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Abstract. Although small particles (size between 25 um
and 200 pm) are frequently observed within ice and
water clouds, they are not generally used properly for
the calculation of structural, optical and microphysical
quantities. Actually neither the exact shape nor the
phase (ice or water) of these particles is well defined
since the existing pattern recognition algorithms are
only efficient for larger particle sizes. The present study
describes a statistical analysis concerning small hexag-
onal columns and spherical particles sampled with a
PMS-2DC probe, and the corresponding images are
classified according to the occurrence probability of
various pixels arrangements. This approach was first
applied to synthetic data generated with a numerical
model, including the effects of diffraction at a short
distance, and then validated against actual data sets
obtained from in-cloud flights during the pre-ICE’89
campaign. Our method allows us to differentiate small
hexagonal columns from spherical particles, thus mak-
ing possible the characterization of the three dimen-
sional shape (and consequently evaluation of the
volume) of the particles, and finally to compute e.g.,
the liquid or the ice water content.

1 Introduction

Size spectra obtained from in situ measurements within
clouds (Liou, 1992; Kinne and Liou, 1989) show that the
number of small particles (size ranging from 25 pm to
200 um) is very large, and that it is important for the
determination of structural, optical and microphysical
quantities such as liquid or ice water contents (LWC or
IWC). In addition, since small ice crystals may drasti-
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cally affect the radiative properties of cirrus clouds
(Takano et al., 1992), their shape can not be simply
approximated by spheres or cylinders. Actually the
scattering properties of ice crystals (with hexagonal
structure or even a more complex shape) differ signif-
icantly from that of perfect spheres (as given by the Mie
theory), and consequently the spherical assumption
induces quite large errors for the calculation of bulk
quantities such as the liquid water path or optical
thickness of the cloud.

The main problem, causing these inaccurate estima-
tions, is that the three dimensional shape of the particles
can not be deduced from images obtained with the
PMS-2DC (Particle Measuring Systems, Boulder, CO,
USA) probe by applying the existing pattern recognition
algorithms (Darlison et al., 1988; Duroure, 1982; Dur-
oure et al., 1994). Indeed, the same configuration can
correspond either to a spherical particle or a hexagonal
column. Our first objective is therefore to classify the
images of these hydrometeors according to their occur-
rence probabilities. Nevertheless, we have to keep in
mind that for PMS-2DC measurements the errors are
largest with particle sizes smaller than 200 um and may
reach 85% (Korolev et al., 1990). Thus, the estimation
of the corresponding shape will intrinsically contain non
removable uncertainties.

In the first part of this study, we present a numerical
model, including the effects of Fresnel’s diffraction,
specifically intended to simulate the sampling of hexag-
onal columns and spheres. In a second step, this scheme
was used to create several synthetic data sets considered
afterwards in a statistical analysis. The objective was to
define a new automatic pattern recognition algorithm in
order to differentiate the images of small hexagonal
columns from those of spherical particles. Our method
was validated against actual data obtained during an in-
cloud flight of the pre-ICE’89 (International Cirrus
Experiment) campaign (Gayet et al., 1990; Gayet et al.,
1993). We propose a simple way to approximately
determine the volume of the particles and then the liquid
or ice water content.
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2 Statistical analysis of synthetic data sets

2.1 Simulating the sampling of spherical particles
and hexagonal columns

2.1.1 Theoretical study of particle shadow and diffraction
effects. The formation of a particle shadow is a
laborious problem since the diffracted, refracted and
absorbed components of the light beam have to be
considered. As in Korolev et al. (1990), we neglected the
refracted component of light and assumed that the
particles are completely opaque, therefore the shadow
image is simply defined by the diffracted component. In
addition, we represented the effect of diffraction by a
three-dimensional object, e.g., hexagonal column or
spherical particle, by that of its projection on a plane
perpendicular to the direction of propagation of the
incident wave. Moreover, we considered the Huygens-
Fresnel approximation since the characteristic size of the
particles (>20 um) is much larger than the wavelength
of laser beam (i.e., 632 nm for the PMS-2DC probe).
We implemented the theory initiated by Maggi-Rub-
inowicz (Maggi, 1888 ; Rubinowicz, 1938), and further
developed by Miyamoto and Wolf (1962), in which the
diffraction can be considered as the combined effect of
an incident wave with a boundary wave. The amplitude
U(P) of the diffracted wave at a point P on the screen, as
shown on Fig. 1, is given by:

