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Abstract. Physical interpretation is made of the O+/Ne di-
urnal variations in summer, revealed by Litvine et al. (1998)
from the EISCAT observations. It is shown that the observed
anti-correlation between theZ50 parameter, corresponding to
the transition region between 50% of molecular and atomic
ions, and the widthDz of the transition, defined as the alti-
tude width between 10% and 90% of the O+/Ne ratio, can be
reproduced in model calculations and the result of different
recombination laws (quadratic in the lower and linear in the
upper ionosphere) as well as diurnal variations in the photo-
ionization rates.

Key words. Ionosphere (ion chemistry and composition;
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1 Introduction

Relative ion composition (O+/Ne ratio) deduced from EIS-
CAT observations demonstrates diurnal variations as was de-
picted by Lathuill̀ere and Pibaret (1992) and Litvine et al.
(1998). TheZ50 parameter, corresponding to the transition
region between 50% of molecular and atomic ions, and the
width Dz of the transition, defined as the altitude width be-
tween 10% and 90% of the O+/Ne ratio, correlate in their
diurnal variations during winter and equinoctial periods with
Z50 andDz being the smallest around noon hours and the
largest around midnight. Such variations are typical of win-
ter and equinoctial periods and they were revealed in the ear-
lier ion composition model by Lathuillère and Pibaret (1992).
On the contrary,Z50 andDz anti-correlate in their diurnal
variations for the summer period both at solar maximum and
minimum, as it was shown for the first time by Litvine et al.
(1998). This peculiarity of summer O+/Ne variations needs
physical interpretation. The aim of this paper is to explain
these summerZ50 and Dz diurnal variations using model
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calculations of ion composition in the F-region, along with
EISCAT observations for summer sunlit ionosphere.

2 Observations

The summer geomagnetically quiet period of 02/03 July
1990, withAp = 6/7 andF10.7 = 276.6/253.8, was cho-
sen for our analysis. The electric fields observed with EIS-
CAT were small (2–5 mV/m) during the whole period in
question. Observed NmF2 andhmF2 variations are shown
in Fig. 1. F2-layer maximum electron concentration diurnal
variation is observed to be rather small, with NmF2 maximiz-
ing soon after midnight (02 UT), while maximumhmF2 are
observed around midnight. This is the so-called effect of di-
urnal anomaly related to the direct solar photo-ionization of
the F2-region during nighttime hours and largehmF2 (Fig. 1,
bottom) which results from the equatorward thermospheric
wind during this part of the day. Decreased recombination
efficiency due to largehmF2, along with direct (although
small) photo-ionization of the F2-region, result in nighttime
NmF2 values larger than the daytime ones.

The EISCAT CP-1 program provides range profiles ofNe,
Te, Ti andVi every 5 min, with the antenna beam directed
along the local geomagnetic field line. They were used to
calculate median profiles over 1.5–2 hours of observations
(17–25 values at each height) for the chosen periods. These
median vertical profiles were then smoothed by a polynomial
(up to the 5th degree) fitting before being used in calcula-
tions.

3 Model calculations

The sunlit auroral ionospheric F-region above the EISCAT
facility in geomagnetically quiet conditions when electric
fields are small is controlled by local processes typical for
the midlatitude ionosphere (Farmer et al., 1984; Lathuillère
and Brekke, 1985). Therefore, a model which takes into ac-
count the photo-ionization of neutral atmospheric species by
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Fig. 1. Observed with EISCAT diurnal variations of NmF2 and
hmF2 on 02/03 July 1990.

solar EUV, a set of main chemical processes, vertical plasma
transport due to diffusion, thermospheric winds and electric
fields may be used for such an analysis. The model used
earlier for EISCAT and Millstone Hill incoherent scatter (IS)
data analysis (Mikhailov and Foster, 1997; Mikhailov and
Förster, 1997; Mikhailov and Schlegel, 1997, 1998) includes:
transport process for O+(4S) and photo-chemical processes
only for O+(2D), O+(2P), O+

