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Abstract. We discuss the existence of the doubly-charged
ions N++

2 , O++

2 and O++ in the Earth’s ionosphere through
the theoretical computation of density profiles over the al-
titude range 100–500 km calculated with the TRANSCAR
model. Photoproductions and electron impact productions
are described in detail. The photochemical equilibrium as-
sumption verified in this context yields density profiles, val-
idated by comparison to the measurements of the satellite
Atmosphere Explorer. Those three dications are lost essen-
tially by dissociative recombination and collisions with the
neutrals N2, O2 and O. The metastable lifetime of N++

2 is 3 s
and is estimated at 4 s for O++

2 . A survey of the sensitivity
to geophysical parameters (solar activity, latitude and solar
zenith angle) is also shown. Emphasis is cast on the need
for rate constants for chemical reactions involving doubly-
charged ions. The fit of the model yields an estimated value
of 1.06±0.40×10−10 cm3 s−1 for the rate constant of the
O+++O reaction.

Keywords. Ionosphere (Ion chemistry and composition,
Modelling and forecasting, Planetary ionospheres)

1 Introduction

The existence of stable doubly-charged molecular ions in
laboratories dates back to the early years of the last century
when Aston (1920) and then Thomson (1921) made the first
discovery of what was then proposed to be either CO++ or
N++

2 . Half a century later aeronomers finally worked up an
interest in the role of dications into the ionosphere: Vegard
quoted by Meinel (1951) announced the identification of the
OIII line at 500.8 nm in the aurora spectrum for the strong
feature observed near 500.04 nm. However, as the 496.0-nm
line (which completes the doublet lines for O++) did not
appear in the spectrum, the discovery was finally rejected by
most authors.

Correspondence to:C. Simon
(cyril.simon@obs.ujf-grenoble.fr)

Nearly at the same time as the lead for a spectral evidence
was becoming more and more disputed, Hoffman (1967)
reported the detection of O++ in the topside ionosphere
by the mass spectrometer on board Explorer 31. Several
theoretical attempts were then led in the ionosphere (Walker,
1970), as well as in the magnetosphere (Nakada and Singer,
1968; Horwitz, 1981). Many authors such as Prasad and
Furman (1975) and above all Avakyan (1978a, b) pointed
out the necessity for a theoretical modelling approach to
take into account doubly-charged ions, namely N++

2 , O++

2
and O++. Due to the very large uncertainties concerning the
production, stability and reactivity of molecular dications,
every effort from this time on converged on the modelling of
O++ densities in comparison to the few available measure-
ments: in this context, Breig et al. (1977) used Atmosphere
Explorer C satellite data recorded in 1974, and with simple
assumptions, they produced the very first model of O++

densities, though reaction rates still corresponded to fits with
experimental data. Only one production reaction was put
forward to account for observed densities, i.e. ionisation of
O+. However, one year later, Avakyan (1978a, 1980) and
then Victor and Constantinides (1979) showed that another
source for O++ in the thermosphere had been previously
neglected, namely double photoionisation of O, found to be
the dominant mechanism below 500 km. Breig et al. (1982)
then revised their hypotheses and produced another model
that was compared with the same Atmosphere Explorer
data for which the processing had been improved. They
found good agreement and drew their conclusions on the
validity of the reaction rate constants for O+++O, deduced
to be k=6.6×10−11 cm3 s−1. However, other studies were
conducted at the same time by Fox and Victor (1981) on
Venus whose conclusions on reaction rate constants differed
from those of Breig et al. (1982) by a factor of two, i.e.
k=1.5×10−10 cm3 s−1. Later on, a study of this reaction
in Io plasma torus yielded the value 2.0×10−10 cm3 s−1

(Brown et al., 1983), which was close to the value of Fox
and Victor.
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Fig. 1. Synopsis of the fluid/kinetic transport model TRANSCAR. We show only the outputs that are involved in the present study, together
with the basic couplings.

Very recently, a period which coincided with the matu-
rity of both the experimental study of dications (see Mrázek
et al., 2000 and references therein) and ionosphere mod-
els, Witasse et al. (2002, 2003) predicted the existence of
a CO++

2 layer in the atmosphere of Mars with the ionosphere
model TRANSCAR which was specially adapted to the Mar-
tian conditions (Witasse, 2000; Morel et al., 2004).

With the growing possibilities of high-resolution measure-
ments made by satellites and ground-based facilities, we will
have access to more and more ionospheric parameters: we
present here the first complete computation of N++

2 , O++

2
and O++ ion densities in the Earth’s upper atmosphere.

We first describe the photochemical model and focus our
description on the production’s computation, both primary
and secondary, and the loss processes taken into account for
each ion. Dication densities are then deduced.

The second part deals with the inputs of the model, i.e.
cross sections, extreme ultra-violet (EUV) solar flux and the
neutral atmosphere. In the third section we show the results
of the modelling and validate the model by a comparison
with Atmosphere Explorer data. We can then detail the steps
of the computation which yields interesting features while
modifying geophysical parameters.

The last paragraph addresses the possibility of detection of
such ions applied to the Earth’s upper atmosphere and other
planets or satellites in the solar system, notably Titan.

2 The model TRANSCAR applied to dications

The model TRANSCAR and its outputs are described in de-
tail in Lilensten and Blelly (2002). The model describes the
upper atmosphere between 90 and 3000 km, assuming it is
composed of six ions, namely N+2 , O+

2 , O+, N+, NO+ and
H+. To summarize, TRANSCAR is a coupled kinetic/fluid
model which solves sequentially the Boltzmann kinetic equa-
tion for suprathermal electrons and the Boltzmann momen-
tum equations for the 6 ions listed above. Each part is linked
with the other and updated through ionisation and heating
rates (produced by the kinetic transport code), on the one
hand, and through electronic density and temperature yielded
by the 1-D, time-dependent fluid transport model, on the
other hand (Fig. 1).

