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Abstract. During 1994 and into 1996, Ulysses was at dis- three components were distinguished at frequencies below
tances of 5 AU or more from Jupiter and travelling from the critical frequency of the Earth’s ionosphere, in addition
south to north of the ecliptic plane between jovicentric lat- to the decametre-wave radiation (DAM), already well-known
itudes—36° to 20°. Observations by the Unified Radio and from almost thirty years of systematic ground-based obser-
Plasma Experiment (URAP) on board the Ulysses spacecraftations. The low-frequency components were classified as
during this period have been searched for jovian hectometri@ hectometre-wave component (HOM) and two kilometre-
(HOM) radio events. At these distances, the HOM was onlywave components, a narrow-band emission (hnKOM) and a
received occasionally. The signals were generally weak andbroad-band emission (bKOM). The characteristics of each
much care was needed to find and to identify the events.  of these components have been reviewed by Alexander et
All of the HOM events were observed when Ulysses wasal. (1981), Boischot et al. (1981), Carr et al. (1983), Kaiser
at jovicentric latitudes betweerl12.2° < Dy, < 14.7°, and Desch (1984), Leblanc and Daigne (1985), Boischot
relatively close to the plane of the jovicentric equator. Both (1988) and Leblanc (1988).
senses of polarization were observed with left-hand (LH) The present paper is concerned with observations of the
predominant. The events occurred when finmagnetic  HOM made by the Ulysses Unified Radio and Plasma
latitude Dy, was between-8.5° and 142° and suggest that (URAP) experiment (Stone et al., 1992a), during 1994 and
the HOM was only detectable within a beam some &Rle, into 1996, when Ulysses was at distances of 5 AU or more
centred on about°3jovimagnetic latitude. This is roughly from Jupiter and travelling from south to north of the ecliptic
consistent with previous work by Alexander et al. (1979) andplane between jovicentric latitudes36° to 2C°. In a previ-
by Ladreiter and Leblanc (1989, 1991), based upon observasus paper (Barrow et al., 2001; hitherto called “Paper 1), it
tions made by Voyager and other spacecraft when these wergas found that the polarization of the bKOM, observed dur-
relatively close to Jupiter. The results are consistent with aring the same period, depends upon the jovicentric latitude
emission process due to the Cyclotron-Maser instability, asDy;;, of the observer at the time of the observation, although
suggested by a number of scientists in the past. the actual emission could be observed from any latitude. For
the HOM, the polarization and also the visibility are found
to depend uporDy;,, but in a completely different manner
from the bKOM.

Key words. Magnetospheric physics (planetary magneto-
spheres) — Radio science (radio astronomy)

1 Introduction 2 Ulysses antennas and receivers

Observations by the Radio Astronomy Explorer (RAE-1) .
and the Interplanetary Monitoring Platform 6 (IMP 6) gave 'tl)'he drece:jvfe s CSOZ? gvzg Egndﬁ.’ kl;ron; 1.|25tht'o 48.5kHz (lo-
the first indications of jovian radio emission at frequen- and) and from - 10 = Z( -ban )-In IS paper, we are

.only concerned with hi-band which operates in 12 channels,

cies close to 1 MHz (Brown, 1974; Desch and Carr, 1974; imately | thmicall d h bei
Kaiser, 1977). The Voyager Planetary Radio Astronomy""pprox!m""ey oganthmically spaced, each frequency being
determined by one of twelve crystal local oscillators. The in-

(PRA) experiment established the existence of four maintermediate frequency (IF) amplifier frequency is 10.7 MHz
components in the low-frequency radio spectrum of JUplter;the dynamic range is about 70 dB and the bandwidth is 3 kHz.

Correspondence taC. H. Barrow URAP uses a complex frequency sweep in the high band that
(barrow@linmpi.mpg.de) is optimized for type Il bursts. The frequencies sampled
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| Fig. 1. Trajectories of Ulysses and

4 Jupiter. The heavy line represents the
- trajectory of Ulysses during the period

- =6 of the observations.

