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EXTREMAL BASES, GEOMETRICALLY SEPARATED DOMAINS AND APPLICATIONS

PHILIPPE CHARPENTIER & YVES DUPAIN

ABSTRACT. In this paper we introduce the notion of extremal basis of tangent vector fields at a boundary point of finite type of
a pseudo-convex domain in Cn, n ≥ 3. Using this notion we define the class of geometrically separated domains at a boundary
point and we give a description of their complex geometry. Examples of such domains are given, for instance, by locally lineally
convex domains, domains with locally diagonalizable Levi form at a point or domains for which the Levi form have comparable
eigenvalues near a point. Moreover we show that geometrically separated domains can be localized. We also give an example of a non
geometrically separated domains. Next we define what we call “adapted pluri-subharmonic function” and give sufficient conditions,
related to extremal bases, for their existence. Then, for these domains, when such functions exist, we prove global and local sharp
estimate for the Bergman and Szegö projections. As an application, we strengthen a result by C. Fefferman, J. J. Kohn and M.
Machedon ([FKM90]) for the local Hölder estimate of the Szegö projection removing the arbitrary small loss in the Hölder index and
giving a stronger non-isotropic estimate.

1. INTRODUCTION

The study of the regularity with sharp estimates for the Bergman and Szegö projections for pseudo-convex domains in Cn

became very active for domains of finite type when D. Catlin proved his fundamental characterization of subelliptic estimates
([Cat87]).

Quite quickly, the case of domains in C2 was completely solved by D. Catlin in [Cat89], A. Nagel, J.-P. Rosay, E. M. Stein
and S. Wainger in [NRSW89], M. Christ in [Chr88], C. Fefferman and J. J. Kohn in [FK88] and J. McNeal in [McN89].

In higher dimensions, the situation is more complicated and, until now, there are only partial results. One of the main
difficulties is the description of the geometry of the domain: there are some special bases of the complex tangent space at
the boundary playing an important role in this description and also in the Lipschitz estimates of the projectors. Thus the first
results concern domains for which these bases are more or less evident. For example, the class of domains for which the Levi
form have rank larger than n− 2 was studied by M. Machedon in [Mac88] (see also S. Cho [Cho94, Cho96], [AC99]) and,
even in that case, the situation is not so simple. An other example is given by decoupled domains, treated by several authors
(see for example [McN91], [CG94]).

A typical example where the choice of special bases is essential, and not evident, is the case of convex domains in Cn. In
[McN94, McN02] J. Mc Neal introduced some special bases (called ε-extremal in [BCD98]) and gave a description of the
complex geometry with the construction of a pseudo-distance near the boundary related to these bases. With that geometry,
and a construction of a “good” pluri-subharmonic function, he proved sharp point-wise estimates for the Bergman kernel and
its derivatives. Using this geometry J. Mc Neal and E. M. Stein ([MS94] and [MS97]) proved sharp estimates for the Bergman
and Szegö projections.

More recently similar results were obtained, when the Levi form has comparable eigenvalues, by K. Koenig in [Koe02]
and S. Cho in [Cho03], [Cho02b].

In [FKM90] C. L. Fefferman, J. J. Kohn and M. Machedon studied the case where the Levi form is locally diagonalizable
near a point p0 of the boundary. They solved the ∂̄b-Neuman problem and deduced that if f is a L2(∂Ω) function which is
locally in the classical Lipschitz space Λα (near p0) then, for all ε > 0 it’s Szegö projection S f is locally (near p0) in Λα−ε

(an application of our theory will remove the loss of ε in this estimate and get, in fact, a better non-isotropic estimate).

The main idea of the present paper is to introduce a general notion of “extremal basis” of the complex tangent space
at a boundary point of a pseudo-convex domain in Cn, n ≥ 3, generalizing the ε-extremal bases of the convex case. With
this notion we define a class of pseudo-convex domains, containing all previously studied classes, called “geometrically
separated”, for which a good family of extremal bases exists near a point of the boundary. The fundamental properties of
an extremal basis allow one to prove that, for these domains, there exists an associated structure of homogeneous space on
the boundary (and an extension of that structure inside the domain) which describes the complex geometry of the domain.
An important property of domains which are geometrically separated at a boundary point is that this structure can be nicely
localized (see the end of Section 2 for more details).

Moreover, when special pluri-subharmonic functions (called “adapted pluri-subharmonic functions” in this paper) exist,
this structure is used to obtain sharp global and local estimates for the Bergman kernel, the Bergman and Szegö projection
and the classical invariant metrics. The existence of such adapted pluri-subharmonic functions for geometrically separated
domains is not evident in general. For example, if the domain is locally convex (or more generally lineally convex), this is
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done using special support functions (see [DF99, McN02]) which cannot exist, in general, without convexity. Here we prove
their existence, under an additional condition (which is satisfied, for example, when the Levi form is locally diagonalizable)
on the extremal bases, for the domain and also for the localized one (see the end of Section 2 for more details).

2. NOTATIONS AND ORGANIZATION OF THE PAPER

In all the paper, Ω = {ρ < 0} denotes a bounded domain in Cn, n ≥ 3, with a C ∞ boundary, and ρ ∈ C ∞(Cn) is a defining

function of Ω such that |∇ρ |= 1 on ∂Ω. We denote by N = 1
|∇ρ | ∑

∂ρ
∂ z̄i

∂
∂ zi

the unitary complex normal vector field to ρ (i.e.

Nρ ≡ 1 and ‖N‖ ≡ 1).
For each point p of the boundary let us denote T

1,0
p (∂Ω) the subbundle of Tp(∂Ω) of tangential complex vectors and

T
0,1
p (∂Ω) its conjugate. As usual, we will say that a family (Li)1≤i≤n−1 of C ∞ vector fields is a basis of the complex tangent

space at ∂Ω in a open neighborhood V ⊂ ∂Ω of a point p0 in ∂Ω if it is a basis of sections of T 1,0(∂Ω) in V (i.e. Li(ρ)≡ 0
in V , a condition which is independent of the defining function).

Clearly, every C ∞ vector field L in an open neighborhood V ⊂ ∂Ω can be extended to an open neighborhood V (p0)⊂ Cn

so that L(ρ) ≡ 0 in V (p0). Of course this extension depends on the defining function ρ , but all the stated results will be
independent of such a choice. Thus, in all the paper, the tangent vector fields considered in V (p0) are always supposed to
annihilate ρ in V (p0), and we will use the terminology of “vector fields tangent to ρ” for this property.

