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Abstract. The plasma-wave experiment ASPI (analysis
of spectra of plasma waves and instabilities) on board
the INTERBALL spacecraft is a combined wave diag-
nostics experiment. It performs measurements of the DC
and AC magnetic ®eld vector by ¯ux-gate and search-
coil sensors, the DC and AC electric ®eld vector by
Langmuir double probes and the plasma current by
Langmuir split probe. Preliminary data analysis shows
the low noise levels of the sensors and the compatibility
of new data with the results of previous missions.
During several months of in-orbit operation a rich
collection of data was acquired, examples of which at
the magnetopause and plasma sheet are presented in
second part of the paper.

1 Scienti®c objectives

The INTERBALL project is orientated towards the
investigation of the interaction between di�erent parts
of the magnetosphere in relation to changes in the solar

wind and ionosphere. First INTERBALL-1 orbits
passed through the solar wind, bow shock, magneto-
sheath and magnetopause regions. Several months later
the orbit apogee shifted to the near-Earth magnetotail,
so that INTERBALL-1 observed the tail lobes and the
plasma sheet. These orbit parameters allow the neutral
sheet region to be studied for several hours.

Plasma waves and ¯uctuations play a crucial role in
the highly collisionless space plasma. Waves and ¯uctu-
ations are of particular importance at the plasma
boundaries such as bow shock, magnetopause, neutral
sheet, and plasma sheet boundary layer. Wave-particle,
interactions in the plasma result in processes like: (1)
anomalous transport (pitch-angle and spatial di�usion,
conductivity, viscosity); (2) energy redistribution and
plasma heating; (3) generation of anisotropic distribu-
tion functions and their relaxation; (4) triggering of
large-scale instabilities.

The speci®c objectives of the ASPI wave and ®eld
experiment on board INTERBALL-1 are:

1. The study of the ¯uctuation characteristics in di�erent
regions of the magnetosphere and the use of these data as
high-time-resolution indicators of plasma phenomena.
2. The determination of the micro-scale plasma char-
acteristics (e.g. di�usion and anomalous transport
coe�cients, wave-wave and wave-particle coupling).Correspondence to: S. Klimov
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3. The study of temporal and spatial variations of
macroscopic and quasi-static ®elds and plasma drift
motions.
4. Comparative measurements with the nearby ¯ying
subsatellite and the satellite-sub-satellite combination of
the INTERBALL-2.

2 Experiment description

In the following section and in tables all X, Y, Z vector
components refer to the spacecraft frame of reference
(Fig. 1).

2.1 ASPI background and overview

The ASPI (analysis of spectra of plasma waves and
instabilities) experiment is based on the method of
combined wave diagnostics (CWD). This technique was
used on the PROGNOZ-8,10 spacecraft (Aleksevich
et al., 1983; Klimov et al., 1986), Vega-1,2 (Klimov et al.,
1987), Phobos-1,2 (Grard et al., 1989) and has parallels
with the S300/Geos and WEC/Cluster collaborations.
The method is substantially extended in ASPI and
includes:

1. The conduction of simultaneous measurements of
electric ®eld, magnetic ®eld, plasma current, spacecraft
potential and cold plasma density.
2. The use of the identical signal processing for all
measured parameters.
3. The possibility to change the time-frequency resolu-
tion of measurements depending on the mode of
telemetry system.

The ASPI experiment on board INTERBALL-1 is
the plasma wave consortium and is composed of several
instruments. A more extensive description of the exper-
iment can be found elsewhere (Klimov et al., 1995).
Locations of the ASPI sensors are in Fig. 1. Basic
technical characteristics of the instruments and sensors

are in Table 1. Description of the ASPI sensors and
scheme of on-board processing is in the coming subsec-
tions. Analogue ASPI outputs are listed in Table 4.

Fig. 1. Sketch of the INTERBALL-1
spacecraft: +X direction is pointing to
the Sun; dimensions are in mm. ASPI
sensors are shown

Table 1. Composition of the ASPI experiment

Instrument
block

Description

MIF-M Magnetic ®eld measurements
BPP Three-component ¯ux-gate sensor

±Frequency range 0±25 Hz
±Sensitivity 0.005 nT (waveform)
0.2 nT (DC ®eld)

DM2 Search coil sensor
±Frequency range 1 Hz±40 kHz
±Sensitivity 0.2 nT (1 Hz)
0.004 nT (10 Hz)
0.0004 nT (100 Hz)

EB-M Electronic box with:
Filter bank (7 ®lters)
DC/DC converter

PRAM Digital waveform processor
OPERA Electric ®eld investigation
BD1..6 Three double probe sensors

±Frequency range 0±150 kHz
±Sensitivity 10ÿ8V/m=

�������
Hz
p

OES Electronic box with:
Filter bank (24 ®lters)
DC/DC converter

FGM-I Flux-gate magnetometer
DM1 Three-component ¯ux-gate sensor

±Frequency range 0±25 Hz
±noise level 0.005 nT at 1 Hz
±Dynamic range/Resolution
128 nT/1.0 nT
and one-component split probe
±Frequency range 0.1±40 000 Hz
±Sensitivity 10ÿ15A/cm2=

�������
Hz
p

BE-DM1 Electronic box with:
analogue electronics
and DC/DC converter
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Digital ASPI outputs are described in Table 2. In this
section and in the tables Bx;y;z and ~Bx;y;z stand for DC
and AC magnetic ®eld signals; Ex;y;z and ~Ex;y;z stand for
DC and AC electric ®eld signals; Iz stands for the
plasma current signal.