most often are 940 and 740 kHz, which are sampled, on avtent with previous work (Alexander, et al., 1979; Ladreiter
erage, 8 times per spin at 0.25 s per sample when in high biand Leblanc, 1989; Barrow and Lecacheux, 1995), it was
rate (1024 bps). The spin period is approximately 12 s. Thisfound that the HOM could not be seen from jovicentric lati-
yields an “integration” time of 24 s for these data averagedtudes much farther from the jovicentric equatorial plane, than
over 144 s intervals. The receivers are connected to a 72 mbout—12.2° and 147°, corresponding to a range {vi-

wire antenna perpendicular to the spacecraft spin axis and tmagneticlatitudes between about8.5° and 142°. These

a 7.5 m monopole antenna along the spin axis. The spacecradind other parameters in the paper have been taken from the
and the antenna system spin with a 12 s period. The inputdlASA SEDR file (a sort of “Mission Ephemeris”). The
from the antennas can be combined to synthesize an equirourly values of jovimagnetic latitude used here have been
alent dipole tilted with respect to the spin axis. By combin- extrapolated from the 3-hourly values in the SEDR file. The
ing the inputs with suitable phase differences, the polarizaHOM was only received occasionally and the number of
tion of the incoming waves can be determined (Manning andevents suitable for study was further limited by the consid-
Fainberg, 1980; Stone et al., 1992b). Polarization can onlyerations outlined in the following two paragraphs.

be calculated when the receiver inputs are combined in sum- At dgistances greater than 5 AU, the problem of finding and
mation mode (SUM) and when the spacecraft data telemetryjentifying the HOM requires much care. In general, the pro-
rate is high (1024 bps). The sensitivity, when used in separagedure was similar to that described in more detail in Paper
tion mode (Stone et al., 1992a), is ab6kin ~5x 10" Jyat 1 for the bKOM, with the exception that the HOM is more
100kHz. In the summation mode, for polarization measure-gasily distinguished from auroral kilometric radiation (AKR)
ments, the sensitivity is down by about 10 dB. Polarizationthan the bKOM because the characteristic frequency range of
measurements of the radiation have been used to improvge HOM is about 350 kHz to over 1 MHz, as compared to

existing knowledge of the source location and the beaminggpyout 50 to 700 kHz for the AKR (Hilgers and de Feraudy,
characteristics of the HOM. 1992).

We recall that, immediately after the Jupiter encounter in
3 Observations 1992 when Ulysses was at an extreme southerly jovicen-
tric latitude (Dy;, ~ —38°), Barrow and Lecacheux (1995)
In Paper 1, URAP observations were examined for the periodound that, out as far as 208Q, no emission of any kind was
1 January 1994 to 29 February 1996 (940101 to 960229, present at frequencies above about 400 kHz. As the charac-
total of 790 days). During this period, Ulysses was at dis-teristic frequency range of the HOM is from about 400 kHz
tances of about 4.7 to 7.2 AU from Jupiter and travelling up to a few MHz, the events reported here, when they even-
from south to north of the ecliptic plane, as shown in Fig. 1, tually appeared as Ulysses moved into more northerly jovi-
the jovicentric latitude of the spacecraft changing from aboutcentric declinations, were identified from the characteristics
—36° to 2C°. During this same period and, generally consis- shown by the three highest frequency channels of the URAP
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Ulysses URAP Radio Data: 1995/1/25
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Fig. 2. Ulysses/URAP hi-band spectrum for 950125 (DOY 94390).

hi-band receiver, 540, 740 and 940 kHz. It is possible, how-should not be present in these data. Some of the typical struc-
ever, that some very weak HOM events may have occurredure of the HOM may have been smoothed out by the effects
at the lowest frequencies and passed unnoticed. We havef temporal broadening due to scattering over the distance
only considered HOM events for which polarization data aretravelled by the radiation through the interplanetary medium
available and which could be identified with a good degree of(Barrow et al., 1999).

certainty. 58 HOM events, recorded over 37 days, eventually The polarization is represented as a spectrum of the de-
met these criteria. gree of circular polarizatiom., shown in the second panel

Event occurrence times were measured from the spectr@f Fig- 3. The total intensity;, + /x measured by URAP is
and from single frequency intensity-time plots. The max- Presented in the top panel. Them, is given by
imum estimated uncertainty was abahlb min or +3° of Ip — IR
CML. System Ill Central Meridian Longitudes (CML) for e = Ip + Ig’ 1)
Ulysses are taken from the NASA SEDR file and correctedwhereIL and 1y are, respectively, the LH and RH polarized
for the light-travel time from Jupiter to the spacecraft. intensities.