For the ion productions which are the outputs of interest
in the present study, two mechanisms are taken into account.
First, the primary production is the ionisation of the thermo-
sphere due to the solar EUV flux and is basically related to
a Beer-Lambert law. Following this first photoproduction,
sufficiently high-energy primary electrons may be released
that can ionize, in turn, the neutral gas: secondary electrons
and ions are then generated, called the secondary ion pro-
duction. In the latter case, we have to use a physical descrip-
tion in terms of a kinetic transport of suprathermal electrons,
given by the kinetic part of TRANSCAR. The Auger effect,
originally proposed as a low-altitude source of O++ ions by
Avakyan (1978a, 1980), is not taken into account here.
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The ionisation thresholds of N2, O2 and O, for single and
double ionisation processes are listed in Table 1. The kinetic
formalism described below is relevant to doubly-charged
ions, and follows closely the singly-charged ion description
of Lilensten and Blelly (2002). The photochemical descrip-
tion proposed in Sect.2.4 is, however, specific to doubly-
charged ions while singly-charged ion parameters are given
by the Boltzmann fluid formalism.

2.1 Primary productions

The expression of the primary production profileP
j
prim (z)

of an ionj is given in cm−3 s−1 by a simple Beer-Lambert
law for the energyE and at the altitudez:

P
j
prim(z) = ns(z)

∫
σ

s→j
i (E) I∞(E) e−τhν (z,E) dE , (1)

where I∞(E) is the solar flux on the top of the ionosphere,
σ

s→j
i (E) the photoionisation cross section of speciess pro-

ducing the doubly-charged ionj , andns(z) the density of the
mother speciess which can be either a singly-charged ion or
a neutral.
τhν(z,E)=

∑
s

σ a
s (E)

∫
∞

z
ns(z

′) chapχ(z′) dz′ represents the

optical depth, a function of the absorption cross section of
the speciess notedσ a

s (E) andchapχ(z), the Chapman func-
tion, a function of the altitude and the solar zenith angleχ .

2.2 Kinetic transport and secondary productions

The primary electrons can be of a high enough energy to
ionize as well the neutral gas, even for doubly-charged ions,
which have a high ionisation threshold. The steady-state ki-
netic transport equation describes the angular and energy re-
distributions of electrons and connects the spatial evolution
of the electron flux from the top of the ionosphere to the low
E-region. Mathematically speaking, when reviewing losses
and sources, we can write (Lilensten and Blelly, 2002):

µ
∂I (τ, E, µ)

∂τ(z, E)
= −I (τ, E, µ)+sf (τ, E, µ)+

ne(z)∑
k

nk(z)σ
T
k (E)

∂(L(E) I (τ, E, µ))

∂E
+

∑
l

 nl(z)σ
T
l (E)∑

k

nk(z)σ
T
k (E)

1∫
−1

dµ′

∞∫
E

dE′Rl(E′
; µ→E; µ)I (τ, E′, µ′)

 ,(2)

where I (τ, E, µ) is the electron stationary flux
(cm2 s−1 eV−1 sr−1), E, E′, µ and µ′ the energies in
eV of scattered and incident electrons and their respective
pitch-angles cosine.σ T

k (E) stands for the total elastic and
inelastic collisions’ cross section for the neutral speciess,
while nk(z) and ne(z) represent the density of the neutral
speciesk and the electron density.τ (z,E) is the electron
scattering depth, defined asdτ (z,E)=−

∑
s

σ T
k (E) nk(z) dz.

Table 1. Ionisation thresholds for some common species.

 1

Table 1. Ionisation thresholds for some common species 

 

Species Single Ionisation 

threshold (eV) 

Double ionisation threshold 

(eV) 

 N2 15.58  43.00  (Ahmad, 2002) 

 O2 12.08  36.13  (Hall et al., 1992) 

 O 13.61  48.74  (He et al., 1995) 

 O+ 35.13  

 

 Rl is the redistribution function (or normalized differ-
ential cross section) from an initial state (E′, µ′) to a final
state (E, µ) for the neutral speciesl. It depends on the
elastic and inelastic cross sections. The source function
sf (τ, E, µ), which corresponds to the photoelectron pro-
duction rate, varies with the precipitated flux or the primary
photoelectron flux conditions. The continuous energy loss
function L(E), describing the energy transfer from the
suprathermal “hot” electrons to the ambient electrons, is
computed via a scheme given by Swartz and Nisbet (1972).

The secondary production of the ionj is then:

P
j
sec(z) = 2π ns(z)

1∫
−1

dµ

∞∫
0

σ
s→j
ie (E) I (τ, E, µ) dE . (3)

σ
s→j
ie (E) is here the electron-impact ionisation cross section

for the production of a doubly-charged ionj through the
mother speciess, either an ion or a neutral.

The final overall production for the doubly-charged
speciesj is simply the sum of the primary and the secondary
productions.

P
j
tot (z) = P

j
prim(z) + P

j
sec(z) (4)

2.3 Loss mechanisms for dications: a chemical model

The chemical loss profiles are defined as:

Lj (z) =

∑
i

ki ni(z) +
1

τ d
j

, (5)

whereki is the reaction rate constant (cm3 s−1) correspond-
ing to the reaction of N++

2 , O++

2 or O++ with a neutral of
densityni , andτ d

j is the dissociation lifetime of the molecu-
lar doubly-charged ionj .

The electronic recombination rate with N++

2 is taken from
Seiersen et al. (2003). The rate constants for the reaction of
O++

2 with N2 and O2 are taken from Chatterjee and Johnsen
(1989). N++

2 reaction rate constants are given by new lab-
oratory measurements from the LCP/LURE team with the
CERISES apparatus (acronym for Collisions Et Réactions
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Table 2. . A comprehensive list of reaction rate constants for N++

2 , O++

2 , and O++ corresponding to the reactions with the neutrals N2, O2,
O and the electronic recombination.

 2

Table 2. A comprehensive list of reaction rate constants for N ++
2 , O ++

2 , and O++ 
corresponding to the reactions with the neutrals N2, O2, O and the electronic 
recombination. 