Let L and L′ be two (1,0) vector fields tangent to ρ . The bracket [L,L′] being tangent to ρ , can be written

[L,L′] = 2
√
−1cLL′T +L′′

where T is the imaginary part of N and L′′ ∈ T
1,0
p (∂Ω)⊕T

0,1
p (∂Ω). Thus cLL′ = [L,L′](∂ρ) =

〈
∂ρ ; [L,L′]

〉
. The Levi form

of ∂Ω at p is defined as the hermitian form whose value at (L,L′) is the number cLL′ . The pseudo-convexity of Ω means that
this hermitian form is non-negative. If (Li)1≤i≤n−1 is a local basis of (1,0) vector fields tangent to ρ , then (cLiL j

)i, j is the
matrix of the Levi form in the given basis. This matrix will be generally denoted (ci j)i, j.

Let p0 ∈ Ω and V (p0) be a neighborhood of p0 in Cn. If W is a set of C ∞ (V (p0)) (1,0) complex vector fields, then L (W )
denotes the set of all lists L =

(
L1, . . . ,Lk

)
such that L j ∈ W ∪W , and, for l ∈ N, Ll(W ) denotes the set of such lists L of

length |L |= k ∈ {0,1, . . . , l}. If W contains only one vector field L, then we will write L (L) and Ll(L) instead of L ({L})
and Ll({L}). Moreover, if |L |= k ≥ 2, we denote

L (∂ρ) = L1 . . .Lk−2
(〈

∂ρ ,
[
Lk−1,Lk

]〉)
.

Note that if Lk−1 and Lk are both (1,0) or both (0,1) then
〈
∂ρ ,

[
Lk−1,Lk

]〉
is identically zero. Thus if L (∂ρ) is not identically

zero, it is equal to ± a derivative of the value taken by the Levi form on (Lk−1,Lk) or (Lk,Lk−1).
Let L be a C

∞(V (p0)) (1,0) complex vector field tangent to ρ and M ≥ 2 be an integer. We define the weight FΩ
M (L, p,δ ) =

FΩ(L, p,δ ) = FΩ(L) associated to L at the point p ∈V (p0) and to δ > 0 by

FΩ(L, p,δ ) = ∑
L∈LM(L)

∣∣∣∣
L (∂ρ)(p)

δ

∣∣∣∣
2/|L |

= 2 ∑
L̃∈LM−2(L)

∣∣∣∣∣
L̃ (cLL)

δ

∣∣∣∣∣

2/|L̃ |+2

.

where L̃ (cLL) = L1 . . .Lk (cLL) if L̃ =
(
L1, . . . ,Lk

)
. Moreover, for the complex normal direction N we define Ln = N and

FΩ(Ln, p,δ ) = FΩ(N, p,δ ) = δ−2. When there is no ambiguity (typically when there is only one domain) we will omit the
superscript Ω.

Note that, with the conditions on ρ , the functions L (∂ρ) restricted to ∂Ω do not depend on the choice of the defining
function ρ . By the finite type hypothesis, for δ small, the weights will be large. Thus if we consider them in δ -strips near
the boundary, they are intrinsically attached to the boundary of the domain and do not depend on the choice of the defining
function ρ .

In all the paper the defining function ρ of Ω is fixed and the number M also. When we say that some number depends on
“ϑ” and on “the data”, we mean that it depends on “ϑ”, n, M, and ρ but neither on the point p in V (p0) nor on δ ≤ δ0.

If B = {L1, . . . ,Ln−1} is a C ∞ basis of (1.0) vector fields tangent to ρ in V (p0), and L ∈ L (B∪{N}), we denote

F(p,δ )L /2 =
n

∏
i=1

F(Li, p,δ )li/2,

where li = li(L ) is the number of times Li or Li appears in L , i ≤ n−1, and ln = ln(L ) the number of times N or N appears
in L (and thus |L |= k = ∑n

i=1 li).

The organization of the paper is as follows:
In Section 3 we define the notion of extremal basis and give some examples. Then we give their basic properties and, in

Section 3.3, we prove a fundamental property of an extremal basis at a point of finite type: there exists a coordinate system
which is adapted to the basis in the sense that all the derivatives of the matrix of the Levi form (in that basis) are controlled
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by the weights attached to the basis. We give also some sufficient conditions of extremality for a given basis, useful for some
examples. Finally, in Section 3.5 we show how the existence of extremal bases can be localized in the sense that, near a
boundary point p0 of Ω of finite type, if there exist extremal bases at every boundary points near p0, then one can construct
a small pseudo-convex domain D of finite type inside the original domain, containing a piece of the boundary of Ω in its
boundary such that there exist extremal bases a every point of the boundary of D.

In Section 4 we define the notion of geometrically separated domains at a point p0 of its boundary and give examples.
Then we show that a geometrically separated domain is automatically equipped with a local structure of homogeneous space
on its boundary. In Section 4.3 we prove that the structure of geometrically separated domain can always be localized (in the
sense described above).

In Section 5 we study the existence of pluri-subharmonic functions adapted to a given geometrically separated domain. In
particular, we prove their existence when the domain is “strongly” geometrically separated at a point p0 of its boundary, and
we prove that, in this case, such functions exist for the localized domain at every point of its boundary.

In the last Section (6) we show that all the sharp global and local results for Bergman kernel, Bergman and Szegö
projections and invariant metrics can be established for geometrically separated domains when there exist adapted pluri-
subharmonic functions. The local sharp estimate of the Szegö projection when the Levi form is locally diagonalizable is an
example of these results.

3. EXTREMAL BASES

3.1. Definition and examples.

Definition 3.1. Let Ω and V (p0) defined on Section 2. Let B = {L1, . . . ,Ln−1} be a C ∞ basis of (1,0) vector fields tangent
to ρ in V (p0) and M an integer. Let p ∈V (p0) and 0< δ . We say that B = {L1, . . . ,Ln−1} is (M,K, p,δ )-extremal (or simply
(K, p,δ )-extremal or K-extremal) if the C 2M norms, in V (p0), of all Li are bounded by K, the Jacobian of B is bounded from
below by 1/K on V (p0), and the two following conditions are satisfied:

EB1 For any vector field L of the form L = ∑n−1
i=1 aiLi, ai ∈ C, we have

1
K

n−1

∑
i=1

|ai|2 F(Li, p,δ )≤ F(L, p,δ ) ≤ K
n−1

∑
i=1

|ai|2 F(Li, p,δ ).

