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Abstract. As an alternative approach to classical tur-
bulence modelling using a ®rst or second order closure,
the data assimilation method of optimal control is
applied to estimate a time and space-dependent turbu-
lent viscosity in a three-dimensional oceanic circulation
model. The optimal control method, described for a 3-D
primitive equation model, involves the minimization of
a cost function that quanti®es the discrepancies between
the simulations and the observations. An iterative
algorithm is obtained via the adjoint model resolution.
In a ®rst experiment, a k � L model is used to simulate
the one-dimensional development of inertial oscillations
resulting from a wind stress at the sea surface and with
the presence of a halocline. These results are used as
synthetic observations to be assimilated. The turbulent
viscosity is then recovered without the k � L closure,
even with sparse and noisy observations. The problems
of controllability and of the dimensions of the control
are then discussed. A second experiment consists of a
two-dimensional schematic simulation. A 2-D turbulent
viscosity ®eld is estimated from data on the initial and
®nal states of a coastal upwelling event.

Key words. Oceanography: general (numerical
modelling) �Oceanography: physical (turbulence,
di�usion, and mixing processes)

1 Introduction

In ocean models, the system of mean equations for
momentum, temperature and salinity contain unknown
second order correlations between ¯uctuations compo-
nents of momentum and the buoyancy. Closure as-
sumptions need to be introduced to relate frictional
e�ects to the calculated large-scale velocity ®eld, and the
di�usive e�ects to the gradients of the temperature and
salinity ®elds. These e�ects are produced in turbulence-

like fashion by motions on scales too small to be
resolved by the grid. These are called sub-grid scale
phenomena. To close the system, the e�ects of these
scales are usually parametrized in a simple way through
the use of the eddy viscosity and di�usivity concept.
Typically in the past, constant values of eddy viscosity
(with di�erent values in the horizontal and vertical
directions) or empirical variable eddy viscosity, allowing
non-linear e�ects to be more realistic, were used. More
recently, with the increasing resolution capacities of
present-day computers, the di�usion coe�cients have
often been determined from local values of scalar
properties of the turbulence. Approaches of this type
make use of one or more additional transport equations
(Rodi, 1980). Today, while models have become quite
sophisticated in computational and turbulence model-
ling aspects, they depend on numerous calibration
parameters that must be extrapolated from limited ®eld
measurements. Furthermore, many uncertainties that
cannot be accounted for by these turbulence models
remain.

As an alternative approach, an inverse strategy is
here proposed. In applied sciences, inverse methods are
commonly used to extract useful inferences about the
world from physical measurements (Menke, 1984).
Here, the turbulent viscosity and di�usivity are ®tted
from data issuing from oceanographic observations. The
method is a speci®c case of the optimal control method
often called the adjoint method (Seiler, 1993). The ideas
and mathematical concepts of optimal control theory
were formalized about thirty years ago (Lions, 1971)
and have since received much attention for applications
in oceanography (Begis and Crepon, 1975; Devenon,
1990). The aim of the optimal control method is to ®nd
the best parameters of a model to simulate the computed
values closest to those observed. The adjoint method has
been most often used to ®t initial conditions (Moore,
1991), but also boundary conditions (Lellouche et al.,
1998), or speci®c parameters like the ocean surface heat
¯uxes (Roquet et al., 1993)). This variational method
involves the minimization of a cost function which is the
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norm of the di�erence between the computed and
observed values. An algorithm is obtained via the
adjoint equations for the construction of the gradient
of the cost function with respect to the parameters. Once
the gradient has been determined, the minimization can
be performed using any gradient descent algorithm.

The e�ciency of the optimal control method to
optimize time-constant viscosity distributions in 1-D
vertical models has already been underlined (Yu and
O'Brien, 1991; Panchang and Richardson, 1993). In
these studies, initial and boundary conditions are
assumed to be well known, the variational formulation
of the dynamic model acting as a strong constraint. In
the case of 1-D advection-di�usion equation (Leredde
et al., 1998) it has been shown that, with such a strong
constraint formulation, the simultaneous optimization
of the initial conditions, the boundary conditions and the
space and time distributed viscosity coe�cient becomes
rather di�cult. This is due to the fact that a single
solution for all the controls is not ensured if no
penalization of the ®rst guesses of the controls is included
in the cost function. Instead of using this type of strong
constraint formulation, Eknes and Evensen (1997) have
developed a weak constraint formulation which allows
the observational data, the turbulent vertical viscosity,
the initial and boundary conditions and also the model
equations to be a�ected by errors. This approach
involves a sophisticated iterative representer method
(Bennett, 1992) and generates a highly non-linear prob-
lem whose solution depends on the required ®rst guesses
of the control and the error weights. Eknes and Evensen
(1997) have used a 1-D Ekman model which is only an
approximation of the primitive equations. Their results
indicate that model de®ciencies, such as neglected
physics, are accounted for through the weak constraint
formulation to ensure an inverse solution in agreement
with the measurements. In this respect and in the
framework of this non-exact model, their ®t is closer to
the data than those obtained by the strong constraint
formulation (Yu and O'Brien, 1991).

