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Abstract. From data of the European incoherent scatter
radar EISCAT, and mainly from its tristatic capabilities,
statistical models of steady convection in the auroral
ionosphere were achieved for various levels of magnetic
activity. We propose here to consistently extend these
models to the polar cap, by avoiding the use of a pre-
defined convection pattern. Basically, we solve the
second-order differential equation governing the polar
cap convection potential with the boundary conditions
provided by these models. The results display the
classical twin-vortex convection pattern, with the cell
centres around 17 MLT for the evening cell and largely
shifted towards midnight (3—3.5 MLT) for the morning
cell, both slightly moving equatorward with activity. For
moderate magnetic activities, the convection flow
appears approximately oriented along the meridian
from 10:00 MLT to 22:00 MLT, while in more active
situations, it enters the polar cap at prenoon times
following the antisunward direction, and then turns to
exit around 21:00 MLT. Finally, from these polar cap
patterns combined with the auroral statistical models,
we build analytical models of the auroral and polar
convection expected in steady magnetic conditions.

1 Introduction

During the last decade, several empirical models of the
high-latitude ionospheric convection have been per-
formed from various instruments: ground-based mag-
netometers (see Papitashvili er al., 1994 and references
therein), radars (Foster ef al., 1986a, b; Holt et al., 1987,
Foster et al., 1989; Senior et al., 1990; de la Beaujardicre
et al., 1991; and references therein), spacecraft (Heppner
and Maynard, 1987; Rich and Hairston, 1994; and
references therein), and also a combination of all these
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observations in the AMIE procedure (Richmond and
Kamide, 1988; Lu et al., 1994, and references therein).
On the whole, these studies contributed to display a
dominant two-cell convection pattern, closing the anti-
sunward drift within the polar cap by a return sunward
flow at lower latitudes through the morning and evening
sectors. The variability, observed in the global flow
pattern and in the cell location and size, has demon-
strated their dependence on number of controlling
factors such as the season, the magnetic activity, the
components Bz and By of the interplanetary magnetic
field (IMF)... Evidence was given of the rapid response
of the convection patterns to disturbed magnetic
conditions, substorms, changes of the IMF, as illustrat-
ed for example in the instantaneous planetary maps
derived from the AMIE procedure.

However, several aspects of the convection system
are not presently fully understood. One of them, the
structure of polar cap convection, has become an
increasing interest due to its implications for our
knowledge of the terrestrial environment. For instance,
satellite observations of unexpected sunward convection
deep inside the polar cap during northward IMF (Burke
et al., 1979, and subsequent papers) have fed contro-
versial interpretations, suggesting the distortion of the
two existing cells, or the presence of extra polar cells, or
the transient signature of rapid changes in the IMF.
Although crucial, we do not approach this topic here,
largely discussed in the literature over recent years (see
Hill, 1994, and references therein).

The understanding of transient or localized events,
and the proper identification of their own effects, require
knowledge of the steady states from which they can
develop. As a step towards further studies of these
events, presently beyond the scope of this study, our
major aim is to investigate from observations the
influence of the auroral electrodynamics, closely coupled
to magnetospheric processes, on the large-scale convec-
tion within the polar cap. This topic has already been
approached using measurements of the Millstone Hill
radar over the latitudinal range from 56° to 73°.
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Statistics on the velocity data were performed to build
average patterns of the convection electrostatic potential
as a function of the magnetic activity index Kp and the
IMF Bz and By components (Holt et al., 1987). Only
partly accessible within the radar field of view, the
auroral equipotentials were connected across the polar
cap above 73° invariant latitude by assuming a two-cell
pattern with an asymmetry across the polar cap (Foster
et al., 1986a), or by solving the Laplace’s equation
governing the convection potential with the neglect of
field-aligned currents poleward of the radar field of view
(Foster et al., 1986b). For the different purpose of
deriving instantaneous convection maps from localized
observations, the procedure AMIE (Richmond and
Kamide, 1988) also relies on this statistical model to
start the fitting process in data-sparse regions. Its role in
the resulting pattern depends on the observation cover-
age and locations.