EB2 For all indexes i, j,k such that i, j < n, k ≤ n and all lists L of LM (B∪{N}),

F(Lk, p,δ )1/2

∣∣∣∣L a
( )

k
( )

i,
( )

j
(p)

∣∣∣∣≤ KF(p,δ )L /2F(Li, p,δ )1/2F(L j, p,δ )1/2,

where a
( )

k
( )

i,
( )

j
is the coefficient of the bracket

[
( )

Li,
( )

L j

]
in the direction

( )

Lk (with Ln = N), and
( )

Li means Li or Li.

Remark. In general this Definition depends of the choice of the defining function ρ . But note that, for p ∈ ∂Ω, it does not: it
depends only on the restriction of B to ∂Ω∩V(p0).

Example 3.1.

(1) Locally lineally convex domains. A first example of extremal basis concerns the case of a locally convex domain
near a point of finite type: it can be easily shown, using the work of Mc Neal [McN94] (see also [Hef04]), that if Ω
is convex near a point of finite type p0 ∈ ∂Ω, if the canonical coordinate system is chosen so that the last coordinate
is the complex normal at p0, and, if P is the projection onto the complex tangent space of the defining function of Ω
parallel to the last coordinate, then for each point p in a small neighborhood of p0, and each δ ≤ δ0, the P-projection
of the first n− 1 vectors of the Mc Neal δ -extremal basis at p (c.f. [BCD98, McN94]) is (K, p,δ )-extremal in our
sense for a constant K depending only on the data.
More generally, the same thing can be done for locally lineally convex domains using the work of Conrad, M. [Con02]
(recall that Ω is said lineally convex at a point p ∈ ∂Ω if there is a neighborhood U of p such that the intersection of
the complex tangent space to ∂Ω at p with Ω∩U is empty; see [Kis98, DF03] for the precise definition and a useful
characterization). Some details are given in Section 7.1.

(2) Levi form with comparable eigenvalues. A second example is given by a pseudo-convex domain having a point of
finite type p0 ∈ ∂Ω where the eigenvalues of the Levi form are comparable (see [Koe02, Cho02b, Cho03, Cho02a]).
Indeed, in [Cho03] it is proved that any (normalized) basis of the complex tangent space is K-extremal for a well
controlled constant K.

(3) Locally diagonalizable Levi form. In Section 3.4 we will show that if at a point of finite type p0 ∈ ∂Ω the Levi form
is locally diagonalizable then the basis diagonalizing the Levi form is K-extremal for a constant K depending only
on the data (in fact, this basis is K-strongly-extremal (see Definition 3.5) for every constant α > 0 with δ ≤ δ0, δ0

small depending on α).
(4) Localization. Another important example will be given in Section 3.5: for any τ > 0 there exists M(τ) such that if a

family of (M(τ),K, p,δ )-extremal bases exists in a neighborhood of a boundary point p0, of finite type τ , of Ω, then
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one can construct a small smooth pseudo-convex domain D contained in Ω and containing a neighborhood of p0 in
∂Ω in its boundary and for which there exists an (M(τ),K′,q,δ )-extremal basis at every points q ∈ ∂D.

3.2. Basic properties of extremal bases. The first property states that an extremal basis at p can be orthogonalized at the
point p:

Proposition 3.1. For any K there exists a constant K′ depending only on K and the data such that, if B is a basis of complex

(1,0) vector fields tangent to ρ in an open set V (p0) which is (K, p,δ )-extremal, then there exists a basis B′, orthonormal at

p which is (K′, p,δ )-extremal.

Proof. We can suppose that the vector fields Li of B are ordered such that F(Li+1, p,δ ) ≤ F(Li, p,δ ), for i < n− 1. Then,

using the Graam-Schmidt process, we first define a basis B1 by decreasing induction, L1
i = ∑n−1

j=i α j
i L j, α j

i ∈C, and ∑
∣∣∣a j

i

∣∣∣
2
=

1. The determinant condition implies that there exists c > 0 such that
∣∣α i

i

∣∣> c. Then

F(L1
i , p,δ )≃K ∑

j≥i

∣∣∣α j
i

∣∣∣
2

F(L j, p,δ )≃K F(Li, p,δ ).

Now, let L = ∑i aiL
1
i be a linear combination, with constant coefficients, of the L1

i . Then

F(L, p,δ ) ≃K ∑
k

∣∣∣∣∣∑
i≤k

aia
k
i

∣∣∣∣∣

2

F(Lk, p,δ ) ≃K ∑ |ak|2 F(Lk, p,δ ),

using that
∣∣∑i≤k aia

k
i

∣∣≥ c |ak|−∑i<k |ai| and the fact that the F(Lk, p,δ ) are decreasing. This proves EB1 for B1.
Note now that the decreasing property shows that property EB2 for B trivially implies the same property for B1 because

L1
i involves only fields L1

j for j ≥ i.

Finally, define B′ by L′
i = L1

i /
∥∥L1

i

∥∥. The condition on the C 2M norm of the vectors Li immediately implies the result. �

Let us now prove that the mixed derivatives of the Levi form in the directions of an extremal basis are controlled by the
pure ones, that is by the weights associated to the vector fields of the basis:

Proposition 3.2. Let B = {Li, 1 ≤ i ≤ n− 1} be a C ∞ basis of complex (1,0) vector fields tangent to ρ in V (p0) which is

(K, p,δ )-extremal for a fixed δ > 0. Let L be a list of vector fields belonging to LM(B∪{N}). Then there exits a constant

C > 0 depending only on Ω and K such that |L (∂ρ)(p)| ≤CδFL /2(p,δ ).

Proof. Recall the notation ci j =
〈
∂ρ ,

[
Li,L j

]〉
.

Lemma 3.2.1. With the previous notations (and the definition of the coefficients as
i j given in Definition 3.1):

L jcik = Lic jk +∑as̄
kī

c js −∑as
i jcsk −∑as̄

jk̄
cis,

L jcik = Lkci j +∑as
ik̄

cs j +∑as
j̄i
csk −∑as̄

k̄ j̄
cis.

Proof. The first formula is simply obtained considering the coefficient of ℑmN in the Jacobi’s identity applied to the bracket[
L j,
[
Li,Lk

]]
, and the second by the same way using

[
L j,
[
Li,Lk

]]
. �

The proof of Proposition 3.2 is done by induction on the length of the lists. Suppose first |L |= 2. Hypothesis EB1 imply
that, for all numbers a and b and all index i and j,

∣∣∣|a|2 cii + |b|2 c j j + ab̄ci j + ābc ji

∣∣∣. δ
(
|a|2 Fi + |b|2 Fj

)
.