In the present study, a 3-D primitive equation model
has been adopted. Since the model is expected to be
more exact and the representer method is not yet
implemented in this three-dimensional case, the strong
constraint variational formulation is used. Furthermore,
in previous studies (Yu and O'Brien, 1991; Panchang
and Richardson, 1993; Eknes and Evensen, 1997), the
turbulent viscosity was taken to be constant in time. In
fact, as mentioned many times in the literature (e.g.
Blumberg and Goodrich, 1990), turbulent mixing is
time-dependent especially for transient phenomena such
as wind-driven or tidal processes. Therefore, the optimal
control method is formalized in the more general frame
of the optimization of a turbulent viscosity which can
vary in the four space and time dimensions.

This induces a large number of parameters to be
optimized requiring at least the same number of data to
be assimilated. We have thus chosen to create synthetic
observations with a complete turbulence model. The
chosen model is a k � L model (Leendertse et al., 1973;

Leendertse and Liu, 1977) using a single transport
equation for the turbulent kinetic energy k and an
algebraic formulation for a mixing length scale L. It
allows the construction of a data set and of the
associated turbulent viscosity set to be recovered by
the inverse method.

The physical and mathematical background is given
in Sect. 2, including the description of the 3-D multilayer
dynamic model and the adjoint model resulting from the
variational formalism. This section deals with the
complete and continuous optimization problem and
adopts a more general framework than the applications
which are made in Sects. 3 and 4. In addition to the
numerical computational cost, it becomes rather di�cult
to solve optimization problems which have a size equal
to the number of grid points and time steps in the
discretized form. Therefore, the ®rst applications of our
data assimilation model concern fairly simple oceano-
graphic processes allowing the numerical treatment of
the method with an acceptable space-time dimension.

In Sect. 3, a wind-driven mixing event of a strati®ed
water column inducing inertial oscillations is simulated
by the 3-D multilayer dynamical model with open lateral
boundaries and consequently the process is 1-D. Section
4 deals with the optimization of a 2-D space-dependent
turbulent viscosity in the case of a wind-driven mixing
event of coastal upwelling. Concluding remarks are
presented in Sect. 5.

2 Tools

2.1 The circulation model

The direct model (Leendertse et al., 1973), recently
implemented (Lellouche, 1995) is a classical primitive
equation model for coastal seas. Many others are based
on a similar approach (e.g. Nihoul, 1977; Thouvenin
and Salomon, 1984; Van Dam and Louwersheimer,
1990). The Boussinesq approximation (density is con-
stant except in the buoyancy term, (Pedlosky, 1982)),
and those of hydrostasy and f -plane are made. The
physical state of the ¯uid is given by the seven equations
for the average variables:
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In this set of equations, u; v;w are the mean velocity
components in the three space dimensions x; y; z; t
denotes the time, p the pressure, S the salinity, T the
temperature, q the sea-water density. q0; T0; S0 are
constant reference values for density, temperature and
salinity. f is the Coriolis parameter, g the gravitational
acceleration, aS the saline contraction coe�cient, aT the
thermal expansion coe�cient. mh; mt are the horizontal
and vertical turbulent viscosity coe�cients. mS

h ; m
S
t ; m

T
h and

mT
t are the turbulent di�usivity coe�cients. A ®rst
approach, the zero order turbulence closure, consist of
giving constant values to these viscosity and di�usivity
coe�cients without using additional transport equations.

When needed, heat ¯uxes at the surface and bottom
and surface stresses can be introduced. In the following,
only wind stress and bottom stress are considered and
modelled.

At the upper boundary, the horizontal wind stress
vector~s can be estimated by the quadratic expression:

~s � Cdqajj~Uwjj~Uw �8�
where qa is the air density, ~Uw the wind speed vector at
10 m above mean sea surface and Cd a drag coe�cient.

The bottom stress vector ~sb is also expressed in the
same way:

~sb � qbg
jj~Ubjj~Ub

C2
�9�

where qb is the water density at the bottom layer, ~Ub is
the horizontal velocity vector at the bottom layer and C
the Chezy coe�cient, homogeneous with g

1
2. For the

numerical implementation (Lellouche, 1995), a ®nite
di�erence approximation has been used both in time and
space according to a vertical multilevel geometrical
discretization.

In a ®rst model version, used for open boundary
condition optimizations (Lellouche et al., 1998), the
turbulent viscosity and di�usivity coe�cients were all set
to constant values. A simple study of sensitivity of the
model to the horizontal viscosity and di�usivity coe�-
cients values shows that the horizontal di�usion terms
are helpful to damp down the small-scale instabilities.
Nevertheless a ®rst approximation given by constant
horizontal coe�cients seems to be su�cient. The hor-
izontal di�usion terms in Eqs. (1), (2), (5) and (6) were
already written under this hypothesis.

