
mensional space. The resulting algorithm is generic, flexible and is able
to compute a large set of useful characteristics of the local tissues struc-
ture. We illustrate the effectiveness of this approach by showing results
on synthetic and real MR datasets acquired in a clinical time-frame.

1 Introduction

Diffusion-weighted imaging (DWI) uses a pulse gradient spin echo sequence [1]
in order to provide in-vivo images of the water molecule diffusion. The acquired
apparent diffusion coefficient images (ADC) give a pointwise measure of the
magnetic resonance (MR) diffusion signal attenuation in the tissue microstruc-
ture. These images provide thus valuable information to diagnose early stages
of stroke, brain diseases or neurological disorders [2]. Assuming that the water
displacement probability is constrained by the nerve fiber structures, it is pos-
sible to characterize the local structures of fibers in each acquired image voxel.
Indeed, when the diffusion gradient pulse duration δ is negligible compared to
diffusion time ∆, the MR signal attenuation E defined in Q-Space is related to
the average displacement probability P by the Fourier transform [3]

P (p) =

∫

q∈R3

E(q) exp(−2πiqp)dq, with E(q) =
S(q)

S0
, (1)

where p is the displacement vector and q stands for the diffusion wave-vector of
the Q-Space. The symbols S(q) and S0 respectively denote the diffusion signal at
q and the baseline image at q = 0. Diffusion Tensor Imaging (DTI) [4] models the
MR signal attenuation E with a Gaussian function E(q) = exp(−4π2∆qT Dq)
where the symbol D denotes the ADC and is modeled as a second-order tensor.
Consequently, DTI can only map a single fiber orientation inside a voxel and
fails in voxels with orientational heterogeneity [5].

Eq.(1) naturally suggests to use the Fourier transform to numerically esti-
mate the PDF (Probability Density Function). This technique known as diffusion
spectrum imaging (DSI) [6] is not clinically feasible due to the huge acquisition

⋆ Many thanks to the laboratory GIN Cyceron, France for providing in-vivo data.



Table 1. A list of major notations used in this paper
Symbol Description Symbol Description

PDF Probability Density Function p,k Displacement vectors in R
3

ODF Orientation Density Function P (p) Average displacement probabilities
FRT Funk-Radon Transform q Diffusion space vector in R

3

SH Spherical Harmonics S(q) MR signal at diffusion gradient q

SPF Spherical Polar Fourier E(q) MR signal attenuation S(q)/S(0)
anlm SPF expansion coefficient G(k) PDF characteristic at point k

at order n, l and m hk(p) projection function of G(k)

time required to retrieve the whole Q-Space coefficients. As a result of DSI con-
straints, High Angular Resolution Diffusion Imaging (HARDI) [7] comes as an
interesting alternative and suggests to sample the signal on a single sphere of
the Q-Space. Among these studies, Q-Ball imaging (QBI) [8, 9] focuses on an-
gular information of the PDF and so approximates the radial integral of the
PDF, known as the orientation density function (ODF) using the Funk-Radon
Transform (FRT). The fiber orientation distribution (FOD) method computes
the whole PDF volume by introducing a prior on either angular or radial MR sig-
nal or both [5, 10, 11]. Some approaches assumes a mono-exponential radial MR
decay and propose analytical solutions to the Fourier transform, as in the gen-
eralized DTI method based on the Fick’s diffusion law [12], and in the diffusion
orientation transform (DOT) using the Hankel transform [13].

Previously mentioned methods based on HARD images use a single radial
acquisition and have thus to assume strong priors on the radial behavior of
the signal. Nonetheless, sampling schemes on several spheres in the Q-Space
have been proposed recently [13–15]. Since the number of samples remains still
too low to allow a precise Fourier transform, other methods rather consider
an approximation of the MR signal radial attenuation by a multi-exponential
function [13, 14]. Note that these methods use a larger set of data but are still
based on a priori models of the radial behavior of the input signal. In section 2,
we present a new and flexible method to compute any characteristic on the PDF,
based on a “model-free” estimation of the signal. Then, we illustrate in section 3
validation results on both numerical and real human data-sets. Finally, we draw
conclusions of the proposed approach in section 4.

2 Estimation of PDF-based characteristics

The estimation of the PDF from Eq.(1) is a trade-off between the number of
samples and the prior on the MR signal, so we introduce an orthonormal basis
based on spherical harmonics and Gaussian-Laguerre polynomials in which we
expect the signal to be sparse. As a consequence low-order truncation assumes
radial Gaussian behavior as in [13, 14] and high order truncation order provide a
model-free estimation. Note that the truncation order is restricted by the number
of data samples in the acquisition. For convenience, a list of common notations
used in this paper is reminded in Table 1.