ASPI instruments are now brie¯y described.

1. MIF-M (Russia, PI: S. Romanov). The MIF-M
instrument consists of the ¯ux-gate (BPP) and search-
coil (DM2) sensors, analogue electronics boards with
lowpass and highpass ®lters, ®lter bank with seven
analogue passband ®lters, A/D converter and
DC/DC converter.
2. OPERA (Italy, PI: E. Amata). OPERA is the electric
®eld instrument, including six spherical Langmuir
probes with the preampli®ers, mounted on the booms
and the electronic subsystem with analogue, digital
electronics, A/D converter and DC/DC converter.
Analogue electronics include preampli®ers, lowpass
and highpass ®lters and ®lter bank with bandpass ®lters.
Digital electronics perform calculations of the FFT
spectra, collection of housekeeping data and digital
telemetry frame formatting.
3. FGM-I (Germany, PI: J. Rustenbach). The magne-
tometer FGM-I consists of the three-axial ¯ux-gate
sensor, the plasma current sensor and the electronic box
all mounted on the boom (marked in Fig. 1 as DM1).
The electronic box contains two printed boards with the
analogue and drive electronics, the preampli®er of the
current probe, the temperature sensor and the DC/DC-
converter.
4. PRAM (Czech Rep. PI: S. Romanov). PRAM is the
digital waveform processor unit. It drives the A/D
converters in MIF-M, accepts digital signals from MIF-
M and processes them to ®t the given bit rate. According
to the mode of operation, the on-board algorithm
performs the selection between ampli®cation ranges,
averaging of DC ®eld and ®lter data, decimation of the
AC data and formatting of the telemetry frames. Frames
are transmitted to the digital telemetry system. Burst
modes, switched on by the event selection algorithm, are
possible with a bu�er size equivalent to about 4 min of
the prehistory information in the fastest mode. The
description of the parameters processed by PRAM is in
Table 2.

One more plasma current sensor is installed on board
the subsatellite MAGION-4. Close collaboration with
the subsatellite wave experiment is performed during
periods of simultaneous measurements. This provides a
good opportunity for advanced data analysis.

Unfortunately, two more ASPI instruments (ADS,
Poland, PI: J. Juchniewicz, J. Blecki and IFPE, Germa-
ny, PI: J. BuÈ chner) failed to switch on, likely due to
hardware problems.

2.2 ASPI sensors

2.2.1 Flux-gate sensors (in MIF-M and FGM-I)

The ¯ux-gate sensors of the MIF-M (BPP) and of
FGM-I (DM1) instruments consist of three identical
¯ux-gate core rings, forming a right orthogonal system
with ®xed orientation with respect to the spacecraft
body. They are mounted on the end of the boom 11 m
(BPP) and 6.5 m (DM1) apart from the spacecraft spin
axis (Fig. 1). They form the second, in addition to the
FM3-I experiment (Nozdrachev et al., 1995), dual mag-
netometer system.

Signals from the BPP components are divided into
two frequency ranges 0±2 Hz and 2±25 Hz (DC and AC
channels). These signals are transmitted to PRAM in
digital form and in the analogue form directly to
spacecraft telemetry system. The signal from one of
the components (selected by telecommand) is processed
also by MIF-M ®lter bank. The signal from the DM1
sensor is transmitted in analogue form to the spacecraft
telemetry system.

2.2.2 Search-coil sensor (in MIF-M)

The search-coil sensor of MIF-M (DM2) performs one-
component measurements of the AC magnetic ®eld
along the spacecraft Z-axis (Fig. 1) in the broad
frequency range (Table 1). It is mounted on the boom
together with its preampli®er. The analogue signal from
the sensor is transmitted to the telemetry system and
processed by the ®lter bank in MIF-M.

2.2.3 Langmuir split probes (in FGM-I and on the
MAGION-4)

The current sensors consist of two collectors, separated
by a thin (some millimeters) insulator (Bering et al.,
1973b). This method was ®rst used in the rocket
experiments (Bering et al., 1973a, b) in order to deter-
mine quasi-stationary current ¯ows. The experiment,
however, showed a high level of parasitic e�ects, such as
photo-emission. This is not so much a problem for the
AC measurements which were implemented on the
PROGNOZ-10 spacecraft. The analysis of results of the
PROGNOZ-10 wave experiment (Vaisberg et al., 1989;
Romanov et al., 1991) has provided evidence that direct
measurements of the current ¯uctuations in the colli-
sionless rare®ed plasma by means of split probes are
possible and can be used for plasma wave diagnostics.

On board the INTERBALL-1 the current sensor is
integrated in the FGM-I instrument: the cylindrical
sensor itself is part of the FGM-I instrument and its

Table 2. ASPI parameters transmitted via PRAM in the digital
form

Physical
parameter

Frequency
range, Hz

Measured
range

Sampling rate (Hz) in
modes slow/normal
/fast/superfast

Bx;y;z 0±2 0.3±300 nT 0.05/1/4/4
~Bx;y;z 2±25 0.005±30 nT ±/±/32/64
7 ®lters see Table 3 ± 0.008/0.0625/4/±
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analogue signal is transmitted to the telemetry system
and to the MIF-M ®lter bank. On board the subsatellite,
a two-component spherical current sensor is one of the
inputs of the SAS instrument.