In contrast, the vertical turbulent viscosity and
di�usivities have a real in¯uence on the numerical

results, particularly for strati®ed seas, and must be
speci®ed with more accuracy.

2.2 The k + L turbulence model

A classical approach consists in using a turbulence
model where the turbulent viscosity and di�usivity
coe�cients are expressed as functions of the turbulent
state of the sea water. This turbulent viscosity and
di�usivity concept gives rise to various models. Among
these models, the length scale formulation (Blackadar,
1962) can be chosen and might be corrected to take
correctly into account the strati®cation e�ects. This
dependence can be introduced via the Richardson
number (Munk and Anderson, 1948). To go further,
second order formulations (Rodi, 1980; Mellor and
Yamada, 1982), known as k ÿ e and k ÿ L models, have
became rather popular, notably in the coastal and
estuaries oceanographic community, and satisfy opera-
tional numerical needs. This operational goal restricts
the implementation of higher order formulations with
transport equations for Reynolds stresses (Mellor and
Yamada, 1974; Andre et al., 1979). In coastal zones,
recent works (Nihoul et al., 1989. Luyten et al., 1996)
have shown that cruder models with only one transport
equation for the turbulent kinetic energy (k-models)
could be su�ciently e�cient. In the framework of this
study and in order to progress towards our assimilation
aims, a k-model, initially developed by Leendertse and
Liu (1977), has been chosen. This model, called k � L
model, takes the following form.

The vertical eddy viscosity coe�cient mt is evaluated
by using a buoyancy extended Prandtl-Kolmogorov
hypothesis:

mt � CmL
���
k
p

exp�ÿmRi� �10�
where L is a mixing length scale, k the turbulent kinetic
energy, and m and Cm positive constants.

Ri is the ``turbulent'' (not the ``gradient'') Richardson
number.
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q0

@q
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�11�

The mixing length scale is given by an algebraic function
of the distance to the bottom z�.

L � jz�
������������
1ÿ z�

d

r
�12�

where j is the Von KaÂ rmaÂ n constant and d the local
water column height. The vertical eddy di�usivities for
heat and salinity transport are assumed to be propor-
tional to the turbulent vertical viscosity:

mT
t �

mt

Pr
and mS

t �
mt

Sc
�13�

where Pr; Sc are respectively the turbulent Prandtl and
Schmidt number. The turbulent kinetic energy is
governed by the following transport equation:
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where mk
h, the horizontal turbulent di�usivity for k, is

considered as constant, and mk
t , the vertical turbulent

di�usivity for k, is assumed to be proportional to the
turbulent viscosity:

mk
t �

mt

rk
�15�

where rk is also often called the turbulent Prandtl
number for the turbulent kinetic energy.

Inside the ¯uid, the shear production of turbulent
energy P is expressed by:

P � mt
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The bottom layer friction is taken into account by an
additional production term:

P � g�u2
b � v2b�3=2=C2 �17�

where C is the Chezy coe�cient previously introduced.
In the top layer, the wind and waves e�ects give also

rise to an additional term:

P � ajj~Uwjj3 �18�
where a is a non dimensionless �mÿ1� positive constant.

The buoyant production G is modelled according to

G � ÿaSm
S
t g
@S
@z
ÿ aT mT

t g
@T
@z

�19�

Instead of solving a transport equation which involves
more model assumptions than the corresponding equa-
tion for k; e, the turbulent kinetic energy dissipation is
modelled according to

e � e0
k3=2

L
�20�

where e0 is a positive constant.

2.3 The optimal control formulation

Even if the applications presented in Sects. 3 and 4 are
two dimensional (1D space and 1D time or 2D space)
and in order to adopt a more general framework, the
complete 4D formalism is here described. The optimal
control aims at ®nding the best parameters of the model
to simulate computed values closest to those observed. It
is exempli®ed here when the turbulent viscosity coe�-
cient set is considered as the control to be optimized.

The physical state is described by the vector
Y � �u; v;w; p; S; T ; q�, solution of the set of di�erential
Eqs (1)±(7) which can be re-written:

dY
dt
� F �Y ; m� in X� �0; s� �21�

where F is a non-linear operator, X is the space domain
and �0; s� is the time interval. X is considered in this
general development as three dimensional. Here,
m � �mt; mS

t ; m
T
t � is the only control of the system. In a

more general case, the control could be the initial
conditions (Le Dimet and Talagrand, 1986), the
boundary conditions (Lellouche et al., 1994) or other
tunable parameters such as friction coe�cients (Begis
and Crepon, 1975), optimized separately or together
(Devenon, 1990; Leredde et al., 1998). In the following,
in order to simplify somewhat the problem the
turbulent Prandtl and Schmidt numbers, respectively
Pr and Sc, are set to constant values. Without
restraining the scope of the present study, taking
Pr � Sc � 1, the turbulent di�usivities for heat and salt
transport will be equal to the turbulent vertical
viscosity. The control is then restricted to mt as a space
and time dependent variable. In this general frame-
work, mt is a function of the three space dimension x; y; z
and the time dimension t.