Spherical Polar Fourier Expansion: Since the samples are generally ac-
quired on one or several spheres of the Q-Space, our orthonormal basis is de-
fined as a combination of angular and radial elementary functions expressed in



spherical coordinates. Here, we expand the MR signal attenuation E as a series
in a spherical orthonormal basis named Spherical Polar Fourier (SPF) [16]

E(q) =
S(q)

S(0)
=

∞
∑

n=0

∞
∑

l=0

l
∑

m=−l

anlmRn(|q|)ym
l

(

q

|q|

)

, (2)

where anlm are the expansion coefficients, ym
l are real spherical harmonics (SH),

and Rn is an orthonormal radial basis function.
The angular part of the signal is reconstructed by elementary angular func-

tions based on the Spherical Harmonics basis Y m
l . The complex SH Y m

l form an
orthonormal basis for functions defined on the single sphere and are related to
the solution of the Laplace’s equation in spherical coordinates. For this reason,
they have been widely used in dMRI [17]. Indeed, as the diffusion signal exhibits
real and symmetry properties, the use of a subset of the complex basis made of
real and symmetric SH ym

l strengthen the robustness of the reconstruction to
signal noise and reduces the number of required coefficients [17] : an expansion
to order n <= N and l <= L only involves (N + 1)(L + 1)(L + 2)/2 coefficients.

The radial part of the signal is reconstructed by the elementary radial func-
tions Rn. A sparse representation of the radial signal should approximate it in
a few radial order N . Several studies [18, 19] has shown that the signal decay
E appeared to be a composition of Gaussian functions, the number of functions
being determined by the wave-vector norm |q|. In practice, several authors [20,
21] reported that a bi-exponential function is sufficient to fit E, suggesting a
model with a slow and a fast free diffusion in correspondence to the intra and
extra cellular compartments. However the spatial resolution of voxels is such
that it forms a complex physical system which contains numerous cells with var-
ious characteristics. Therefore a direct relationship between the bi-exponential
attenuation and the intra-extra cellular diffusion is not obvious and has yet to be
investigated [20]. As a result, the origin of the signal attenuation is still unclear
and the bi-exponential model does not necessarily describe the diffusion system
accurately [19]. Based on these observations, we propose a general estimation
of the radial part of the signal attenuation E using the normalized general-
ized Gaussian-Laguerre polynomials basis Rn (also referred as Gaussian-Type
Orbitals (GTO) in the molecular crystallography community [16, 22]):

Rn (|q|) =

[

2

γ3/2

n!

Γ (n + 3/2)

]1/2

exp

(

−|q|2
2γ

)

L1/2
n

( |q|2
γ

)

, (3)

where γ denotes the scale factor and L
(α)
n are the generalized Laguerre polyno-

mials. The Gaussian decay arises from the normalization of the Laguerre poly-
nomials in spherical coordinates. Note that QBI [8, 9] and DOT [13] methods
can be expressed in this approach with respectively Rn(|q|) = δ(|q′| − |q|) and
Rn(|q|) = jn(2π|q||p′|)δnl, where the symbols |q′| and |p′| are constant values
defined in Table 2.

Spherical Polar Fourier (SPF) is a set of functions which forms a complete,
orthogonal basis; consequently the square error between a function and its ex-
pansion converges to zero as N and L become infinite. We fit the signal to the
SPF by a damped least square minimization and best fitting coefficients anlm

are given by a regularized Moore-Penrose pseudo-inverse scheme:



Table 2. A non-exhaustive list of some PDF characteristics G and their projection
function hk at point k. FRT stands for the Funk-Radon Transform used in QBI, where
J0 is the Bessel function of the first kind and |q′| is the radius of the q-ball shell.
ISO stands for isoprobability profiles. SD and FD respectively stands for slow and fast
diffusion, where |p′| is the radius limit between intra and extra cellular diffusion.

G ODF FRT ISO SD FD

hk(p) δ(1 − |p·k|
|p||k|

) J0(2π|q′||p|) δ(k)
ODF if |p| < |p′|

0 if |p| > |p′|
0 if |p| < |p′|

ODF if |p| > |p′|

Ã = arg min
Ã

|Ẽ − M̃Ã|2 = (M̃T M̃ + λlL̃ + λnÑ)−1M̃T Ẽ (4)

where M̃ = (Rn(|qj |)ym
l (

qj

|qj |
))nlm×j∈N3×N denotes the SPF basis matrix and

Ẽ, Ã respectively denote the vectors (E(q1), . . . , E(qns))
T

and (a000, . . . , aNLL)
T
.