Species Reaction Reaction rate constants 
(cm3 s–1) 

References 

N ++
2  + N2 → products  k1 = 2.70 × 10–9 ± 25% This work 

N ++
2  + O2 → products  k2 = 2.80 × 10–9 ± 25% This work 

N ++
2  

N ++
2  + e– → N2

+ + hν  k3 = 5.8 × 10–7 







][

300
KT

0.5  ± 20% Seiersen et al. (2003) 

 k4 =  2.0 × 10–9 Glosik et al. (1978) 
O ++

2  + N2 → O2
+ + N2

+ 

 k4 =  (2.0 ± 0.5) × 10–9  at 0.04 eV Chatterjee and Johnsen (1989) O ++
2  

O ++
2  + O2 → O2

+ + O2
+  k5 =  (2.0 ± 0.5) × 10–9   at 0.04 eV Chatterjee and Johnsen (1989) 

 2.9 × 10–10 Breig et al. (1977) 

 (1.3 ± 0.3) × 10–9  at 300 K Johnsen and Biondi (1978) 

 (1.6 ± 0.6) × 10–9 Howorka et al. (1979) 

 1.4 × 10–9 Geiss and Young (1981) 

O++
 + N2 → products 

k6 

 (3.15 ± 0.26) × 10–9   at 2×104 K Fang and Kwong (1995) 

 (1.5 ± 0.3) × 10–9 at 300 K Johnsen and Biondi (1978) O++
 + O2 → products 

k7  (1.7 ± 0.7) × 10–9 Howorka et al. (1979) 

 1.0 × 10–11 ± 40% Breig et al. (1977) 

 ~ 2 × 10–11 Avakyan (1978a) 

  ≤ 10–10 Victor and Constantinides (1979) 

 1.5 × 10–10   (in the case of Venus) Fox and Victor (1981) 

 6.6 × 10–11 Breig et al. (1982) 

 2.0 × 10–10  (in the case of Io) Brown et al. (1983)  

O++
 + O → O+ + O+ 

k8
 

 (1.06 ± 0.40) × 10–10 This work (see text) 

O++
 + e– → O+ + hν  k9 = 2.1 × 10–11 Z2 T–0.5  Nakada and Singer (1968) 

O++
 + N2 → O + N ++

2   k10 ~ 6.8 × 10–11 Avakyan (1978a) 

O++ 

O++
 + O2 → O + O ++

2   k11 ~ 2 × 10–11 Avakyan (1978a) 

d’Ions Śelectionńes par des Electrons de Seuil). The exper-
imental procedure is described in Nicolas et al. (2002) and
Franceschi et al. (2003).

In the case of N++

2 , the lifetime of the ion ground state is
3 s (Mathur et al., 1995). For O++

2 , as no data is currently
available, we assume that the lifetime is limited by the tun-
nelling through a barrier towards dissociation and we esti-
mate it equal to the lifetime of CO++

2 , i.e. 4 s (Mathur et al.,
1995). When produced in excited states (electronic or vi-
brational), the lifetime of the dication is known to decrease
rapidly (Cox et al., 2003). Therefore, another unknown is
the relative abundance of the dication ground state to the

excited states in the “ionisation cross section measurements”
reported in Table 3. This is unknown, but as the lifetime is
rapidly decreasing with internal energy, and as the spectrom-
eters used for absolute measurement are generally sensitive
to species stable in the 10-microseconds-or-more time range,
we estimated that the abundance of the ground state might
well be 50–80% of the population that was measured. How-
ever, as we don’t know more precisely the ratio, we chose
to use the data from Table 3 as it is, and therefore produce
an upper estimate of the expected density of the molecular
dications O++

2 .
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Table 3. Cross sections available for the ionisation of N2, O2 and O.

 3

Table 3. Cross sections available for the ionisation of N2, O2 and O. 

Species Photoionisation cross 
section 

Maximum cross section value  
measured (cm2) Electron-impact cross section 

3.6 × 10–18 Halas and Adamczyk (1972) 

3.35 × 10–18 Märk (1975) 

~ 6.6 × 10–18 
Krishnakumar and Srivastava 

(1990), maximum estimate* 

N2 → N ++
2  – 

 

~ 6.9 × 10–18 Straub et al. (1996), estimated* 

1.07 × 10–18 Märk (1975) 

~ 1.9 × 10–18 
Krishnakumar and Srivastava 

(1992), maximum estimate* 
O2 → O ++

2  – 

 

~ 1.6 × 10–18 Straub et al. (1996), estimated* 

Angel and Samson (1988) 0.22 × 10–18 5.56 × 10–18 Ziegler et al. (1982) 

5.59 × 10–18 Zipf (1985) O → O++ 
Fennelly and Torr (1992) 0.22 × 10–18 

5.5 × 10–18 Itikawa and Ichimura (1990) 

Baluja and Zeippen (1988) † 8.50 × 10–18 

Kjeldsen et al. (2002) † 8.50 × 10–18 
43.8 × 10–18 Aitken & Harrison (1971) 

O+ → O++ 

Aguilar et al. (2003) † 10.6 × 10–18 45.3 × 10–18 Yamada et al. (1988) 

* The original measurements concerned the products N+ + N ++
2  and O+ + O ++

2  together. Maximum estimates on 

cross sections for the production of N ++
2  and O ++

2  are made here on the following assumptions proposed by 

Krishnakumar & Srivastava (1990) for N ++
2  and by Märk (1975) for O ++

2 . According to these authors, a 

maximum of 10% of the overall N+ + N ++
2  production reported may be of N ++

2  origin while Märk (1975) reports 

than O ++
2  cross sections are less than 1% of those for the production of O2

+, yielding the estimates shown in 

Table 3. 

† Cross sections measured at threshold. 

∗ The original measurements concerned the products N+ + N++

2 and O+ + O++

2 together. Maximum estimates on cross sections for the

production of N++

2 and O++

2 are made here on the following assumptions proposed by Krishnakumar and Srivastava (1990) for N++

2 and

by Märk (1975) for O++

2 . According to these authors, a maximum of 10% of the overall N+ + N++

2 production reported may be of N++

2
origin while Märk (1975) reports than O++

2 cross sections are less than 1% of those for the production of O+

2 , yielding the estimates shown
in Table 3.
† Cross sections measured at threshold.

Owing to the existence of measurements of the rate con-
stants for the reaction of O++ with N2, O2 (discussed in
Sect.4), and O, we can roughly estimate the effective lifetime
of O++ in multiplying by the corresponding neutral densities

1
kini

: we obtain an O++ lifetime of less than 100 s at all alti-
tudes between 100 and 500 km.