Suppose both Fi and Fj are non zero. Taking a = F
1/2
j F

−1/2
i λ and b = µ , |λ | and |µ | less than 1, the equivalence of norms in

finite dimensional spaces gives the result. If Fi = 0 or Fj = 0 a similar argument gives ci j = c ji = 0.
To continue the proof, we need the following notation: if L ∈ L (B ∪{N}), we denote by l1

i (resp. l2
i ) the number of

times Li (resp. Li) appears in L (thus li = l1
i + l2

i ).
For lists of greater length, we prove, at the same time, by induction, the estimate and the following Lemma:

Lemma 3.2.2. Let L and L ′ be two lists of LM(B ∪ {N}), L (∂ρ) = L1ci j and L ′(∂ρ) = L ′
1ckl , such that l1

i = l′1i ,

l2
i = l′2i . Then L (∂ρ)≃ L

′(∂ρ) in the sense that

L (∂ρ)−L
′(∂ρ) = ∑

|L̃ |<|L |
a

L̃
L̃ (∂ρ),

where a
L̃

satisfies FL̃ /2
∣∣L ′′a

L̃

∣∣. δF(L+L
′′)/2, ∀L ′′ ∈ LM(B∪{N}), the constant depending only on K and the data.

Suppose thus the estimates and the Lemma proved for all lists of length less than or equal to N.
First, we prove Lemma 3.2.2 for lists of length N + 1. Let us write L (∂ρ) = L1ci j and L ′(∂ρ) = L2ckl . Then three

cases can happen:
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(1) (i, j) = (k, l);
(2) i 6= k, j 6= l;
(3) i 6= k and j = l or i = k and j 6= l.

The first case is a trivial consequence of EB2. For the second, the hypothesis on the length and case (1) imply that there
exists a list L̃ such that L1ci j ≃ L̃ LkLlci j and L2ckl ≃ L̃ LiL jckl , in the sense of Lemma 3.2.2. By Lemma 3.2.1 and EB2,
Llci j ≃ L jcil . The result is obtained using another time EB2, Lemma 3.2.1 and the induction hypothesis. The third case is
similar.

Now we prove the estimate of the Proposition for lists of length N + 1. Suppose that the vector fields are ordered so that
there exists an integer n0 ∈ {0, . . . ,n− 1} such that, for k ≤ n0, Fk 6= 0, and, for n− 1 ≥ k > n0, Fk = 0. Let L = ∑a jL j,

a j = ελ jF
1/2
n0 F

−1/2
j if j ≤ n0 and a j = λ j if j > n0, with

∣∣λ j

∣∣ ≤ 1. If we apply the extremality property to F(L), then we
obtain, for example, for all k ≤ N − 1,

sup
|λ j|≤1

∣∣∣LkL
N−k−1

cLL

∣∣∣. δε(N+1)/2F
(N+1)/2
n0

with the convention Fn0 = 0 if n0 = 0. Writing LkL
N−k−1

cLL = ∑Cαβ λ α λ̄ β , the equivalence of norms in finite dimensional
spaces gives, when ε → 0,

(3.1)
Cαβ = 0 if there exits j > n0 such that α j +β j > 0,∣∣Cαβ

∣∣. δF (α+β )/2 otherwise.

Let Eαβ be the set of lists L such that l1
i (L ) = αi and l2

i = βi. Then Cαβ = ∑L∈Eαβ
L (∂ρ). Now, Lemma 3.2.2 and the

induction hypothesis give the required estimation for each list in Eαβ and finishes the proof of the Proposition. �

The statement of the last Proposition is not really a statement on the vector fields of an extremal basis but on the linear
space generated by an extremal basis. In fact the following Proposition is easily proved:

Proposition 3.3. In the conditions of Proposition 3.2, there exists a constant C such that, if L′
j, 1 ≤ j ≤ k are vector fields

belonging to the linear space generated by the extremal basis (Li)i then for every L ∈ LM(L′
1, . . . ,L

′
k), if L′

j or L′
j appear

l′j times in L , |L (∂ρ)(p)|. δ ∏ j F(L′
j, p,δ )l′j/2

.

3.3. Adapted coordinates system for points of finite 1-type.

3.3.1. Definition of an adapted coordinate system and statement of the main result. Let p0 ∈ ∂Ω and V (p0) a neighborhood
of p0 in Cn.

Definition 3.2. A basis B = (L1, . . . ,Ln−1) of sections of (1,0) complex tangent vector fields to ρ in V (p0) and a coordinate
system in Cn, z = Φδ

p(Z), are called (M,K,δ )-adapted (or simply (K,δ )-adapted) at the point p in V (p0) if Φδ
p and (Φδ

p)
−1

are polynomial (of degree less than (2M)n−1) diffeomorphisms of Cn centered at p (i.e. Φδ
p(p) = 0) satisfying (with the

notation Fi = Fi(p,δ ) = F(Li, p,δ )):

(1) The coefficients of the polynomials of Φδ
p and (Φδ

p)
−1 (and the Jacobians of Φδ

p and (Φδ
p)

−1) are bounded by K;

(2) For all |α| ≤ 2M,
∂ α(ρ◦(Φδ

p)
−1)(0)

∂ z′α =
∂ α(ρ◦(Φδ

p)
−1)(0)

∂ z′
α = 0, z′ = (z1, . . . ,zn−1);

(3) If Li = ∑a
j
i

∂
∂ zi

, then a
j
i (0) = δi j and, for all L ∈ LM(B∪{N}),
∣∣∣L a

j
i

∣∣∣≤ K in Φp(V (p0)) and F
1/2
j

∣∣∣L a
j
i (0)

∣∣∣≤ KF
1/2
i FL /2;

(4) For all (α,β ), |α +β | ≤ M,

∣∣∣∣
∂ αβ (ρ◦(Φδ

p)
−1)(0)

∂ zα ∂ z̄β

∣∣∣∣≤ K min
{

δF (α+β )/2,1
}

.