Typical spectra, taken on 950125 (DOY 94390) when Inthe third panel, the azimuth, with respect to the direction
Dy, = —11.7°, are shown in Figs. 2 and 3 where an HOM of the Sun, gave an additional identification criterion and, in
event can be seen to start close to 06:00 UT. The URAP hipatrticular, distinguished jovian emission from possible sat-
band spectrum is shown in Fig. 2 where the time resolutionurnian (SKR) emission (Lecacheux and Aubier, 1997). The
is 144 s. The background and the sensitivity of these spectraosition of each planet is indicated by the letters “J” or “S”
could be adjusted easily, and the time scale for the spectradjacent to the colour scale. The modulation index, shown
and the single frequency cuts from them could be expandedn the fourth panel, is essentially an indication of the cer-
this proved to be essential for finding and identifying the tainty of identification. The numbers above the top panel
HOM events. In hi-band, the data at each frequency are colrepresent the rotation number of Jupiter, taken as zero on 1
lected for 12 s, approximately equal to the spacecraft spinJanuary 1982, and the CML, corrected for light-travel time
period; these are averaged together and so spin-modulatidinom Jupiter to Ulysses.
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UT (hours) beginning at about 01:00 UT is LH.

It can be seen that an HOM event was observed by Ulyssewill not be changed by scattering (Woan, 1997, 1999).

to begin close to 06:00 UT (CME- 156). This event was All of the 37 days when the 58 HOM events were ob-
RH polanzed_(l.emc <0 t_he emission or_lgmatec_j n the served by Ulysses are shown in Fig. 4a, where it can be seen
qo_rthern hemisphere of Jupiter). Other Pe”o‘?'s of jovian aCypa¢ during the period studied (940101 to 960229), the HOM
tivity can be seen at lower frequencies, the first of which is events were only observed when the spacecraft was in jovi-
LH polarized. There is no polarization data available sub- : ; o o ;
sequent to about 07:00 UT. The azimuth spectrum indicateCentrIC latitudes between;z.g = Duiy =< 14.7%, relatively
| h - SOF= 3 Tlose to the plane of the jovicentric equator. Both senses of

that all of this activity originated from the direction of Jupiter. polarization were observed with left-hand (LH) predominant.

Scattering effects in the interplanetary medium (Barrow etOppositely polarized events occurring at different times on
al., 1999) will cause Faraday rotation in the jovian emission.the same day can, of course, be shown separately in jovimag-
This will tend to depolarize linearly polarized radiation, but netic latitude, but not in jovcentric latitude, which does not
will only cause phase differences in circularly polarized ra- change appreciably during a day. In Fig. 4b, the same events
diation. Thus, the actual sense of polarization of the HOMare plotted against the jovimagnetic latitude of Ulysses at the
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distributions show some similarity to those found previously
=10 7 by Alexander et al. (1979), shown in Fig. 6, for observations
I made from jovicentric latitudes-3.2° < Dy, < 6.5°. In

JOVIMAGNETIC LATITUDE OF ULYSSES (deg) JOVICENTRIC LATITUDE OF ULYSSES (deg)

—20F O LH POLARIZED HOM | ) ’ = s
| | their observations made from northerly (positive) jovicen-
_30h tric latitudes, there is a null centred on about 18@hile
I for observations made from southerly (negative) jovicentric
—40 L L L L latitudes there is a single peak centred on about.160e oc-
0 200 400 600 800 1000 currence probability profiles shown in Figs. 5a and 5b seem
DOY 1994 to follow this trendin jovicentric latitudeand suggest that

it continues out to the jovicentric latitudes of Ulysses in the
Fig. 4. Days on which HOM events were observed by Ulysses, d“r'present observations. The pre- and post-encounter Voyager
ing the period 940101 to 960229 (DOY 94001 to 94790), agé@st  ohqepvations studied by Ladreiter and Leblanc (1989) did
jovicentric latitude andb) jovimagnetic latitude of the spacecraft. not include observations made from south of the jovicentric
equatorial plane and so they could not show this effect.
Occurrence probabilities for RH and LH polarized emis-
nearest hour to the event time; these show a narrower spreagon are shown in Figs. 7a and 7b, respectively. The occur-
in jovimagnetic latitude than in jovicentric latitude due t0 rence probabilities for the HOM, shown in Figs. 5 and 7, ap-
beaming. Of the 12 RH periods of activity only two oc- pear to be differently distributed, while for the bKOM (Paper
curred without associated LH emission, either immediatelyl) the distributions were the same, with LH/RH polarization

before or after the RH emission. It can be seen that all of theyeing seen when Ulysses was south/north of the jovicentric
events were observed when the spacecraft was within a bangquator.

of jovimagnetic latitude between8.5° and 142°, centred

on about 8. This is the same centre jovimagnetic latitude as

that found by Alexander et al. (1979) and by Ladreiter and4 piscussion
Leblanc (1989, 1991), although the emission beam is wider.

