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Abstract

The aim of the study is to demonstrate that sombads are more relevant for implementing
the Real-Time Nearfield Acoustic Holography thahess. First by focusing on the forward
propagation problem, different approaches are coedpto build the impulse response to be
used. One of them in particular is computed byraserise Fourier transform applied to the
theoretical transfer function for propagation ie frequency-wavenumber domain. Others are
obtained by directly sampling an analytical impuissponse in the time-wavenumber domain
or by additional low-pass filtering. To estimate therformance of each impulse response, a
simulation test involving several monopoles excitgchon stationary signals is presented and
some features are proposed to assess the accurdbg temporal signals resulting from
reconstruction processing on a forward plane. demral inverse impulse responses used to
solve the inverse problem, which consists in badp@agating the acoustic signals acquired by
the microphone array, are built directly from ansfer function or by using Wiener inverse
filtering from the direct impulse responses obtdife the direct problem. Another simulation
test is performed to compare the signals recorsiumn the source plane. The same indicators
as for the propagation study are used to hightighdifferences between the methods tested for
solving the Holography inverse problem.

1. INTRODUCTION

Real-time Nearfield Acoustic Holography (RT-NAH) ian interesting method for
characterizing and locating non stationary souftpsBy operating in the time-wavenumber
domain, using a convolution between each poinhefwavenumber spectrum and an inverse
impulse response, it is then possible to reconstrmiatinuously the time signals emitted from
any point of the source plane facing the micropsafean array in the nearfield of the sources.
This is the originality of RT-NAH in the field ofcaustic Holography methods dedicated to the
study of non stationary sources [2], [3], [4]. Bynsidering the geometry of the problem (see
figure 1), the time-dependent wavenumber spectRiky ,k , z. ,t) in a forward planez = z.

can be obtained by convolving each component ofithe-dependent wavenumber spectrum
P(k,,k,,z,,t) acquired in a measurement plare=z, with an impulse response

h(k,,K,,zz —z,,t) in the time-wavenumber domain
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P(kx,ky,zF 1) = P(kx,ky,zA,t) Dh(kx,ky, Zp —Z,,1). 1)

By using the following notations for the propagatidistanceAz = z. - z,, the wavenumber
k. =.k? +kj , the propagation delagy=Az/c, and the transition pulsatioR, =ck,, the
impulse responsé(k,,k,,Azt) of eq. (1) can be written [5], [6]

hQ, ,7.t) = 8(t — 1) - 7 @2 22 ) -, @)
Q 2

t
AP -1

o(t) denotes the Dirac distribution amdt) is the Heaviside function.
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Figure 1. Geometry of interest. The direct probtamsists in measuring the pressure field in theela
z=12z, in order to compute the forward pressure in tl@@k = z_ . For the inverse problem, the

measurements are done from the plare z. , the reconstructed pressure is computed in theepla
z=2z,. Three monopoles;SS, and g are simulated from the source plane zg.

1. INTERPRETATION IN THE FREQUENCY DOMAIN

The frequency respongd(Q,,7, f) is the Fourier transform with respect to time bé t
impulse respons(Q,,7,t). It can also be computed by applying a Fouriengfarm to Eq.
(1). The equation obtained is then

P(k. K,z @) = P(k,,k,,z,,0) H(Q,,T,w). (3)

It reminds the relationships between the known funes field on a plane =z, and the
pressure on any other plaze= z. when the studied stationary acoustic sources@réned
on the half plane < z; (z = z4 is the source plane) [7]

P(K,.K, 2, @) = P(K, K, ,Z,, @) Gp (K, , A2, &), (4)

where the propagatds, is defined by
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e_jAZ (%)j " for w/c=k,

e_Az“krz_[%)j for w/c<k,,

wherec is the sound celerity. By using Egs (3) to (5§ tfequency respondd (Q,,7,a) can
be written

Gy (K, ,Az,) =71 = (5)

i _02
eI for w= Q,

H(Q,,7,w) =G, (K, ,Az, ) = .
eV for w<Q,

(6)