2 (X25), N+, N+

2 and NO+ ions
in the 120–620 km height range. A two-component model
of the solar EUV from Nusinov (1992) is used to calculate
the photo-ionization rates in 35-wavelength intervals (100–
1050Å). The photo-ionization and photo-absorption cross-
sections are obtained from Torr et al. (1979) and Richards
and Torr (1988). The only difference from the previous ver-
sion of the model is in the O++N2 reaction rate constant.
Recent flowing afterglow laboratory measurements by Hierl
et al. (1997) are included in the model. These measurements
were made atTn = Ti = Tv (whereTn is neutral,Ti is ion
temperature andTv is vibrational temperature of the excited
N2) in a wide temperature range and take into account the
effects of vibrationally excited N∗2. This may be important
for summer high solar activity conditions (e.g. Pavlov, 1986;
Ennis et al., 1995; Pavlov and Buonsanto, 1997; Pavlov et
al., 1999, and references therein) considered in the present
study. A comparison of different O++N2 reaction rate con-
stants using EISCAT observations has shown that the Hierl
et al. (1997) rate coefficient for this reaction may be recom-
mended for aeronomic calculations (Mikhailov and Schlegel,
2000).

Table 1. Dependence of calculations on the upper boundary height
specification for daytime conditions (13 UT). Vertical plasma drift
W is given at 300 km. Factors for neutral concentrations are given
with respect to MSIS-83 model values withTex, S andT120 shown
in the table.

Height of
the upper 400 450 500 550 600
boundary, km

Tex , K 1480 1475 1489 1479 1455
S, km−1 0.0158 0.0159 0.0157 0.0156 0.157
T120, K 389 390 383 383 386
Fac[O] 0.98 0.98 0.97 0.96 0.96
Fac[O2] 0.93 0.99 0.98 0.96 0.99
Fac[N2] 1.00 1.01 0.98 0.98 0.98
W , m s−1

−9.0 −9.2 −8.4 −7.9 −7.6

Vertical plasma driftW used in the continuity equation for
O+ ions is obtained from the observed parameters as a dif-
ference between measured total vertical plasma velocity and
diffusion velocity for O+ ions. This is a standard approach
usually used to find meridional thermospheric winds from IS
observations (e. g., Buonsanto and Wittasse, 1999 and ref-
erences therein). The expression (19.59) from Banks and
Kockarts (1973) is used forW specification

W = Vz +
k

mi

∑
νij

sin2 I

{
Ti

ln Ni

dh
+ Te

d ln Ne

dh
+

gmi

k

+
d(Te + Ti)

dh

}
(1)

whereVz = Vi sinI , νij are diffusion collision frequencies
for O+ related to momentum transfer collision frequencies
ν∗ by the expression (see Eq. 19.13 in Banks and Kockarts,
1973)νij = mj/(mi + mj )ν

∗

ij , wherei applies to O+ ions
and j applies to other neutral or ionized gas species; all
other symbols are standard. Collisions of O+ ions with
neutral O, O2, N2 and NO+,O+

2 , N+

2 , N+ ions were taken
into account. All O+ ion collision frequencies were taken
from Banks and Kockarts (1973). Ion concentrations used
in Eq. (1) are known at each iteration of fitting calculated
Ne(h) to the experimental one. Calculations are made with
the upper boundary conditions specified at different heights
in the 400–600 km height range. Normally the results are
rather insensitive to the choice of the upper boundary height
(see Table 1) and any calculation can be used as a solution.
But the scatter of the measuredVi may increase with height
(as observations show) and the reliability of the calculated
medianVi decreases at high altitudes for such cases. This
may result in some dependence of the solutions on the upper
boundary height choice. Therefore, we usually specify the
upper boundary at 500 km.

Observed (median and smoothed)Te(h) and Ti(h) pro-
files are used in the calculations. No correction was ap-
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Table 2. Calculated thermospheric parameters in comparison with MSIS-83 values (second line). Concentrations and meridional winds are
given at 300 km.