The observations of Y being designated as Ŷ , a cost
function which measures the mean squared discrepancy
between the model solution and the observations can be
de®ned as:

J�Y �mt�; Ŷ � � 1

2
< Y ÿ Ŷ ;Cÿ1Ŷ � �Y ÿ Ŷ � >X� �0;s� �22�

where < ; >X� �0;s� is the inner product in
L2�X � �0; s��, this space being de®ned as the set of
square integrable functions over X � �0; s�: CŶ is the
covariance operator associated with the observations.
Penalty terms could be added to this functional formu-
lation. The convergence of the following method is then
improved by the recall to a ``®rst guess'' of the control
(Yu and O'Brien, 1991) or a smoothing term of the
distributed control (Panchang and Richardson, 1993).

The optimal control mt opt minimizes the cost function
J . The optimal control set cannot be obtained directly.
It must be reached by successive minimization of J
through a descent algorithm. A classical way consists in
computing the gradient of J relative to the control.
Introducing the adjoint state Y � (Lions, 1971), the
expression of the gradient is:

rJ�Y �mt�; Ŷ � � ÿ @F
@mt

� �adj

Y � �23�

and the adjoint state veri®es that:

dY �

dt
� @F

@Y

� �adj

Y � � Cÿ1Ŷ �Y �mt� ÿ Ŷ � in X � �0; s�

�24�
where adj denotes the adjoint operator. The details of the
method for deducing the adjoint model can be found in
Leredde et al. (1998) for the case of a one dimensional
Burger's equation and in Leredde (1999) for these
primitive equations and will not be presented further
here. From Eq. (24), using the proper de®nition for F
(Eqs. 1±7), the adjoint state Y � � �u�; v�;w�; p�; S�; T �; q��
veri®es the adjoint equations:
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r2
ŷi
, is the variance of the observation ŷi corresponding to

the variable yi in the case of statistical independence
between data measurements. In fact, r2

ŷi
, is the inverse of

the weigh given to each observation. For example, if no
temperature data is available, the weight is zero, r2

T̂
is

taken to be a large number and so there is no forcing
term in Eq. (30).

Keeping this notation yi for any of the seven state
variables, the dimensionless cost function can be writ-
ten.
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The expression of the gradient is then given by:
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q0

@u
@z
@u�

@z
� 1

q0

@v
@z
@v�

@z

� @S
@z
@S�

@z
� @T
@z
@T �

@z
�33�

If the turbulent viscosity is not fully time and space
dependent, this general expression is integrated on the

domain where the turbulent viscosity is constant. In
Sect. 3, mt is considered as horizontally constant and the
temperature is not taken into account. The expression of
the gradient of the cost function relative to mt�z; t�
becomes

rJ�Y �mt�z; t��; Ŷ � � 1
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where C is the horizontal domain. In Sect. 4, mt is a
function of two space dimensions x and z. The only
assimilated data are temperature ones and the expression
of the gradient of the cost function relative to mt�x; z� is

rJ�Y �mt�x; z��; Ŷ � � 1

sL

ZZ
@T
@z
@T �

@z
dy dt �35�

where L is the domain of variation of y. In fact, the
general expression (33) can be adapted for each new
con®guration. For example, without the salinity term
and with a time integration, the gradient expression of
previous studies (Yu and O'Brien, 1991; Panchang and
Richardson, 1993; Eknes and Evensen, 1997) could be
found.

Once the gradient has been computed, the minimi-
zation of the cost function can be performed using any
gradient descent algorithm. Here, a classical quasi-
Newton method (Gillbert and Lemarechal, 1989) is
used.

For the numerical implementation, this continuous
formulation must be converted to the discretized one.
The way to proceed is not straightforward and involves
theoretical and technical developments (Lellouche et al.,
1998).

3 Viscosity optimization

3.1 Description of the experiment

Although the numerical tools described in the previous
section should allow the treatment of a fully three
dimensional case of a rotating ¯uid, a simple physical 1-
D case is investigated as a ®rst attempt. The 3-D model
is then used with open lateral boundaries at which
Neumann conditions are imposed and all the variables
are taken to be horizontally uniform. In this academic
framework, the observation data set is created using the
k � L model described in Sect. 2.2. This numerical
construction of error free data is usually done to check
the results of new assimilation methods (Courtier and
Talagrand, 1990). The aim is to recover these ``simu-
lated'' data by means of the full identi®cation of the
turbulent viscosity coe�cients. It means that a zero
order turbulence closure version of the model is used
instead of solving the k � L closure.

