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Abstract. This paper describes the operational implementa-
tion of the data assimilation scheme for the Mediterranean
Forecasting System Pilot Project (MFSPP). The assimilation
scheme, System for Ocean Forecast and Analysis (SOFA),
is a reduced order Optimal Interpolation (OI) scheme. The
order reduction is achieved by projection of the state vec-
tor into vertical Empirical Orthogonal Functions (EOF). The
data assimilated are Sea Level Anomaly (SLA) and temper-
ature profiles from Expandable Bathy Termographs (XBT).
The data collection, quality control, assimilation and forecast
procedures are all done in Near Real Time (NRT). The OI is
used intermittently with an assimilation cycle of one week
so that an analysis is produced once a week. The forecast is
then done for ten days following the analysis day.

The root mean square (RMS) between the model forecast
and the analysis (the forecast RMS) is below 0.7◦C in the sur-
face layers and below 0.2◦C in the layers deeper than 200 m
for all the ten forecast days. The RMS between forecast and
initial condition (persistence RMS) is higher than forecast
RMS after the first day. This means that the model improves
forecast with respect to persistence. The calculation of the
misfit between the forecast and the satellite data suggests
that the model solution represents well the main space and
time variability of the SLA except for a relatively short pe-
riod of three – four weeks during the summer when the data
show a fast transition between the cyclonic winter and anti-
cyclonic summer regimes. This occurs in the surface layers
that are not corrected by our assimilation scheme hypothesis.
On the basis of the forecast skill scores analysis, conclusions
are drawn about future improvements.

Key words. Oceanography; general (marginal and semi-
enclosed seas; numerical modeling; ocean prediction)

1 Introduction

One major goal of the Mediterranean Forecasting System
Pilot Project (MFSPP, Pinardi et al., 2003) was to demon-
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strate the feasibility of operational predictions of the baro-
clinic basin scale circulation. Following the scientific plan of
the project (see Pinardi and Flemming, 1998), a 10 days fore-
casting system of currents, temperature and salinity fields
was set up starting from 4 January 2000. The forecasting
system includes three major elements: a data collection net-
work, the general circulation model and the data assimila-
tion scheme. Presently, this forecasting system produces a
weekly ten days basin scale forecast, which is published on
a perpetual Web site (http://www.cineca.it/mfspp). In the fu-
ture, the operational forecasting activities will also include
downscaling towards the shelf areas with nested models and
ecological forecasting (Pinardi et al., 2002); the basin scale
forecasts will provide the initial and boundary conditions for
higher resolution nested shelf model forecasts.

The main elements of the basin scale forecasting system
are reviewed in detail in different papers. The observing
system is described in Manzella et al. (2001) for the Volun-
tary Observing Ship (VOS), and Le Traon and Ogor (1998)
for the satellite data. The ocean general circulation model
(OGCM) of the basin scale forecasting system is presented in
Demirov and Pinardi (2002). The data assimilation scheme
is described and tested with a Mediterranean Sea circulation
model by De Mey and Benkiran (2002) for satellite altimeter
data and twin experiments XBTs.

In the present paper we describe the operational imple-
mentation of the data assimilation scheme in a multivariate
mode, never tried before, and we analyze the skill of the
forecast with respect to observations and analyses for a six
month period during the Targeted Operational Period of MF-
SPP. This paper includes two main results: (a) the description
of the method of assimilation of both SLA and XBT with one
week assimilation cycle and (b) the evaluation of the forecast
performance.

The use of the Mediterranean Sea OGCM, forced with sur-
face meteorological fields in order to calculate heat and mo-
mentum fluxes at the air-sea interface, is discussed in Castel-
lari et al. (1998), Castellari et al. (2000) and Demirov and
Pinardi (2002). These previous simulations showed that the
model is capable of reproducing the major features of the
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Fig. 1. Schematic NRT data collection system in MFSPP containing
both oceanic and atmospheric data. The starting day of the forecast
is indicated byJ . Each week the system is repeated. Forecast is
released Friday with three days delay.

circulation and water mass variability known from observa-
tions. However, there are still uncertainties in the model for-
mulation that could produce incorrect forecasts. Between
them, the relatively coarse resolution of the model in some
areas (for instance in the Straits), uncertain subgrid scale
physics parameterizations and rather modest spatial and tem-
poral resolution of the surface forcing fields (half a degree
and every six hours), could produce inaccuracies in the ini-
tial conditions for the forecasts.

The predictability limit is strongly dependent upon the
quality of the nowcast that in turn depends on the observing
system and the data assimilation scheme. Thus the devel-
opment of an optimal system that assimilates the NRT ob-
servations was a major step during MFSPP. The assimilation
scheme first of all should have been multivariate both in in-
put and output: the entering data are SLA and XBT profiles,
but the corrections to the model first guess will be done on
temperature, salinity and stream function, i.e. the baroclinic
and barotropic components of the dynamical fields.

Last but not least, the forecast should be evaluated with
respect to consistency, quality and accuracy (Murphy, 1993).
This means that the predicted fields are objectively and sub-
jectively compared to observations or analyses, trying to find
out if and how much the model is capable of reproducing re-
ality, how important is the data distribution and quality for
the forecast, etc. The quality and accuracy is mainly given
in terms of skill scores of various nature, already used in
the meteorological literature (Murphy, 1988), and previous
ocean forecasts (Walstad and Robinson, 1990).

The paper is organized in the following way. Section 2
discusses the data acquisition and organization of the forecast
cycle. Section 3 presents the assimilation scheme. Section 4
discusses the results in terms of skill scores. Finally, Sect. 5
presents the conclusions.

2 The data acquisition and forecast cycle

The nowcast – forecast procedure of MFSPP is shown in
Fig. 1. Since 4 January 2000 the MFSPP forecast is pro-

duced weekly with starting timeJ , which is Tuesday at noon
of every week. The preparation and run of the forecast is
done on several stages. Firstly, all data needed for the as-
similation procedure and surface forcing calculation are col-
lected. The procedure of data collection and quality check
is briefly described in Appendix A. When the ocean satel-
lite and insitu data and ECMWF analyses for the past 14
days are collected, the MFSPP nowcast/forecast procedure
is run for the past 14 days to produce the model initial condi-
tion for the starting dayJ of the forecast. The organization
of the analysis run is related to the specific features of the
MFSPP data assimilation scheme and is described in detail
in the next paragraph. When the model initial condition for
dayJ is calculated, the forecast run is done for 10 days for-
ward. The ocean general circulation model (OGCM), used in
the analysis and forecast runs is described in Appendix B.