2.2.4 Electric ®eld sensors (in OPERA)

The electric ®eld experiment includes six spherical
Langmuir probes with the preampli®ers (BD1-BD6),
mounted on the booms (Fig. 1). The long dipole BD1-
BD2 (Ey) has the length 22.68 m. Two shorter dipoles
BD3-BD4 and BD5-BD6 (Ez and Ex, respectively) are
4.4 m long. The Ey signal input can be switched to the
pairs BD3-BD5 and BD4-BD6 if necessary. The OP-
ERA instrument can perform both potential di�erence
and single-probe potential measurements. In the latter
case probe potential is measured with respect to the
spacecraft ground. All probes can be biased by the
electric current in the range �100 lA. The bias current
sweep can be performed to measure the Volt-AmpeÁ re
characteristic of the probe. An estimation of the
spacecraft potential is necessary for correct plasma
and ®eld measurements and can be performed using the
sweep of the bias current.

Techniques of the DC and AC electric ®eld measure-
ments in the magnetosphere are discussed by Grard et
al. (1986), Fahleson (1967), Tunally (1970) and checked-
in-space experiments by Gurnett (1972), Mozer (1983),
Aleksevich et al. (1983), Klimov et al. (1986, 1987),
Grard et al. (1989).

The analogue electric ®eld signal is transmitted to the
telemetry system in two frequency ranges 0±3 and 0.1±25
Hz (DC and AC channels). The full frequency range
signal is processed by the OPERA ®lter bank.

2.3 On-board data handling

On-board ASPI data handling algorithms include:

1. Filter-bank spectral analysis of the magnetic ®eld
and plasma current signal in MIF-M (Table 3). Inputs
of the ®rst two ®lters can be switched by telecommand
to any magnetic ®eld component, measured by MIF-M
¯ux-gate sensor. Inputs of the remaining ®ve ®lters can
be switched between the signal from the search-coil
sensor in MIF-M and the signal from the plasma current
sensor in FGM-I.

2. FFT (1±32 Hz) and ®lter bank (0.005±150 kHz)
spectral analysis of the electric ®eld signal in OPERA.
This information is available for some limited periods.
3. All analogue ASPI outputs are transmitted to the
spacecraft telemetry system (Table 4). Then they are
digitized at a bit rate, determined by the telemetry
operational mode. The real-time transmission mode
provides a total bit rate of all ASPI analogue data equal
to 16 kbit/s. The duration of the real-time transmission
is 2±3 h every 2±4 days. Analogue data can also be
recorded on the on-board tape-recorder at a low
sampling rate (10±15 Mbit are available). As all ASPI
analogue signals are digitized by one A/D converter,
inter-comparison of the waveform data from di�erent
ASPI instruments can be easily performed.
4. Digital telemetry frames formatted by PRAM are
transmitted to the telemetry system. These frames
include DC and AC magnetic ®eld waveforms and
®lter-bank spectra measured by MIF-M (Table 2).
OPERA housekeeping data and electric ®eld spectra
are also formatted in the digital telemetry frames and
transmitted to the telemetry system. About 200 Mbit of
the on-board memory are available for the digital ASPI
data between memory dumps (once every 2±4 days).
5. Waveform signals from both INTERBALL-1 and
MAGION-4 current sensors can be transmitted also to
the modulators of the spacecraft radio transmitters.
That permits the performance of the dual-point high-
resolution measurements up to a frequency of about 1
kHz. During this mode of operation, signals from both
transmitters are accepted by one tracking station.

2.4 Ground data handling

Ground handling of ASPI data includes several stages:

1. Preparation of the quick-look data with the delay 1±
2 days for the purpose of experiment control.
2. Preparation of the key physical parameters. The
following values measured by ASPI are included in the
list of parameters of the INTERBALL project: vector
and total value of DC magnetic ®eld in GSE and GSM
frames of reference and amplitudes of magnetic ®eld
¯uctuations in the frequency ranges 1±4 and 600±800 Hz.

Table 3. Filters in MIF-M

Sensor Frequency range
Hz

BPP 1.......4
BPP 20......30
DM2/DM1 20......30
DM2/DM1 120.....150
DM2/DM1 350.....450
DM2/DM1 600.....850
DM2/DM1 1900....2100

Table 4. ASPI parameters transmitted to the spacecraft telemetry
system in the analogue form

Device/sensor Physical Frequency Measured Sampling
parameter range, Hz range rate, Hz

MIF-M/BPP Bx;y;z 0±2 0.3±37.5 nT 8
~Bx;y;z 2±25 0.005±30 nT 64

MIF-M/DM2 ~Bz 0.1±500 4 � 10ÿ6 ÿ 1 256
nT=

�������
Hz
p

OPERA/BD1±6 Ex;y;z 0±3 1±570 mV/m 8±16
~Ex;y;z 0.1±25 0.9±115 m V/m 64±128

FGM±I/DM1 Bx;y;z 0±25 1±128 nT 64
Iz 0.1±500 10)14±10)10 1000

A/cm2=
�������
Hz
p
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Key parameters are distributed to all INTERBALL
participants.
3. Preparation of ASPI data bank on optical disks
and/or digital tapes and distribution to all member
groups of the ASPI team.

3 First results

ASPI instruments OPERA and MIF-M were switched
on after the booms were deployed at 12:59 UT on 3
August 1995. The INTERBALL-1 spacecraft was at this
time in the magnetosheath just outside the magneto-
pause on the outbound part of its ®rst orbit. The
information was dumped via the analogue telemetry
system. On 5 August 1995 the PRAM and OPERA
instruments started digital data transmission. On 6
August 1995 the FGM-I magnetometer was switched
on. In this section we present initial results of the ASPI
observations.