In order to illustrate this 1-D optimization problem,
the turbulent mixing of the water column resulting from
a wind energy input at the sea surface is studied. The
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direct simulation consists in modelling the development
of inertial oscillations in the presence of a halocline
break. An 8-day simulation is performed with a time
step of 20 min and a vertical grid size of 2 m. The model
is started from a state of rest considering a simpli®ed
two-layer water column with fresh water (10 m thick,
0 psu) upon salty water (20 m thick, 30 psu). The wind
blows along the x direction and its speed increases
linearly from 5m sÿ1 to 10m sÿ1 during the simulation.
The solution of the computation is given in Fig. 1.
Inertial oscillations remain trapped in the upper layer of
the water column until the mechanical mixing energy,
resulting from the downward di�usion of a fraction of
the energy input by wind, overcomes the stabilizing
e�ect of the strati®cation. Then, the halocline is
suddenly broken and the motion can di�use downward
and the salinity upward. In the following, these simu-
lated data are used as observations to be assimilated by
the optimal control method. An initial model solution
(Fig. 2) from which to start the minimizing procedure is
computed with a constant value of 10 cm2 sÿ1 arbitrarily
chosen for the turbulent viscosity. One can remark that
this value is not accounted for as a ®rst guess in the cost
function as it is needed for a weak constraint formula-
tion (Eknes and Evensen, 1997) to ensure a single
solution (Bennett and Miller, 1991). In a strong
constraint formulation, even though it can be used to

accelerate the convergence of the method (Yu and
O'Brien, 1991), it is not required if the problem remains
over-determined (Menke, 1984). In any case, such a ®rst
guess choice could be di�cult in this case of time-
dependent viscosity.

A comparison between the observation simulation
(Fig. 1) and the initial simulation (Fig. 2) shows that the
solution of the model is highly controlled by the
turbulent viscosity. This latter is about zero at the
halocline that acts as a physical wall for the di�usion. As
the wind speed increases, the eddy viscosity increases to
a threshold value inducing the sudden halocline break.
The oscillation amplitude and damping rate follow this
time-dependence of the viscosity. As this viscosity varies
in the whole space and time domain X � �0; s�, the
dimension of the control vector is equal to M � N
where M is the number of grid points and N is the
number of time steps. In order to keep the problem
over-determined, the number of data to be assimilated
must overtake the control dimension. All the model
solution variables, here u; v; S can be taken as observa-
tions. Di�erent numerical experiments using di�erent
data sets are performed. The variances of the selected
data are then set to a ®nite value corresponding to the
inverse weights given to each observation. The other
data variances are set to in®nity expressing the complete
lack of any other available information. The forcing

Fig. 1a±d. Solution of the direct simulation used to construct the observations. a Velocity u�cm � sÿ1�, b velocity v�cm � sÿ1�, c salinity (psu), d
turbulent viscosity �cm2 � sÿ1�. The contour intervals are 5 units for each variable plotted
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terms which appear in the second members of Eqs. (25)±
(31) are then all equal to zero except for those
corresponding to the chosen observations.

3.2 Optimization results

The most basic numerical experiment is to consider all
the assimilated data u; v; S as error free data. In
comparison with a cost function formulation including
a ®rst guess (Yu and O'Brien, 1991), the decrease of the
cost function J is slower, but after about 3000 iterations,
J reaches almost zero. The optimized viscosity values
(Fig. 3) provide ®elds of u; v; S which appear to be
indistinguishable from the observations. This results
shows the feasibility of the method without using a ®rst
guess. Nevertheless, it must be recalled that such a good
®t between model solution and data set is possible only
because the data set was obtained via the complete k � L
model and so is fully consistent with the optimization
constraints. This cannot be expected with in-situ exper-
imental data.

Besides, the optimal set of turbulent viscosity values
(Fig. 3) is sometimes di�erent locally from the one given
by the k � L model used to construct the data set. It can
be noticed that, even when di�erent, the turbulent
viscosity issued from the physical turbulence model and

the optimal viscosity issued from the data assimilation
®tting can lead to the same numerical solution of the
model. This paradoxical behaviour can be explained.
The optimal viscosity has a degree of freedom (DoF) per
grid point and time set while mt, computed with the k � L
model, has a smaller number of DoF equal to the
number of constants appearing in the k � L turbulence
model. In the optimization procedure, the turbulent
viscosity value at a grid point and time step is not

Fig. 2a±c. Solution of the initial simulation with a constant turbulent viscosity �mt � 10 cm2 � sÿ1�. a Velocity u�cm � sÿ1�, b velocity
v�cm � sÿ1�, c salinity (psu). The contour intervals are 5 units for each variable plotted

Fig. 3. Optimal turbulent viscosity �cm2 � sÿ1�. The contour inter-
vals are 5 cm2 � sÿ1
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constrained by the global physical consistency due to the
equation of the k � L turbulence model. Furthermore,
the sensitivity of a model to its parametrization may be
so weak that the control of these parameters cannot be
ensured. As already explained by Panchang and Rich-
ardson (1993), the eddy viscosity appear only in the local
di�usion terms so that in weak vertical gradient regions,
it can take any value without in¯uencing the simulation
results. This states the problem of the possibility to
control models by parameters that do not have every-
where a real in¯uence on the solution.