One of our main goals is to prove the following existence Theorem:

Theorem 3.1. Suppose p0 is of finite 1-type τ , and choose an integer M larger than 2

(
2( τ

2 )
n−1

+1
2

)n−1

. For any positive

constant K, there exist a constant δ0 > 0, a neighborhood V (p0), both depending on the data, and a constant K′ depending

on K and the data such that if B = {Li, 1 ≤ i ≤ n− 1} is a C ∞ basis of (1,0) complex vector fields tangent to ρ in V (p0)
which is (M,K, p,δ )-extremal at a point p ∈V (p0)∩∂Ω, then there exists a coordinate system (zi)1≤i≤n centered at p which

is (K′,δ )-adapted to B.

The proof is divided in two steps: for the first one, in the next Section, we work without the assumption of finite type and
we construct an adapted coordinate system using modified weights; in the second one, which is Section 3.3.3, we use the
finite type hypothesis to deduce the Theorem.
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3.3.2. Construction of an adapted coordinate system. In this Section we suppose that the integer M is fixed. Let p ∈V (p0)
and δ > 0. Suppose B = (L1, ,Ln−1) is a basis of (1,0) vector fields tangent to ρ in V (p0), satisfying the following proper-
ties:

(A) The C 2M(V (p0)) norms of all Li are bounded by K and B is ordered so that F(Li+1, p,δ )≤ F(Li, p,δ ).
(B) Let p ∈W (p0)⋐V (p0) and δ > 0. Denoting F̃i = Fi + 1 = F(Li, p,δ )+ 1:

(B1) For all list L ∈ LM(B∪{N}), |L (∂ρ)(p)| ≤ Kδ F̃(p,δ )L /2;
(B2) B satisfies condition EB2 of Definition 3.1 with the F(Ls, p,δ ) replaced by the F̃s.

Then under these hypotheses, we have:

Proposition 3.4. There exists a constant K′ depending on K, M and the data (but neither on p nor on δ ) such that there exists

a (M,K′,δ )-adapted coordinate system to B at p in the sense of Definition 3.2, the weights F(Li, p,δ ) being replaced by F̃i.

Proof. In [CD06b] (Prop 3.2, p. 85) we proved that hypothesis (A) implies the existence of a coordinate system Φp,δ

satisfying conditions (1) and (2) of Definition 3.2 and

(3.2)

{
For j < i < n, and α = (α1, . . . ,αn−1) ∈ Nn−1 such that |α| ≤ M, αp = 0 if p > i or p ≤ j,

∂ α a
j
i (0)

∂ z′α = 0.

We now prove that under condition (B) the two last properties of Definition 3.2 (with the F̃i) are satisfied. This follows
quite closely the ideas of p. 87-90 of [CD06b], but, as the context here is more general and as it is a fundamental tool, we
write it completely.

Let L ∈ L (B ∪{N}) be considered as a differential operator. Denoting by Dαβ the derivative ∂ α+β

∂ zα ∂ z̄β in the coordinate

system z = Φδ
p , it is easy to see that, if |L |= S,

L = ∑
m∈Nn

1≤|m|≤S

∑
αi+βi=mi

cL

αβ Dαβ

where

cL

αβ = cαβ =
S

∑
p=1

∑∗
( )

a
i1
j1
· · ·

( )

a
ip

jp

S

∏
k=p+1

Dsk

(
( )

a
ik
jk

)

where the summation in the second formula is taken over the derivatives associated to the multiindex sk satisfying ∑S
k=p+1 sk+

(m1, · · · ,mn) = ∑S
k=1 χ(ik), ∑S

k=1 χ( jk) = (l1, · · · , ln−1, ln) and the coefficients ∗ are absolute constants. The following Lemma
is then easily established:

Lemma 1. If for all s ∈ Nn, |s| ≤ S, we have

∣∣∣Dsai
j(0)
∣∣∣.K1 F̃ s/2F̃j

1/2
F̃i

−1/2
, then

(3.3)
∣∣cαβ (0)

∣∣. F̃L /2F̃− α+β
2 .

To fix notations, recall that if f is a C 2 function and L and L′ are two vector fields, then
〈
∂ ∂̄ f ;L, L̄

〉
= L′L f +

[
L,L′](∂ f ),

and, in particular, if Lρ = 0,
〈
∂ ∂̄ρ ;L,L

〉
=
[
L,L
]
(∂ρ) = cLL, where cLL is the coefficient of the Levi form in the direction L.

In all the proof that follows, we denote
[
Li,L j

]
(∂ρ) = ci j.

To state the second Lemma let us introduce the notation ρ̃ = ρ ◦ (Φδ
p)

−1:

Lemma 2.

(1) For every multiindex l, |l| ≤ 2M, we have
∣∣Dl ρ̃(0)

∣∣. δ F̃ l/2, where Dl is any derivative ∂ |l|

∂ zα ∂ z̄β with |α +β |= l.

(2) For every multiindex m 6= (0, · · · ,0), |m|< M, and every i, j,

∣∣∣∣Dm
( )

a
j
i (0)

∣∣∣∣. F̃m/2F̃
1/2
i F̃

−1/2
j .

Proof. Note first that, for (2), it suffices to get the estimate for Dma
j
i (0) and that the estimate (1) (resp. (2)) is trivial if ln > 0

(resp. mn > 0) (recall Fn = δ−2 and the fact that the C 2M norms of the fields Li are controlled). We then suppose ln = mn = 0.
The proof is done by induction: the induction hypothesis Pk0 is the two conclusions of the proposition for |l| ≤ k0 and
|m|< k0.

Remark first that Pk0 and the first property of Pk0+1 imply the second property of Pk0+1 for j = n: this is evident if
i = j = n and, if i < j = n, Lir ≡ 0 implies

an
i =

(
∂ ρ̃

∂ zn

)−1 n−1

∑
k=1

ak
i

∂ ρ̃

∂ zk

,

and the result is clear because ∂ ρ̃
∂ zk

(0) = 0 for k < n.

Moreover, note also that, the weights F̃i, i ≤ n− 1, being “decreasing”, the second inequality of Pk0 is trivial if i ≤ j < n

and if i = n. Thus it suffices to prove this inequality when j < i < n.
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Let us now prove Pk0 by induction. The case k0 = 1 is trivial. Let us study first the case k0 = 2. By definition of the

coordinate system, ∂ 2ρ̃
∂ zi∂ z j

(0) = 0, and, using the notations and remarks stated before the statement of the Lemma, we have

(3.4) ai
ia

j
j

∂ 2ρ̃

∂ zi∂ z̄ j

= ci j̄ − ∑
(k,p) 6=(i, j)

ak
i a

p
j

∂ 2ρ̃

∂ zk∂ z̄p

which implies ∂ 2ρ̃
∂ zi∂ z̄ j

(0) = ci j̄(0) and gives the first inequality by definition of F . To prove the second inequality, let us look

at the definition of the functions a
( )

k
( )

i
( )

j
. Writing the bracket [Li,Lp] with the coordinate system and taking the component of ∂

∂ z j
,

we get

(3.5)
n−1

∑
k′=1

ak′
i p̄a

j

k′ =−
n

∑
k=1

ak
p

∂

∂ z̄k

(
a

j
i

)
− ci p̄a j

n.