Relative occurrence probabilities for observations madeA number of workers have suggested that the HOM emis-
when Ulysses was north and south of the jovicentric equasion process is due to the Cyclotron-Maser instability (CMI)
torial plane are shown in Figs. 5a and 5b, respectively. Thawith dominant emission in the R-X mode (see, for example,
histograms are for FOintervals of CML (rotation), corre- Ladreiter et al. (1994) and the references therein). The emis-
sponding to about 16.5 minutes of time. Most events lastsion is beamed into a radiation pattern in the form of a wide-
longer than this, however, and can, therefore, appear in morangled, thin-walled hollow cone with apex at the source and
than one time bin. Although the occurrence probabilities areaxis tangent to the magnetic field direction. Propagation is in
lower due to the greater distance of Ulysses from Jupiter, thehe R-X mode at frequencies equal to or just above the local
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IMP-6
-28° < LAT <-2.4° ometry of the electron cyclotron frequency surface superim-
85 HR ACTIVITY . . . . . .
posed upon a dipolar jovian magnetic field, as sketched in
Fig. 8, where the shaded area represents the range of jovi-
magnetic latitudes—{8.5° to 14.2°) over which the HOM
iMP-6 was observed. The point S represents an HOM source (i.e.
;§-2H°R<ALCJ§”TV‘<T-Y2-5" the apex of an emission cone) in the southern magnetic hemi-
oy sphere and the northern edge of the cone is directed towards
e o pve e 60 the spacecraft when it is in a northerly magnetic latitude.
CENTRAL MERIDIAN LONGITUDE, SYSTEM il (1965) A two-dimensional model has been used by a number
of other workers in the past (Ladreiter and Leblanc, 1990;
Fig. 6. Relative occurrence probability of the HOM for the range of Reiner et al., 1993a; Barrow and Lecacheux, 1995). This
jovicentric latitudes-3.2° to 6.5° (from Alexander et al., 1979). is also suitable for our purposes here as the HOM event du-
rations measured for this paper were generally shorter than
those measured closer to Jupiter and imply that the observed
gyrofrequencyf,. An event is seen as a continuous emis- emission originated from close to the top or the bottom of the
sion due to radiation from the edges of a succession of CMlemission cone; this would require the source to be oriented
cones, distributed over a range of CMLs and rotating withclose to the Jupiter-Ulysses meridian. A three-dimensional
the planet. model would be ideal, but we do not know where the source
The HOM source has been found to lie on some L-shell bewould be in CML and the problem is further complicated by
tween 7 and 11, by Ladreiter et al. (1994), and between 8 anthe time variability of the emission.
10 by Zarka et al. (2001). Reiner et al. (1993a, b), however, It is shown in Paper 1 that, if S lies on some specific L-
using direction finding and URAP data for four events takenshell, then for a given gyrofrequengy at S,
during the Jupiter encounter, have found the HOM source to/3 b —ats @
lie on L-shells 4 to 6. According to Ladreiter et al. (1994), © — ’
the difference between their results and those of Reiner efyheres is the magnetic latitude of the spacecrdftis the
al. (1993a) is due to the inclusion by Reiner et al. of the emission cone half-angle,is the magnitude of the jovimag-
URAP Z-antenna response in the direction finding. This cannetic latitude of the source S andis the angle between the
lead to ambiguities as the Z-signal modulation pattern duefield line and OS at the point S. The geometry is the same for
to spacecraft spin is not that of a simple monopole. Also,both hemispheres but, in Eq. (2), the positive/negative sign

Reiner et al. (1993a, b) did not consider systematic errorsf § refers to the spacecraft on the opposite/same side of the
due to uncertainties in the antenna calibration parameters. Imagnetic equator as the source.

the discussion that follows, we will assume that the HOM is |t follows from Eq. (2) that, in the two-dimensional model,
generated from tilted dipole field lines close to L=9. the detection of HOM at a given frequengyby a spacecraft
Beaming can be represented by the two-dimensional geat a given location specified By determines a unique value

0.8
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% a5k / | of CMLs. As the cone half-angles have, in general, been
N / found by various workers to be large, estimates ranging from
& / 1 30° to 90 (Ladreiter et al., 1994) and, as Jupiter rotates at
; 30 : a rate of about 38h, an event might be expected to last for

o / JOVIMAGNETIC LATITUDE=14.2% | some two or three hours, as seen in observations close to
% I SOUTH SOURCE (LH) —— Jupiter. The shorter duration events seen here may be simply
= 15T T an effect of reduced flux density due to the large distance of

| 1 the spacecraft from Jupiter, but it is also possible that they
‘ ‘ may be due to emission from sectors of the extreme north-