In the following, in order to di�erentiate between the
similar notations of the X, Y, Z components in the
spacecraft and GSE frames of reference, GSE compo-
nents are implied only if explicitly stated. The GSE
frame of reference is used only for the DC magnetic and
electric ®eld data in the discussions of particular
crossings. In all other cases (while discussing sensor
performance or speaking about AC waveforms and
spectra) the spacecraft frame of reference is implied.

3.1 Performance of ASPI sensors

We describe the background signal levels and sensor
noise levels. We also perform a comparison of the
INTERBALL-1 data with that from the previous
missions at the rather well-studied plasma boundary ±
the bow shock. The detailed analysis of the measure-
ment methods and the spacecraft interferences will be
given in the future papers.

3.1.1 Magnetic ®eld measurements

In Fig. 2 examples of the magnetic ®eld noise spectra in
the quiet solar wind plasma are presented (bottom
curves). Curve 5 shows the noise level as measured via
the MIF-M ®lter bank. The search-coil (last four ®lters,
see Sect. 2.3) noise signal 0:02±0:03pT=

����
H
p

z is close to
the noises of the GEOTAIL and ISEE-1,3 instruments
at about 1 kHz (Matsumoto et al., 1994). Curve 3 in
Fig. 2 represents the noise level of the waveform signal,
measured by the MIF-M ¯ux-gate sensor. The noise
level of the ¯ux-gate sensor of the FGM-I magnetometer
is similar to that of the MIF-M and is 5pT=

����
H
p

z.
We also present in Fig. 2 bow shock spectra mea-

sured by the MIF-M (curve 2: FFT of the waveform and
curve 4: ®lter bank) and by PROGNOZ-10 BUD-1M
experiments (curve 1) (Petrukovich et al., 1993). Similar
amplitudes at 1 and 15 Hz in both spectra prove that

observations from the two missions correspond to one
another. The presence of the spectral peak at a few Hz is
the typical feature of the near-shock turbulence in this
frequency range. Its position in the spectrum depends
upon local shock and solar wind parameters and can
vary in a rather broad frequency range (4 Hz in the
PROGNOZ-10 spectrum and 20 Hz in the INTER-
BALL one).

As for the DC magnetic ®eld measurements, noise
levels of both MIF-M and FGM-I ¯ux-gates are to an
order of magnitude lower than their quantization levels.
The di�erence between the FGM-I and MIF-M DC
magnetic ®eld spectra is about 10ÿ20pT= ����

H
p

z except
for the frequencies of the harmonics of the 10-s
interference signal (to be discussed). In the next subsec-
tions with experimental data description, the magnetic
®eld measurements by the MIF-M ¯ux-gate sensor will
be used unless explicitly stated otherwise.

The main static magnetic moments of the INTER-
BALL spacecraft were determined in the EMC chamber
of the Lavochkin centre. The on-board measured o�sets
coincide with the o�sets determined on the ground.
They are less than 10 nT and stable. By the use of the
dual magnetometer method (¯ux-gate sensors of MIF-
M and FGM-I) we can separate the spacecraft interfer-
ences from real magnetic ®eld data with an accuracy of 1
nT in the frequency band 0±0.1 Hz and of 0.01 nT in
0.1±32 Hz. The most di�cult DC magnetic ®eld mea-
surement problem is the o�set determination of the Bx

(non-rotating) component. This o�set was determined
with an accuracy of 0.3 nT (quantization level of the DC
magnetic ®eld signal).

Three major types of magnetic ®eld spacecraft inter-
ferences were detected:

1. Quasi-sinusoidal magnetic ®eld signal with a period
of about 10 s and 7±8 nT amplitude at the position of

Fig. 2. Noise levels of the magnetic sensors. Curve 1: bow shock
spectrum from the PROGNOZ-10 BUD-1M experiment; curve 2:
bow shock spectrum (FFT of the wave form); curve 3: noise spectrum
(FFT of the waveform); curve 4: bow shock spectrum (®lter bank);
curve 5: noise spectrum (®lter bank)
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the FGM-I ¯ux-gate sensor (Fig. 1). It is practically
undetectable at the position of the MIF-M ¯ux-gate
sensor on the same boom. Due to the rather stable
phase, this interference can be easily extracted from the
data with the use of FFT ®ltering.
2. Spurious magnetic ®eld bursts radiated by the space-
craft heating system in the range 1±2000 Hz. These
impulses have a characteristic appearance in the ®lter-
bank data.
3. Quasi-periodic interference with a frequency of
about 80 Hz at the search-coil sensor location. Its
amplitude reaches about 10% of the natural magnetic
®eld waveform amplitudes.

3.1.2 Electric ®eld measurements

In Fig. 3 we present the noise levels and characteristic
signals of the electric ®eld measurements. Curves 3 and
6 correspond to the background electric ®eld spectra
measured by the OPERA instrument in the solar wind.
Curve 6 represents the ®lter-bank spectrum of the
signal from the BD1-BD2 dipole (22 m). The numbers
are close to that of the PROGNOZ-8 17-m dipole
noise (Aleksevich et al., 1983). Curve 3 represents the
OPERA on-board fast Fourier transform (FFT) spec-
trum summed over three components. Comparing these
two curves, one should take into account the less
sensitive quantization level of the FFT and a possible
overestimate of the electric ®eld by the shorter length
dipoles, spectra of which are summed in the FFT
output.