The ocean and atmospheric data used in the analysis and
forecast are collected on the dayJ +1 (the Wednesday of ev-
ery week), except the SST field, which only becomes avail-
able on the dayJ + 2 (or Thursday of every week). Then
the computational procedure requires between 6–10 h CPU
time for the analysis and 1.5 h for the forecast. The CPU
time for the analysis depends on the amount of assimilated
ocean data, which can vary from one week to another. The
forecast and analysis fields are published on the Web every
Friday afternoon, i.e. with about 3 days delay after the start-
ing day (J ) of the forecast. This delay is mainly due to the
time needed for processing the ocean SST data. Presently,
the satellite SST data become available onJ + 1 (Wednes-
day), which makes it possible to run the forecast with only
two days delay, i.e. now the forecast becomes available on
Thursday of every week.

3 The Data assimilation scheme

The data assimilation scheme used in MFSPP is the Sys-
tem for Ocean Forecasting and Analysis (SOFA). The main
definitions, notations and a brief description of the scheme
are presented in Appendix C. A more detailed discussion of
SOFA can be found in De Mey and Benkiran (2002).

SOFA is a reduced order multivariate optimal interpola-
tion scheme. The order reduction is achieved by projecting
the state vector onto vertical EOFs which are the eigenvectors
of the error covariance matrix for the forecast. The scheme
is multivariate in terms of data input and corrections made
on the model solution. Our particular state vector contains
the model predictive variables such as temperature, salin-
ity and barotropic stream function. The existence of dom-
inant EOFs’ for the Mediterranean temperature-salinity re-
lationship is discussed and demonstrated in Sparnocchia et
al. (2003). Here, as in many other operational schemes, we
use EOFs deduced from data rather than from an analysis of
the forecast error covariance matrix.

De Mey and Robinson (1987) applied, for the first time,
the order reduction in ocean data assimilation with a quasi-
geostrophic model. They used a vertical EOF to project sur-
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Fig. 2. Bivariate Empirical Orthogonal Functions used in assimila-
tion of SLA: (a) Temperature EOF,(b) Salinity EOF.

face altimeter information, i.e. the surface quasigeostrophic
stream function at different depths, and then initialize the
forecasts. On the basis of this experience, the order reduc-
tion operator of SOFA is used here with vertical EOFs that
this time are multivariate.

The observations do not need to be model dynamical vari-
ables but they should be directly related to the model state
variables. For this reason, an observation operator,H, is used
to convert from model variables to measured variables for
the case of SLA. We compute sea level with the full diag-
nostic surface pressure formulation described by Pinardi et
al. (1995) but we leave a simplifiedH operator in the defi-
nition of KROOI, as explained in Appendix C. In particular,
H contains only the geostrophic part of the signal and it as-
sumes that bottom topography-related processes do not con-
tribute to the signal. It is equivalent to the computation of dy-
namic height with respect to a deep reference level with the
addition of the barotropic mode from the model. Thus the
operatorSHT projects the SLA into the temperature, salin-
ity and stream function modes that are consistent with the
geostrophic constraint for the SLA.

In the MFSPP assimilation system we used two different
sets of EOFs, one for the XBT and the other for the SLA as-
similation. This is done in order to strengthen the formal re-
quirement that the observation operater projection on the null
space of the Kalman matrix (Appendix C) is marginal and
that the vertical EOFs should have a relatively high signature

Table 1. Variance fraction (in %) explained by the first three bi-
variate EOFs in three different areas of the Mediterranean Sea for
the spring season (AMJ)

Area EOF-1 EOF-2 EOF-3 Total

Algerian Basin 37.9 23.4 11.0 72.3

Tyrrhenian Sea 42.1 21.8 10.0 73.9

Ionan Sea 34.5 27.2 16.5 78.2

on the observations. We believe that the same set of EOFs
cannot fulfill the null space conditions for the both SLA and
XBT, since SLA contains information mainly about theT , S
variability below the mixed layer while XBT give the mixed
layer temperature. We use two different sets of order reduc-
tion EOFs based upon our a priori knowledge of the informa-
tion content of each observational data set.

To assimilate SLA only one multivariate EOF for the
whole basin was used, similarly to the scheme described in
De Mey and Benkiran (2002). The SLA EOF is three-variate,
i.e. computed from the covariance of temperature, salinity
and stream function. The temperature and salinity compo-
nents of the SLA EOF are shown in Fig. 2. The EOF extends
only from 120 m downward. This choice of EOF for SLA
is dictated from the past experience that showed that very
few vertical modes can represent most of the dynamic height
variability (Faucher et al., 2002) and that the SLA physically
represents most of the geostrophic variability signal below
the mixed layer. The choice of 120 m for the Mediterranean
may be excessive but we took the conservative view of using
EOFs that were already shown to be working in the region.

In order to assimilate the XBT data set, including the sur-
face layer, a second set of bi-variate temperature and salinity
EOFs was used. The EOFs were computed from an historical
data set of the Mediterranean (Sparnocchia et al., 2003) in 9
different regions, chosen on the basis of the data coverage
and known regional dynamical regimes. The EOFs retained
only the variance around the seasonal signal and thus they
vary every three months (winter consists of January, Febru-
ary and March, spring of April, May and June, summer of
July, August, September and autumn of October, Novem-
ber and December). For each region, 10 dominant EOFs
were considered. The transition between different regions
was provided by a smooth change of the background error
covariance matrix while the transition from one season to the
next was sudden.