Other loss reactions, namely that of O++ with He and H,
can be of importance above 600 km, where He and H con-
centrations become high and rate constants reach values of
1.1×10−10 cm3 s−1 for 1000 K. Because all densities are cal-
culated below 500 km, as showen in Sect.2.4, these loss re-
actions are assumed to be negligible.

2.4 Output of the model: densities of N++

2 , O++

2 and O++

Using the continuity equation
∂nj (z)

∂t
+div(nj (z) vj (z)) =

Pj (z)−nj (z)Lj (z), we are now able to determine the density

profile of a doubly-charged ion.
The densitynj (z) of a doubly-charged ionj is simply

given by the photochemical equilibrium:

nj (z) =
P

j
tot (z)

Lj (z)
. (6)

This expression is valid at low altitudes, i.e. at altitudes
less than 500 km. At higher altitudes, the velocity may be-
come too large to insure the validity of the steady-state as-
sumption.

3 Inputs of the model

To solve Eqs. (1) and (3), we need to know the parameters
ns(z), σ

s→j
i (E), σ

s→j
ie (E), andI∞(E).

The neutral compositions and temperature are provided
by the semi-empirical model MSIS-90 (Hedin, 1987, 1991)
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Fig. 2. Left: O++ density as recorded by AE-C2758 on 12 August 1974 (circles) and for different geophysical conditions computed by
the model in the photoequilibrium assumption (curves). The blue curve stands for the satellite latitude/longitude position (–5.81◦,64.87◦)
for χ=79.99◦ at altitude 161 km. The red curve corresponds to (–31.55◦,54.64◦), χ=78.53◦ at 377 km. The green curve is for the position
(–45.67◦,45.70◦), χ=78.91◦ at 494 km. Right: evolution of O++ density under the variation of the reaction rate constantk8 (see text) in
parallel with AE-C data plots (empty circles). Blue curve:k8=1.50×10−10cm3 s−1. Green curve:k8=1.00×10−10cm3 s−1. Magenta
curve:k8=5.00×10−11cm3 s−1. The best fit with AE-C 2758 atχ=78.53◦ is obtained fork8=1.25×10−10cm3 s−1(red curve).

while we use the solar flux model EUV91 with its 39-energy
box scheme (Tobiska, 1991) on which the photoionisation
cross sections are sampled.

The different ionisation cross sections of interest in this
study are summarized in Table 3. Generally speaking, no
data have been available up to now for the double photoion-
isation of the N2 and O2 molecules, while for the electron
impact, a large documentation exists. The only complete set
of data is for O++, for both photoionisation and electron im-
pact ionisation. We use Fennelly and Torr (1992) for double
photoionisation of oxygen, and Zipf (1985) for the electron-
impact cross section because of their remarkably precise ta-
bles.

We take N2 and O2 electron-impact double-ionisation
cross sections from M̈ark (1975): it is the only measurement
available so far where the direct production of N++

2 is given
without any spectrometric overlapping with N+. The double
photoionisation of N2 and O2 is a more complex source of
concern as no results have been published yet. We use the
approximation:

σ
N2
hν (N++

2 )

σhν(N2)
=

σ
N2
e (N++

2 )

σe(N2)
and

σ
O2
hν (O++

2 )

σhν(O2)
=

σ
O2
e (O++

2 )

σe(O2)
(7)

to yield the double photoionisation cross sectionsσ
N2
hν (N++

2 )

and σ
O2
hν (O++

2 ), whereσhν(i) stands for the photoabsorp-
tion cross section of the neutral speciesi, σe(j) or the to-
tal electron impact diffusion cross section of the speciesj

andσ i
e (i

++) for the double electron impact ionisation cross
section of the neutrali.

Another source of molecular dications might be the single
electron-impact ionisation of N+2 and O+

2 : though the ionisa-
tion cross sections (of the order of 10−17 cm2 for N+

2 accord-
ing to Bahati et al., 2001) is not negligible, the N+

2 and O+

2
densities are much smaller than the neutral ones by a factor
of at least 106. The result is that this contribution to N++

2
and O++

2 productions is negligible in our context, especially
in the low-altitude regions considered here.

4 Validation of the model

In this section, we compare the results of the model de-
scribed above for O++ with the lone experimental data from
the magnetic ion mass spectrometer MIMS (Hoffman et
al., 1973) on board Atmosphere Explorer (AE), which were
recorded 30 years ago (Breig et al., 1982).

4.1 Calculated O++ densities compared with AE-C data

The AE satellite sampled data during descent in late af-
ternoon in the southern winter non-polar ionosphere, cor-
responding to orbits C-2735, C-2743, C-2754, C-2757, C-
2758. The solar zenith angle ranged between 75◦ and 85◦,
while the magnetic indicesAp remained around 16.

In Fig. 2, we plot O++ densities as a function of alti-
tude. On the left panel, we compare AE-C measurements
to the model’s predictions for three different geographical
coordinates, corresponding to data recorded at low altitude
(161 km), mean altitude (377 km) and high altitude (594 km).
The model reproduces well the data profiles, however, with a
little discrepancy between 140 and 200 km: as the measure-
ment uncertainties are also growing larger at these altitudes,
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Fig. 3. O++ density in the range 100–500 km for AE-C successive orbits 2735 (top left), 2743 (top right), 2754 (bottom left) and 2757
(bottom right). The results of the model are compared to AE–C data and we fit for each plot the reaction rate constantk8. Top left:
k8=1.1×10−10cm3 s−1. Top right: k8=6.5×10−11cm3 s−1. Bottom left: k8=1.6×10−10cm3 s−1. Bottom right:k8=7.0×10−11cm3 s−1

(AE–C data taken from Breig et al., 1982).

it results in a high spreading of experimental AE data points,
which eventually enables one to validate our results at lower
altitudes.

In the following subsections, we adopt for the model the
average-altitude parameters of each satellite orbit, i.e. for or-
bit C-2758χ=78.53◦, and the latitude/longitude set (–31.55◦,
54.64◦), taken as mean conditions.