Extracting the term ∂
∂ z̄p

(
a

j
i

)
and taking all at zero we obtain ∂

∂ z̄p

(
a

j
i

)
(0) = a

j
i p̄(0) and the inequality follows from (B2)

hypothesis.

We have now to consider
∂a

j
i

∂ zq
. If q ≤ j, the inequality comes from the decreasing property of F̃k, and, if j < q ≤ i, this

derivative is zero at the origin by the properties of the coordinate system. Suppose then j < i < q. Looking at the Lie bracket
[Li,Lq] and taking the component of ∂

∂ z j
, we obtain

(3.6) ai
i

∂

∂ zi

(
a j

q

)
− aq

q

∂

∂ zq

(
a

j
i

)
= ∑

k 6=q

ak
q

∂

∂ zk

(
a

j
i

)
−∑

k 6=i

ak
i

∂

∂ zk

(
a j

q

)
+

n−1

∑
p=1

a
p
iqa j

p,

and then, at the origin, ∂
∂ zq

(
a

j
i

)
(0) = ∂

∂ zi

(
a

j
q

)
(0)− a

j
iq(0) = −a

j
iq(0), by the properties of the coordinate system, and the

conclusion comes again from (B2). This proves P2.
Let us now suppose Pk0 verified (k0 < 2M). Let Dl̃ be a derivative of order k0 + 1. If Dl̃ is purely holomorphic or

anti-holomorphic, then Dl̃ ρ̃(0) = 0. Then we suppose Dl̃ = Dl ∂
∂ zi

∂
∂ z̄ j

, and we denote by L̃ = L LiL j a list of vectors fields

associated to Dl̃ (in the obvious sense that, if ∂/∂ zi (resp. ∂/∂ z̄i) appears li (resp l̄i) times in Dl then Li (resp. Li) appears li
(resp l̄i) times in L ). Applying (3.4), we get

Dl

(
∂ 2ρ̃

∂ zi∂ z̄ j

)
(0) = L ci j̄(0)− ∑

l1 6=0
l1+l2=l

∗Dl1

(
ai

ī
a

j
j

)
Dl2

(
∂ 2ρ̃

∂ zi∂ z j

)
(0)

− ∑
(k,p) 6=(i, j)

Dl

(
ak

i a
p
j

∂ 2ρ̃

∂ zk∂ zp

)
(0)(3.7)

− ∑
|α ′|+|β ′|<k0−1

cα ′β ′Dα ′β ′
(ci j̄)(0),

with ∗= 0 or 1. The first term of the right hand side of (3.7) satisfies the desired inequality (i.e. . δ F̃ l/2F̃
1/2
i F̃

1/2
j in modulus)

by (B1). For the second, l1 being non 0, we can apply the induction hypothesis to Dl2

(
∂ 2ρ̃

∂ zi∂ z j

)
(0) to get the right estimate.

The third term is of the same nature because, for (k, p) 6= (i, j), ak
i a

p
j (0) = 0. If we replace ci j̄ by its expression in (3.4), the

induction hypothesis Pk0 implies directly (for s < k0 − 1):
∣∣Dsci j̄(0)

∣∣. δF s/2F
1/2
i F

1/2
j ,

and then, using Lemma 1 for S = k0 (whose hypothesis are also verified by the induction hypothesis Pk), we prove that the
last term in (3.7) satisfies also the right estimate.

We finish now proving the second inequality of Pk0+1. It suffices to consider the case j < i < n. Let us first look at a
derivative Dm of the form Dm = Ds ∂

∂ z̄p
, |s|= k0 − 1. Using formula (3.5), we can write

Dma
j
i = Ds

(
n−1

∑
t=1

>at
i p̄a

j
t − ∑

t 6=p

>at
p

∂

∂ z̄t

(a j
i )+>ci p̄a j

n

)
= Ds(A)−Ds(B)+Ds(C),

where > is equal to 1
a

p
p
. In Ds(B), to get a non zero term at 0, at

p must be derivated because p 6= t; this gives derivatives of

∂
∂ z̄k

(a j
i ) of order < k0 − 1 which are well controlled by the induction hypothesis and then |Ds(B)(0)|. F̃m/2F̃

1/2
i F̃

1/2
j .

Consider now the terms Ds
(
>at

i p̄a
j

k

)
.
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Claim. For |l| ≤ k, Dl
(

at

i
( )

p

)
. F

1/2
i F

1/2
p F

−1/2
t F l/2.

Proof of the Claim. We do it by induction on |l|. (B2) proves the result for |l| = 0. Assume the claim proved for |l| < k′ ≤
k0 − 1 and suppose |l|= k′. Then,

Dlat

i
( )

p
(0) = L

lat

i
( )

p
(0)+ ∑

|s′|<l

cs′(0)D
s′at

i
( )

p
(0).

But, by (B2), ∣∣∣L lat
i p̄(0)

∣∣∣. F l/2F
1/2
i F

1/2
p F

−1/2
t ,

and for the second term of the previous identity, we have |s′| < l and we can apply the induction hypothesis and Lemma 1
whose hypotheses are satisfied, using Pk0 , because |l| ≤ k0. �

Then the estimate of Ds
(
>ak

ip̄a
j
k

)
follows from the induction hypothesis Pk0 because |s|< k0. Thus

|Ds(A)(0)|. F̃m/2F̃
1/2
i F̃

1/2
j .

Finally, the terms Ds
(
>ci p̄a

j
n

)
satisfy also the good estimates because a

j
n(0) = 0 and, for |s′|< k0 − 1, we have seen that∣∣∣Ds′(ci p̄)(0)

∣∣∣. δ F̃ s′/2F̃
1/2
i F̃

1/2
p , and, the derivatives of a

j
n are controlled by the induction hypothesis Pk0 .