Examples of the first three EOF modes for three differ-
ent regions – Algerian Basin, Tyrrhenian Sea and Ionian Sea
are shown on Fig. 3. The variance fractions explained by
the first 3 EOFs shown on Fig. 3 are given in Table 1. The
dominant (first) EOF in Algerian Basin and Tyrrhenian Sea
is quasi monotonic with maximum amplitude in the surface
100–150 m layer, which roughly corresponds to the layer
of Modified Atlantic Water. The second and third salinity
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Table 2. The variance of temperature (◦C) and salinity (psu) at different depths for the 480 m surface layer in three different areas of the
Mediterranean Sea: the Algerian Basin (σT1 , σ

S
1 ); the Tyrrhenian Sea (σT2 , σ

S
2 ); the Ionian Sea (σT3 , σ

S
3 ). The depth of model levels in the

first line of the table is given in meters

5 15 30 50 70 90 120 160 200 240 280 320 360 400 440 480

σT1 1.70 1.61 1.20 0.73 0.60 0.54 0.41 0.26 0.18 0.17 0.14 0.14 0.14 0.14 0.15 0.11

σS1 0.26 0.29 0.32 0.32 0.30 0.26 0.18 0.11 0.09 0.08 0.07 0.06 0.05 0.05 0.04 0.04

σT2 1.02 1.14 1.01 0.66 0.47 0.39 0.35 0.33 0.33 0.28 0.25 0.23 0.22 0.21 0.22 0.14

σS2 0.27 0.22 0.20 0.19 0.16 0.14 0.11 0.11 0.10 0.08 0.06 0.05 0.04 0.03 0.03 0.03

σT3 1.09 0.97 0.93 0.72 0.62 0.52 0.44 0.39 0.33 0.34 0.31 0.30 0.30 0.30 0.29 0.25

σS3 0.22 0.20 0.20 0.19 0.15 0.14 0.13 0.11 0.08 0.08 0.07 0.07 0.07 0.07 0.08 0.08

Fig. 3. Bivariate Empirical Orthogonal
Functions used in assimilation of XBT
in (a) Algerian Basin,(b) Tyrrhenian
Sea and(c) Ionian Sea. The continu-
ous line shows the first EOF, the long
dashed line the second EOF and the
short dash line, the third EOF. The tem-
perature EOFs are present in the upper
panels and salinity EOFs in the bottom
panels.

modes in these regions have maxima at intermediate depths
between 100 and 300 m. The first bi-variate EOF in the Io-
nian sea, Fig. 3c, show relatively low vertical variability sim-
ilar to the dominant EOFs in most other Eastern Mediter-

ranean regions (not shown here). The second and third modes
in the Ionian Sea have high salinity amplitude at the surface,
different from the subsurface salinity maxima present in the
second and third modes of the Algerian Basin and Tyrrhenian
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(a)

(b)

Fig. 4. The scheme of sequential assimilation of SLA and XBT data
(a) in the nowcast-forecast procedure and(b) in the analysis.

Sea. When composing theSmatrix, the EOFs are multiplied
by the variance of the temperature and salinity at each level
(see Table 2).

It is interesting to note that the first (dominant) EOFs in the
Algerian and Tyrrhenian Sea have a structure below 120 m
similar to that of the EOF used in SLA assimilation but this
is not the case for the Ionian Sea. In fact, as explained by
Sparnocchia et al. (2003), the EOFs are very different in the
western and eastern Mediterranean basins, accounting for the
different water mass variability in the two sub-basins.

The SLA and XBT sets of EOFs are used in a sequential
procedure that ensures the combined assimilation of SLA and
XBT with the different sets of EOFs (Fig. 4). The assimila-
tion cycle is chosen to be a week, consistent with the XBT
data distribution (Manzella et al., 2001) and the SLA data
availability (Pinardi et al., 2003).

The first sequential procedure is callednowcast-forecast
and it prepares each week the initial condition for the fore-
cast (Fig. 4a). Every assimilation cycle, two sequential runs
are made – the first with assimilation of one of the data sets
in smoother mode and the second with the other data set as-
similated in filter mode. The multivariate EOFs forψ , T ,
S are used for assimilation of SLA and the bi-variateT , S
EOFs are used for assimilation of XBT profiles. This way
each data set is projected into its optimal vertical modes, and
contributes to the estimate of the nowcast. The SLA assim-
ilation is applied only in regions deeper than 1000 m. This
assumption is based upon the surface dynamic height com-

Fig. 5. Mean climatology of the sea surface height in meters, com-
puted from 1993–1997 model simulations.

putation studies of̈Ozsoy et al. (1993) who showed that a
deep reference level (zero motion assumption) would gener-
ate more realistic surface currents and sea level variability.
The model SLA is then calculated by subtracting the model
mean sea surface level that is shown in Fig. 5. This field was
computed from a model simulation of the Mediterranean cir-
culation from 1993 to 1997 to be consistent with the mean
subtracted from the observed SLA.

The second procedure is calledanalysisand it is presented
in Fig. 4b. It uses only the results of the smoother assimila-
tion mode for both SLA and XBT. This means that we pro-
duce an optimal estimate of the circulation once every week
with the usage of both past and future observations. Between
one analysis and the other we run the model with surface
meteorological analyses, thus producing the best dynamical
extrapolation between successive optimal ocean state esti-
mates. The daily data set formed by this analysis/simulation
is called, collectively, the analysis data set, even if the ocean
data are inserted only once a week. In both procedures of
analysis and nowcast-forecast, the model surface fluxes are
not only calculated from the analysis atmospheric fields but
are also corrected with the observed weekly mean SST using
Eq. (B1).

4 Forecast skill scores

Our study period goes from 4 April 2000 to 31 October 2000.
It coincides with the first period of operational forecasting
in MFSPP and it was chosen because it has the largest data
density for both in situ and satellite data. In the following the
model forecast is checked against observations and analyses
following the Murphy (1993) definition of indices for “good”
forecast. These are:

1. Consistency: it checks the qualitative consistency be-
tween the analyses and the observations based upon the
experience of the forecasters. This is not an objective
index but it is a check based upon the previous experi-
ence of the forecaster on the dynamics of the region and
the knowledge of the relevant dynamical processes.
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Fig. 6. Monthly mean of MFSPP SLA analysis in cm for(a) May 2000,(b) June 2000,(c) July 2000,(d) August 2000,(e)September 2000,
(f) October 2000.

2. Quality: the objective correspondence between analy-
ses and forecasts using statistical indices to quantify the
level of discrepancy between forecast and analyses.

3. Accuracy: the objective correspondence between obser-
vations and analysis using statistical indices to quantify
the analysis error with respect to the data.

4. Value: the benefits realized by the users of the forecast.
The value of the Mediterranean forecasts cannot be yet
quantified since the user basis of the forecasts is still
very limited. The other indices will be discussed in the
sections below.