Let us now discuss our model inputs. As stated above, we
use the semi-empirical model MSIS-90 for the neutral atmo-
sphere. This model is in fairly good agreement up to 400 km
with the recorded AE-C data for the neutrals. Above 400 km,
it clearly overestimates the measurements and reaches a den-
sity value higher by a factor of two at 500 km. Nevertheless,
depending on the neutral composition inputs (either MSIS or
AE-C neutral composition recording), the results of our di-
cation density model are not significantly modified at these
high altitudes (differences up to 10% at most). We obtain
once more good agreement with AE-C O++ density profiles.

We can now test the reaction rate constants listed in
Table 2. The best agreement with AE-C O++ profiles is

Table 4. Summary of the reaction rate constants obtained for the
reaction O+++O on each AE orbit.
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Table 4. Summary of the reaction rate constants obtained 
for the reaction O++ + O on each AE orbit. 

AE-C orbit Loss rate k8 (cm3 s–1) 

2735 1.10 × 10–10 

2743 6.50 × 10–11 

2754 1.60 × 10–10 

2757 7.00 × 10–11 

2758 1.25 × 10–10 

Average (1.06 ± 0.40) × 10–10 
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Fig. 4. O++ production and loss profiles for orbit 2758. Left panel: total O++ production profile. Right panel: loss mechanisms taken into
account in the model. Collisions with N2 (solid curve), with O2 (dashed curve), with O (dash-dotted curve) and with the electrons (triangles)
are represented. The sum of all contributions is in full circles.

Table 5. Set of geophysical parameters used in the model.
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Table 5. Set of geophysical parameters used in the model. 

Parameters 

Latitude 




°°
°°
EN
EN

5.43   ,45.11   Grenoble
18.95  ,69.66     Tromsø

 

Solar zenith angle χ χ = 0 – 90°  

Solar activity f10.7 




=
=

243
68

7.10

7.10

f
f

 

Magnetic index Ap Ap = 3 

 
found when using thek6 andk7 rate constants obtained in
laboratory measurements by Howorka et al. (1979). As
for the charge-exchange reaction O+++O, which has not
been measured but has been derived from models, we are
compelled to search for the best fit of our model while
varying the coefficientk8. This is shown in Fig. 2 (right
panel) for orbit C-2758: we find the best fit for the value
k8=1.25×10−10 cm3 s−1.

4.2 Determination of the O+++O reaction rate constant

Breig et al. (1982) published AE-C data for different orbits
corresponding to the two days before orbit C-2758. They
occur in slightly different conditions. The satellite recordings
occur during descents that spread from 10 August (C-2735)
to 12 August 1974 (C-2757). We plot in Fig. 3 the O++

density with the reaction rates defined in the previous section

for each satellite orbit. We fit the reaction ratek8 for each
particular recording in order to obtain the best correlation.

These different sets of orbital data lead us to the consensus
value k̄8=1.06±0.40×10−10 cm3 s−1 at 1σ for the O+++O
reaction.

The values fitted are summarised in Table 4 and averaged
over the five orbits considered, and eventually yield the coef-
ficient k̄8.

This result ranges nicely in between the extreme values
found by Fox and Victor (1981) determined on Venus, i.e.
k8=1.5×10−10 cm3 s−1, and Breig et al. (1982) on Earth, i.e.
k8=6.6×10−11 cm3 s−1. A limitation to these comparisons
is that, together with the approach presented here, both au-
thors fitted their model with experimental data while using
very simple assumptions for the computation of productions
and losses. According to Smith and Adams (1980), Breig et
al. (1977) may have well underestimated their values in light
of what is expected experimentally for other doubly-charged
ions such as Xe++ or Ar++, and should be of the order of
10−10 cm3 s−1.

The value retained here needs of course further confirma-
tion from laboratory studies. What’s more, the temperature
dependence of the reaction rate constantk8 has to be cleared
up as we observe large variations depending on the orbit of
the satellite. These variations, though certainly not entirely,
could partly be of thermal origin.

4.3 Production and loss profiles for AE-C 2758

In Fig. 4, we plot the O++ production and loss profiles for
AE orbit No. 2758. On the left panel, the production shows a
broad peak that maximizes at 10 ion cm−3 s−1near 180 km.
On the right panel, we have the detailed contributions of O++

losses due to collisions with the neutral gas and the electrons.
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Fig. 5. Ion production profiles between 100 and 800 km (top left and right) at Grenoble,χ=63.51◦. The electron contribution (black
solid curve) is given by the weighted sum of all ion species: N+

2 (solid blue), O+2 (solid green), O+(solid red), N+ (solid magenta), H+

(dashed black), N++

2 (dashed blue), O++

2 (dashed green) and O++ (dashed red). Primary productions are shown on the left and secondary
productions on the right. Bottom: doubly-charged ion primary productions (solid curves) versus secondary productions (dashed curves) in
minimum solar conditions (f10.7=68, left) and in active solar conditions (f10.7=243, right). N++

2 profiles are in blue, O++

2 in green and
O++ in red.

We can see that collisions with electrons are negligible
whatever the altitude. The other plots underline the growing
efficiency with altitude of the O+++O mechanism: above
350 km, collisions with O play the major role in the final
concentration shape and magnitude. We can then conclude
that at lower altitudes, where collisions with N2 and O2
molecules are prominent, the model is almost not influenced
by the O+++O process. As this latter process is also subject
to the largest uncertainties, the model verifies AE measure-
ments better for altitudes being below 300 km. This low-
altitude validity acts as a cornerstone to the overall validity
of the model.

So far as we have access to very few satellite data and
as there is a clear lack of statistics, our present photochem-
ical model is validated over the range of altitudes 100–
500 km for O++. We have determined by means of a fit

the charge-exchange reaction rate constant of O++ with O.
Concerning N++

2 and O++

2 , ionosphere measurements have
never been performed, and provided that our reaction rates
are up to date and our modelling approach is similar to that
of O++, we can assume that the model is also valid for these
two molecular dications. However, two strong limitations
arise. First, due to the present lack of laboratory studies, it
was not possible to take into account the reaction of molec-
ular dications with O, although it is probably the major loss
process at higher altitudes as we already showed for O++.
As a final step, we need direct data comparison to ascertain
the hypotheses and look for the best geophysical conditions
to create molecular ions in the ionosphere. In the next sec-
tions, a detailed sensitivity study of dication productions and
densities is carried out.
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Fig. 6. Detail of the secondary productions of O++ in Grenoble
and for quiet solar conditions,χ=63.51◦. Productions of O++ via
double ionisation by electron impact of O are shown in open circles.
The single ionisation of O+ is represented by black triangles. The
solid curve is the total secondary production of O++ (in cm−3 s−1)

through both mechanisms.