The modulus and the phase of the frequency res@wasepresented with a dotted line in
figure 2 for a transition frequencf;, =Q, /27 = 2000Hz andAz = 0. 107%5n. The observation
of this figure can make the reader understandhibie of the name "transition" for the specific
frequencyf, . Indeed, f, is the frequency that separates two kinds of mapen for the
acoustic waves: propagative waves foe f. and exponentially decaying sound fields for

f < f,. The non stationary signal in the time-wavenund@nain P(k,,k,,z,,t), which is
the time evolving pressure in the plane z, at the pointk, of the wavenumber spectrum,
will show its frequency components above the tt@rsifrequency propagate as propagative
waves and its frequency components belfpwdecay exponentially.

2. PROCESSING FOR PROVIDING AN OPERATIONAL IMPULSE
RESPONSE

Two approaches are considered here. The firstdedan the analytical formulation of the
impulse responsi(Q,,7,t) given in Eqg. (2) in the time-wavenumber domaine econd

starts from the theoretical frequency respoHY€,,7,a in Bg. (6) and by using an inverse
Fourier transform, yields the impulse response.

2.1 Processing from the analytical response

For this case, let us consider the following eaqumatierived from Eqg. (2) giving the impulse
response

h(Q,,7,t)=0o(t-1)-9(Q,,7,1), (7)
where

J,(Q,Vt? =1?)
Q t? -1?

As sampling the impulse response even with a vethigh rate may lead to distorsions in the
transfer function (see figure 2), direct samplingeplaced by average sampling. Instead of
consideringg[n], the sampling value og(t) at the timet = nAt, the mean valu@[n] is
computed into an intervdlt centered at = nAt

9(Q,,7,t)=7Q?

rt-r). (8)
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nAt+At/2

ol = oo ©

nAt-At/2
The integral in Eqg. (9) will be approximated by thepezoidal formula.

Another modification is used to overcome the problef the impulse response whose
transfer function is not band limited. The processsists first in increasing the sampling rate
of the impulse response by a facBrso that the new sampling frequencyfis=D f,. The
response contairid N samples. Then the upsampled response is filtesiad a low-pass filter.
Finally, the filtered impulse response is downsangpby the factod/D to ensure that the final
sampling frequencyf,/D matchesf,, that of the acoustic signals acquired. The nunaber

samples of the resulting impulse respons. is

Two low-pass filters have been experimented, oné an infinite impulse response
(IIR), a Chebyshev filter, the other one with aitBnimpulse response (FIR) given by
associating a cardinal sine with a Kaiser-Bessetlaiv. The impulse response of the FIR filter
is

oY lo(BY1- (2/T)?) sin(a mt fe). (10)
1, (B) mt

wt)=r1

I, is the modified Bessel function of the first kimeshd order O.T is the duration of the

Kaiser-Bessel windowa is linked to the cutoff frequency, of the low-pass filter an@ is a
parameter which sets the sidelobes of the Kaises@&avindow.

Two ways of implementing the convolution betweee impulse response and the
low-pass filter can be considered. First, the rfdteresponse, (t) can be provided using a

discrete sum as
g¢[n]=> wm]g[n-m]. (11)

But it can also be computed using a numerical appration of the following integral given by
the trapezoidal method

t+T/2
g:(® =] ,96)Wt-6)de. (12)
2.2 Processing from the theor etical frequency response
The Fourier transform of Eq. (7) yields
H(Q,,1,w) = -G(Q, ,T,w). (13)

Since H(Q,,7,a ) is analytically defined in Eq. (7), so it is fohet transfer function
G(Q,,7,a) whose both theoretical modulus and phase areyadesilucted from Eq. (6). By
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applying an inverse Fourier transform eitheH@Q, ,7,« in Eq. (6) or toG(Q,,7,« )in Eq.
(13), the impulse respon$€Q, ,7,t) or g(Q,,7,t) is obtained. From Eq. (7), both approaches
provide finally the same impulse respor¥®,,7,t . )

2.3 Comparisons between transfer functionsresulting from processing

The aim of this part is to compare several transfieictions G(Q,,7,« ) resulting from
different processing in order to conclude on tielevance for resolving the source radiating
problem. Three treatments are applied to the thieatdunction g(Q,,7,t) in Eq. (8). They
are summarized in the following

« Average methodg(Q,,7,t )s average sampled according to Eq. (9),

» Chebyshev filtering:g(Q,,7,t) is low-pass filtered using a Chebyshev filter wéh
cutoff frequencyf, = 640Biz. It is achieved by upsampling(Q,,7,t by the factor

D=8, using the low-pass filter and then downsampgiiregresulting response by the factor
1D.