4.1 Consistency

Our consistency check is defined on the basis of the compar-
ison between satellite data and analysis for SLA. Instead of
using along-track values of SLA from the model and obser-
vations, we will compare the analyses done with two differ-
ent analysis systems. The first is based only on the statistical
knowledge of the satellite data structure and is explained by
Le Traon et al. (1998). The observed SLA is mapped by ob-
jective analysis (OA) techniques using three weeks data to
estimate a field every week. The weekly OA field is then av-

eraged to produce monthly mean distributions of SLA for the
period May–October 2000. The second field is produced by
the MFSPP analysis system of Fig. 4b, and its monthly mean
distributions for the same period of time are shown in Fig. 6.
The correspondence between MFSPP SLA analysis and OA
SLA data is evaluated by the differences of corresponding
fields (Fig. 7).

Both data and model show relatively strong cyclonic cir-
culation (or low, negative values of SLA) all over the basin
during the May–June period. Anticyclonic eddies and gyres
are locally intensified in the Algerian Basin, Southern Io-
nian, Peloponnesus and south-east of Crete, the so-called
Iera-Petra gyre area, and the Shikmona gyre area (south of
Cyprus). These features are quasi-permanent and they are
observed with variable intensity during the whole period.
The large cyclonic anomaly in the Ionian Sea is very inter-
esting; this is maintained both in the model and data for the
whole period (Figs. 6 and 7). Anticyclonic anomalies are
stronger in the model than in the data during the May–June
period (Figs. 7a and b) since the difference fields are mainly
negative.

Both satellite data and analyzed fields show a strong ten-
dency to transit from a dominant cyclonic circulation in June
toward an positive SLA in September–October (anticyclonic
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Fig. 7. Difference between monthly mean OA SLA computed only from satellite observations (see the text) and monthly mean of MFSPP
SLA analysis for(a) May 2000,(b) June 2000,(c) July 2000,(d) August 2000,(e) September 2000,(f) October 2000. The contour interval
is 5 cm and the 0 isoline is not plotted.

intensification). The strongest change in the observed data,
which, hereafter, will be referred to as the summer transition
of SLA, appears in July and August. The observed SLA val-
ues reach the highest positive values during September 2000.

The MFSPP analyses are not capturing this summer SLA
transition, which can be seen by the positive heigh values of
the difference between data and model analysis in July and
August (Figs. 7d and e). There are two major differences
between the satellite data and the MFSPP SLA analysis in
this period. Firstly the change in the SLA analysis field is
smoother with a gradual increase of the positive values. The
highest values of SLA in the model solution are observed in
October 2000 (Fig. 6). Secondly, the anticyclonic intensifi-
cation in the analysis solution appears only in the deep areas
like Algerian – Provencal basin, Ionian Sea and the Levan-
tine Basin. In the shallow areas of the Strait of Sicily, the
Aegean and the Adriatic Sea the values of model SLA re-
main relatively low during the whole period after the sum-
mer transition (Figs. 7d–f). As we mentioned in the Sect. 4,
the SLA assimilation is done only in the deeper parts of the
basin (deeper than 1000 m). The data assimilation has an im-

portant impact on the model solution there, which even with
some delay develops circulation structures equivalent to that
in the observations. In the shallow areas however, where no
SLA data assimilation is done, the summer transition is not
captured at all by the model dynamics.

In summary, this first comparison shows that the analy-
ses are relatively consistent with the observations but that
coastal areas are not greatly affected by open ocean assim-
ilation and that rapid transitions are difficult to capture at
least with a weekly assimilation cycle. A future improvement
of the consistency between analyses and observations could
come from considering the definition of the observational op-
erator also for the coastal areas and a shorter assimilation cy-
cle for SLA in order to resolve rapid one-month transitions.
Another valuable improvement would be to have EOFs that
correct for SLA up to 50 m, a more realistic estimate of the
Mediterranean mixed layer depth for the summer.
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Fig. 8. Root mean square temperature forecast error at(a) 5 m; (b)
30 m; (c) 280 m; and(d) 400 m. Different curves correspond to 31
different 10-day forecasts carried out from April to October 2000.

4.2 Quality

The rms error between two quantities,φf andφr in general
is defined as:

rms(φ) =

√√√√ 1

N

N∑
1

(φf − φr)2 (1)

whereN is the number of data used in the evaluation. Here
we will useφf for the forecast fields andφr for the analysis
or observations.

Figure 8 shows the root mean square (rms) error between
temperature forecast and analysis for 31, ten days forecasts
carried out between 4 April and 31 October 2000. The pa-
rameter plotted on Fig. 8 will be referred hereafter as forecast
rms temperature error.

The forecast rms temperature error in the surface layer
(5 m) increases almost linearly with time. This is mainly due
to errors in the atmospheric forcing computed with ECMWF
forecast surface fields. We remind that the analysis is done

Fig. 9. Root mean square temperature forecast (red line) and per-
sistence (blue line) errors at(a) 5 m; (b) 30 m; (c) 280 m and(d)
400 m for the 31, 10-day forecasts carried out from April to October
2000.

not only with a more accurate representation of surface forc-
ing, calculated using the atmospheric analysis fields, but it
uses the heat flux correction with observed SST. The error
in the estimation of the surface heat flux during the forecast
influences the thermal structure in the whole surface mixed
layer in a coherent way and in fact, at 30 m depth, the fore-
cast rms temperature error behaves almost linearly, as at the
surface.

Below the surface layer, the forecast rms temperature error
grows relevantly only at the analysis time, i.e. at the end of
every assimilation cycle (or every 7th day). In Fig. 8 we
see in fact that at depth the forecast rms temperature error
increases relevantly only at day 7 when new data are inserted
at depth.

The maximum forecast rms temperature error range, from
April to October 2000, is, at the surface, between 0.2◦C–
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Fig. 10.Average root mean square tem-
perature forecast (blue bars) and persis-
tence (red bars) errors at(a) 5 m; (b) 30
m; (c) 280 m and(d) 400 m. The aver-
age is carried out over the 31 forecasts
done from April to October 2000.

0.7◦C, and below 200 m, between 0.03◦C–0.18◦C. The same
forecast rms temperature error is shown on Fig. 9 together
with the rms error between forecast and initial condition.
Hereφr is taken to be the nowcast for each week; the skill
score computed this way will be referred to hereafter as per-
sistence rms temperature error. With very few exceptions,
the forecast rms temperature error is less than the persistence
rms temperature error during the whole forecasting period
and at every model depth. In the surface layer, where the
time variability is the highest, the persistence rms temper-
ature error during the spring and summer can reach values
close to 1.2◦C, i.e. almost twice the maximum forecast rms
temperature error at this level.