5 Sensitivity study of productions and densities

Three main geophysical parameters are taken into account
that are summarized in Table 5. Grenoble (France) is as-
sumed to be representative of middle latitudes and Tromsø
(Norway) is a typical high-latitude site. Two solar flux con-
ditions are studied through thef10.7 proxy variation, i.e.
f10.7=68 (solar minimum) andf10.7=243 (solar active con-
ditions). Finally, the sensitivity of each ion profile is exam-
ined throughout an entire day at Tromsø: the solar zenith
angle dependence is examined in detail. All over this work
the magnetic indexAp is set to 3, in order to avoid any in-
fluence from the magnetic activity. We choose day 120 of
the year (early May) to compute our productions, losses and
densities.

5.1 Primary and secondary productions

5.1.1 General considerations

Although the densities are computed only below 500 km, the
production is of course calculated and shown up to 800 km.
Primary and secondary production profiles of the main ion
species are presented in Fig. 5 between 100 and 800 km.

The electron contribution is simply the weighted sum of
all ion species: for dications, two electrons are produced
for each double-ionization of a neutral species. Its produc-
tion profile shows a two-peak shape particularly clear for the
primary productions, one at low altitudes near 110 km (due
to O+

2 ), the other near 180 km (due to N+

2 and O+). The
lower part of the figure shows the evolution of the dication

productions under quiet (bottom left) and active solar flux
conditions (bottom right).

The productions rates of a doubly-charged ion are smaller
than those for singly-charged ions by a factor at least equal
to 100. At very high altitudes, however (>600 km), the O++

primary production rate can represent up to 10% of that of
O+.

A change of dependence in O++ profiles is clearly seen
on the left-hand side of Fig. 5, particularly sensitive for the
primary productions. This evolution is interpreted as the two
physical mechanisms causing the production of O++, i.e. the
double ionisation of O and the single ionisation of O+, both
through photoionisation and electron impact ionisation. The
single photoionisation of O+ is the prominent mechanism at
high altitudes (400–800 km) while the double photoionisa-
tion of O plays the most important role at lower altitudes.
Among the secondary production mechanisms (electron im-
pact ionisation), the ionisation of O+ is the major reaction
for producing O++ ions from 700 km upwards, as shown in
Fig. 6.

As stated in Lilensten et al. (1989) and seen in Fig. 5 (bot-
tom), secondary dication productions contribute up to 30%
of the total ion productions above 180 km and are the main
contribution at lower altitudes (100–200 km for the molecu-
lar dications, 100–350 km for O++), because of the photon
penetration altitude into the ionosphere.

The difference between molecular dications and O++ is
due both to the rather high double ionisation threshold of O
(48.74 eV) and to the electron-impact cross sections that are
25 times larger than the double photoionisation cross sections
of O.

5.1.2 Influence of the solar activity

In Fig. 5 (bottom), productions increase together with the so-
lar flux index. The production rate peak increases in altitude
from 150 km to 180 km from low to high solar activity. Be-
tweenf10.7=68 andf10.7=243, their intensity increases by a
mean factor of 2.5 at low altitudes, owing to the growth of
neutral densities. Above 300 km, the solar flux intensifica-
tion is more noticeable and production rates increase by a
factor of 50 to 102 for f10.7=243, from minimum to maxi-
mum solar activity.

5.1.3 Influence of the latitude

The effect of the latitude is much smaller, as neither the
general shape nor the global low-altitude peak intensities
of dication production rates are observed to change signif-
icantly when moving from middle latitudes (Grenoble) to
high latitudes (Tromsø). The only effect that can be seen at
Tromsø is an increase in the total production rate of molec-
ular dications, and a slight decrease in the production rate
of O++. Differences between the two sites are less than 15%
below 200 km for all three doubly-charged ions but can reach
50% for N++

2 and O++

2 at 600 km.
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Fig. 7. Total productions (primary and secondary) of N++

2 (blue), O++

2 (green), O++ (red) over a whole day at Tromsø, for minimum
solar flux conditions (f10.7=68). Molecular dications show two sharp peaks at low altitudes, one around 115 km ascribed to the secondary
production profiles, the other near 180 km attributed to the primary production profiles. O++ presents a wide peak around 220 km, mixing
together the two production contributions.

5.1.4 Influence of the solar zenith angle

Together with the solar activity, the solar zenith angle vari-
ation is the parameter which has the strongest influence on
productions. The larger the solar zenith angle, the more in-
tense the solar flux absorption, because of the larger column
density of atmosphere along the path of the photons: it im-
plies that at a given altitude, fewer productions will be seen
and the peaks will be shifted towards higher altitudes (Fig. 7).
At χ=90◦, for instance, and according to the model, no ions
are produced at 100 km, regardless of the solar conditions.

This simple reasoning is verified for N++

2 and O++

2 . As
seen in Fig. 7, peaks for molecular dications come in twos
and are centred at very low altitudes (115 km and 120 km for
N++

2 and O++

2 , respectively) due to secondary productions
and the other at 180 km due to the primary production. O++

single production peak is wider and centred around 220 km,
a difference due to the density of atomic oxygen which be-
comes prominent over N2 and O2, from 200 km upwards.

5.1.5 Brief summary

The cumulative contribution of these 3 ions can be up to
5% of the total primary electron production and more than
10% for the secondary electron production, depending on
the solar flux conditions and the solar zenith angle. As
seen before, the total ion production rate is the sum of
primary and secondary production rates. In the altitude
range considered, secondary production rates contribute
50% of the total O++ion production rate. For N++

2 , it
reaches an average value of 15%, and for O++

2 a value of
less than 5%. According to the results of the model, O++

2 is
the rarest produced species of all three dications by a factor
of at least 10.