Following a similar guideline, we first take advantage
of the tristatic capability of the European incoherent
scatter radar (EISCAT) UHF to measure directly the
three components of the convection velocities: this
cancels out assumptions required by monostatic facili-
ties and improves the error bars. Then, the simultaneous
measurements of velocity vectors and of scalar para-
meter profiles give access to the ionospheric electrody-
namics. From the same EISCAT data base of
experiments of elevation scanning in the meridian plane
(see Senior et al., 1990 for details), statistics and
empirical models were performed for convection (Senior
et al., 1990), conductances (Senior, 1991), and currents
(Fontaine and Peymirat, 1996). They give a consistent
description of the auroral electrodynamics over more
than 10° latitude and for different magnetic activity
levels: quiet (0 < K, < 2), moderate (2 < K, < 4) and
disturbed (4 < K, < 6). Due to its close coupling with
the magnetosphere, the auroral ionosphere is a region of
enhanced electric fields, currents, and conductances,
which influence the convection at the planetary scale. In
particular, the consistent statistical set mentioned con-
tains pieces of information important to solve the
convection potential equation within the polar cap. As
with the auroral statistics, the computed polar cap
potential will depend on the Kp index. Its use rather
than IMF or other indices might be controversial,
because the polar cap convection also depends on solar
wind parameters, particularly at short time scales.
However, we note that the computation method used
in this work is independent of any index. It would apply
in the same way with any large-scale distributions of
auroral electric fields, currents, and conductances, and,
similarly, the reliability of the results would be improved
if a set of parameters, simultaneously observed or
consistently modelled, is made available.

The method to compute the polar cap potential,
based on the finite element technique, is briefly described
in Sect. 2. It requires boundary conditions and also the
knowledge of conductance and field-aligned current
distributions within the polar cap, which are generally
inferred from models. As indicated in Sect. 3 and 4, the

number of assumptions can be substantially reduced, in
particular from the use of the statistical set inferred from
EISCAT. Finally, we present and discuss in Sect. 5 the
polar cap convection patterns, computed to extend the
statistical models of Senior et al. (1990).

2 Method

At the steady state, the convection electric field is
assumed to derive from an electrostatic potential ¢,
which is computed from the distributions of the
ionospheric conductances ~ and the field-aligned cur-
rents j,, by solving the equation of the current closure,
height-integrated over the ionospheric layer:

div (X grad¢) = —j, sin/ (1)

where [ is the inclination of the magnetic field, X the
conductance tensor, and j, is positive for currents
flowing into the ionosphere (downward).

We solve this second order differential equation over
the polar cap by the finite element method with two
boundary conditions, in a similar way to Peymirat and
Fontaine (1994). More precisely, the domain covers all
local times, and the latitudes between two circular
boundaries at a constant invariant latitude. A poleward
boundary is required to avoid the singularity at the pole
in the mesh of triangular finite elements: it is taken as a
small circle I',,; at 89° invariant latitude. At I',,;, the
boundary condition is a Neumann condition, which
expresses the preservation of the ionospheric horizontal
currents. As the field-aligned currents are generally
assumed to be negligible near the pole, this condition
can be written as:

rf Jo dl'poy =0 (2)

pol

where Jj is the meridional component of the ionospheric
horizontal currents. The potential along I',,; is only
assumed to be a constant. Its value, at first unknown, is
a result of the computations. The equatorward bound-
ary I'y, is set at 70° invariant latitude, and the conditions
along I'y, are Dirichlet conditions, where the potential
takes the value predicted by the statistical models of
the convection potential inferred from EISCAT data
(Senior et al., 1990). Finally, to solve the elliptic equation
of the polar cap potential, we performed a variational
formulation which directly includes these boundary
conditions: it ensures the uniqueness of the computed
solution and has the advantage to satisfy rigorously the
boundary conditions (see Peymirat and Fontaine, 1994,
for details on the method).