The rms forecast and persistence errors are minimal at the
beginning of every assimilation cycle with values which de-
pend on the differences in the initial conditions of forecast
and analysis. The latter are computed with data assimilation
in the smoother mode while the forecast uses the nowcast
produced with a combination of smoother and filter schemes.
During the assimilation cycle, the rms persistence error in-
creases due to the dynamical evolution of the model fields.
At the surface, the rms persistence error is relatively high
during the period of strong heating in May and June, while at
30 m the highest rms persistence error is present during July–
August, i.e. after the formation of the seasonal thermocline.
The rms forecast error in the surface layers is mainly due to
the uncertainty in the surface forcing but it always remains
below the rms persistence error.

At 280 and 400 m (Figs. 9c and d) the changes in the rms
forecast and persistence errors are relatively high at the be-

ginning of every assimilation cycle. During the rest of the
time their variability is relatively small. The forecast and
persistence rms errors, after April, reveal a bi-weekly vari-
ability which is related to the combined assimilation cycle
of SLA and XBT data. After the beginning of July, the bi-
weekly variability of the forecast and persistence rms errors
become different. This is due to the fact that the regular XBT
data collection stopped and the main assimilated data set was
composed of SLA observations. The analysis and the now-
casts were produced with a relatively small amount of XBT
data or just as model simulations, since the XBT data were
not available.

The mean value of forecast and persistence rms temper-
ature error for the period April–October 2000 is shown in
Fig. 10 for different model depths. The forecast rms tempera-
ture error is highest at the surface, where it reaches 0.55◦C at
the last forecast day. Its mean value decreases with the depth.
Its mean is about 0.2◦C at 30 m and less than 0.05◦C at 280
and 400 m. The maximum of the persistence rms tempera-
ture error in the surface layer is about 1◦C while at 30 m it
is about 0.68◦C. The mean value of the persistence rms tem-
perature error has values of 0.45◦C at the surface and 0.38◦C
at 30 m. At all depths it is higher than the forecast rms error.

Another statistical parameter, which characterize the fore-
cast quality is the anomaly correlation, which is defined as
follows:

Ca =

∑N
n=1(T

a
n − T can )(T

f
n − T

cf
n )√∑N

n=1(T
a
n − T can )

2
√∑N

n=1(T
f
n − T

cf
n )2

, (2)
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Fig. 11. Anomaly correlation (Eq. 2) of forecast and analysis for
(a) the whole Mediterranean Sea;(b) the Algerian Basin;(c) the
Tyrrhenian Basin;(d) the Ionian Sea. The black curves correspond
to the 5 m depth, the red to 30 m, the green to 280 m and the blue
to 400 m.

whereT a andT f are the analysis and forecast temperature
fields, respectively,T ca is the climatology computed from
the analysis,T cf is the forecast climatology andN is the
number of the model grid points for each region or the whole
basin.

The temperature anomaly correlation is shown for the
whole basin in Fig. 11a, for the Algerian Basin in Fig. 11b,
for the Tyrrhenian Sea in Fig. 11c and for the Ionian Sea in
Fig. 11d. The anomaly correlation in the surface layer re-
mains relatively high during the first 7 days. However, due
to the new observations inserted in the analysis at day 7, the
correlation falls down to 0.8–0.6 in the last three days of the
forecast period. Our choice of climatology makes the terms
in Eq. (2) insensitive to the changes occurring during the first
seven days of forecast. In the future, a more sensitive skill
score index for correlation should be used.

4.3 Accuracy

The forecast and persistence rms temperature errors and the
anomaly correlations are measures of the departures of fore-
cast from the analyses, i.e. the best estimate of the ocean
state computed by using model and data. A different way to
evaluate the quality of the forecast is to compare the model
solution directly to the observations. Since the amount of in-
dependent data (not used in the analysis) for the period con-

sidered is limited, we use here the assimilated data itself be-
fore they are inserted in the model. Thus we compare the
model simulation done with an analysis initial condition and
atmospheric fields to the observations.

During the assimilation procedures, a misfit is calculated,
that is the difference between model simulation and the ob-
servations at the time and locations of the observations. The
model simulation is given at the observation location using
a simple linear interpolation scheme. The rms statistics are
then calculated on such misfits. We define the normalized
mean square (nms) as:

nms=

∑N
i=1 (φm − φo)

2∑N
i=1 φ

2
o

, (3)

whereφm is the model field,φo the observation andN , the
number of observations used in the weekly analysis scheme.

In Figs. 12 and 13 the nms for SLA is shown for
Topex/Poseidon and ERS-2 data, respectively. Both figures
show a decrease of nms from April to June/July in the whole
basin and the Algerian and Tyrrhenian. However, nms grows
back again in August for the Algerian Basin and in Septem-
ber for the Tyrrhenian Sea. In addition, in the Ionian, the
nms remains relatively high up to August–September. This
is the problem of the missed summer SLA transition period
discussed above. It is interesting to note that, during the pe-
riod May–August (Fig. 6) when the SLA show the presence
of anticyclonic eddies in the Ionia, the nms is the highest.
In contrast, during September–October, the strong intensifi-
cation of the quasi-permanent anticyclonic gyres such as the
Iera-Petra, the Mersa-Matruh and the gyres in the Shikmona
area is relatively well represented also by the model solution
and the nms decreases. In the Tyrrhenian Sea, it cannot re-
produce the anticyclonic intensification occurring in Septem-
ber.

In summary, the nms of the SLA misfit shows that the
model can capture, with different skills, different parts of the
ocean variability. It shows problems for capturing the intense
mesoscale activity, presumably due to the coarse resolution
of the model which is just eddy permitting but not resolv-
ing. Different regions have different rates of decrease of the
nms misfit but they show a growth of errors in the period of
anticyclonic intensification. Another important point is that
the value of the nms is different between the two data sets,
hinting that T/P is closer to the model solution than ERS-2.