0 - | . | . |
0 10 20 30 40 ern or southern edges of the CMI cones when the source is
L—SHELL VALUES ALONG f, SURFACE approximately on the Jupiter-Ulysses meridian or from just a
few cone edges if the source is turned away from Ulysses.
Fig. 9. Calculated values of emission cone half-anglegainst In Fig. 8, we have shown the two-dimensional geometry

L-shell for an assumed dipole magnetic field and an emission fre-/. ‘o : :

guency of 940 kHz. The jovimagnetic latitude8.5° and 142° are .(I'e' Wh'en the emission cone is fi\Clng UIySS?S).Of th.e beam-

the limiting values within which the HOM was observed. The solid " taking the source to be on L = 9 where this field line cuts

green line represents L = 9. Dashed lines represent L =7 and L the /. =940kHz Surfgce, the_ highest URAP frequenc_y which

11. has always been active during the HOM events. This source

would be at a jovimagnetic latitude of about=®uth and at

a distance of some &R, from the planet. Some of the HOM

of g for an assumed value of L and a given field model. Thiswould have to pass through the torus to reach Ulysses but, as

is not true for the three-dimensional model. the maximum electron density in the torus corresponds to a
The durations of many of the HOM events considered hergPlasma frequency of about 500 kHz, refraction effects in the

and shown in Fig. 4 were relatively short, often less than antorus should be small.

hour, considerably less than typical durations observed closer In Fig. 9, we show the variation g8 for the north and

to the planet (see, for example, Barrow and Lecacheux, 1995outh limits of observation of the HOM shown in Fig. 8, with

their Fig. 3). On the other hand, an occasional event, like that =9 and f. = 940 kHz. In Fig. 10, we plot the values pfcal-

shown in Figs. 2 and 3, lasted somewhat longer. culated for the events shown in Fig. 4, again assuming values
As Jupiter rotates, an observer sees the event as an emisf f. = 940kHz and L = 9 in a two-dimensional model, (a)
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for RH events and (b) for LH events. These valueg die netic latitude 8, consistent with earlier work, notably that of
between about 30and 46 for the RH events and between Alexander et al. (1979) using observations made by the PRA
about 34 and 52 for the LH events as compared, respec- experiment on board Voyager compared with observations by
tively, to 8 ~ 46° andp ~ 51° for L = 9 (represented by the RAE-1 and IMP-6.
solid green line) in Fig. 9. Figures 9 and 10 demonstrate the Occurrence probabilities were lower than those found by
implication of Eq. (2), that there can be no unique value for Alexander at al. (1979), although the distributions seem to
B that does not involve assumed values of L gpd continue the trend that they found, as shown in Fig. 6. Un-
We have seen in Fig. 4 that the HOM emission is confinedlike the bKOM (Paper 1), the LH and RH polarized HOM
to specific ranges of jovicentric and jovimagnetic latitude, occurrence probabilities shown in Fig. 7 were differently dis-
—12.2° < Dy;y, < 147° and—8.5° < Dy < 14.2°, respec- tributed to those in Fig. 5, perhaps because the HOM polar-
tively. The jovimagnetic latitude range is centred ¢ B ization does not appear to be latitude dependent.
good agreement with the findings of Alexander et al. (1979) We have shown that, in the two-dimensional model, the
for Voyager PRA and other data. The results are also congdetection of HOM, at a given frequengy by a spacecraft at
sistent with the conclusion of Ladreiter and Leblanc (1991)a given location specified by; determines a unique value of
that the overall emission beam appears to be wider in jovi-g for an assumed value of L and a given field model. This is
magnetic latitude if weaker HOM events are considered. Thenot true for a three-dimensional model.
values of the emission cone angie calculated assuming a If the emission cones are assumed to be directed towards
two-dimensional model and shown in Fig. 10, are within the Ulysses, calculated values gffor all of the events reported
range of likely values given by Ladreiter et al. (1994) and here, assuming values of L = 9 anfd= 940 kHz, are found
compatible with previous work. Unlike the bKOM (Paper to be within the range of about 3@0 52 and compatible
1), although LH polarization predominates, there is no jovi- with previous work by Ladreiter et al. (1994).
centric or jovimagnetic latitude within the range of latitudes  opservations at distances of 5 AU or more reveal impor-
where the HOM is detected that is pal’ticularly favourable totant differences between the HOM reported here and the
one sense of polarization or the other. bKOM reported previously (Paper 1). These differences
The two-dimensional geometry shown in Fig. 8 and all were presented briefly at the recent Planetary Radio Emis-
of the foregoing discussion assumes that the HOM source isjons IV Meeting (Barrow et al., 2001) and will be compared
radiating from the face of Jupiter directed towards Ulysses.in more detail in the conference proceedings.
This may not be the case because the locii of the intersections
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