The solution of Eq. (1) requires the additional
knowledge of the polar cap conductances £ and field-
aligned currents j,. They are generally derived from
models, and in the considered cases, their influence can
be substantially limited, as indicated later.
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3 Model of ionospheric conductances

In the polar ionosphere, the conductances mainly
depend on the solar illumination. From the data base
mentioned already, Senior (1991) performed statistical
models of the sun-induced contribution at the latitude of
EISCAT, as a function of the solar zenithal angle y. We
apply the same expressions at polar latitudes:

Tm = 1.81 + 8.88 cos (3a)
S5 = 21.58 — 0.21% (3b)

where the subscripts P and H refer to the Pedersen and
Hall conductances.

Negligible at polarmost latitudes, the effects of
precipitations progressively increase towards auroral
latitudes, where the nightside belt of enhanced conduc-
tances dominates the global distribution. They add to
solar conductances a contribution, dependent on lati-
tude and local time, which should be taken into account.
We make use of the model of Hardy et al. (1987) derived
from precipitating electron fluxes measured on board
the DMSP satellites for corrected geomagnetic latitudes
higher than 50°. Apart from minor discrepancies, the
resulting contribution Z?ﬁ,) due to precipitations was

found consistent with EISCAT observations for the
three considered Kp ranges 0 < Kp < 2,2 < Kp < 4, and
4 < Kp < 6 (Senior, 1991). Finally, the total conduc-
tances are expressed as:

Zpir) = \/ (Zi??z>)2+ (Z%))z (4)

For example, Fig. 1a,b displays the isocontours of the
Hall conductances for two ranges of Kp, respectively
2<Kp<4 and 4 < Kp <6, on polar maps with
decreasing invariant latitudes from the magnetic pole
at the centre down to 60°, and the magnetic local time
indicated around the larger circle. The terminator is
chosen along the line 06:00-18:00 MLT. The slow
decrease from day to night of the sun-induced conduc-
tances in the polar cap is modified by auroral precip-
itations, which tend to intensify and to expand equa-
torward with magnetic activity.

4 Model of field-aligned currents

From the same EISCAT data base, Fontaine and
Peymirat (1996) also derived statistical models of field-
aligned current densities in the auroral zone (between
62° and 71° invariant latitudes). They exhibit global
features and densities consistent with the typical distri-
butions deduced by Iijima and Potemra (1976a, 1976b,
1978) from the TRIAD satellite. However, the finite
latitudinal coverage of EISCAT observations does not
give access to the entire current pattern. In particular,
the high-latitude dayside current system remains pole-
ward of the field of view. Region 2 can be identified at
almost all local times for each Kp range. The region 1
sheet widely intrudes on the nightside into a large

Conductances

2<Kp<4 12

4<Kp<6 12

b 0 MLT

Fig. 1a,b. Isocontours of Hall conductances represented in polar
maps between the north pole and 60° invariant latitude, with the
MLT indicated on the external circle. The contour interval is 2 mhos
and the bold line corresponds a to 10 mhos for 2 < Kp < 4 and b to
13 mhos for 4 < Kp < 6