The rms temperature misfit for the XBT data, calculated
with Eq. (1) is shown in Figs. 14 and 15 for two different
model levels, 5 and 360 m, respectively. The zero values cor-
respond to the periods of no XBT data. In the surface layer
of the whole basin (Fig. 14a) the misfit varies between 0.4◦C
and 0.7◦C. The error increases during the end of spring and
beginning of summer. The maximum errors is about 0.7◦C
in the Algerian Basin (Fig. 14b) for the first week of June,
about 0.55◦C in the Tyrrhenian Sea (Fig. 14c) for the first
week of May and about 0.7◦C in the Ionian Sea (Fig. 14d)
for the first week of July.

At intermediate depth, the rms temperature misfit error
maxima is about 0.5◦C (Fig. 15a) in the last week of May.
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Fig. 12. Normalized root mean square
misfit of SLA (Eq. 3) computed for
Topex – Poseidon data for(a) whole
basin; (b) Algerian Basin;(c) Tyrrhe-
nian Sea;(d) Ionian Sea. The blue bars
indicate the number of SLA observa-
tions available during every bi-weekly
analysis cycle.

Fig. 13. Normalized root mean square
misfit of SLA (Eq. 3) computed for
ERS-2 data for(a) whole basin;(b) Al-
gerian Basin;(c) Tyrrhenian Sea;(d)
Ionian Sea. The blue bars indicate the
number of SLA observations available
during every bi-weekly analysis cycle.

The variability of the error is relatively low in the intermedi-
ate layers of the Algerian Basin (Fig. 15b) and the Tyrrhenian
Sea (Fig. 15c), where it changes between 0.2◦C and 0.3◦C. In
the Ionian Sea the rms temperature misfit error in the middle
of April is about 0.9◦C and decreases to 0.3◦C.

From the rms temperature misfit error it is possible to de-
duce that, with two weeks repeat sampling, the error has time
to approximately double or triple but is is still kept on reason-

able values, below 1◦C. Toward the end of the XBT sampling
experiment, in July, the 5 m rms temperature misfit error in-
creases due to the decreasing number of observations. Below
the threshold of 50–60 XBT every two weeks, the error starts
to double in most of the regions (Figs. 14a, b and d).

In a separate study of the XBT data impact on the analy-
sis, Raicich and Rampazzo (2003) show that the assimilation
of two weeks repeat XBT tracks is not sufficient to keep the
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Fig. 14. Normalized root mean square
misfit between forecast and XBT obser-
vations at 5 m depth for(a)whole basin;
(b) Algerian Basin;(c) Tyrrhenian Sea;
(d) Ionian Sea. The blue bars indicate
the number of XBT profiles available
during every bi-weekly analysis cycle.

Fig. 15. Normalized root mean
square difference between forecast and
XBT observations at 400 m depth for
(a) whole basin; (b) Algerian Basin;
(c) Tyrrhenian Sea;(d) Ionian Sea.
The blue bars indicate the number of
XBT profiles available during every bi-
weekly analysis cycle.

solution close to the observations. These authors show that
the time period during which the assimilated information is
retained by the model is shorter than two weeks. In addition,
the data used in Raicich and Rampazzo (2003) are synthetic
XBT profiles regularly distributed in time while the XBT ob-
servations, used in operational forecasts, were rather sparse
in both time and space due to the irregularity of the realistic
sampling scheme and the loss of data by the satellite commu-

nication system. Thus the highly variable number and posi-
tion of the XBT data used in forecast initialization, as shown
on Fig. 14, reduces their impact on the model solution and in-
creases the model errors in accordance with the Raicich and
Rampazzo (2003) results.

The temperature misfit error during some weeks of the
April to June period of MFSPP TOP (Fig. 14) tends to dou-
ble or triple but it is kept below 1◦C. At the same time the
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number of data decrease at approximately the same rate. In
the surface layer, the misfit rms error is close to the maxima
of rms temperature forecast error (Fig. 8a). As mentioned
above, the rms forecast error increases almost linearly dur-
ing each ten day forecast indicating a strong impact from the
uncertainty in the surface fluxes. The seasonality in the mis-
fit distribution is presumably related to model deficiencies in
representation of heat penetration and lateral transport in the
upper layer during the end of spring and beginning of sum-
mer, when the surface heating is relatively strong. We have
to mention that our vertical mixing parameterization does
not include the contribution of some important processes like
wind mixing. The heat flux correction is computed with the
weekly mean SST. At the same time, the fast changes in the
upper thermal structure of the sea during this period have a
significant daily and day to day component which decreases
the impact of the satellite SST corrections.

The maxima of temperature misfit at intermediate depths is
about 0.6◦C for the whole basin (see Fig. 15) which is higher
than the value (about 0.12◦C) of rms forecast error (Fig. 8).
This indicates that the data assimilation is only partly capa-
ble of correcting the differences between the observed in situ
values and model parameters. This may be due to several
reasons, the first being the possible inconsistency between
SLA and XBT assimilation schemes at depth.

5 Conclusions

In this paper we presented the methodology of data assimila-
tion developed for the MFSPP operational forecasting exer-
cise lasting from April to October 2000. The basic assimila-
tion scheme is SOFA that is an OI multivariate reduced order
technique that uses vertical EOFs to reduce the order of the
assimilation problem.

The method successfully assimilates a combination of
SLA and XBT profiles and uses weekly SST to correct for
heat fluxes during analysis cycles. For the first time, a multi-
variate OI scheme has been used to assimilate SLA and XBT
observations that form the basis of the NRT ocean monitor-
ing programs in the world’s ocean’s and now in the Mediter-
ranean Sea. The OI is used with different sets of EOF in
order to optimize the process of information extraction from
these two data sets.

The vertical multivariate EOF used for SLA assimilation
corrects the subsurface temperature, salinity and barotropic
stream function fields. A single EOF is used for SLA assimi-
lation since it is known that most of the variability in dynamic
height can be represented by very few vertical modes. The
correction from SLA is done only below 100 m since, again,
it is believed that the SLA signal is indicative of geostrophic
dynamics below the mixed layer.

XBT are assimilated with a multivariate OI scheme. For
this we use 13 different regions, 4 different seasons and 10
vertical bivariate EOF. This allows us to get the benefit of
XBT assimilation throughout the first 500 m of the water
column where most of the XBT are collected. Such a large

number of vertical modes, as demonstrated by Sparnocchia
et al. (2003), also captures the mixed layer information.