The matrix L̃ and Ñ are the regularization matrix with entries l2(l + 1)2 and
n2(n + 1) along their diagonal, which respectively penalizes high degrees of the
angular part and radial part of SPF in the estimation under the assumption
that they are likely to capture noise. The symbols λl and λn respectively denote
angular and radial weight regularization term.

Projection: As we have a continuous representation of E from the SPF coef-
ficients, let G(k) =

∫

P (p)hk(p)dp be a characteristic G of the PDF at point
k, where hk denotes a projection function at point k. Table 2 represents sev-
eral popular characteristics G which can be evaluated using this computational
scheme. A natural way to retrieve G would be to reconstruct E from the SPF
coefficients, compute an Fast Fourier Transform (FFT) and finally calculate G
on the PDF volume; however such a scheme would induce cumbersome com-
putations and raise numerical accuracy issues. So, any characteristic G defined
from Eq.(5) can alternatively be computed directly from the SPF coefficients.
Indeed, since the SPF are an orthonormal basis the following relation holds:

G(k) =

∫

p∈R3

P (p)hk(p)dp =

∫

q∈R3

E(q)Hk(q)dq =

∞
∑

nlm

anlmbknlm (5)

where Hk is the inverse Fourier transform of hk and anlm, bknlm respectively
denote the SPF expansion of E and Hk. Therefore, the computation of G(k)
which is an integration over an entire volume simply turns into a very fast dot
product between two vectors of SPF coefficients.

Characteristics defined on the sphere: At this point, we have to compute
the inverse FFT of hk and its SPF expansion for each probability vector k.
All these computations are required only once and can be stored in computer
memory for later use. An alternative faster scheme arises for characteristics which
are angular-dependent only; i.e. k ∈ S

2 where S
2 is the sphere domain. Note

that all characteristics G defined in table 2 satisfy this constraint. In this case, we
can use the rotation property of SH which states that a rotation of a SH can be
expressed as a linear combination of SH of the same degree l. As a consequence,
a rotation of any linear combination of SPF can be expressed as:
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Fig. 1. Algorithm overview for the computation of PDF characteristics G at point k,
defined on the single sphere S

2.

a
′

nlm =
l

∑

m′=−l

anlm′R
(l)
mm′(α, β, γ), (6)

where anlm and a
′

nlm are respectively a linear combination of SPF and its ro-

tation. R
(l)
mm′ stands for the real Wigner rotation matrix expressed in terms of

Euler angles (α, β, γ) in zyz convention (see [23] for more technical details). As
we want to compute the projection on a single sphere, we set (α, β, γ) = (φ, θ, 0),
where φ ∈ [0, 2π) and θ ∈ [0, π] follow spherical coordinates from physics con-
vention. In this case, hk has to be constructed only once with θ = φ = 0, i.e.
k initially taken as the z-axis unitary vector z. Schematic description of the
algorithm for characteristics defined on the single sphere is given at Fig.1.

3 Experiments

In this section, we present results of our method on both synthetic simulations
and real human brain data-sets. We focus on a comparison of ODF computed
with QBI method as proposed in [9] and with our method using either G=FRT
and G=ODF characteristics. Additionally, we show the estimation improvements
along with the number of diffusion MR signal samples.

Numerical Simulations: We have applied the above scheme to the simulations
of a single fiber and crossing fiber configurations. The following synthetic multi-
exponential model was used to generate data, E(q) =

∑Nb

k=1 fk exp
(

−qT Dkq
)

where
∑Nb

k=1 fk = 1. The symbol Nb stands for the number of fibers and Dk

is a 3 × 3 symmetric definite positive matrix defining the diffusion anisotropy.
Diffusion images were synthesized following 3 sampling protocols: low resolution
(1 shell b = 3000 s/mm2), medium resolution (2 shells b = {1000 , 3000} s/mm2)
and high resolution (5 shells b = {500 , 1000 , 1700 , 2400 , 3000} s/mm2) along
with a single baseline image acquired at b = 0 s/mm2. Each shells is composed of
42 directions along the edges of a subdivided icosahedron. Estimation parameters
were chosen empirically for each sampling protocol: low resolution {N = 0,
L = 4, γ = 100, λN = 0, λL = 10−6}, medium resolution {N = 1, L = 4, γ = 70,
λN = λL = 0}, high resolution {N = 4, L = 6, γ = 50, λN = λL = 10−9}. The
scale factor γ was set empirically so that the decay of the basis atoms have the
same scale as the sampled data. Let x = Rn(|q′|)/Rn(0) where x ∈ [0, 1]. After

some algebra, this leads to γ ≈
(

|q′|2√πn!
)

/
(

4 Γ
(

n + 3
2

)

log
(

1

xL
1/2

n (0)

))

. In

this work, |q′| = 30mm−1, x = E(|q′|)/E(0) = 0.01 and n = N .



a) Truth b) QBI [9] c) G=FRT d)G=FRT e) G=ODF f) G=ODF g) G=ODF

Low Resolution Med. Res. High Res.