Periods Tex, K T120, K S, km−1 log [O] log [O2] log [N2] Vnx , m s−1

03 July 90 1411 407 0.019 8.615 7.326 8.614 +108.0
02 UT 1406 403 0.018 8.627 7.186 8.621

03 July 90 1419 415 0.018 8.707 7.304 8.669 +32.3
04 UT 1422 415 0.017 8.669 7.216 8.627

03 July 90 1480 422 0.017 8.768 7.338 8.744 −19.3
07 UT 1458 425 0.017 8.769 7.292 8.690

03 July 90 1500 415 0.016 8.835 7.250 8.734 −8.7
10 UT 1508 412 0.017 8.810 7.304 8.730

02 July 90 1489 383 0.016 8.714 7.136 8.595 −38.0
13 UT 1521 398 0.016 8.774 7.231 8.682

02 July 90 1517 414 0.014 8.767 7.152 8.667 −15.6
16 UT 1556 410 0.015 8.728 7.239 8.667

02 July 90 1507 400 0.015 8.645 7.249 8.571 +47.3
19 UT 1524 418 0.016 8.707 7.273 8.698

02 July 90 1457 393 0.016 8.539 7.230 8.528 +145.7
21 UT 1454 410 0.017 8.682 7.248 8.692

plied to these profiles, as the calculated O+/Ne ratio usu-
ally is close to the standard EISCAT model for quiet time
conditions (Fig. 4). Such a correction makes sense only for
storm conditions when deviations from the model are essen-
tial (Mikhailov and Schlegel, 1997, 1998; Mikhailov and
Foster, 1997; Mikhailov and F̈orster, 1999). In our case, the
maximal deviation from the standard model is about 15% at
200 km (Fig. 4). This should result in a 15% correction for
Ti and 13% forTe at the 200 km height (Waldteufel, 1971)
and this is not very important for the calculated aeronomic
parameters, as our previous analysis has shown.

Using standard multi-regressional methods, we fit the cal-
culatedNe(h) profile to the observed one and find by this
method:Tex, shape parameterS for the Tn(h) profile, T120
and factors for the MSIS-83 [O], [O2], [N2] concentrations,
as well as for the total EUV flux from the Nusinov (1992)
model. The method by Mikhailov and Schlegel (1997,
2000) is still under development and various versions of this
method exist. In one of them used in present study, exo-
spheric temperatureTex is included to the list of unknown
parameters. This way of searching forTex is different from
the earlier approach used in Mikhailov and Schlegel (1997),
Mikhailov and Foster (1997), Mikhailov and Förster, (1997),
and it turned out to be more straightforward and efficient, as
well as more general, as it uses the most reliable parameter,
Ne(h) observed with the IS method, whileTe(h) andTi(h)

profiles depend on the ion composition model applied during
the incoherent scatter data analysis (e.g. Lathuillère et al.,
1983; Alcayd́e et al., 1996). There is also a problem with
the specification of the frictional term in the equation of ion
energy conservation when electric fields are strong enough.
Moreover, for strong convection electric fields, the ion ve-
locity distribution is no longer Maxwellian (St.-Maurice and
Schunk, 1979; Hubert and Kinzelin, 1992) and this basic as-
sumption in the data analysis is not valid. There are also
doubts if the energy conservation equation for O+ ions in
the F2-region normally used to findTn takes into account all
necessary processes (Oliver, 1997).

Although we are not dealing with the heights below
150 km, it was found that the method works better if one
included the MSIST120 value; thus,T120 was formally added
to the list of searched parameters. But it should be stressed
that this is just a technical step and the extension ofTn, [O],
[O2], [N2] down to 120 km height is just an extrapolation, as
we do not fit anyNe(h) profile below 160 km height.

The stationary form of the continuity equations is used
in our method and daytime sunlit ionosphere is assumed.
Therefore, in principle, only periods of relative stability in
NmF2 andhmF2 variations around noon hours may be used
for the analysis. But the analyzed period of 02/03 July
1990 shows very small NmF2 variations for most of the day
(Fig. 1); therefore, the method was applied to more than just



354 A. V. Mikhailov and W. Kofman: Interpretation of ion composition diurnal variation

Fig. 2. Observed (together with a band of standard deviations) and
calculatedNe(h) profiles for two UT moments (top panel). Calcu-
lated along with MSIS-83Tn, O, O2, and N2 height profiles (middle
and bottom panels).

the hours around noon and acceptable results were obtained
(see Table 2). Only the hours around midnight, when the
solar zenith angle was close to 90◦, could not be developed
properly. Two examples ofNe(h) fitting and the calculated
Tn(h), [O], [O2], and [N2] height profiles, along with the
MSIS-83 thermospheric model, are shown in Fig. 2.

Dependence of the calculations on the height of the upper
boundary condition specification (where observed Ne values
are used) is shown in Table 1 for daytime (13 UT) conditions
(LT=UT+1.3). In general, the effect of the upper boundary
height change is seen as small, but the large heights of the
upper boundary (550 and 600 km) giveW at 300 km, which
differ from the other values. We suppose that this is the effect
of decreasing the vertical velocity determination accuracy at
high altitudes.