U(P) = U’(P) + U%(P) 0
where
UI(P) = e®?  when P is in the direct beam

0 when P is in the geometrical shadow

(2)
and
1 _ ks (E’ X E) .

v'p) = Efe’k'qiqdl (3)

[ os(1-5F)

Incident wave

Screen

Fig. 1. Scheme representing the derivation of the boundary diffraction
wave, adapted from Born and Wolf (1991)

In these equations, Z represents the distance between the
particle and the screen, K = 27/ is the wave number, A
is the wavelength of the incident collimated light beam,
S is the distance between point Q (on the contour I') and
point P (on the screen). The corresponding unit vectors
are: k in the direction of the plane wave propagation, g
(the radius vector of point Q) and 5. The integration is
carried out along the contour_I' (for which the
differential element of length is d/), i.e., the boundary
of the geometrical shadow. The quantity U® represents
the disturbance as predicted by the geometrical optics,
and U“ the effect of diffraction. This approach is true
only if Z is larger than 200 1/7 (Papoulis, 1968), and the
intensity /(P) of the diffraction is then deducted from
Eqgs. (1-3) by:

I(P) = |U(P)] (4)

In the case of the PMS-2DC probe a 50% threshold
level is applied for particle image sizing (Knollenberg,
1970).

The spherical particles are defined by a radius R, that
can randomly change over a range of +10% to consider
the noise of actual data, and varies from 25 um to
150 pm. This representation of the shape deformations
is very important, not only for water droplets, but also
for aggregates which must be differentiated from hex-
agonal particles.

The aspect ratio of the hexagonal columns (size
< 200 pm), i.e., the ratio of the width w and the length
L of the column, was found to be about 0.5 by
Heymsfield (1972). We selected intentionally a similar
value in order to be in the least advantageous situation
(since the particles are very compact their image looks
like almost that of a sphere), even if this is not really in
agreement with the result of our actual data processing
(the retrieved particle aspect ratio is 0.3 on average).
Because the size of a photodiode is 25 um, and to obtain
images of less than 10 pixels, the length of the simulated
columns takes values in the interval [25 pm; 300 pm].
The location of a particle of maximal dimension D
within the sampling volume is chosen randomly so that
Z is in the range [D; 60 mm], according to the probe
characteristics.

Figure 2 illustrates the influence of the distance
between the particle and the screen on the diffraction
pattern for a sphere of radius R = 70 um and a hexago-
nal column of length L = 190 um. When the screen is far
from the particle (Z=2.0m), the diffracted image
corresponds roughly to the projected shadow. However,
when the distance decreases (Z=0.02m), a hole
appears in the center of the sphere and the column is
split in to two parts (C; and C, on Fig. 2). The point
here is that the radius of the outer circle is larger than
the radius R of the sphere, and that the length of C; and
C, can be much smaller than L while the distance
between these two parallel lines is generally larger than
the width of the actual column.

For the two types of particles we have used Marshall-
Palmer size distributions that correspond to experimen-
tal spectra derived from in situ measurements. This
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Sphere of radius R = 70 um

Column of length L = 190 ym

Ce

Z=0.02m Z=2m

Fig. 2. Examples of diffracted images for spheres (of radius
R = 70 um) and hexagonal columns (of length L = 190 pum) while
increasing the distance Z between the particle and the screen from
0.02 to 2.0 m

option has a small influence on the results considering
that the analysis is conducted separately for the config-
urations with different numbers of pixels.

2.1.2 Modeling of the TAS clock frequency. The repre-
sentativeness of the sampled images depends on both the
true air speed (TAS) clock frequency and the lapse rate
of the photodiodes. For instance, if the TAS clock
frequency is not set precisely to the exact aircraft
airspeed, then the corresponding images will be elon-
gated or contracted. The mean pixel aspect ratio Ax/Ay
calculated for two data sets obtained during experiments
within the pre-ICE and EUCREX (EUropean Cloud
and Radiation EXperiment) program (Gayet et al., 1990;
Raschke et al., 1990) are 0.9 and 2.4, respectively. Here,
Ax characterizes the nominal pixel size (25 pm) defined
by the array of the photodiodes, Ay is the pixel size
along the flight direction (determined by the TAS clock).
The mean value of Ax/Ay strongly depends on the
characteristics of the probe and on the aircraft airspeed.
When the images are elongated, a pre-processing can be
applied in order to compress the information to a ratio
value of 1.0, but when the loss of material is too large
(for a pixel ratio much larger than 1.0, which is typically
the case for the EUCREX data), our approach is not
applicable (it is actually the case with all the existing
methods even for large particles). Finally the first
column of each simulated image is eliminated in order
to reproduce the triggering of the PMS-2DC probe.