Curve 1 in Fig. 3 shows the on-board FFT spectrum
detected at the quasi-perpendicular bow shock on 7

August 1995 at 08:34 UT. Comparison with the PRO-
GNOZ-8 bow shock spectrum [curve 2 in Fig. 3 (No-
zdrachev et al., 1995)] proves that as in the case of the
magnetic ®eld spectra, ASPI ELF measurements are
compatible with the results of previous electric ®eld
experiments. The OPERA ®lter-bank spectrum at the
same shock is shown as curve 4 (Fig. 3). It is interfered
with by one of the spacecraft transmitters at 40±60 kHz
(this peak is extracted in the Figure), which reduces the
electric ®eld amplitude due to the saturation of the ®lter-
bank preampli®er. The plateau at the frequences 0.2±4
kHz is characteristic of the ion-acoustic waves at the
quasi-perpendicular shocks.

An example of the upstream electric ®eld spectra
from the long dipole (curve 5) exhibits a well-de®ned
peak at the Langmuir frequencies. Such peaks are often
registered in the electron foreshock of quasi-perpendic-
ular shocks. Its amplitude (0.02 mV/m/

����
H
p

z) is much
stronger than the average one, measured by the ISEE-1
(Etcheto and Faucheux, 1984) and IMP-6 (Filbert and
Kellogg, 1979) long antennas, but is close to the typical
short-dipole measurements on Phobos-1,2 (Trotignon
et al., 1991). Taking into account typical wavelengths of
Langmuir waves (of order of the Debye length), we
believe that the 22-m-long dipole antenna on INTER-
BALL-1 is more appropriate for studies of high-
frequency electrostatic waves.

The preliminary DC OPERA electric ®eld data
analysis shows that:

1. In the plasmasphere the DC electric ®eld signals are
dominated by the V-cross-B induction signal. The
auroral electric ®elds can be determined by substraction
of the model V-cross-B signal.
2. Despite the overall symmetry of long dipole with
respect to the spacecraft spin axis, the light non-
symmetry of the boom elements near the BD1 and
BD2 electric probes causes the spin-modulated photo-
current interference signal in the long dipole (Ey)
component. This in¯uence is usually less than the
natural electric ®elds in the magnetosheath and dense
plasmasheet, but dominates in the solar wind and empty
lobes.
3. The short BD3-BD4 dipole (Ez component) is the
most symmetric with respect to the spacecraft spin axis,
nevertheless the spin-modulated signal induced by
photo-current dominates in the DC Ez channel.
4. The DC channel of the another short, nearly
sunward directed dipole (Ex, probes BD5, BD6) is
usually in saturation outside the plasmasphere, intro-
ducing di�culties in the measurements of the sunward
DC electric ®eld by the short asymmetric dipole. In
the dilute plasma once per revolution, photoelectrons
from the BD6 probe ¯ow to the boom, making a
negative pulse of about 250 mV in the DC Ex electric
®eld channel. However, this signal often becomes
negligible in the plasmasheet and magnetosheath when
the boom is shielded by the plasma with smaller
Debye length.

The subtraction of the spacecraft- and photocurrent-
induced interferences from the electric ®eld measure-

Fig. 3. Noise levels of the electric ®eld sensors. Curve 1: bow shock
spectrum (on board FFT); curve 2: bow shock spectrum, measured by
the BUD-E experiment of PROGNOZ-8; curve 3: noise spectrum (on
board FFT); curve 4: bow shock spectrum (®lter bank); curve 5:
upstream spectrum (®lter bank); curve 6: noise spectrum (®lter bank)
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ments requires a knowledge of the plasma and magnetic
®eld characteristics, measured by other INTERBALL-1
experiments. Not all these data were available at the
time of writing. For this reason in Sect. 3.3 we present
only the long-dipole antenna measurements in the
magnetosheath and near-Earth plasma sheet. In this
particular set of data taken in a su�ciently dense
plasma, interferences are proved to be signi®cantly
smaller than natural signals. The GSE frame of refer-
ence Ey component is reconstructed using the spacecraft
rotation with no additional processing. The use of
shorter-dipole measurements requires the removal of
interference signals and will be performed in the future
publications.

As for the AC electric ®eld waveforms, presented in
Sect. 3.3, we also consider long-dipole measurements as
the most accurate. The signal is given in its original form
as recorded on board. Signals from the shorter diploes
are modi®ed with the preliminary calibration factors
relative to the long-dipole signal.

3.1.3 Plasma current measurements

In Fig. 4 curves 2 and 3 show the FGM-I split Langmuir
probe signal (Iz) spectrum from ®ve MIF-M ®lters.
Curve 3 represents a typical quiet solar wind signal,
whose amplitudes are several times less than the
sensitivity threshold of the PROGNOZ-10 split probe
at 25 Hz (Romanov et al., 1991). Before the ASPI
experiment, current ¯uctuation measurements had never
been performed in the outer magnetosphere in the
frequency range 130±2000 Hz.

Unfortunately, during ®rst two months of the
INTERBALL-1 operation no bow-shock crossings were

registered during transmission of the Iz high-resolution
waveform signal with a 500-Hz sampling rate. The
plasma current spectrum presented in Fig. 4 (curve 2)
was measured by the MIF-M ®lter bank at the low-
latitude shock crossing on 6 August 1995. PROGNOZ-
10 [Fig. 4, curve 1, (Petrukovich et al., 1993)] and
INTERBALL spectra agree well, taking into account
power-law extrapolation to the adjacent frequency
range.

The main Iz waveform interference was found to be
the same as for the search-coil wide-band channel, name-
ly ± a quasi-periodic signal at frequency about 80 Hz.
This interference can partially saturate the channel in the
regions with the high level of wave turbulence (e.g. bow
shock or outer cusp).