poleward half of the field of view for disturbed
situations (4 < Kp < 6), it contracts somewhat pole-
ward but can still be partly probed for moderate
magnetic activities (2 < Kp < 4), while it almost disap-
pears from the radar field of view for weak activities
(0 < Kp < 2). This last case will be ignored in the
following. For the two other cases, the total current
intensity indicates that EISCAT is actually observing
the major part of the field-aligned current system
(signature of coupling processes between the ionosphere
and the magnetosphere) which partly controls the polar
cap convection. The problem consists in extending these
current statistical models at somewhat more polar
latitudes inaccessible to the radar range, in order to
provide a consistent description of the global system.
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From Millstone Hill observations, Foster ez al. (1989)
achieved field-aligned current patterns at auroral and
polar latitudes for various levels of auroral precipita-
tion. Poleward of the radar field of view (i.e. above 73°
invariant latitude), the derivation of field-aligned cur-
rents already involves a poleward extrapolation of
statistical electric fields observed at lower latitudes.
The use of a pre-defined distribution of polar electric
fields must definitely be avoided in the present work,
which precisely aims at deriving them independently.
Fujii and Iijima (1987) focused upon the relationships
between the ionospheric conductances and the field-
aligned currents, but for very weak magnetic activities
(Kp < 1) which we do not consider here. From obser-
vations on board the satellites TRIAD (Iijima and
Potemra, 1976a; 1978) and ISIS 2 (McDiarmid et al.,
1979), Rich and Kamide (1983) proposed a simple
analytical representation of field-aligned current pat-
terns, which appears well suited to extrapolate the
poleward current part unavailable from EISCAT.
Firstly, it gives comparable patterns at the auroral
latitudes probed by EISCAT. Secondly, it depends on
two fitting parameters: F, the normalization factor for
current densities, and R21, the ratio between the
maximum densities of the region 2 and 1, which both
can be set to match EISCAT results. Indeed, this model
exists with four versions. Identical in the night sector
and also in the equatorward part, they mainly differ for
region 1 and for the high-latitude dayside current
system, depending on the sign of IMF By and on
assumptions on their configuration:

1. If the auroral field-aligned current sheets are assumed
to approach noon without overlapping, a small
region of cusp currents is expected poleward of the
auroral sheets on the afternoon side of the noon
meridian for IMF By < 0 (case 1) or on the morning
side for IMF By > 0 (case 2).

2. In the two other cases, the auroral sheets are assumed
to overlap at noon: the morning region 1 sheet is
expected to intrude into the postnoon sector pole-
ward of the afternoon region 1 sheet for IMF By < 0
(case 3), or vice-versa, it is the afternoon region 1
sheet which intrudes into the prenoon sector pole-
ward of the morning sheet for IMF By > 0 (case 4).

The field-aligned current models inferred from
EISCAT, keyed to the Kp index, probably include a
mixture of periods with IMF By < 0 or > 0. However,
for each Kp range, we could determine one single version
of Rich and Kamide’s (1983) models and the corre-
sponding fit parameters, which match them at best and
minimize the differences with the currents inferred from
EISCAT data. We proceeded in the following way.

For 2 < Kp < 4, the entire region 2 is observed
within a large part of EISCAT field of view, but only
part of region 1 at the poleward latitudes of the
nightside. In particular, it is not absolutely certain that
EISCAT observes the peaks of the region 1 current
sheets. The normalization factor, to apply to Rich and
Kamide’s (1983) model for fitting EISCAT current
densities, is computed from region 2 maximum densities.

The parameter R21, ratio of the peak current densities
between region 2 and 1, is set to 0.5, following lijima
and Potemra (1978). Then, from tests against the
various versions, the best agreement with EISCAT
results is met by case 3 of Rich and Kamide (1983)
shifted northward by 1° invariant latitude.

For 4 < Kp < 6, in addition to region 2, EISCAT
also observes region 1, which widely intrudes into the
field of view at most local times, except maybe in the
early afternoon. At least over the whole nightside, a
zone of maximum densities is identified for both evening
and morning sheets of both current regions. These
maximum zones are used to normalize the model of
Rich and Kamide (1983) and to estimate the parameter
R21. We obtained 0.4, by comparison with 0.6 predicted
by lijima and Potemra (1978). Since we cannot exclude
the possibility of even larger region 1 densities at more
poleward location in the morning or afternoon sectors,
we finally set R21 to 0.5, the average between both
estimates. The best fit to EISCAT observations is
obtained hereby with case 4 of Rich and Kamide (1983).