To finish, we have to consider the case where Dm is a holomorphic derivative. Note that the inequality is trivial if i ≤ j

or if there exists k ≤ j such that mk 6= 0. Suppose then, for all k ≤ j, mk = 0 and j < i < n. Let q be the largest index such
that mq > 0. If q ≤ i, we have Dma

j
i (0) = 0 by the properties of the coordinate system. If q > i, then write Dm = Ds ∂

∂ zq
.

To conclude it suffices then to use (3.6), the first Claim and the fact that Ds ∂
∂ zi

(
a

j
q

)
(0) = 0 also by the properties of the

coordinates system. This completes the proof of the Lemma. �

To finish the proof of Proposition 3.4, it suffices to note that, in addition to the estimates of the coefficients cL

αβ given by
Lemma 1, we also have, for |α +β | ≤ 2M,

(3.8) Dαβ = ∑
1≤|L |≤|α+β |

d
αβ
L

L ,

with
∣∣∣dαβ

L
(0)
∣∣∣. F̃(α+β )/2(p,δ )F̃−L /2. �

For an extremal basis we have thus proved (using Proposition 3.2):

Corollary. If B is (M,K, p,δ )-extremal, for δ small enough, there exists a coordinate system (M,K′(K),δ )-adapted to B

in the sense of Definition 3.2 with the weights Fi replaced by F̃i = Fi + 1.

3.3.3. Proof of Theorem 3.1. If p0 is a point of finite 1-type τ , then, by a Theorem of D’Angelo (see [D’A82, Cat87])
there exists a neighborhood U(p0) such that, if p ∈ ∂Ω∩U(p0), then p is of finite 1-type less than τ ′ = 2

(
τ
2

)n−1
. We

assume that V (p0) ⊂ U(p0). Then, if B is a (M,K, p,δ )-extremal basis, by the Corollary of Proposition 3.4 we have a

coordinate system Φp,δ adapted to B in terms of the F̃i. Suppose M larger than 2
(

τ ′
2

)n−1
. Then, considering the manifold

ζ 7→ (0, . . .0,ζ ,0, . . . ,0), |ζ | ≤ σ , Theorem 3.4 of [Cat87] (applied with a suitable constant σ ) gives us a derivative of
ρ̃ = ρ ◦Φp,δ which is bounded from below by a constant depending only on the data. The last property of Definition 3.2

shows thus that F̃i(p,δ )& δ−2/M with a constant depending only on the data, and, of course, the same is true for Fi(p,δ ).
This proves the following essential Proposition:

Proposition 3.5. Let p0 ∈ ∂Ω be a point of finite 1-type τ . Let M = M(τ) =
[
2
(

τ
2

)n−1
]
+ 1. Then for any integer K

there exist a real number δ0 > 0 and a constant C, depending on K and the data, such that, if there is a coordinate system

(M,K,δ )-adapted to a basis B = (L1, . . . ,Ln−1) at p0, then FM(Li, p0,δ ) ≥ Cδ−2/M. In particular, if τ ′ = 2
(

τ
2

)n−1
and

M′ = M′(τ) =

[
2
(

τ ′
2

)n−1
]
+1, for any integer K there exists a neighborhood V (p0), a real number δ0 > 0 and a constant C

(depending on τ , Ω and K) such that, for p ∈V (p0)∩∂Ω and 0 < δ ≤ δ0, if there is a coordinate system (M′,K,δ )-adapted

to a basis B = (L1, . . . ,Ln−1) at p, then F(Li, p,δ )≥Cδ−2/M′
.

This proves completely Theorem 3.1.

Remark 3.2. Note that the proofs show that if a basis B satisfies only properties (A) and (B) of the beginning of Section 3.3.2,
then, under the assumption of finite 1-type, the conclusions of Proposition 3.5 and Theorem 3.1 are still valid.

A simple consequence (which will be used in Section 3.5) of the minoration of the weights Fi is the following:
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Lemma 3.1. Suppose the point p0 of finite 1-type τ . For any K, there exist two constants C and δ0, depending only on K,

τ and the data, such that if B = {L
p,δ
i , i < n} is (K, p,δ )-extremal, p ∈ V (p0)∩ ∂Ω, and (αi) is a family of C ∞ functions,

of C 2M norm ≤ K and 1/K ≤ |αi| ≤ K, then the basis B1 = {Li}, where Li =
1
αi

L
p,δ
i , is (C, p,δ )-extremal, and, moreover,

F (∑aiLi, p,δ )≃C F
(

∑aiL
p,δ
i , p,δ )

)
, ai ∈C.

3.3.4. Associated polydiscs and pseudo-balls for finite type points. In this Section we assume p0 is of finite 1-type τ and we
choose M = M′(τ). Now we will associate to an adapted coordinate system some special “polydiscs” and give some related
properties.

Definition 3.3. Let W (p0)⋐ V (p0) small enough. Suppose that for some point p ∈ W (p0)∩∂Ω and 0 < δ there is a basis

B(p,δ ) =
{

L
p,δ
i

}
of (1,0) vector fields tangent to ρ in V (p0) satisfying conditions (A) and (B) (of Section 3.3.2) and let

Φδ
p = Φp be a coordinate system which is (K,δ )-adapted to B(p,δ ). Then the functions F(Li, p,δ ) = Fi(p,δ ) do not vanish

and, for 0 < c < 1, we denote

∆c(p,δ ) = {z ∈ C
n such that |zi|< cF

−1/2
i , 1 ≤ i ≤ n},

and
Bc(p,δ ) = Φ−1

p (∆c(p,δ ))∩V (p0).

Taylor’s formula, Proposition 3.2 and Theorem 3.1 lead easily to the following properties (denoting Li = L
p,δ
i ):

Proposition 3.6. There exist three constants c0, K0 and δ0, depending only on K and the data, such that the following

properties hold:

(1) If Li = ∑a
j
i

∂
∂ z j

and ∂
∂ z j

= ∑bi
jLi, |α +β | ≤ M, for z ∈ ∆c0(p,δ ),

∣∣∣Dαβ a
j
i (z)
∣∣∣ ≤ K0F(α+β )/2(p,δ )F

1/2
i (p,δ )F

−1/2
j (p,δ ),

∣∣∣Dαβ b
j
i (z)
∣∣∣ ≤ K0F(α+β )/2(p,δ )F

1/2
i (p,δ )F

−1/2
j (p,δ ).