3.2 High-latitude magnetopause measurements

We start our experimental data presentation with an
example of the high-latitude magnetospheric boundary
crossing. The INTERBALL-1 crossed the outbound
¯ank magnetopause on 26 August at 04:39:22 UT, at
the point with the GSE coordinates (±2.3, ±9.0, 9.1 RE).
In Fig. 5 the DC magnetic ®eld data is presented in the
magnetospheric boundary coordinate system (Russell
and Elphic, 1978). The magnetosphere region is on the
left. The normal direction was found as a vector
product of the average magnetic ®elds on both sides
of the discontinuity. The magnetic ®eld rotation and the
drop of its total value Bt occur at 04:39:22 UT. Before

Fig. 4. Noise level of the split Langmuir probe. Curve 1: plasma
current spectrum at the bow shock, detected by the PROGNOZ-10
plasma wave experiment; curve 2: bow shock plasma current
spectrum from the ®lter bank; curve 3: split probe noise as measured
by the ®lter bank in the quiet solar wind

Fig. 5. High-latitude magnetopause crossing 26 August 1995. Mag-
netic ®eld components Bl, Bm, Bn and total value Bt in the boundary
frame of reference. See text for details
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this moment a wave with the period of about 130 s is
seen in the Bn component, being absent in the Bt. We
believe that this signature is due to the magnetopause
surface wave propagation. Just outside of the magne-
topause at 04:40:10 UT one can see a wave packet in the
Bn component, coinciding with the rotation of the Bl

one.
The 150-s-long time-interval starting at 04:38:10 UT

was chosen for the minimum variance data analysis, the
result is presented in Fig. 6. The FGM-I magnetic ®eld
data is used for this short time-interval analysis as the
FGM-I instrument had a sampling rate four times
higher than that of the MIF-M in this particular case.
The ratios of the maximum-to-intermediate and inter-
mediate-to-minimum eigenvalues are 38 and 5, respec-
tively. The minimum variance direction is just a few
degrees apart from the normal direction. Also, the
eigenvector frame of reference is rotated about 10°
around the normal with respect to the boundary frame
used in Fig. 5. The bipolar disturbances in the Bk

(Fig. 6) and Bn (Fig. 5) components are similar to the
¯ux transfer event signatures (Russell and Elphic, 1978),
which were investigated for ®rst time at the high
latitudes by PROGNOZ-8 (Blecki et al., 1987, 1988;
Savin, 1994). A comparison with the MHD simulations
of the magnetopause (Nikutowski et al., 1996) was
performed. It demonstrates the similarity of this event
with either the magnetosheath pressure-pulse dynamics
or with the Kelvin-Helmholtz instability development.
Both models predict signi®cant ¯uctuations of the
normal magnetic ®eld in the second half of the crossing.
No similarity with the crossings of the quiet magneto-
pause or reconnection region was found. However, the
latter should be checked more carefully using the three-
dimensional local reconnection model.

In Fig. 6 one can point out low-frequency waves with
a frequency lower than 0.1 Hz and with 0.2±0.3-Hz
frequencies (close to the ion gyro-frequency). At high
latitudes the second type of near-magnetopause wave
was classi®ed and studied in the PROGNOZ-8,10 data
(Vaisberg et al., 1983; Klimov et al., 1986; Belova et al.,
1991; Savin 1994). The higher-frequency ELF wave
activity can be studied with the help of Fig. 7 where
FFT spectrograms of MIF-M and OPERA waveforms
are displayed. The upper panel shows 0.1±32 Hz electric
®eld Ez component spectra, the bottom panel shows the
same for the Bx component. The behaviour of the other
components is similar to that of presented ones. The
magnetosheath encounter is seen on the magnetic
spectrogram at 04:39:22 UT as the beginning of the
intense signal. Such a signal is known to be a good
indicator of the magnestosheath plasma. However, the
electric ®eld spectra do not exhibit critical magneto-
sphere/magnetosheath di�erences in the amplitudes.
Outside the magnetosphere they correlate well with the
intense bursts of magnetic spectra. The electric ®eld
bursts at the inner border of magnetopause at 04:39 UT
and at 04:35 UT are almost electrostatic, with up to 8
mV/m peak-to-peak amplitudes. To our knowledge, we
are the ®rst to show the presence of a weak magnetic
component during such bursts, which themselves are
rather usual for the high-latitude magnetopause cross-
ings (Vaisberg et al., 1983; Klimov, 1992). Magnetic
spectra also have a wider frequency spread in compar-
ison with the electric ones, as the magnetic ®eld channel
is substantially more sensitive.

Just outside the magnetopause at 04:39±04:46 UT
there exists a region with very high turbulence level
(Fig. 7), in which the amplitude of the electric ®eld
signal is more than 5 mV/m, and that of the magnetic
®eld more than 5 nT. In this region the Bl component
(Fig. 5) is highly disturbed but does not vanish to the
nearly zero average level, as happens deeper in the
magnetosheath. So, this component here is closer to its
value inside the magnetosphere. This feature could be
due to the e�ect of the shocked solar wind magnetic ®eld
lines draping around the magnetosphere. We will
henceforth call this region the ``draped layer'' (DL). In
the DL the biggest ELF wave bursts correlate with the
bipolar Bn signatures in Fig. 5. Outside DL the turbu-
lence amplitudes are weaker, bursts are rarer and at
05:28 UT (not shown on the plots) the turbulence
characteristics become ®nally typical for the quiet
magnetosheath with amplitudes several times less than
in the DL. We call the regions with the turbulence
features as at 04:39±05:00 UT the ``turbulent zones''
(TZ).