Figure 8 shows the total production above Tromsø for
all eight ions at minimum solar activity conditions and
for χ=63.51◦. Two peaks are visible for N++

2 and O++

2 ,
one around 110 km, the other at 180 km. For O++, the
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Fig. 8. Total ion productions at Tromsø,f10.7=68, for the ions N+2
(solid blue), O+2 (solid green), O+(solid red), N+(solid magenta),

H+(dashed black), N++

2 (dashed blue), O++

2 (dashed green) and
O++ (dashed red). The total electron productions are represented
in solid black.

production reaction O++hν→ O+++e− becomes prominent
above 500 km and leads to a more slowly decreasing slope
for the total production.

5.2 Densities

Figure 9 shows the major ion densities above Tromsø, for
the minimum solar activity model. Near 160 km, theF1
ionospheric layer is clearly seen, characterised by a peak in
NO+ density. We plot the electron density in black. Doubly-
charged ions are represented by dashed lines.

We note that, among dications, the highest densities are
expected for O++ which reaches 60 to 100 ions per cm3 at
500 km, and becomes the ion with the fourth highest density,
after O+, H+ and N+. At 500 km, the O++ density is 105

times larger than N++

2 and O++

2 . Peaks in the density of
N++

2 and O++

2 (1 cm−3 and 0.01 cm−3, respectively) are then
predicted between 200 km and 250k̇m.

5.2.1 Solar flux effect

O++ densities increase by a factor of 2.5 between 150 and
500 km, from low (f10.7=68) to high (f10.7=243) solar activ-
ity (Fig. 10, top). At the same time, N++

2 densities increase
by a factor of 3 between 100 and 300 km, and by an increas-
ing factor of 10 to 105 above 300 km. O++

2 follows the same
evolution as N++

2 : a mean factor 2 separates the two solar
flux results between 100 and 200 km, while above 300 km,
the factors by which the densities increase reach 105, show-
ing that the differences become dramatically larger when al-
titudes increase.

 

Fig. 9. Density profiles of the major ionic species in the ionosphere
above Tromsø,f10.7=68 and atχ=63.51. N+

2 is plotted in solid

dark blue, O+2 in solid green, O+in solid red, N+in magenta, H+in

dashed black, NO+in solid light blue, N++

2 in dashed blue, O++

2
in dashed green and O++ in dashed red. The electron density is
represented in black solid. The three doubly-charged ion densities
are computed under the photochemical equilibrium assumption.

5.2.2 Latitude influence

The influence of latitude is shown in Fig. 10 (bottom left).
Generally speaking, the densities are more important at high
latitudes for N++

2 and O++

2 whereas it is the opposite for
O++. The differences are ranging from a constant 40% for
O++ to a highly variable factor for N++

2 and O++

2 depend-
ing on the solar conditions and the altitude (less than 10%
at low altitudes or for active solar conditions, continuously-
increasing in quiet conditions above 250 km, eventually
reaching 40% at 500 km).

5.2.3 Solar zenith angle evolution

In Fig. 10 (bottom right), we consider two extreme cases
to study the solar zenith angle effect on dication densi-
ties at mean latitude: local zenith (χ=30.47◦), and twilight
(χ=90◦). Significant changes at low altitudes are to be seen
for χ=90◦: peaks appear higher in altitude and their ampli-
tude drops on average by a factor of 1.5.

Around 500 km, O++ densities are slightly larger for twi-
light conditions, a tendency which does not recur with molec-
ular doubly-charged ions. This original feature results from a
more efficient O++ production at high altitudes, as explained
in the previous section.
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Fig. 10. Solar flux (top panel), latitudinal (bottom left panel) and solar zenith angle (bottom right panel) variation influences on dication

densities. Top: we plot the rationi (f10.7=243)
ni (f10.7=68) above Grenoble,χ=63.51◦. N++

2 is in blue, O++

2 in green and O++ in red. Bottom left:

latitudinal relative differences between Tromsø and Grenoble are shown for each three species N++

2 (blue), O++

2 (green) or O++(red) in
active (dashed curves) and quiet (solid curves) solar conditions. Bottom right: densities of the three dications forχ=30.94◦ (solid curves)
and forχ=90◦ (dashed curves).

6 Detection of doubly-charged ions in planetary iono-
spheres

Two methods are available, namely mass spectrometers ex-
periments and optical measurements.

6.1 Mass spectrometers

Originally, mass spectrometer experiments were the first
device used on board satellites to yield some information
about the ion composition of the atmosphere. Thus, Atmo-
sphere Explorer and Pioneer were used to look for doubly-
charged ions in the atmosphere of the Earth and Venus. With
the Cassini-Huygens mission to the Saturnian system, much
effort has been produced most recently to obtain a proper at-
mosphere/ionosphere model of Titan to be made available to
the community. Predictions have then been cast on the possi-

ble existence of doubly-charged species in Titan’s ionosphere
(Lilensten et al., 2005a and 2005b).

This technique allows for the quantitative detection of a
given ion through its mass to charge ratiom/q.

On Earth, the determination of O++ (m/q=8) is partic-
ularly easy because it does not overlap with other species.
However, this method is not suitable for molecular dications
such as N++

2 and O++

2 as N+ and O+ have, respectively, the
same mass to charge ratio.

According to the present model, the detection of the three
dications, N++

2 , O++

2 and O++, will be made easier in solar
maximum conditions and at noon when densities are at their
highest. Latitude is not a crucial parameter and should not be
worried about when recording data in the ionosphere.
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Table 6. Fluorescence wavelengths and transitions for N++

2 , O++

2
and O++.
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Table 6. Fluorescence wavelengths and transitions for N ++
2 , O ++

2  and O++. 