Finally, and this is a first result, for both considered
magnetic activity levels, EISCAT observations at auro-
ral latitudes cannot be fitted by patterns like case 1 and 2
of Rich and Kamide (1983), which assume a separation
without any overlap of the current sheets at noon.
Secondly, we note that the observed current distribution
on the dayside is better fitted by case 3 corresponding to
IMF By < 0 for moderate activity, and by case 4
corresponding to IMF By > 0 for more active periods.
This latter result indicates a global trend in our data set
rather than a general relationship between classes of Kp
and IMF, because our data base is not large enough to
separate statistical effects due to IMF and to magnetic
activity.

Figure 2 shows the isocontours of the field-aligned
current patterns resulting from the combination of
EISCAT observations below 70° invariant latitude,
and of their extensions at higher latitudes with Rich
and Kamide’s (1983) model parametrized from EISCAT
auroral observations. Downward currents are represent-
ed by solid isocontours and upward currents by dashed
isocontours. For 2 < Kp < 4 (Fig. 2a), the model
extension describes, at latitudes just beyond the radar
field of view, the poleward edge of the observed region 1
sheets on the nightside, and the continuation of the
evening region 1 sheet by a high-latitude intrusion into
the prenoon sector, overlapping the morning sheet. For
4 < Kp < 6 (Fig. 2b), the maximum density zones of
region 1 are already observed on the nightside, and the
extension mainly concerns the high-latitude dayside
current system.

5 Results

From these polar distributions of ionospheric conduc-
tances and field-aligned currents extrapolated from
EISCAT auroral statistics, we solve Eq. (1) of the
convection potential within the polar cap (above 70°).
The boundary conditions at 70° invariant latitude are
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Currents

2<Kp<4 12

4<Kp<6 12 Currents

Fig. 2a,b. Isocontours of the field-aligned currents represented in
polar maps similar to Fig. 1. The contour interval is 0.075 pA/m? for a
2 < Kp <4andb0.12 pA/m* for 4 < Kp < 6

provided by the convection patterns inferred by Senior
et al. (1990) from companion statistics. The polar maps
in Fig. 3a,b display the equipotential lines, resulting
from the combination of the EISCAT statistics below
70° and of the result of Eq. (1) above 70°, respectively
for the two considered ranges of magnetic activity
2 < Kp <4 and 4 < Kp < 6. The bold line (0 kV)
separates positive potentials (solid lines) and negative
potentials (dashed lines). Along the polar boundary I',,;
at 89° invariant latitude, the potential, assumed con-
stant, takes a value close to 0, respectively —0.7 kV and
—-0.3 kV for the two cases. The equipotential lines
describe the classical twin-vortex convection pattern,
with the polar antisunward flow and the sunward return
at lower latitudes. As expected, the polar cap potential
drop increases with magnetic activity from 38 kV to

2<Kp<4 12 Potential

4<Kp<6 12 Potential

b OMLT

Fig. 3a,b. Equipotentials of the convection electric field represented in
polar maps similar to Fig. 1. The contour interval is a 2 kV for
2 < Kp <4,and b 3 kV for 4 < Kp < 6. The bold line corresponds
to 0 kV

61 kV; it approaches closely the predictions of Foster
et al. (1986b), but seems slightly underestimated relative
to other studies (for further details and comparisons, see
Senior et al., 1990).

We discuss next the main features of the polar cap
convection against previous published results. The use
of various parameters and indices, IMF, Kp, or AE, in
the various studies does not allow a direct quantitative
comparison. In fact, if their definitions and variations
cannot be easily related, they involve general tendencies
which may at least suggest qualitative information. As
already noticed by Foster et al. (1986a), the Kp or AE
indices give an indication of the strength of ionospheric
currents, a situation which is predominantly (but not
only) expected for an IMF orientation favourable to the
merging at the magnetopause. Consequently, in the
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absence of Kp dependence in previous studies, we retain
as the most plausible criteria for comparison: (1) IMF
Bz < 0, generally expected for active periods, (2) IMF
By < 0 or > 0, consistently with the choice of the field-
aligned model best fitted to EISCAT observations at
auroral latitudes, and (3) spring or fall, to approach the
equinox conditions, assumed for the conductance dis-
tribution.