The analyzed periods and calculated thermospheric pa-

Fig. 3. Calculated (triangles) and experimental from Litvine et al.
(1998)Z50 andDz diurnal variations. A smooth curve is the least
squares approximation of the calculated (triangles) values.

rameters, in comparison with the MSIS-83 model predic-
tions, are given in Table 2. The calculated thermospheric
parameters for this quiet day are seen to be close to the MSIS-
83 model values (see also Fig. 2). Average absolute dif-
ferences are: less than 1% forTex, 1.8% forT120, 12% for
[O], 18% for [O2] and 16.5% for [N2]. This is a normal
result for quiet time periods provided by this method (e.g.
Mikhailov and Schlegel, 1997; Mikhailov and Förster, 1999).
The largest deviations from the MSIS-83 take place in the
evening (21 UT) when the F2-layer obviously was non-statio-
nary; abrupt changes ofhmF2 are seen during these peri-
ods (Fig. 1). The calculated fromW meridional thermo-
spheric wind,Vnx shows usual diurnal variation being strong
equatorward during nighttime and poleward during daytime
hours (e.g. Lathuill̀ere and Lilensten, 1997; Buonsanto and
Witasse, 1999 and references therein).

The calculatedZ50 andDz diurnal variations; along with
the Litvine et al. (1998) experimental values for summer high
solar activity, are given in Fig. 3. Our calculations demon-
strate the anti-correlation betweenZ50 andDz variations, in
accordance with the empirical model by Litvine et al. (1998).
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Fig. 4. Calculated height profiles of the O+/Ne ratio at three so-
lar zenith angles. The standard EISCAT ion composition model is
shown for a comparison (dashes).

The transition level between atomic and molecular ions is the
lowest (191 km) during daytime hours (13 UT) and the high-
est (216 km) during nighttime. The width of the 10–90%
layer varies in an opposite way, maximizing (105 km) during
daytime hours and minimizing (90 km) in the nighttime. On
the other hand, the experimental values from Litvine et al.
(1998) are seen to be shifted a little with respect to the calcu-
lated curves. This may be explained by the chosen period for
our analysis (see later). Let us analyze the physical reasons
for such diurnal variations ofZ50 andDz.

4 Interpretation

Calculated height profiles of the O+/Ne ratio are shown in
Fig. 4 for three solar zenith anglesχ corresponding to 02, 07
and 10 UT. This ratio demonstrates systematic changes with
the solar zenith angle. Any level of constant O+/Ne ratio in
the 10–90% range descends with the decreasing of the solar
zenith angle. Figure 5 shows these variations for the three
levels (10, 50, and 90%) discussed in the paper. The height
variation of the 10% level is larger (about 35 km) compared
to the 90% level variation (about 15 km). Therefore, the de-
crease inDz is mainly due to the uplifts of the 10% level
when we pass from daytime to nighttime hours. These results
obtained from our calculations also follow from an analysis
of a scheme of photochemical processes in the daytime iono-
sphere. For the analyzed period of very high solar activity
and daytime hours, the photochemical equilibrium is valid
for the main ions up to 200 km and even higher. For instance,
the estimated characteristic times for O+ ions, with respect
to recombination 1/β = 1.5 · 102 s to diffusionH 2/D, is
about 1.0 · 105 s, and to vertical transportH/W , is about
2.0 · 104 s at 200 km. A comparison ofNe(h) profiles calcu-

Fig. 5. Calculated variations of the O+/Ne ratio at three levels (10,
50 and 90%) with solar zenith angle. Note the steepness of the
variation is decreased at high altitudes (90% level).

lated with a complete set of processes and in a photochemi-
cal equilibrium is shown in Fig. 6 for daytime (13 UT) condi-
tions. The observedNe(h) profile is shown as well in order to
demonstrate the quality of modelNe(h) fitting. Photochemi-
cal equilibrium is valid up to 200 km. In accordance with the
mechanism of the F2-layer formation, additional plasma is
transfered from the topside to the area just below the F2 max-
imum, where electron density turns out to be a little higher
than what photochemical equilibrium provides. Therefore, a
qualitative analysis of the ion composition variations can be
done in the framework of the photochemical equilibrium.