« Numerical Kaiser filtering:g(Q,,7,t) is low-pass filtered using a Kaiser-Bessel filter
with a cutoff frequencyf, = 6648z. An upsampling factor db=2 is used and the
integral in Eq. (12) is numerically computed usihg trapezoidal method.

For all casesg(Q,,7,t )s initially sampled with the sampling frequenéy= 60D0Hz
giving 256 samples. The propagation distance ared tthnsition frequency are set to
Az=0.1075m and f, = 200Hz. Figure 2 highlights the transfer functioh(Q,,7,f )
(modulus and phase) for the three different prangs3he frequency responses are obtained
by applying a Fourier transform to the sampledoespg(Q, ,7,t ) before using Eq. (13).

By comparing in figure 2 the three transfer funetido the one obtained by directly
operating a Fourier transform on the sampled respenen though the sampling frequency is
higher (64000 Hz instead of 16000 Hz), it seemdex that the transfer functions provided by
processingg(Q,,7,t) are more relevant. In addition, filterirg(Q,,7,t) in order to limit its
frequency band is advantageous. The use of aveageling with no filter is less effective
than filtering in particular in the frequency amfapropagative components. The use of a FIR
filter with a Kaiser-Bessel window seems more aataithan the use of a Chebyshev filter
especially for the phase. The most accurate trarfsfection in figure 2 is obtained by
numerically computing the integral of convolutiawelving the Kaiser-Bessel filter.

It is of course true that the best matching betwdentheoretical and the computed
transfer functions occurs for the method basedheninverse Fourier transform, which is
evident as the starting point of the approach,edaliere Fourier method, is precisely the
theoretical frequency response.
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Figure 2. Modulus and phase of the transfer funstid (Q,,7, f) computed from the direct method
(blue), the average method (cyan), the Chebysltevirfig (green), the numerical Kaiser method (red)
and from equation (7; ;- - ). The transition frequency i§, = 2000Hz , the sampling frequency is

f, =16000Hz except for the direct method { = 64000Hz) andAz = 0.1075m.

3.NUMERICAL RESULTS

3.1 Setup

The source plane is composed of three monopotas @bsitionss; (0.3125m, 0.375m, Om%
(0.75m, 0.75m, Om), an®; (0.25m, 0.75m, Om). Both monopol8sandS; generate a signal
with a linear frequency modulation and a gaussrmapldéude modulation while monopoM3
radiates a Morlet wavelet whose expressios(is= cos@ f t) e /2. Thus the sources are
non stationary. The simulation of the acquisitisndone using 47x 1microphone array
located in the measurement plane z, = @05The step size in bothandy directions is
AL = 0.0625m, providing an overall scan dimensionk®x b The propagation distance
iIs Az=0.1075m. Thus, the forward plane is locatedzat= 0.1575m as shown in figure 1.

The emitted signals are sampled at a frequencyfratel6000Hz providing 256 samples.

The first goal of this study is to reconstruct time evolving pressure field at each point
of the forward plane in front of the square gridl@17 virtual microphones using Eq. (1).
Five different impulse responsé§Q,,7,t in)the time-wavenumber domain are tested. They
are computed from the Chebyshev method (C), theenigal Kaiser method (K), the Fourier
method (F), the average method (A) and the direthod (D) for which the impulse response
h(Q,,7,t) is provided by directly sampling(Q,,7,t in Eq.(8) atf, = 6400BHz. The
second goal is to solve the inverse problem: agsyithiat the measurements are done from the
planez = z_, the pressure field has to be back propagatduetplainez = z, using

P(k,,K,,z,,t) = P(k,,Kk,, 2z 1) Dh‘l(kx,ky,zF = Z,,1). (14)

Two approaches are used to compute the inverselsimrmsponsdﬂ'l(kX,ky Ze —Z,0t).
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The first consists in using Wiener adaptive filtgrito invert the impulse responses obtained in
the previous study [1], [8]. The second, denotedlitectly operates an inverse Fourier
transform to the analytical inverse transfer fumetl/H (Q, , 7, f) defined in Eq. (6).