The high-latitude TZ was reported ®rst based on the
PROGNOZ-10 data and then studied in detail using the
PROGNOZ-8 crossings (Savin et al., 1990; Belova et al.,
1991; Savin , 1994; Klimov, 1992). The studies of DL at
the ¯ank magnetopause were unfortunately not per-
formed in the ®rst reports on such observations by
PROGNOZ-8,10 spacecraft (Klimov et al., 1986; So-
kolov et al., 1990; Savin, 1994). In the INTERBALL-1
¯ank magnetopause crossings studied so far (18 Octo-

Fig. 6. High-latitude magnetopause crossing 26 August 1995. Mag-
netic ®eld components in the minimum variance frame of reference.Bi:
maximum variance direction; Bj: intermediate variance direction; Bk :
minimum variance direction. See text for details
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ber, 18±20 UT; 2 September, 19:00 UT; 10 September,
13:22 UT; 30 August, 00±01 UT) TZ and DL regions are
always present except for the 30 August crossing, where
the DL could not be identi®ed due to a very complex
multiple magnetopause encounter.

So, the described ¯ank outbound magnetopause
crossing is a fairly representative one. It is compatible
with the results of earlier missions. As in the case of the
PROGNOZ-8 crossing (Blecki et al., 1987, 1988; Savin,
1994), in future analysis we expect to ®nd the accelerated
electrons and ions in the magnetopause vicinity and
especially in the ``turbulent zone''.

3.3 Observations at low latitudes

In August/September 1995 at the inbound part of orbits,
INTERBALL-1 was crossing the low-latitude magneto-
pause, the low-latitude boundary layer and the plasma-
sheet. The case of the 21 September 1995 crossing was
chosen for the presentation. Here the plasma sheet,
predicted by the orbital analysis (Prokhorenko, 1995)
was observed together with the unexpected magneto-
pause crossing.

In Fig. 8 the ASPI GSE magnetic ®eld data for the
interval 02:00±03:00 UT, 21 September 1995 are shown.

Fig. 7.High-latitude magnetopause crossing 26 August 1995. Spectrograms of theEx (top) and Bz (bottom) waveform signals. Frequency range is
0.1±32 Hz
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On the top of Fig. 9 the GSE frame-of-reference Ey

component, measured by the long dipole of the electric
®eld instrument is shown. Only for this dipole the
interference signal is proved to be negligible in this
particular crossing (see Sect. 3.1.2). As the spacecraft
spin period is about 120 s, the resulting electric ®eld
values are available only once per 60 s. On the bottom of
Fig. 9 the RMS amplitude of the plasma current oscil-
lations in the range 1±8 Hz is plotted. FFT spectrograms
for the same period are in Fig. 10.

The GSE spacecraft coordinates for the middle of the
interval are (±3.4, ±12, ±1.8 RE). In the GSM frame only
the Z GSM coordinate di�ers substantially from the

GSE counterpart, being equal to 2 RE . The Tsyganenko
model for kp = 2 predicts GSE magnetic ®eld vector at
02:00 UT to be (5.3, 8.5, 15.7 nT, Bt = 18.6 nT). One
can conclude that excluding the disturbed interval at
02:26±02:39 UT the experimentally observed magneto-
sphere is slightly compressed, having an average total
magnetic ®eld value 1.4 times higher than the model one
and a nearly vanishing By GSE component.

In the middle of Fig. 8 at 02:28 and 02:33 UT Bt

drops to 3±10 nT, which means most probably that the
spacecraft is out of the magnetosphere. Preliminary
analysis of the plasma particle data con®rms this
conclusion. At the 02:38 UT only the near-magneto-
pause turbulent layer is touched for about 2 min. Similar
to the high-latitude magnetopause observations the
magnetosheath and magnetopause turbulent layer en-
counters are accompanied by intense electromagnetic
noise (Figs. 9, 10). The most intense wave bursts
correlate with sharp magnetic ®eld changes.

The exit from the magnetosheath at the 02:33 UT is
the only one long enough to determine the value of the
DC electric ®eld from the spin-modulated signal of the
long dipole. The Ey GSE component here is about 2.5
mV/m (Fig. 9). It corresponds to anti-solar plasma
velocity of the order of 350 km/s, which is reasonable for
the magnetosheath. In the plasma sheet the Ey GSE
component is negative with an average value of )2.5
mV/m, which implies sunward plasma convection with a
speed of about 100 km/s. Such convection takes place
during the northward interplanetary magnetic ®eld, and
exactly this IMF direction was registered during this
period.

The interval 02:32:00±02:32:25 UT, with the most
pronounced magnetopause crossing, was chosen for the
detailed analysis of the AC waveform data (Fig. 11).
The magnetopause crossing occurs at 02:32:06±02:32:08
UT. The upper panel of Fig. 11 shows the magnetic ®eld
waveform signal. Three AC electric ®eld waveforms are
on the bottom panels. The highest-amplitude (up to 10
nT!) Bz wave packet is seen exactly at the time interval
of the DC-®eld sharp rotation (02:32:08 UT). The
frequency of the dominating signal is about 0.8±1.5 Hz.
The most intense electric ®eld signal with amplitudes
greater than 5 mV/m is seen just inside the magneto-
pause.

Electrostatic waves with a frequency of a few Hz and
amplitude of about 10 mV/m just inside the high-
latitude dayside magnetopause were reported for the
®rst time using one-component measurements by Vais-
berg et al. (1983). They were later described for the ¯ank
magnetopause crossings by the PROGNOZ-8,10 space-
craft (Klimov et al., 1986; Blecki et al., 1988; Belova
et al., 1991; Savin et al., 1990; Klimov, 1992; Savin,
1994), and for the low-latitude magnetopause by ISEE-1
and GEOTAIL (Cattell et al., 1995) spacecraft. In
Fig. 11 vector measurements of such waves are present-
ed for the ®rst time.