If one leaves out only the main processes which control the
ionosphere formation in the 140–220 km height range, then
ion concentrations may be written as follows (e.g Ivanov-
Kholodny and Nikoljsky, 1969):

[O+
] =

q(O+)

γ1[N2] + γ2[O2]

[N+

2 ] =
q(N2+)

γ3[O]

[O2+ ] =
q(O+

2 ) + γ2[O2][O+
]

α2ne

[NO+
] =

γ1[N2][O+
] + γ3[O][N+

2 ]

α1ne

ne = [O+
] + [O+

2 ] + [NO+
]

Equilibrium concentration of N+2 ions is negligible compared
to the main ions (e.g. Goldberg and Blumle, 1970). From
these expressions, a quadratic equation may be written for
the O+/ne ratio( ne

O+

)2
−

ne

O+
− A = 0, (2)
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Fig. 6. CalculatedNe(h) profiles with a complete set of processes
and in a photo-chemical equilibrium for daytime conditions. The
observed profile is shown as well.

where

A =
β2

q(O+)2

[
q(O+

2 )

α2
+

q(N+

2 )

α1

]

+
β

q(O+)

[
γ2[O2]

α2
+

γ1[N2]

α1

]
(3)

andβ = γ1[N2] + γ2[O2]

A positive solution of (2) for O+/ne is

[O+
]

ne

=

(
1

2
+

√
1

4
+ A

)−1

(4)

The case ofA � 1/4 corresponds to large heights, where
[O+

]/ne ≈ 1. The other case ofA � 1/4 corresponds
to lower heights, where[O+

]/ne � 1 and molecular ions
dominate.

Height variations of the two terms in Eq. (3), in compari-
son with 1/4, are given in Fig. 7 for the daytime hours of 02
July 1990. The conditionA � 1/4 is valid up to 200 km
height. The other result is that the two terms in Eq. (3) show
similar height variations which are close to the height varia-
tion of A, at least up to 250 km; therefore, any of the terms
in Eq. (3) can be used for further analysis.

Let us analyze the solution (4) with respect to the[O+
]/ne

dependence on the solar zenith angle and height. For the
sake of simplicity, we may assume that the isothermal neu-
tral atmosphere consists of atomic oxygen and molecules,M

(O2 and N2), distributed in accordance with the barometric
law: [O] = [O]0 exp(−z/H) and[M] = [M]0 exp(−2z/H),
where H = kTn/mg is the atomic oxygen scale height.
The photoionization rates may be written asq(O+) =

j0[O] exp(−aChχ) and q(M+) = jM [M] exp(−aChχ),
wherej is the ionization efficiency depending on the inci-
dent solar EUV flux and ionization cross-sections, Chχ is

Fig. 7. Comparison of the two terms from the expression (3). Verti-
cal line corresponding to log10(1/4) (see (4)) divides the ionosphere
by the lower and the upper parts where molecular and atomic ions
dominate.

the Chapman function for the solar zenith angleχ , anda in-
cludes the column density of neutrals multiplied by absorp-
tion cross-sections, witha being the same for the atomic and
molecular species. The linear loss coefficientβ may be writ-
ten asβ = γ [M]. In this case, it may be shown that

A ∼=

[
C1 exp

(
−4z

H

)
+ C2 exp

(
−3z

H

)]
exp(aChχ) (5)

whereC1 andC2 are coefficients which are independent on
height,z and the solar zenith angle,χ . As described above,
any term in the expression forA can be used for the analysis
below 200 km, as both demonstrate height variations similar
to the height variation ofA (see Fig. 7). Therefore, let us
analyze the first term in Eq. (5). For lower altitude case (A >

1/4), we obtain from Eqs. (4) and (5):

[O+
]/ne ≈ C exp

(
2z

H

)
exp

(
−

1
2aChχ

)
(6)

whereC = 1/
√

C1 is a coefficient independent onz andχ .
Therefore, in the height range whereA > 1/4, the[O+

]/ne

ratio increases with height at any solar zenith angle and de-
creases with solar zenith angle at any height. The steepness
of the [O+

]/ne dependence on Chχ should decrease as we
move to higher altitudes, whereA becomes< 1/4. Using
Eq. (6), it is possible to write an explicit expression for the
heightz of a givenR = [O+

]/ne ratio

z =
H

2
ln (R/C) +

Ha

4
Chχ (7)

Using these analytical expressions, it is possible to interpret
the results of our calculations obtained with an ionospheric
model, which takes into account the whole set of processes.
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Fig. 8. Calculated dependence of the O+/Ne ratio on the solar
zenith angle at a fixed (160 km) height.