3.2 Indicators

In order to comment the results obtained objectivelo temporal indicator3; andT, are
proposed. They are based on the reconstructedlsigQs y, z;,t) but also on the simulated

signals p, (x,y, z;,t) directly propagated on the reconstructed plavez,, which are
considered as reference signalg; & z- for the direct problemgz; =z, for the inverse
problem)

o (P eyzepoyzet) o [(P00Y200) s

Sy ze ) (P yzet))  V(PPev.ze D)

( > is the mean valud; is a correlation coefficient which is sensitivelie similarity between

the shapes of the signals and thus between thagepdifferenceT is the ratio between two
root mean square values for characterizing thelaiityi of the amplitudes of both signals.

3.3 Resultsin thetime-space domain

Figure 3 highlights the temporal pressure sigpés75m, 0.75m, 0.1575r), radiated irP, in

the left, andp(0.375m, 0.625m, 0.05n), back-propagated ill, in the right (see figure 1 for
the locations). The pressure signalPxis provided by the method (K) based on numerical
Kaiser filtering while the Fourier method (F) isedsto compute the impulse response to be
inverted for resolving the inverse problemMg The indicatorsl; andT; are given in figure 3.
The study is also carried out in locatid?s Py, P3, P4, andM;, M, M3, M4 for each method
presented before.

Table 1. Indicatord, T, for time-space signal reconstruction in locatiepscified in figure 1

P1 P2

D A C K F D A C K F
T1] 0.963]0.978] 0.975] 0.977] 0.979 T1 0.936[0.958| 0.92 ] 0.961] 0.963
T2| 1.05 (1.051]1.061]1.058] 1.07 T2 0.839(1.054|0.951]1.009] 0.971

M1 M2

D A C K F I D A C K F |
T1)0.974]0.837[0.891]0.643[0.852] 0.711 0.993[0.758| 0.9 ]0.636]0.868| 0.888
T2] 0.881]2.353] 0.657] 1.678] 0.818 |14.292 1.034]1.394]1.005] 0.708] 0.837 | 10.749

P3 P4

D A C K F D A C K F
T1]0.895]0.933| 0.89 | 0.935] 0.945 T1 0.994]0.989] 0.99 | 0.989] 0.991
T2] 0.755]1.021] 0.887] 1.003 | 0.979 T201.017]1.056] 1.043 ] 1.063] 1.063

M3 M4

D A C K F I D A C K F I
T1]0.998]0.759 [ 0.933] 0.663 ] 0.858 | 0.967 0.989] 0.59 ]0.943[0.843] 0.833 | 0.602
T2]|0.881]2.706 | 0.797] 0.762] 0.693 | 7.205 0.95718.478]1.119| 2.212| 1.164 |17.305
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Figure 3. Reconstructed temporal signals versesarte signals (dotted line) in the time-space

domain: the location iB; in the left (direct problem) witf; = 0.961 and’, =1.009. The location i,
in the right (inverse problem) with, = 0.833 and, =1.164.

4. CONCLUSIONS

Some methods to implement Real-Time Nearfield Atouslolography have been
presented. For the radiation direct problem, the afsa low-pass Kaiser-Bessel filter or an
inverse Fourier transform of the analytical frequenesponse leads to the most operational
impulse response in the time-wavenumber domain.tii@®holography inverse problem, the
best results are obtained by inverting using Wiadeaptive filtering the latter impulse response
or that obtained by upsampling and Chebyshev los& fiiering. However, some distortions in
the reconstructed time pressure signals demonshtratet would be necessary to improve the
inverting process.
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