The OI scheme is used both in smooth and filter mode and
the analysis-forecast procedures are shown in Fig. 4. To our
knowledge this is the first multivariate operational assimila-
tion of SLA and XBT in the world’s ocean’s. The operational
nowcasting-forecasting and analysis procedures are done in-
termittently with an assimilation cycle of one week. Fore-
casts are launched once every week and they use atmospheric
surface parameters to force the ocean forecasts for ten days.

Finally the consistency, quality and accuracy of the fore-
cast has been evaluated with respect to observations and anal-
yses.

The forecast rms temperature error versus persistence rms
temperature error shows that for a six months period, from
April to October 2000, forecast always beats persistence.
The forecast rms temperature error is maximum at the sur-
face, reaching 0.6◦C after ten days and lower in the subsur-
face, up to 0.3◦C after the same ten days. The anomaly cor-
relation drops to about 0.75–0.8 after ten days, only in the
subsurface. We are tempted to deduce that the predictability
time of the large-scale temperature field is longer than ten
days at all levels in the Mediterranean, given the observing
system network implemented during MFSPP. Coastal areas
however, remain still with high consistency errors between
analyses and observations and in the future the forecasting
system should develop the scheme to use multivariate assim-
ilation of SLA also in these areas.

The nms error of the SLA misfit show that the model can
sometimes reproduce the mesoscale, some other times the
larger scale subbasin scale gyre variability. However, the
assimilation system proposed here shows problems to accu-
rately retain information from the SLA during rapid transi-
tion periods, such as the July–August period in year 2000.
More detailed regional analysis (not shown here) showed that
in different regions this summer SLA transition lasted only 3-
4 weeks. Under such conditions, the weekly assimilation of
SLA is not efficient enough to “keep” the model close to the
data. A possible way to improve the model forecast is to use
smaller data assimilation cycles with more frequent insertion
of data.

The future forecasting system for the Mediterranean Sea
should consist of all three main components described here.
While satellite data will be continuously available, the VOS-
XBT may be more sporadic in the future but nevertheless
still necessary to correct the subsurface temperature in a re-
alistic way. Thus recommendations are that subsurface data
acquisition programs will be sustained, perhaps with the help
of more advanced technologies, such as ARGO subsurface
floats and advanced multiparametric VOS system. On the
other hand, the data assimilation scheme should be improved
in order to accommodate the model error covariance matrix
that allows us to consider assimilation of SLA into shallower
areas.
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Appendix A Near real time data collection and quality
control

The data collected weekly for the MFSPP forecasting ac-
tivities include NRT observations used in the data assimi-
lation procedure and meteorological ECMWF analysis and
forecast surface fields used in the computation of the sur-
face forcing for the OGCM. The NRT observations consist
of: (a) satellite data for sea surface temperature (SST) and
sea level anomaly (SLA); (b) vertical temperature profiles by
Expandable BathyTermograph (XBT) collected along the 7
VOS routes described by Manzella et al. (2001). The mete-
orological parameters used in the MFSPP forecast are: mean
sea level pressure, total cloud cover, zonal and meridional
wind components at 10 m, temperature at 2 m and dew point
temperature at 2 m. In this section we describe briefly the
data collection and preprocessing procedures for the differ-
ent data sets.

The SST data are collected in the Centre de Meteorologie
Spatiale (CMS) of Meteo France, Toulouse and the Istituto
di Fisica dell’Atmosfera of the CNR in Rome. The data are
obtained from the night orbits of the NOAA-AVHRR-14 and
the NOAA-AVHRR-15 satellite sensors. The final SST data
set is a weekly mean (centered on every Monday) and con-
sists of data interpolated on the Mediterranean Sea OGCM
grid (with resolution1

8
◦

×
1
8
◦
) using an objective analysis

method (see Buongiorno-Nardelli et al., 2003).
The along track Topex-Poseidon (T/P) and ERS - 2 satel-

lite data for SLA are collected and analyzed at the Collec-
tion and Localization Satellitaire (CLS) located in Toulouse,
France. The data are corrected first for the orbit error, com-
puted by using a local inverse method (Le Traon and Ogor,
1998). Then SLA values are computed by subtracting a 5-
year mean of T/P and ERS - 2 data form 1993 to 1997. The
along – track correlated errors are corrected by application of
a local adjustment method using simultaneous T/P and ERS2
data over a period J0-22 to J0-2 days where J0 is consid-
ered to beJ + 1 on Fig. 1. This local adjustment diminishes
the residual error due to orbit and inverse barometer effects
which are subtracted from the sea level signal. Smoothing
cubic splines are then used to estimate a bias for each point
along the track and to produce corrected along-track SLA
observations.

The XBT data are collected along seven tracks with an
along-track spatial nominal resolution of 12 nm (Manzella et
al., 2001). Each track was repeated once per month from
September 1999 until December 1999 and twice per month
from January until June 2000 (with the exception of the track
crossing longitudinally all the basin that was made only once
a month). The temperature profiles have a vertical resolution
of 0.6 m and reach the maximum depth of 460 m or 760 m
(depending upon T6 or T7 probes being used). Decimated

data are received in NRT and consist of temperature observa-
tions at 15 vertical levels. They are transmitted on the Global
Teleconnection System (GTS) and also collected at ENEA –
La Spezia, Italy, where a first quality control is made before
the data are provided on a free ftp site. At the forecasting
center, and before the data are used in the assimilation pro-
cedure, a quality control check is carried out on each XBT
profile through a graphical visualization of the vertical pro-
file and a check on the position.

The ECMWF meteorological data are provided by Meteo
France, Toulouse, France, for the basin scale forecast system
with 12 h delay, i.e. on Wednesday of each week. Before
starting the forecast procedure a quality control of the data is
done by a graphical visualization of the fields.

Appendix B The model

The model used is based upon the Modular Ocean Model
(MOM), adapted to the Mediterranean Sea by Roussenov et
al. (1995) and Korres et al. (2000). The model grid has 31
vertical levels, and an horizontal resolution of1

8
◦
×

1
8
◦
. Hori-

zontal turbulent mixing is biharmonic with tracer coefficients
equal to 1.5×1010 m4 s−1 and momentum coefficients equal
to 5×109 m4 s−1. Vertical turbulent coefficients are constant
and equal to 0.3 10−4 m2 s−1 for tracers and 1.5 10−4 m2 s−1

for momentum. A convective adjustment procedure (Cox,
1984) is applied in statically unstable areas of the water col-
umn with 10 repeat cycles maximum each time step. This
choice of physical mixing was elaborated in the articles cited
above. Even if simple, it is capable of reproducing the bulk
of water mass variability when it is associated with high fre-
quency atmospheric forcing (Castellari et al., 2000). The
transport through the Strait of Gibraltar is parameterized by
extending the model area westward of Gibraltar to a longi-
tude 9.25◦ W. In this model area, which is a part of the North
Atlantic, between latitudes 33◦30′ N ≤ φ ≤ 37◦ N, the sur-
face forcing is switched off and temperature and salinity are
relaxed toward annual mean climatological fields.