Fig. 2. ODF comparisons: ODF versus QBI and ODF at low resolution versus ODF
at high resolution. The first line corresponds to a single fiber direction Nb = 1. The
second and third lines correspond to crossing fibers Nb = 2 respectively in face and
profile view. From the left to the right: (a) True ODF computed analytically, (b) ODF
given by QBI [9], (c) simulation of QBI with our method, (d) FRT with higher q′, (e-g)
ODF estimations given by our method, with increasing number of samples.

Results of Fig.2(b-c) validate that our method can successfully reproduce the
ODF obtained with the QBI approach, with a standard HARD acquisition. Note
that the resulting ODF is a sharp approximation of the true ODF. Besides, an
extrapolation of QBI with a higher |q′| value logically gives even sharper ODF
as illustrated in Fig.2(d). With the same data-set, the ODF of our method
Fig.2(e) gives a more precise representation of the true ODF. This is due to the
Gaussian assumption of our model at low radial N order which enables to better
fit the synthetic data. We show in Fig.2(e-g) the estimation of the ODF with
the same approach but with an increasing number of samples. As expected the
results exhibits successive estimation accuracy improvements and converge to
the true ODF shape. Using this synthetic experiments, we observed that more
signal samples than our high resolution sampling protocol negligibly influence
the estimation precision (results not shown).

In vivo experiments: Diffusion MR images were acquired in two shells along
32 directions at b = 1000 s/mm2 and b = 3000 s/mm2, and a single image at
b = 0 s/mm2. Thus, there were a total of 65 images acquired in a sequence of
15 minutes. The SENSE parallel imaging protocol was used with a factor of
acceleration set to 2; and only 80% of the k-space was acquired. Matrix size was
112 × 112 × 60 and the image resolution was 2 × 2 × 2 mm3. Repetition time
was TR=11490ms, echo time was TE=85ms. Time between two pulses and
time of diffusion gradients were respectively ∆ = 42.2 ms and δ = 26.3 ms. The
probability maps were computed by following the procedure described in Fig.1.
Terms up to N = 1 and L = 4 were used in the calculations. Computations
were done in less than a minute on a 3Ghz processor, and includes calculations
of SPF coefficients and projections on the single sphere along the 642 directions
for the whole data-set 112 × 112 × 60 volume.

We computed the generalized anisotropy (GA) measure [7], which is a gener-
alization of the fractional anisotropy (FA) measure of DTI. We show results in



a) S0 b) DTI [4] c) QBI [9] d) G=ODF

Fig. 3. Comparison of GA [7] on region of corpus callosum and lateral ventricles.
Isotropic area are black, anisotropic area are white.

a) DTI [4] b) QBI [9] c) Our method, G=ODF

Fig. 4. In vivo brain white matter ODF overlaid on GA maps in a region of interest. S0

image show the region of interest surrounding the corpus callosum-genu and the frontal
horn, corpus callosum horizontal fibers appears from the left. DTI(a) and QBI(b)
were computed with the outer shell b = 3000 s/mm2. Our method (c) shows the ODF
obtained from both shells b = 1000 and 3000s/mm2.

Fig.3, each image was normalized independently to enhance visualization con-
trast. Representative images of the data are presented in Fig.4 and reveals mi-
crostructures around the genu of the corpus callosum. DTI performs well in
corpus callosum but fails in voxel with orientational heterogeneity as shown in
Fig.4a. QBI can successfully retrieve multiple fibers orientations but is sensible
to noise, especially in region of cerebrospinal fluid (c.f . Fig.4b). Besides, the QBI
is a sharp approximation of the true ODF and thus enhances noise (Fig.2(a,b)).
Whereas cerebrospinal fluid area are expected to exhibits isotropic diffusion, the
ODF obtained by the QBI method exhibits anisotropy and may lead to misin-
terpretation of the brain structure on the GA map (Fig.3c). On the contrary,
the ODF obtained by our approach does not fall into this pitfall (Fig.3d), it
successfully retrieves anisotropic shapes in brain white matter fibers regions and
isotropic shape in cerebrospinal fluid area (c.f . Fig.4c).

4 Discussion and conclusion

In this paper, we provided a direct method for the estimation of various char-
acteristics on the tissue microstructure in MR images. In a context where the
origin of diffusion signal is still under study, this model-independent method uses
in a fast and flexible manner the reduced number of signal samples. Addition-
ally, we demonstrated the feasibility of our approach within clinical time-frame
acquisition. Comparison with competing methods of the literature depicted our
model in a favorable light.
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