The ability of the method to recover the model
control from a part of the observation data set must
now be tested. In a second experiment, where only one
variable, for instance S, is assimilated, the optimization
procedure succeeded in recovering exactly the salinity
®eld �J � 0� and the velocity ®elds (Fig. 4) with a better
accuracy in strati®ed regions. The controllability prob-
lem leads to an optimal eddy viscosity that can take any
possible value in zones of zero vertical salinity gradient.
The uniqueness of the solution is then not ensured and
the turbulent viscosity remains near its initial value
�here 10 cm2 sÿ1�. For practical purposes, the velocity
®eld is then a�ected in these regions and it could be
worse with another initial value like
0 cm2 sÿ1or 100 cm2 sÿ1. The retrieval of the velocity

®eld from the salinity ®eld is interesting in itself since
hydrological data are often more easily available than
dynamic data. It must however be borne in mind that in
the model the salt di�usivity is assumed to be propor-
tional to the turbulent viscosity for the momentum
di�usion (Sc is a constant). Further generalization to
models with eddy viscosity and di�usivity using other
relationships should be made.

For the same reason, the assimilation of only one
velocity component u or v leads to similar conclusions. u
and v are in quadrature, and so give the same content of
information for the optimization. The sudden event of
the halocline break is included in the velocity ®eld
information. In fact, with a slower convergence rate
compared with the previous experiment, the model
solution is recovered even for the salinity.

The three previous numerical experiments were
performed with a great number of DoF with good
e�ciency due to the ideal consistency of the data with
the model. Unfortunately, oceanic observations are
often sparse and noisy. In order to have a more
realistic representation of in-situ observations, the
following assimilation experiments are carried out with
noisy and sparse data. To simulate di�erent station
measurements conducted from an oceanographic ves-
sel, either hydrological or current pro®ling experi-

Fig. 4a±d. Optimal solution and optimal turbulent viscosity obtained by the assimilation of the salinity data. a Velocity u�cm � sÿ1�, b velocity
v�cm � sÿ1�, c salinity (psu), d turbulent viscosity �cm2 � sÿ1�. The contour intervals are 5 units for each variable plotted
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ments, the proposed application consists in assimilating
noisy velocity and salinity pro®les taken at 48 h, 96 h,
144 h and 192 h. A white and gaussian noise is added
with a rms equal to 6 cm sÿ1 for the velocities and
4 psu for the salinity. This rather severe noise has been
chosen to test the robustness of the optimal control
method. As the control dimension greatly oversizes the
number of sparse data, the unique determination of an
optimal time-dependent eddy viscosity cannot be
expected. To keep the problem over-determined, the
control dimension must be reduced at least to the same
order as the number of data. Following the idea of
Panchang and Richardson (1993), a penalty term
�e.g. @mt�t�=@t� could be added in the cost function to
keep a continuous time-dependence of the viscosity.
Here, a time-constant turbulent viscosity pro®le over
each 48-h time-interval is chosen. The problem consists
then in optimizing four viscosity pro®les given for each
period: 0 h±48 h, 48 h±96 h, 96 h±144 h, and 144 h±192
h. The pro®le assimilation leads to the recovery of the
full solution u; v; S�z; t� (Fig. 5). One can note the time
jumps of the solution corresponding to the optimal
turbulent viscosity pro®les. Figures 6 shows the u; v; S
optimal pro®les at t � 96 h (the other time step results
are not shown). Even if the assimilated pro®les are
noisy, the optimal pro®les are very close to the true
pro®les issued from the full solution given by k � L
model. The initial starting pro®les are computed with a

constant viscosity value �10 cm2 sÿ1�. Even with severe
noise, the model is able to extract the mean informa-
tion and to supply results provided with some physical
consistency given by the model equations. The optimal
eddy viscosity pro®les (Fig. 7) evolve with time and
with the wind increase. It is almost zero on the
halocline for the two ®rst pro®les (48 h, 96 h) before it
breaks. When the turbulent viscosity does not control
the solution, its value remains near its initial starting
value. The non-sequential nature of the proposed
assimilation scheme must be underlined. Indeed, the
information over the entire data recording is used as a
whole to optimize the turbulent viscosity value at a
grid point and time step. A sequential optimization
would conversely consist in the separate processing of
juxtaposed time periods with initial and ®nal state
observations. In the actual method, observations on
past and future states are accounted for in addition to
the initial and ®nal states of the considered sequence.
The case of a wrong data pro®le at a given time, say at
48 h, which exhibits for instance a poor vertical
resolution leading to an anticipated halocline break,
could be corrected with later pro®les where this
discontinuity remains.

To summarise the previously described numerical
experiment, it can be said that the assimilation technique
turns out to o�er a satisfactory robustness with noisy
and sparse synthetic data.