2.2 Results of the statistical analysis

Note that the results of our model are only presented for
a mean pixel aspect ratio Ax/Ay equal to 1.0 in the rest
of this study. Indeed, the computation of diffraction
effects, even using the Maggi-Rubinowicz approxima-
tion, is very time consuming, and we had to restrain our
study. Nevertheless, this work can be easily extended to
other values of the mean pixel aspect ratio as mentioned
in section 2.1.2.

In order to discriminate between the shapes of
hexagonal columns from those of spherical particles,
we sampled about 5000 particles for each data set. Many
pixel configurations appear, especially the non-related
arrangements that are due to the diffraction effects (see
Fig. 2) which produce ‘hollow’ images (i.e., with a hole
in the center of the spheres or where columns are split in
two parallel parts). A configuration will be considered as
non-related when there is at least one pixel of the image
for which the 8-neighbors are not activated. For pattern
recognition, we define the following categories:

o related and oriented vertically (referred hereafter as
RV)

e related and oriented horizontally (RH)

¢ related and non-related with no particular orientation
(RD1 and RD?2 for 2-pixels, U otherwise)

e non-related and oriented vertically (NRV)

e non-related and oriented horizontally (NRH )

On Fig. 3a are represented the occurrence probabilities
for six 2-pixel configurations (RV, RH, RD1 for the first
diagonal and RD2 for the second one, NRV and NRH).
For spherical particles the percentage of occurrence of
RV is very different from that of RH, while in the case of
hexagonal columns the percentages of occurrence of RV
and RH are close to each other (12.1% and 9.9%). The
same differences are seen for the non-related arrange-
ments with 22.4% of NRV and 0.0% of NRH for
spherical particles, and 32.1% of NRV and 24.0% of
NRH for hexagonal columns.

The analysis of 3-pixel arrangements shown on
Fig. 3b gives similar results. In these conditions, the
two percentages of occurrence corresponding to RH and
RV, which are only slightly different for both spherical
particles and hexagonal columns, are nevertheless rather
different from one another. For non-related arrange-
ments, the contrast between NRV and NRH values is
very large in case of spheres and small for hexagonal
columns. The discrimination would obviously be easier
if we only consider non-related-images. We therefore
defined a new index, o, to discriminate the two types of
particles as follows:

PNRV

* = PNRH ®)

where PNRH is the probability of non-related horizon-

tal configurations and PNRV that of the vertical ones
(we do not use the related configurations).

The values of o obtained for 2-, 3- and more pixel

arrangements are summarized in Table 1. This indicates
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a 50 3 b 50
[l Spherical particles
Hexagonal columns
40t

30+

LM 24

20

N

N
Percentage of occurrence

Percentage of occurrence

N

10

Table 1. Values of o for different pixel configurations obtained
using the numerical model

Number of pixels

2-pixels 3-pixels 4-pixels S-pixels
Ocolumns 1.3 1.3 1.7 2.0
OCspheres + oo 586 395 145

clearly that a small value of « is representative of
hexagonal columns whereas spherical particles present
larger values (that is to say o > 5.0). In addition, we can
see that the difference between spheres and hexagonal
columns increases in terms of o with the number of
pixels, but on the other hand, the proportion of non-
related images decreases. The pattern recognition pro-
cedure is very tedious for more than 10 pixels, where for
instance, the classical algorithm developed by Duroure
(1982) becomes efficient.

Finally, we also checked the automatic pattern
recognition procedure for Ax/Ay much larger than 1.0
and found that it can not be applied for a mean pixel
aspect ratio larger than 1.5. Therefore, the EUCREX
data set (Ax/Ay = 2.4) is totally unusable, which is not
surprising since the aircraft airspeed was very high
(about 200 m/s).