The centres of the dawn and dusk cells, respectively
located around 73° and 75° invariant latitude for
moderate activity, move slightly equatorward (72° and
73°) with activity, in global agreement with Foster et al.
(1986a), Holt et al. (1987), and Richmond et al. (1988)
in comparable situations, de la Beaujardiere et al.
(1991) for weak Kp indices, and also by Friis-Chris-
tensen et al. (1985) for IMF Bz < 0. Our results show
that the local time location of the vortex centres at 17
MLT and 3-3.5 MLT depends little on the magnetic
activity level at the steady state, consistently with most
comparable statistics, except maybe some cases with
more sunward cells predicted by Friis-Christensen et al.
(1985).

For 2 < Kp < 4, the dusk cell spreads towards earlier
prenoon times than for stronger activity, which could be
interpreted as an effect of the intrusion of the region 1
upward currents to this local time sector (case 3 of Rich
and Kamide, 1983 with IMF By < 0). Mainly because
of the close connection of our results on Kp-dependent
auroral statistics, the role of IMF By on the structure of
the polar convection, already extensively studied (see for
example, Friis-Christensen et al., 1985; Heppner and
Maynard, 1987), remains beyond the scope of our work.
We note a good agreement with the convection patterns,
which were inferred from Millstone Hill statistics in
comparable situations by Foster et al. (1986a), or
computed by Rich and Kamide (1983) for a similar
current distribution at dayside high-latitudes, but dif-
ferent boundary conditions on the potential at I',;. This
last point confirms a posteriori that the convection
pattern is not very sensitive to the polar boundary
condition.

Following Holt et al. (1987), the places where the
flow diverges indicate the centres of the regions of flux

tube entry and exit from the polar cap, and the
orientation of the separation line between the two cells.
For 2 < Kp < 4, the cell separation appears approxi-
mately aligned along the meridian 10:00-22:00 MLT.
For 4 < Kp < 6, the polar cap flow follows a somewhat
distorted path along a bent separation line: it still enters
the polar cap at prenoon local times but in a direction
approximately antisunward, and it then turns within the
polar cap to exit around 21:00 MLT. This behaviour
agrees well with Foster et al. (1986a) in conditions
roughly similar (3 < Kp <5, IMF Bz <0, IMF
By > 0). More generally, the global orientation of the
polar cap flow presents overall features similar to the
predictions of Friis-Christensen et al. (1985) in condi-
tions of IMF Bz < 0, and IMF By < 0 or IMF By > 0,
possibly related to our moderate or disturbed activity
levels. It is generally admitted that the IMF direction is
controlling the respective size of the convection cells and
the location of their centres. Our results also suggest
that the auroral electrodynamics may contribute to
distortion of the orientation of the convection flow
within the polar cap and its connections to the auroral
circulation (entry, exit).

Empirical models were derived from EISCAT statis-
tics. They are based on theoretical functions which
combine a Fourier analysis in MLT and an expansion in
Legendre polynomials P; depending on invariant lati-
tude A, both up to the 5th order. We apply the same
procedure (Alcaydé et al., 1986) to the whole potential
pattern represented in Fig. 3. The theoretical expression
for the potential ¢ is given by:

b= Z > P(x) (4icos( o) — Byjsin(jp)) (5)

with x depending on the invariant latitude A as:

2A — A max — A min (6)
X =
A max — A min
Tables 1 and 2 give the coefficients 4,; and B, for both
magnetic  activity  ranges, with A max = 89°,
A min = 62° for the case 2 < Kp < 4 and A min = 63°
for the case 4 < Kp < 6.

