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REAL-TIME NEARFIELD ACOUSTIC HOLOGRAPHY: IMPLEMENTATION OF THE DIRECT AND INVERSE IMPULSE RESPONSES IN THE TIME-WAVENUMBER DOMAIN

The aim of the study is to demonstrate that some methods are more relevant for implementing the Real-Time Nearfield Acoustic Holography than others. First by focusing on the forward propagation problem, different approaches are compared to build the impulse response to be used. One of them in particular is computed by an inverse Fourier transform applied to the theoretical transfer function for propagation in the frequency-wavenumber domain. Others are obtained by directly sampling an analytical impulse response in the time-wavenumber domain or by additional low-pass filtering. To estimate the performance of each impulse response, a simulation test involving several monopoles excited by non stationary signals is presented and some features are proposed to assess the accuracy of the temporal signals resulting from reconstruction processing on a forward plane. Then several inverse impulse responses used to solve the inverse problem, which consists in back propagating the acoustic signals acquired by the microphone array, are built directly from a transfer function or by using Wiener inverse filtering from the direct impulse responses obtained for the direct problem. Another simulation test is performed to compare the signals reconstructed on the source plane. The same indicators as for the propagation study are used to highlight the differences between the methods tested for solving the Holography inverse problem.

INTRODUCTION

Real-time Nearfield Acoustic Holography (RT-NAH) is an interesting method for characterizing and locating non stationary sources [START_REF] Thomas | Real-Time Nearfield Acoustic Holography (RT-NAH): a technique for time-continuous reconstruction of a source signal[END_REF]. By operating in the time-wavenumber domain, using a convolution between each point of the wavenumber spectrum and an inverse impulse response, it is then possible to reconstruct continuously the time signals emitted from any point of the source plane facing the microphones of an array in the nearfield of the sources. This is the originality of RT-NAH in the field of acoustic Holography methods dedicated to the study of non stationary sources [START_REF] Hald | Time domain acoustical holography[END_REF], [START_REF] Deblauwe | Acoustic holography in transient conditions[END_REF], [START_REF] De La Rochefoucauld | Time domain holography: Forward projection of simulated and measured sound pressure fields[END_REF]. By considering the geometry of the problem (see figure 1), the time-dependent wavenumber spectrum 

By using the following notations for the propagation distance
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of eq. ( 1) can be written [START_REF] Grulier | Time varying forward projection using wavenumber formulation[END_REF], [START_REF] Forbes | A wave vector, time-domain method of forward projecting time-dependent pressure fields[END_REF] ). 
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INTERPRETATION IN THE FREQUENCY DOMAIN
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It reminds the relationships between the known pressure field on a plane
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and the pressure on any other plane
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when the studied stationary acoustic sources are confined on the half plane
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where the propagator P G is defined by where c is the sound celerity. By using Eqs (3) to [START_REF] Grulier | Time varying forward projection using wavenumber formulation[END_REF], the frequency response ) , , (
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The modulus and the phase of the frequency response are represented with a dotted line in figure 2 , which is the time evolving pressure in the plane

A z z =
at the point r k of the wavenumber spectrum, will show its frequency components above the transition frequency propagate as propagative waves and its frequency components below r f decay exponentially.

PROCESSING FOR PROVIDING AN OPERATIONAL IMPULSE RESPONSE

Two approaches are considered here. The first is based on the analytical formulation of the impulse response ) , , ( t h r τ Ω given in Eq. ( 2) in the time-wavenumber domain. The second starts from the theoretical frequency response ) , , (
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in Eq. ( 6) and by using an inverse Fourier transform, yields the impulse response.

Processing from the analytical response

For this case, let us consider the following equation derived from Eq. ( 2) giving the impulse response
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As sampling the impulse response even with a relatively high rate may lead to distorsions in the transfer function (see figure 2), direct sampling is replaced by average sampling. Instead of considering [ ] n g , the sampling value of ( )

t g at the time t n t ∆ = , the mean value [ ] n g is computed into an interval t ∆ centered at t n t ∆ = [ ] . ) ( 1 2 2 ∫ ∆ + ∆ ∆ - ∆ ∆ = t t n t t n dt t g t n g (9)
The integral in Eq. ( 9) will be approximated by the trapezoidal formula.