Fig. 5a±c. Optimal solution obtained by the assimilation of sequential and noised data (48 h, 96 h, 144 h and 192 h). a Velocity u�cm � sÿ1�, b
velocity v�cm � sÿ1�, c salinity (psu). The contour intervals are 5 units for each variable plotted
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4 A two space dimension optimization case

The aim of this experiment is to show that the optimal
control method can be used for more than one space
dimension. The method described in Sect. 2.3 in the
more general case has been applied in the previous
section for only one space dimension and the time
dimension. The control size was already very large in
this previous simple case, involving a high numerical
cost and a slow convergence of the method. This cost is
enhanced by the need of the direct solution to solve the
adjoint model: the values of the direct variables are to be
stored in the direct path and read from the memory in
the inverse path. This is why the control is here limited
only to two space dimensions and considered as
constant in time. In fact, a space dimension takes the
place of the time dimension. For the same reason, a
simpli®ed theoretical model of ocean and of wind
patterns are considered using a simple geometrical grid.
The integration proceeds also for a relatively short
simulation time. In addition it is the temperature
distribution that here modi®es the strati®cation.

The 2-D space-dependent viscosity optimization
problem is exempli®ed on the simulation of a transient
coastal upwelling assuming that mt is time-independent.
The domain is closed to the west by a coast on which
zero cross-shore transport conditions are speci®ed. A

Fig. 6a±c. Velocity u a, velocity v b and salinity c pro®les at t � 48 h.
1, Pro®les from the initial simulation computed with a constant
turbulent viscosity �mt � 10 cm2 � sÿ1�. 2, True pro®les. 3, Assimilated

pro®les, the true pro®les are noisy. 4, Optimal pro®les, almost
superimposed on the true ones

Fig. 7. Turbulent viscosity pro®les. 1, Initial pro®le; Optimal pro®les
2, 0 h±48 h; 3, 48 h±96 h; 4, 96 h±144 h; 5, 144 h±192 h
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constant wind �5m sÿ1� is assumed to blow towards the
north. By assuming the domain is open to the south and
to the north, the solution does not vary along the
direction y. By taking Neumann open ocean boundary
conditions to the south and north, a two space dimen-
sion problem in a plane perpendicular to the coast is
obtained. Neumann conditions are also imposed at the
east boundary. The domain is extended to 40 km from
the coast with a horizontal grid size Dx � 2 km, whereas
the depth is constant (40 m) with a vertical grid size
Dz � 2m. The latitude is 45 �N, which leads to a
Coriolis parameter f � 10ÿ4 sÿ1. The time step is
Dt � 50 s for a 48 h simulation. The model is started
from a state of rest, a surface temperature of 25 �C and a
linear vertical gradient of temperature DT

Dz � 0:5 �Cmÿ1.
Salinity is taken to be uniform and constant in time.

The observations are created from a 2-D steady
viscosity ®eld corresponding to the results given by the
k � L model at t � 48 h. At this time, the turbulent
viscosity ®eld is nearly steady and so can be taken as the
steady control to be recovered. Nevertheless, one can
remark that, even if the viscosity is considered as
constant in time, coastal upwelling phenomena is
already not steady after 48 h. During this transitional

period, inertial waves always propagate (see Crepon and
Richez, 1982, or Kundu et al., 1983, for more details).
The model therefore gives results as expected (e.g. Foo,
1981). Close to the coast, nearly 5 km, a coastal jet
expands in the direction of the wind. The surface mixing
layer is advected towards the open sea, whereas the
return current stays between the boundaries of the
bottom mixing layer. Near the coast, cold waters are
advected from the bottom to the surface. Figure 8
presents the solution �u; v;w; T ; mt� at the end of the
observations simulation.

The aim is then to reconstruct the 2D space-depen-
dent turbulent viscosity ®eld from the solution of the
model. The initial conditions (state of rest and linear
temperature strati®cation) are presumed to be known.
The initial solution obtained with an uniform viscosity
value of 10 cm2 sÿ1 (Fig. 9) is considered as the starting
point of the optimization procedure. The results ob-
tained for this initial simulation show that it is necessary
to consider a spatial variability of the viscosity.

In order to elaborate the problem and make the
method more adapted to usual practical oceanographic
application, only temperature data are assimilated,
assuming the velocity ®eld to be unknown. As the

Fig. 8a±d. Solution of the direct simulation used to construct the
observation of coastal upwelling at t � 48 h: x (km) is the distance to
the coast. a Velocity v�cm � sÿ1�, b Temperature ��C), c vertical

current vector ~U � �u;w � 103�, the maximum length is 19 cm sÿ1, d
turbulent viscosity �cm2 � sÿ1�
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control is considered as constant in time, a single time
sequence of data is needed.

First, it has been chosen to assimilate the complete
and noise-free temperature ®eld at t � 48 h. The number
of data is almost equal to the number of parameters and
it is already a signi®cant di�culty to suppose that no
information is known for the velocity ®eld and that no
other data are available between 0 h and 48 h.

The optimal control method provides by inversion a
viscosity ®eld which leads to a quite accurate simulation
of the temperature ®eld. One can remark that, as well as
with the salinity data in the previous example, the only
assimilation of the temperature data allows to recon-
struct the dynamics. Figure 10 presents this complete
solution, very close to the simulated observations.