Table 1. Coefficients of the theoretical functions fitting the potential ¢ between 62° and 89° invariant latitude for 2 < Kp < 4

Aij i=0 i=1 i=2 i=3 i=4 i=5
j=0 ~0.9399 ~1.0918 0.0045 1.2456 1.0582 -0.9043
j=1 3.1903 2.2052 ~5.9740 ~1.0665 2.0654 0.1739
=2 1.5119 ~0.8418 ~2.4266 1.7585 0.8337 -0.9363
j=3 0.4583 0.0282 ~0.3246 -0.3950 ~0.0931 0.5597
=4 0.1774 0.0788 -0.3921 -0.0442 0.2791 0.0473
j=5 0.0818 ~0.0133 -0.1248 -0.0448 0.1658 0.0219
Bij i=0 i=1 i=2 i=3 i=4 i=5
j=0 - - - - - -

j= ~8.5191 1.0008 10.7078 ~1.9007 ~3.2563 2.0404
j=2 ~0.9084 22221 0.1887 -2.5344 0.6571 1.2201
j=3 0.0995 0.5375 ~0.4844 -0.3770 0.1924 ~0.0049
=4 ~0.1537 0.0146 0.0264 0.1386 0.0222 ~0.0886
j=5 0.1605 0.0237 ~0.1643 ~0.0665 ~0.0452 0.1473
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Table 2. Coefficients of the theoretical functions fitting the potential ¢ between 63° and 89° invariant latitude for 4 < Kp < 6.

Aij i=0 i=1 i=2 i=3 i=4 i=5
j=0 -0.7117 0.5135 -0.4616 —-0.4078 1.1933 0.0921
j=1 2.4267 —-0.1411 —6.4294 5.3276 0.4396 —2.8522
j=2 4.2835 —0.6834 -4.9546 1.0739 0.2156 0.3763
j=3 —-0.7007 —-0.3697 1.1688 0.0855 —-0.4737 0.4687
j=4 —-0.1589 0.1767 0.2449 —-0.2995 -0.1289 0.2418
j=>5 —-0.0037 —-0.0025 —0.0258 0.1190 —-0.0982 —0.0945
Bij i=0 i=1 i=2 i= i=4 i=
j=0 - - - - - -
j=1 -16.0086 7.2953 13.4689 -5.0066 -1.3693 2.4084
j=2 0.3759 2.4620 -2.1952 -1.5764 1.4280 -0.1752
j=3 0.4866 0.0522 —-0.7763 0.3554 —-0.2402 -0.0130
j=4 - 0.1171 —-0.4327 0.6129 0.3083 -0.7504 0.4626
j=5 0.2846 -0.2216 -0.0030 -0.0723 -0.1377 0.2560
The results are displayed in Fig. 4. Apart from the
2<Kp<4 12 Fitted Potential smoothing of localized irregularities at 70° latitude near

10

4<Kp<6 12 Fitted Potential

10

b 0 MLT

Fig. 4a,b. Analytical models for the convection potential represented
in polar maps identical to Fig. 3 (see text for details)

10 MLT, they closely approach the convection patterns
presented in Fig. 3. Finally, they propose a simple
analytical representation of the large-scale convection at
auroral and polar latitudes, in steady magnetic condi-
tions.

6 Conclusions

Unexpected ionospheric flow structures within the polar
cap, such as sunward reversals, localized shears, extra
cells, departing from the classical antisunward convec-
tion, were reported mainly from satellite observations.
As a first step towards the understanding of transient or
localized events in the polar cap and the quantitative
estimate of their signatures, this study aims at describing
the convection flow pre-existing within the polar cap for
steady conditions. This goal already resulted in various
approaches such as the modelling from various config-
urations of conductances and currents (see for example,
Blomberg and Marklund, 1991), the extrapolation of
observations from various instruments (see for example,
Foster et al., 1986a, b; Heppner and Maynard, 1987), or
the combination of observations and models as in the
AMIE procedure (Richmond and Kamide, 1988). Our
proposal was a contribution to these investigations
using specific capabilities of EISCAT observations and
of numerical methods.