Another modification is used to overcome the problem of the impulse response whose transfer function is not band limited. The process consists first in increasing the sampling rate of the impulse response by a factor D so that the new sampling frequency is Two low-pass filters have been experimented, one with an infinite impulse response (IIR), a Chebyshev filter, the other one with a finite impulse response (FIR) given by associating a cardinal sine with a Kaiser-Bessel window. The impulse response of the FIR filter is Two ways of implementing the convolution between the impulse response and the low-pass filter can be considered. First, the filtered response ( )
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But it can also be computed using a numerical approximation of the following integral given by the trapezoidal method
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Processing from the theoretical frequency response

The Fourier transform of Eq. ( 7 

Comparisons between transfer functions resulting from processing

The aim of this part is to compare several transfer functions ) , , (
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resulting from different processing in order to conclude on their relevance for resolving the source radiating problem. Three treatments are applied to the theoretical function ) , , ( t g r τ Ω in Eq. ( 8). They are summarized in the following Hz. An upsampling factor of D=2 is used and the integral in Eq. ( 12) is numerically computed using the trapezoidal method. By comparing in figure 2 the three transfer functions to the one obtained by directly operating a Fourier transform on the sampled response even though the sampling frequency is higher (64000 Hz instead of 16000 Hz), it seems evident that the transfer functions provided by processing ) , , ( t g r τ Ω are more relevant. In addition, filtering ) , , ( t g r τ Ω in order to limit its frequency band is advantageous. The use of average sampling with no filter is less effective than filtering in particular in the frequency area of propagative components. The use of a FIR filter with a Kaiser-Bessel window seems more accurate than the use of a Chebyshev filter especially for the phase. The most accurate transfer function in figure 2 is obtained by numerically computing the integral of convolution involving the Kaiser-Bessel filter.

It is of course true that the best matching between the theoretical and the computed transfer functions occurs for the method based on the inverse Fourier transform, which is evident as the starting point of the approach, called here Fourier method, is precisely the theoretical frequency response. computed from the direct method (blue), the average method (cyan), the Chebyshev filtering (green), the numerical Kaiser method (red) and from equation ( 7 

NUMERICAL RESULTS

Setup

The source plane is composed of three monopoles at the positions S 1 (0.3125m, 0.375m, 0m), S 2 (0.75m, 0.75m, 0m), and S 3 (0.25m, 0.75m, 0m). Both monopoles S 1 and S 2 generate a signal with a linear frequency modulation and a gaussian amplitude modulation while monopole M 3 radiates a Morlet wavelet whose expression is . ) 2 cos( ) ( The first goal of this study is to reconstruct the time evolving pressure field at each point of the forward plane in front of the square grid of 17 17 × virtual microphones using Eq. ( 1). Five different impulse responses ) , , ( t h r τ Ω in the time-wavenumber domain are tested. They are computed from the Chebyshev method (C), the numerical Kaiser method (K), the Fourier method (F), the average method (A) and the direct method (D) for which the impulse response 
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is the mean value. T 1 is a correlation coefficient which is sensitive to the similarity between the shapes of the signals and thus between their phase difference. T 2 is the ratio between two root mean square values for characterizing the similarity of the amplitudes of both signals.

Results in the time-space

Figure 3 highlights the temporal pressure signals p(0.75m, 0.75m, 0.1575m, t) radiated in P 2 in the left, and p(0.375m, 0.625m, 0.05m, t) back-propagated in M 4 in the right (see figure 1 for the locations). The pressure signal in P 2 is provided by the method (K) based on numerical Kaiser filtering while the Fourier method (F) is used to compute the impulse response to be inverted for resolving the inverse problem in M 4. The indicators T 1 and T 2 are given in figure 3. The study is also carried out in locations P 1 , P 2, P 3 , P 4 , and M 1 , M 2, M 3 , M 4 for each method presented before. 