5 The dependence ofZ50 on solar zenith angle

The [O+
]/ne ratio always increases with height at any so-

lar zenith angle (Fig. 4), as it follows from Eq. (6). This is
due to different laws of plasma recombination: a quadratic
one at lower heights, where molecular ions dominate, and a
linear one at high altitudes, where atomic oxygen ions dom-
inate. On the other hand, the[O+

]/ne ratio decreases at a
given height with solar zenith angle (Fig. 8), as it follows
also from Eq. (6). Therefore, we have to shift to higher al-
titudes to keep a given[O+

]/ne ratio when the solar zenith
angle increases. This dependence is clearly seen from Eq. (7)
as well. This explains the observed diurnal variation of the
Z50 parameter. From a physical point of view, the increase of
theZ50 height during the night hours is just due to the shift
of the ionization production maximum to higher altitudes,
when Chχ increases. Figure 9 gives height profiles for the
production rates of O+, O2+, N2+ ions, as well as the total
production rate along with ion concentrations for the main
ions for 13 and 19 UT. The effect of the sharp decrease in
the rate of ion production, and a corresponding decrease in
ion concentrations at lower heights is clearly seen. There is
an overall shift of the experimentalZ50 values with respect
to the calculations (Fig. 3, top). This may be explained by
the choice of the 02/03 July 1990 period for our analysis.
Summer conditions at high solar activity used by Litvine et
al. (1998) are presented primarly in 1992 when the average
F10.7 was around 120 for summer months, while for the an-
alyzed period, the three monthly meanF10.7 was 190 and
the dailyF10.7 was 276. The higher neutral temperature on
the day analyzed explains the shift between the experimental
and calculatedZ50 values in Fig. 3. The experimentalZ50
values in Litvine et al. (1998, their Fig. 3, left hand, top) are
also shifted to lower heights for low solar activity compared
to solar maximum, and this may also be related to different
neutral temperatures (see expression 7).

Fig. 9. Calculated height profiles of photo-ionization rates and cor-
responding ion concentrations for daytime (13 UT) and evening (19
UT) hours. Note the strong decrease in the photo-ionization rates at
lower heights in the evening.

6 The dependence ofDz on solar zenith angle

As it follows from the results of model calculations (Fig. 5),
the steepness of the[O+

]/ne dependence on the solar zenith
angle is different at high and low altitudes. This follows from
Eq. (4) whenA becomes< 1/4 (high altitudes) and no de-
pendence on the solar zenith angle for the[O+

]/ne ratio is
expected. Therefore, the observed decrease ofDz (Fig. 3) is
mainly due to the uplift of the 10% level when we pass to
large solar zenith angles in the evening. Again, this is due
to the variations of ionization production function for large
solar zenith angles (Fig. 9). The calculatedDz values are
seen to be larger than the experimental ones during nighttime
hours (Fig. 3, bottom). This may be due to the chosen period
(02/03 July) for our analysis, when the F2-layer, in fact, was
sunlit during the nighttime hours, while the average exper-
imental values include nighttime conditions withχ > 90◦.
Direct photo-ionization, as it takes place on 02/03 July, pro-
duces sufficient ion concentrations at the 10% O+/Ne level,
broadening the F2-layer and increasingDz.
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7 Conclusions

The anticorrelation betweenZ50 andDz parameters in their
diurnal variations, revealed for the first time by Litvine et al.
(1998), may be explained using the present day understand-
ing of the physical processes in the ionospheric F1 and lower
F2-regions. Model calculations reproduce such diurnal vari-
ations ofZ50 andDz parameters, which are explained by dif-
ferent variations of ion composition at different ionospheric
heights. The main reason for the observedZ50 andDz vari-
ation is due to different ion composition (molecular at low
and atomic at high altitudes), as well as to diurnal variations
of the photo-ionization rates.

During low solar activity, variations of theZ50 andDz pa-
rameters are practically the same as those at solar maximum
(Litvine et al., 1998), but shifted a little bit to lower heights
for theZ50 parameter and with less amplitude for theDz vari-
ation. This may be explained by lower neutral temperatures
during low solar activity.
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