One advantage of the EISCAT UHF radar is the
tristatic measurement of velocities, which avoids the use
of additional assumptions. Secondly, the measurement
by EISCAT of the scalar parameters simultaneously
with the velocity vectors gives access to the auroral
electrodynamics. Statistical models of convection
(Senior et al., 1990), conductances (Senior, 1991) and
currents (Fontaine and Peymirat, 1996) were achieved
from the same data base and for the same magnetic
conditions. They provide a consistent description of the
auroral ionosphere, which gives a solid basis to allow us
to infer polar cap convection patterns. Finally, EISCAT
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statistics are keyed to the Kp index, which implies the
same Kp-dependence for the results.

The numerical method that we use does not depend
on any magnetic activity index nor on the time scale,
and could be applied to any spatial distribution of the
electrodynamic parameters in the auroral zone. It rests
on the finite element technique to solve the second-order
differential equation for the polar cap potential, and
involves a variational formulation which directly in-
cludes the boundary conditions, similarly to Peymirat
and Fontaine (1994). The advantages are the uniqueness
of the computed solution and the rigorous preservation
of the boundary conditions. These boundary conditions
are provided by the EISCAT statistical models of
convection potential at auroral latitudes. The equation
also depends on the polar cap distributions of conduc-
tances, dominated by the solar illumination, and of field-
aligned currents, mainly flowing at auroral latitudes.
However, part of the current system remains beyond the
radar range: mainly the dayside current system, and the
poleward edge of the nightside current sheets. They are
extrapolated from the analytical models of Rich and
Kamide (1983), but their influence is restricted by
imposing on them the constraint to fit EISCAT auroral
observations. The case of quiet magnetic activity is
discarded because the extrapolation of the whole region
1, shrunk to a position almost poleward of EISCAT
observations, could produce unrealistic patterns.

For moderate (2 < Kp <4) and disturbed
(4 < Kp < 6) activities, the polar cap potential is
computed between 70° and 89° invariant latitude, and
displayed on maps together with the corresponding
statistical potential inferred from EISCAT below 70°
(Senior et al., 1990). It reproduces the classical two-cell
pattern. The cross-polar cap potential drop increases
with magnetic activity in agreement with previous
studies (Foster et al., 1986a; Heppner and Maynard,
1987), but with a slight underestimation as already
discussed by Senior et al. (1990). The centre of the dawn
and dusk cells, located at 73° and 75° invariant latitudes
for moderate activity, moves equatorward (72° and 73°)
with magnetic activity. On the contrary, the local time
location of the cell centres does not significantly vary
with activity. At dusk, it occurs around 17 MLT, while it
exhibits a larger shift towards midnight (3-3.5 MLT) at
dawn. This is a general trend, already noticed in
comparable situations (Foster ef al., 1986a; Holt et al.,
1987; Richmond et al., 1988; Senior et al., 1990; de la
Beaujardiere et al., 1991), apart from perhaps Friis-
Christensen et al. (1985) where predicted patterns are
globally shifted sunward.

The orientation of the convection flow over the polar
cap is found to be well aligned along the meridian 10:00—
22:00 MLT for moderate activities. For disturbed
periods, it follows a somewhat distorted path, entering
the polar cap at prenoon local times in an approximately
antisunward direction, and then turning within the polar
cap to exit around 21:00 MLT. Our results suggest that
the auroral electrodynamics contribute to the polar cap
convection pattern, in addition to the well-known effects
of the IMF orientation on the cell shape and location.

Finally, EISCAT statistics and numerical results are
combined to build analytical convection models for both
auroral and polar regions (above 62° invariant latitude)
as a function of the magnetic activity level. Such
predictions of the large-scale polar convection in steady
conditions should provide tools to identify the large-
scale effects and to estimate the signature of specific
events on the convection patterns observed by instru-
ments recently deployed in the polar cap such as the
EISCAT Svalbard Radar (ESR) and the SuperDARN
network.
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