CONCLUSIONS

Some methods to implement Real-Time Nearfield Acoustic Holography have been presented. For the radiation direct problem, the use of a low-pass Kaiser-Bessel filter or an inverse Fourier transform of the analytical frequency response leads to the most operational impulse response in the time-wavenumber domain. For the holography inverse problem, the best results are obtained by inverting using Wiener adaptive filtering the latter impulse response or that obtained by upsampling and Chebyshev low-pass filtering. However, some distortions in the reconstructed time pressure signals demonstrate that it would be necessary to improve the inverting process.

Figure 1 .

 1 Figure 1. Geometry of interest. The direct problem consists in measuring the pressure field in the plane A z z = in order to compute the forward pressure in the plane

  contains D N samples. Then the upsampled response is filtered using a low-pass filter. Finally, the filtered impulse response is downsampling by the factor 1/D to ensure that the final sampling frequency D f e ′ matches e f , that of the acoustic signals acquired. The number of samples of the resulting impulse response is N.
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 0 is the modified Bessel function of the first kind and order 0. T is the duration of the Kaiser-Bessel window. α is linked to the cutoff frequency c f of the low-pass filter and β is a parameter which sets the sidelobes of the Kaiser-Bessel window.

For

  . The propagation distance and the transition frequency are set to 1075 phase) for the three different processing. The frequency responses are obtained by applying a Fourier transform to the sampled response )

Figure 2 .

 2 Figure 2. Modulus and phase of the transfer functions ) , , ( f H r τ Ω

  Thus the sources are non stationary. The simulation of the acquisition is done using a 17 17 × microphone array located in the measurement plane 05 step size in both x and y directions is 0625

Figure 3 .

 3 Figure 3. Reconstructed temporal signals versus reference signals (dotted line) in the time-space domain: the location is P 2 in the left (direct problem) with T 1 = 0.961 and T 2 =1.009. The location is M 4 in the right (inverse problem) with T 1 = 0.833 and T 2 =1.164.

Table 1 .

 1 Indicators T 1 , T 2 for time-space signal reconstruction in locations specified in figure1

			P1						P2			
	D	A	C	K	F		D	A	C	K	F	
	T1 0.963 0.978 0.975 0.977 0.979		T1 0.936 0.958 0.92 0.961 0.963	
	T2 1.05 1.051 1.061 1.058 1.07		T2 0.839 1.054 0.951 1.009 0.971	
			M1						M2			
	D	A	C	K	F	I	D	A	C	K	F	I
	T1 0.974 0.837 0.891 0.643 0.852 0.711	0.993 0.758 0.9 0.636 0.868 0.888
	T2 0.881 2.353 0.657 1.678 0.818 14.292	1.034 1.394 1.005 0.708 0.837 10.749
	D	A	C	K	F		D	A	C	K	F	
	T1 0.895 0.933 0.89 0.935 0.945		T1 0.994 0.989 0.99 0.989 0.991	
	T2 0.755 1.021 0.887 1.003 0.979		T2 1.017 1.056 1.043 1.063 1.063	
	D	A	C	K	F	I	D	A	C	K	F	I
	T1 0.998 0.759 0.933 0.663 0.858 0.967	0.989 0.59 0.943 0.843 0.833 0.602
	T2 0.881 2.706 0.797 0.762 0.693 7.205	0.957 8.478 1.119 2.212 1.164 17.305

The first consists in using Wiener adaptive filtering to invert the impulse responses obtained in the previous study [START_REF] Thomas | Real-Time Nearfield Acoustic Holography (RT-NAH): a technique for time-continuous reconstruction of a source signal[END_REF], [START_REF] Haykin | Adaptive Filter Theory[END_REF]. The second, denoted I, directly operates an inverse Fourier transform to the analytical inverse transfer function ) , , ( 1 f H r τ Ω defined in Eq. ( 6).

Indicators

In order to comment the results obtained objectively, two temporal indicators