The higher-frequency waves can be studied in
Fig. 10. The Ex spectra at the magnetic disturbances
have an intense 1-10-Hz component (red tones), while in
the rest of the magnetosphere the Ex waveform quan-

Fig. 8. Low-latitude boundary crossing 21 September 1995. GSE
frame-of-reference magnetic ®eld components and total value

Fig. 9. Low-latitude boundary crossing 21 September 1995. GSE
frame-of-reference Ey electric ®eld component (top panel ) and RMS
amplitude of the plasma current ¯uctuations (bottom panel )
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tization is too low. The magnetic ®eld channel, in
contrast, registers the 1±10-Hz waves outside such
disturbances. The comparison with the plasma current
1±8-Hz ¯uctuations (bottom panel of Fig. 9) shows that
at 02:20±02:45 UT the spikes in the plasma current
signal are similar to that of the Bz spectra (Fig. 10). At
02:06, 02:09, 02:14, 02:49, 02:56±03:00 UT there are
intense events in Fig. 9, which have no counterparts in
the dynamic spectra. We suppose that at these moments
electrostatic waves with smaller amplitudes and higher
frequencies were observed. As the split probe signal has
better quantization than the electric ®eld one, such
emissions were registered only by the split probe.

Turning now to the plasma sheet region (Fig. 8, and
10 excluding 02:26±02:39 UT) we would like to point out
the electromagnetic waves in the 0.1±20-Hz frequency
range. Such waves were found to be characteristic for the
plasma sheet [see e.g. Blecki et al., (1994) and references
therein]. However, most of the previous results were
based only on the electric ®eld data studies. At 02:05±
02:12 UT the modulation of the magnetic spectra can be
seen. The DC magnetic ®eld components at this time
also ¯uctuate with a period of 1.5±2.5 min. The absence
of such oscillations in the plot of the total magnetic ®eld
value could speak in favour of either an AlfveÂ n wave or
a magnetopause surface wave observation.

Fig. 10. Low-latitude magnetopause crossing 21 September 1995. Spectrograms of the Ex (top) and Bz (bottom) waveform signals. Frequency
range is 0.1±32 Hz
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An example of the low-latitude magnetospheric
boundary crossing described here is rather unusual for
such a spacecraft position. It demonstrates a substantial
ELF wave activity both in the relatively quiet and in the
highly disturbed periods. Special interest is attracted by
the electric and magnetic ®eld oscillations near the
magnetopause transition, which have frequencies near 1
Hz. Their amplitudes can reach 10 nT and 5 mV/m,
respectively. We have also con®rmed the existence of the
ELF electric oscillations in the plasma sheet and
measured their magnetic component. The described
crossing can be subjected to in-depth studies on a multi-
instrument basis, as nearly all INTERBALL-1 experi-
ments were operating in fast modes.

4 Conclusions

The ASPI wave and ®eld experiment on board the
INTERBALL-1 spacecraft has been successfully oper-
ating in the orbit beginning from the 3 August 1995.
Unique features of the ASPI instruments, such as
reliable multi-sensor magnetic ®eld measurements,
three-component electric ®eld measurements and electric
current measurements make it possible to provide
valuable new information on the plasma dynamics in
the magnetosphere.

Analysis of the in-¯ight instrument operations have
shown the high quality and reliability of the DC

magnetic ®eld measurements. The MIF-M/PRAM DC
magnetometer is working as the primary magnetic ®eld
experiment of the mission. AC magnetic ®eld measure-
ments are performed at high sensitivity in the few-Hz
range, thus covering the gap usually existing in the
frequency range between the DC and AC magnetic ®eld
experiments. Measurements of the electric ®eld and
plasma current have su�cient sensitivity to study a
variety of plasma processes. However, three-component
DC electric ®eld measurements have encountered di�-
culties which are mainly due to the non-symmetry of the
short booms with respect to the Sun and the spacecraft.
Preliminary analysis of the data collected shows a
compatibility of new results with those of previous
missions.

Several examples of data registered in the various
regions of the Earth's magnetosphere are described in
the second half of the paper. The high-latitude magne-
topause crossing is a typical representative of such
phenomena. A number of crossings similar to the
presented one were encountered by INTERBALL-1
during the ®rst months of operation. Being combined
with the recent advances in theory and numerics these
data collections will permit a thorough investigation of
inherent plasma processes forming the magnetospheric
boundaries.

An example of the low-latitude magnetospheric
boundary crossing described is rather unusual for such
a spacecraft position. It demonstrates substantial ELF
wave activity both in the relatively quiet and in the
highly disturbed periods. Properties of these waves
correspond well to the results of the previous experi-
ments and of the high-latitude INTERBALL-1 ones.
We have con®rmed the existence of intense electric
¯uctuations in the few-Hz frequency range and have
studied their relation to simultaneously observed intense
magnetic waves. The described crossing can be subjected
to in-depth studies on a multi-instrument basis, as nearly
all INTERBALL-1 experiments were operating in fast
modes.

In all described cases high-resolution waveform
measurements provide a good basis for the studies of
the ELF turbulence.

The unique constellation of magnetospheric space-
craft planned to be in orbit in the immediate future
(GEOTAIL, INTERBALL-1,2, WIND, POLAR) is
another promising perspective to perform global studies
of the Earth's magnetosphere.
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