2.3 Estimation of the volume of the particle

With our model, the geometrical characteristics of the
particles (either spheres or hexagonal columns) are
perfectly known. It is therefore possible to derive some
kind of statistical ‘transfer function’ associating each
pixel configuration with a mean particle size (for both

Fig. 3a,b. Configuration of a 2-pixels and b 3-
pixels obtained with the model

NRV NRH

cases) and find the corresponding average volume value.
Such theoretical relationships are given in detail in
Table 3a (for spherical particles) and Table 3b (for
hexagonal ice crystals), where the characteristic dimen-
sion of the particles is tabulated with the standard
deviation for each of the two categories defined already.

Surprisingly, for a given number of pixels (for
instance with the 2-pixel configurations RH and NRYV)
the dimension of the columns can change drastically (in
this case by a factor of two), since both small and large
particles can produce diffraction images classified in the
same category. Furthermore, the number of pixels is not
directly proportional to the size of the particle (i.e., a
simple computation of the volume would be completely
wrong), and the standard deviation is never larger than 2
pixels. As a consequence, one can simply estimate the
order of magnitude of the ice or liquid water contents by
multiplying the average volume (given in our tables) by
the corresponding concentration and mass density of the
hydrometeors.

3 Statistical analysis of actual data
3.1 Images with 2 pixels

The approach was validated against two actual data sets
obtained during aircraft measurements on 17 February
1989 (pre-ICE’89) for which altostratus clouds were
observed. This case was particularly interesting because
spherical particles were located at the bottom of the
cloud and hexagonal crystals in the upper part. Figure 4
shows an overview of the two types of particle shapes
sampled with the PMS-2DC probe within the cloud,
with a first group of spherical particles and a second one
of hexagonal crystals. We assumed that the small
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Spherical particles
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Fig. 4. Spherical particles and hexagonal crystals sampled with the
PMS-2DC probe (17 February 1989)

particles located in the upper (lower) part were also
hexagonal columns (spheres), and then conducted the
discrimination analysis. The first step consists of com-
pressing the data in order to reach a mean pixel aspect

a 50 b 40

ratio equal to 1.0 (note that Ax/Ay = 0.9 for the initial
data set), but we found that this transformation does
not disturb the process since Ax/Ay was already close to
the ideal 1.0 value.

Figure 5a displays (with the same representation as
for Fig. 3a), the occurrence probabilities of 2-pixel
configurations including the two groups of non-related
arrangements (horizontal NRH and vertical NRV,
respectively). The analysis indicates that non-related
images represent about 25.0% of the total data. For
spherical particles, most of the non-related configura-
tions are vertical because of the combined effects of
diffraction and triggering. For hexagonal columns, the
occurrence probabilities of non-related horizontal and
vertical arrangements are rather similar with 12.7% and
9.5%, respectively. This lack of distinction can be
explained by the fact that, in natural clouds, small
hexagonal columns may be randomly oriented in a
three-dimensional space because of Brownian motion
(which is the underlying assumption of our model). As
for the simulated images, the recognition scheme is
based on the emergence of differences between the
occurrence probabilities corresponding to non-related
configurations (actually there are almost only non-
related vertical configurations for spherical particles).
Indeed, the index o is equal to 1.3 for the hexagonal data
set and 13.0 for the spherical particles (see Table 2).

Table 2. Values of o for different pixel configurations determined
from aircraft measurements

Number of pixels

2-pixels 3-pixels 4-pixels 5-pixels
Olcolumns 1.3 2.2 6.0 1.7
Uspheres 13.0 + oo 9.0 29.2

39.5

[0 Spherical particles
Hexagonal columns

a0}
30
30}
20 +

20

Percentage of occurrence
Percentage of occurrence

10 H

10

N

RV RH RD1 RD2 NRV NRH RH Rv

Fig. 5a,b. Configuration of a 2-pixels and b 3-
pixels obtained in the case of actual data (pre-
ICE’89)

NRV NRH
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Table 3a. Theoretical average

radius R and standard deviation ~ Number Configuration
for spherical particles (um). of pixels
RH RV U NRH NRV

2 559 + 2.1 30.5 +£ 34 36.7 + 3.0 - 37.04+ 1.8
3 40.0 £ 1.8 36.2 £ 1.6 38.6 + 3.8 473 £ 7.1 453 £ 5.8
4 450 £ 7.0 39.0 £ 3.6 36.2 £ 1.6 424 £+ 3.6 53.2 £ 49
5 62.6 £ 5.8 38.6 £ 1.9 42.3 £ 0.8 494 + 44 50.8 + 0.8