Secondly, in order to test the robustness of the
method, the previous experiment is realised assimilating
the complete but noise-distributed temperature ®eld at
t � 48 h. A white and gaussian noise is added to the
temperature ®eld. The level of noise is raised step by step
as long as the method remains e�cient enough. The
deduced borderline case, presented here, corresponds to
a noise with a rms equal to 2 �C, which is more higher
than the in-situ measurement errors occurring with

usual devices, such as CTD pro®lers. Figure 11 shows
the assimilated temperature ®eld.

It can be seen that the added noise is smoothed by the
physics of the model which acts as a strong constraint.
The discrepancies of the data with the model, induced
by a gaussian and white noise, remains weak enough to
allow the method to work as shown in Fig. 12. This 2-D
optimization case will allow us to consider more
complex situations in the future.

5 Summary and conclusions

As an alternative to classical turbulence modelling, the
data assimilation method of optimal control is formu-
lated to optimize the turbulent viscosity in a 3-D
primitive equation model of the ocean circulation. The
chosen model and its full turbulence formulation �k � L�
is described and used to simulate synthetic observations
(velocity, salinity or temperature) of two wind-driven
events: the ®rst concerns an open strati®ed ocean, and
the second, a coastal upwelling. These data are assim-
ilated to reconstruct the turbulent viscosity ®eld, which
depends either on time and 1-D space or 2-D space. An

Fig. 9a±c. Solution of the initial simulation of a coastal upwelling with a constant turbulent viscosity �mt � 10 cm2 � sÿ1� at t � 48 h: x (km) is
the distance to the coast. a velocity v�cm � sÿ1�, b temperature (�C), c vertical current vector ~U � �u;w � 103�, the maximum length is 17 cm sÿ1
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adjoint model of the direct model (without the complete
turbulence formulation) is integrated backward in time
to compute the gradient of the cost function with respect
to the control and therefore performs the minimization.

The interest of ®tting the vertical turbulent mixing
via mt must be stressed. In many coupled physico-
biogeochemical models (e.g. Pinazo et al., 1996), the
turbulent state input is only described by a distribution
of the eddy vertical viscosity. Its optimization by data
assimilation could be useful in this case, the detailed
understanding of the turbulent processes not being
required. Of course, the success of the method is
conditioned by the nature of the data. In the current
work, it is pointed out that a vertical mixing process can
be recovered using only salinity or temperature data.
Furthermore, it would also be interesting to apply this
method to reconstruct a physical mixing event from the
observations of a conservative tracer (Vandenberghe,
1992).

The optimal control method has shown its e�ciency
in reconstructing the turbulent viscosity ®eld from
synthetic velocity or salinity data. Next, as has already
been done on a time-independent 1-D optimization in an
Ekman model (Yu and O'Brien, 1991), the optimization
in a 3-D primitive equation model will have to be tested
with assimilation of real observations. This preliminary
study has pointed out the di�culties that could be
encountered.

Fig. 10a±d. Optimal solution and optimal turbulent viscosity ob-
tained by the assimilation of the temperature data of the coastal
upwelling. x (km) is the distance to the coast. a Velocity v�cm � sÿ1�, b

Temperature (�C), c vertical current vector ~U � �u;w � 103�, the
maximum length is 14 cm sÿ1, d turbulent viscosity �cm2 � sÿ1�

Fig. 11. Assimilated and noisy temperature data (°C) of the coastal
upwelling, at t � 48 h, obtained by addition of a white and gaussian
noise with an rms equal to 2 �C
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The ®rst problem is the large dimension of the
control vector. This involves an important numerical
cost and a slow convergence rate of the method. Then, a
number of data oversizing the control dimension is
required. The eddy viscosity variations should be chosen
versus the available data. For example, in Sect. 4, as
only initial and ®nal states are known, the eddy viscosity
is optimized as a time-constant. The full time-space 4-D
variational formalism has been described and should be
adapted for each physical situation and assimilable data.

The second problem is the controllability problem.
Prior knowledge of the distributed turbulent viscosity is
sometimes not available, especially for a time and space
dependent problem, and the method must be investi-
gated without ®rst guess. As the eddy viscosity is not
always an in¯uential parameter in the calculations, its
uniqueness may not be ensured in some areas. Unique-
ness in these zones could be achieved using a ®rst guess
but with a loss of accuracy of the model results in the
strong eddy viscosity in¯uenced regions. Moreover, the
optimal viscosity can then take any values which appear
sometimes to be physically inconsistent. In the optimi-
zation procedure the zero order turbulence closure
model allows a degree of freedom by grid point and

time step. In contrast, in the k � L turbulence model, the
viscosity is strongly constrained by the k and L via Eq.
(10), and so has a smaller number of degrees of freedom
equal to the number of constants �e.g. Cm; k; a; e0�. In
this case, turbulence model calibration is required. It
could be viewed as a challenging problem to consider in
turn these parameters as controls of the model to be
optimized. However, hardly any di�culties are probably
to be expected due to the strong non linearities of the
dependence between the model solution and these
constants.
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