Species λ (nm) Transition 

158.9 – 159.4  (1,1) band 
N ++

2  
158.7 – 159.3 D 1Σu

+(0) → X 1Σg
+(0) 

500.824 1D2 → 3P2  N1 

496.029 1D2 → 3P1   N2 

436.443 1S0 → 1D2  

232.166 1S0 → 3P1
 

166.615 5S2
0

 → 3P2 
 

O++ 

(OIII) 

 

166.081 5S2
0 → 3P1 

470 

443 O ++
2   

417 

A 3Σu
+– X 1Σu

+ 

 
 

6.2 Spectroscopy of dications

Among doubly-charged ions, N++

2 has perhaps been the most
widely studied species for over two decades. The ground
state of N++

2 , denoted byX16+
g , is 43.00 eV above the

ground neutral state (Ahmad, 2002, see Table 1). So far, 8
excited electronic states have been identified, such as the first
onesa35u andb36−

g , situated at 0.57 and 1.48 eV, respec-

tively, above the N++

2 ground state (Taylor and Partridge,
1987). The ground stateX16+

g of O++

2 is located at 36.13 eV
above the ground neutral state, and the first excited state
A36+

u at 4.16 eV above the O++

2 ground state (Fournier et
al., 1992). Moreover, the O++

2 vibrational structure has been
investigated by a threshold photoelectron coincidence tech-
nique (TPESCO) (Hall et al., 1992 and references therein).

The O++ ground state3P0 is situated 48.74 eV above
its ground neutral state (He et al., 1995). Many excited
states exist, among which1D2, 1S0 and 5S2

0 lie 2.513 eV,
5.354 eV and 7.479 eV, respectively, above the O++ ground
level. These states are notably involved in the formation of
emission lines, discussed in the next paragraph.

6.3 Fluorescence

The fluorescence of O++ is well-known since its doublet
centred around 500 nm has been used as a tracer of elec-
tron densities and temperatures in gaseous nebulae since the
1940s (e.g. Menzel and Haller, 1941).

Due to the fast dissociation or predissociation of molecular
dication excited states, fluorescence towards the ground state
is generally a rare phenomenon, but was at least observed for

N++

2 (Cossart et al., 1985; Cossart and Launay, 1985; Ols-
son et al., 1988; Ehresmann et al., 2000). For O++

2 , Avakyan
(1978b) also reports the possible identification of auroral
emissions around 243 nm which he ascribes to theA36+

u –
X16+

g transition: despite the fact that no further confirma-

tion of a fluorescence feature in O++

2 has yet been found,
three emission wavelengths have recently been tabulated by
Avakyan (1998), as shown in Table 6, where we list the flu-
orescence transitions and their respective wavelengths for
N++

2 , O++

2 and O++. The O++ transitions are situated in
the visible blue spectrum and in the UV range.

The N() excited state of specific interest to us isD16+
u ,

which lies 7.8 eV above the N++

2 ground state (Ahmad, 2002;
Olsson et al., 1988). This state fluoresces in transitions to
the N++

2 ground state, with bands centred around 159 nm
(Table 6). The fluorescence lifetime of the N++

2 D16+
u elec-

tronic state is 6.0±0.5 ns, according to Olsson et al. (1988).
No collisional deactivation is therefore liable to occur in the
ionosphere during this very short lifetime. Using the results
of Ehresmann et al. (2003), a rough approximation leads us
to conclude that nearly 10% of the total N++

2 ions created by
double photoionisation at the cross-section peak near 65 eV,
are produced in this state. As densities for N++

2 reach, at the
most, 1 ion per cm3, we would expect, in a very optimistic
hypothesis, that a mere 0.1 ion per cm3 is produced in the flu-
orescent state. Depending on the solar flux intensity, we can
then estimate the maximum intensity likely to be produced
along the line of sight by integrating ion productions over our
altitude range. The intensity ranges from 0.6 R in quiet so-
lar conditions to 2.3 R in active solar conditions. This value
is high enough to be detected by spectrophotometers whose
accuracy lies typically within the sub deci-Rayleigh range.

Regarding O++, it is by far the most abundant doubly-
charged species in the Earth’s ionosphere and is therefore the
most likely to be detected optically in aurora or diurnal high-
resolution spectra. Besides the forbidden transitions N1 and
N2, three other lines exist for O++ in the UV range (see
Table 6; NIST database athttp://physics.nist.gov/cgi-bin/
AtData/mainasd) but have never been identified in the di-
urnal ionosphere spectrum. The radiative lifetime of the5S0

2
metastable level of O++ was measured to be 1.22±0.08 ms
(Johnson et al., 1984). A fruitful comparison with mass spec-
trometer results on board satellites should be of great interest
in the years to come.

7 Conclusion and perspectives

Throughout this work, we study the densities of stable,
doubly-charged ions produced in the Earth’s dayside iono-
sphere. For the first time a comprehensive investigation of
the problem is led for N++

2 , O++

2 and O++. The photo-
kinetic model TRANSCAR, based on Boltzmann’s formal-
ism, is used to yield productions (primary and secondary). In
order to compute the densities of each doubly-charged ion,
a photochemical part is built up in which reaction rate con-
stants are included. The main inputs of the model are given

http://physics.nist.gov/cgi-bin/AtData/main_asd
http://physics.nist.gov/cgi-bin/AtData/main_asd
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by laboratory experiments. Emphasis is laid on the need for
laboratory measurements concerning double photoionisation
cross sections of N2 and O2, as well as the reactions of dica-
tions with O.

We then validate our approach for O++ by the comparison
with the only measurements available, those recorded by the
satellite Atmosphere Explorer in the mid-seventies. The re-
action rate constant concerning the O+++O→ O++O+ reac-
tion is predicted to be 1.06±0.40×10−10 cm3 s−1 and needs
to be confirmed by laboratory experiments.

A sensitivity study is also proposed, showing the most
favourable conditions for the productions and existence of
doubly-charged ions, via the variation of the solar flux inten-
sity (high f10.7), the geographical coordinates (middle lati-
tudes) and the solar zenith angle (local zenith).

More comparisons with satellite data should, of course,
be carried out in the future, both by measurements of the
diurnally varying spectra (need of high resolution spectra)
and by mass spectrometers on board satellites.

To bring this study to a conclusion, the effects of solar-
wind precipitations could be investigated.

This study is the third of a series of predictions undertaken
on Mars (Witasse et al., 2002), Titan (Lilensten et al., 2005a
and 2005b) and the Earth. Together with the work performed
by Fox and Victor (1981) on Venus and Brown et al. (1983)
on Io, we can suggest that doubly-charged ions are a common
feature of planets and satellites with thick atmospheres.
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rayonnement : la Terre et Mars, PhD thesis, UJF/CNRS, Univer-
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