Table 3b. Theoretical average ]

length L and the corresponding ~ Number Configurations

standard deviation (in pm) for ~ ©f pixels

hexagonal columns (note that RH RV u NRH NRV

the volume V" of the particle is 5 83.4 + 293 87.01 321 1240 £ 240 1093 + 246 1563 = 38.4

given by V' =3°L%) 3 129.5 + 31.3 1443 + 24.5 113.6 + 30.6 118.7 £ 25.8 104.4 + 34.2
4 150.8 + 33.7 1445 + 15.1 118.2 + 19.5 106.7 + 33.9 105.6 + 34.8
5 128.8 £ 34.6 1269 + 23.6 144.1 + 20.1 130.7 £ 30.1 129.5 + 42.8

3.2 Images with at least 3 pixels

As for the previous simulations, the identification
procedure becomes more and more efficient when the
number of pixels in the image increases. For 3-pixels, the
differentiation can also be made with the related
configurations, as shown on Fig. 5b, since the horizontal
configuration RH appears with an occurrence probabil-
ity of about 34.0% for hexagonal columns and only
17.5% for spherical particles, moreover, the vertical
configuration R}V is more probable in the case of
spheres. Nevertheless, this discrimination is not identical
to that of the simulated images, and the retrieval of the
volume of the particles will be erroneous. The recogni-
tion procedure can be unequivocally implemented by
using the non-related arrangements which are only
vertical with spherical particles (« is infinite) contrary to
columns (where o = 2.2).

When considering 4-pixel configurations, the identifi-
cation becomes difficult for actual data (whereas it was
still possible with simulated images!) since the values of
o are abnormally of the same order of magnitude for
both spheres and columns (values of 6.0 and 9.0
respectively as indicated in Table 2). No other easy-
to-use differentiation criteria could be established,
especially with the related configurations (which are
extremely different), for many reasons, including the
high complexity of the three-dimensional crystals
shapes, the possible presence of some hydrometeors
presenting a solid core surrounded by liquid water, the
perturbation due to supercooled droplets or even much
larger intruders among the sampled particles.

The analysis was also conducted for 5- to 10-pixel
configurations, and the differentiation was always fea-
sible. However, this kind of work becomes tiresome for
more than 6-pixel arrangements, practically the effect of
diffraction is much less perceptible for large particles,
and therefore, because the total number of non-related
configurations decreases, our statistical approach is not
relevant.

The defined index o seems to be a simple criteria to
discriminate spherical particles from hexagonal col-

umns, and we can summarize the step-by-step procedure
as follows:

1. Compute the mean pixel aspect ratio Ax/Ay of the
data set

2. Compress the images if Ax/Ay is much lower than 1.0

3. Classify all the configurations in 3 categories: non-
related vertical (NRV), non-related horizontal con-
figurations (NRH) and the other ones

4. Calculate o, and if the value is larger than 5.0 then the
particles are mostly spherical otherwise the particles
have a high probability to be mostly hexagonal
columns.

5. Retrieve the characteristic dimension of the particle
using tables generated with the numerical model.

4 Summary and conclusions

In this study, we have built a model, including the effects
of Fresnel’s diffraction, allowing us to simulate the
sampling of small hexagonal columns and spherical
particles with a PMS-2DC probe. This complete model,
which was found to be rather realistic, was successfully
implemented to create several synthetic databases and to
define a simple method in order to discriminate these
two types of particles. Our algorithm determines an
index named o defined as the ratio of the occurrence
probabilities of non-related vertical and horizontal
arrangements.

We have shown that it is possible to recognize
automatically the shape of hexagonal columns and
spherical particles (with a characteristic size < 200 pm)
by counting the occurrence of the various pixel config-
urations. It was also emphasized that images sampled
with a very high aircraft airspeed were not useable
because of the loss of information due to the distortion
of the pixels. The usage of the criteria « as a tool for the
classification of cloud particles according to their shape
was validated with actual data sets obtained during the
Pre-ICE’89 field experiment.

We tabulated several theoretical relationships be-
tween the characteristics of the digitized images (i.c., the
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number of pixels and the various arrangements) and the
volume of spheres or hexagonal columns producing the
same pattern after being diffracted on a screen, decreas-
ing the unavoidable volume error for small particles.
These results are encouraging, and it should be inter-
esting to extend the applicability field of this statistical
algorithm to a large number of different data sets
obtained within various types of clouds (a very hard
task) in order to refine the determination of structural,
optical and microphysical quantities.
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