The model is rigid lid but a diagnostic computation of sea
level is done at each time step following Pinardi et al. (1995).
The sea level is proportional to the surface pressure on the
rigid lid due to large scale dynamical response of the sea
level to internal dynamics and surface forcing, excluding ex-
ternal gravity waves, atmospheric surface pressure response
and tidal sea level changes.

The surface forcing is computed in an interactive way
with 6-hourly ECMWF (European Center for Medium Range
Weather Forecast) surface atmospheric analysis and forecast
fields combined with the surface temperature of the model.
The components of the surface net heat flux are computed on
the basis of the bulk parameterizations of Reed (1977), for
the surface solar radiation flux, of Bignami et al. (1995) for
outgoing long-wave radiation and of Kondo (1975) for sen-
sible and latent heat fluxes. The bulk formulation of Heller-
man and Rosenstein (1983) is used in the wind stress com-
putation. For more details of the implementation and tests of
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the surface momentum and heat flux parameterizations see
Castellari et al. (1998) and Angelucci et al. (1998). The sur-
face heat flux derived from the atmospheric fields is corrected
by relaxation of model SST to the observed satellite weekly
SST. This method ensures that the model SST is close to the
weekly mean SST. The corrected surface heat fluxQC , used
in the model simulations was computed as:

1

ρcp
QC =

1

ρcp
Q+ λ(T − SST ) , (B1)

whereT is the model surface temperature,SST is the weekly
observed field interpolated to the model time step between
the previous week value and the present week and the nudg-
ing constant is equal toλ = 1.67 m/day. The sea surface
water flux is parameterized only with a salt flux given by
the relaxation of model sea surface salinity toward a new cli-
matology, called MED6 (Brankart and Pinardi, 2001). The
relaxation constant is everywhere 2 m/day.

The model is initialized with a 7-year model experiment,
forced with perpetual monthly mean forcing (a repeating sea-
sonal cycle). The model is then run from 1 January 1997
to 1 September 1999 with surface forcing computed from
ECMWF 6-h analyses. From 1 September 1999 to 4 January
2000 the model is run only with assimilation of XBT and
SST heat flux correction. Then the MFSPP operational fore-
cast period started 4 January 2000. From 4 April 2000 the
combined assimilation of SLA and XBT was inserted into
the operational forecasting procedure.

Appendix C SOFA algorithm

C.1 Optimal interpolation

Let us define the state vectorxn as a vector formed by
model state variables at the n-th model time step. Then the
vector

xf
n+1 = M

(
xa

n
)

(C1)

is the model forecast, whereM is the model,xa
n is the an-

alyzed estimate of the state vector at n-th time step. The
vector of the observationsyo is related to the true statext by
the equality:

yo = H
(
xt)

+ ε (C2)

whereε is the observational error andH is the observation
operator. NormallyH is a linear interpolation of model state
variables into observational positions. In addition to that,
H may be more complex as explained in Appendix C.2 for
satellite SLA. The forecast error covariance matrix is defined
by:

Bf
n = E

[
(xf

n − xt
n)(x

f
n − xt

n)
T
]

(C3)

whereE denotes the expectation operator. The analysis at
each time step is computed as follows

xa
n = xf

n + K
(
yo − H(xf

n)
)

(C4)

whereK is the Kalman gain. The Optimal interpolation is
a particular case of the Extended Kalman Filter, when the
forecast error covariance is replaced by background error co-
variance, Daley (1991):

Bf
n =

(
Df

n

)1/2
C

(
Df

n

)1/2
(C5)

where the background error variance diagonal matrixDf is
predicted and correlationsC are assumed to be constant. In
our caseC is multivariate and contains cross correlations be-
tweenT , S andψ , and also correlations between model state
variables in horizontal and vertical directions. In the MFSPP
data assimilation schemeDf was assumed to vary seasonally
as explained later. The OI gain is defined as:

KOI
= Bf

nHT
(
HBf

nHT
+ R

)−1
(C6)

whereR is the data error covariance matrix.
SOFA is a reduced order multivariate optimal interpola-

tion scheme. The order reduction is achieved by project-
ing the state vector into vertical EOFs which compose the
columns of theS matrix, the simplification operator. The
vertical EOFs are the eigenfunctions of theBf

n matrix which
is now written:

Bf
n = STBf

r S (C7)

whereBf
r contains the horizontal correlations of the n mul-

tivariate EOF modes defined inS. Inserting Eq. (C7) into
Eq. (C6) we obtain:

K = S−1Br fHr T
(
HrBr fHr T

+ Rr
)−1

(C8)

whereHr = HST and the matrixRr takes into account the
representativity error in the reduced space.

Now Eq. (C6) can be rewritten as:

KOI
= S−1KROOI (C9)

where

KROOI
= Br fHr T

(
HrBr fHr T

+ Rr
)−1

(C10)

The order reduction procedure considers a limited number
of vertical EOFs that should, however, still be representative
of the error covariance matrix.

C.2 Observational operator for the sea level anomaly

The observation operator for the sea level anomaly is cal-
culated on the basis of the work of Pinardi et al. (1995).
In addition to the linear interpolation, in this case it repre-
sents the combination of model state variables necessary to
compute the observed SLA. In our case,H contains only the
geostrophic contribution to SLA, i.e.:

η =
fψ

gH0
−

1

ρ0H0

∫ 0

−H0

(z′ +H0)ρd z , (C11)
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where the assumption is that the depthH0 is constant,ψ is
the barotropic stream function,ρ0 is the reference density,ρ
is the density,g – the gravity andf – the Coriolis parameter.
In our case SLA assimilation is applied for the regions deeper
than 1000 m. Correspondingly the parameterH0 is set equal
to 1000 m.
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