(2) If L ∈ LM (B(p,δ )∪{N}), |L | = S, and DT is a derivative in the coordinate system (z) with |T | ≤ M, then

L = ∑|s|≤S csD
s, DT = ∑|L ′|≤|T | dL ′L ′, and, for z ∈ ∆c0(p,δ ) and q = Φp(z) we have

|cs(z)| ≤ K0F(L−s)/2(p,δ ),

|dL ′(q)| ≤ K0F(L−L
′)/2(p,δ ).

(3) For L = ∑aiLi, ai ∈ C, for all q ∈ Bc0(p,δ ), 1
2 F(L, p,δ ) ≤ F(L,q,δ ) ≤ 2F(L, p,δ ).

(4) For all list L , |L | ≤ M belonging to LM(B) and all point q ∈ Bc(p,δ ),

(a) |L (∂ρ)(q)| ≤ K0δF(p,δ )L /2,

(b) with the notation introduced in EB2 in Definition 3.1,∣∣∣∣L a
( )

k
( )

i
( )

j
(q)

∣∣∣∣≤ K0FL /2(p,δ )F
1/2

i (p,δ )F
1/2
j (p,δ )F

−1/2
k (p,δ ).

(5) ρ(Bc(p,δ ))⊂ [− 1
2 δ , 1

2 δ ].

The proofs are almost straightforward computations.

In Section 4 we will need to use two other kinds of “pseudo-balls” and we will prove that they are closely related to the
“polydisc” Bc:

Definition 3.4. Suppose that B = (L1, . . . ,Ln−1) is a basis satisfying conditions (A) and (B) (at a point of finite 1-type).

(1) Denote Yi = ℜeLi and Yi+n = ℑmLi, 1 ≤ i ≤ n (recall Ln = N). Then we denote by Bc
C
(B, p,δ ) the set of points

q ∈ V (p0) for which there exists a piecewise C 1 curve ϕ : [0,1] → V such that ϕ(0) = p, ϕ(1) = q and ϕ ′(t) =
∑aiYi(ϕ(t)), with max(|ai| , |ai+n|)≤ cF−1/2(Li, p,δ ), 0 < c < 1.

(2) expp denoting the exponential map based at p associated to the vector fields Yi (defined in (1)), for 0 < c < 1, we put

Bc
exp(p,δ ) =

{
q = expp(u1, . . . ,u2n), such that max(|ui| , |ui+n|)≤ cFi(p,δ )−1/2

}
∩V(p0).

The terminology used in Definition 3.1 is justified by the following property:

Proposition 3.7. Let B = {L1, . . . ,Ln−1} be a basis (of (1,0) complex vector fields, tangent to ρ in V (p0)) satisfying con-

ditions (A) and (B) (for example if it is K-extremal) at p ∈W (p0)∩∂Ω. Let B1 = {L1
1, . . . ,L

1
n−1} be another basis in V (p0)

such that, for all i, L1
i = ∑a

j
i L j, a

j
i ∈C, ∑ |ai|2 = 1. Then there exists a constant A depending only on K, τ and the dimension

n such that Bc
C
(B1, p,δ )⊂ BAc

C
(p,δ ).

The proof of this Proposition immediately follows from property (B).
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3.4. Sufficient conditions of extremality. In this Section we always assume that p0 is a point of finite 1-type τ and choose
M = M(τ).

Here and in Section 5.2 we will need a stronger control on certain derivatives of the coefficients of the Levi form. Thus we
introduce the following condition: suppose B is a basis of (1,0) vector fields tangent to ρ in V (p0). We say that it satisfies
condition B(α), α > 0, if for all lists L ∈ LM−2 (B) we have

B(α) for i 6= j, 1 ≤ i, j ≤ n− 1,
∣∣L ci j(p)

∣∣≤ αδF(p,δ )L /2F(Li, p,δ )1/2F(L j, p,δ )1/2.

Note that B(α) together with conditions (A) and (B) implies a new condition on the brackets of the vector fields:

Lemma 3.2. Suppose B satisfies conditions (A) and (B). Then there exist two constants K1 = K1(K,M,n) and δ0 depending

on K, α and the data such that, for all i 6= k, i, k < n, j ≤ n and all L ∈ LM(B ∪ {N}), if B satisfies B(α) at (p,δ ),
p ∈W (p0), 0 < δ ≤ δ0, then

∣∣∣∣L a

( )

j
( )

i
( )

k
(p)

∣∣∣∣≤ K1αF(p,δ )L /2Fi(p,δ )1/2Fk(p,δ )1/2Fj(p,δ )−1/2.

Proof. To simplify the notations we write the proof for a
j̄

jk̄
. Choose δ0 so that Cδ

−2/M

0 > α−1, where C is the constant of

Proposition 3.5. Note that the property is trivial if ln 6= 0 or if ln = 0 and j = n (an̄
ik̄
= 1

2 cik and an̄
ik = 0), thus we suppose

ln = 0 and j < n. As the property is also trivial if j or k is ≥ i, we have to study only the case when j < min(i,k).
To simplify the notations, we introduce the following spaces of functions:

*0
= {ε, εa

( )

k
( )

i
( )

j
, εc( )

i
( )

j
, where ε ∈ {−1,0,1,−

√
−1,

√
−1}},

and

˜*k+1
=
⋃

i

( )

Li(*k
)∪*k

and*k+1
=

{
3

∑
i=1

fi, fi ∈ ˜*k+1

}
.

The elements of*k
will be generically denoted by ∗k.

The Jacobi identity applied to the bracket
[
L j,
[
Li,Lk

]]
implies

a
j̄

ik̄
c j j +L jcik + ∑

p 6= j

a
p̄

jk̄
c jp − aī

jk̄
cii −Lic jk − ∑

p 6=i

a
p̄

jk̄
cip − ak

i jckk − ∑
p 6=k

a
p
jicpk = 0

which we write a
j̄

ik̄
c j j = ∗0cii + ∗0ckk + h. Then, by induction on the length l of a list L ∈ LM(L j), it is easy to show that

a
j̄

ik̄
L c j j = L h+ ∑

L ′∈L|L |(L j)

(
∗lL

′cii + ∗lL
′ckk

)
+ ∑

L ′∈L|L |−1(L j)

∗lL
′c j j,

and choosing L so that
∣∣L c j j(p)

∣∣ & δF(p,δ )(|L |+2)/2, the Lemma is easily proved using the control on the lists and the
hypothesis. �

Now we first prove that conditions B(α), (A) and (B) imply the extremality of the basis and then that Lemma 3.2 implies
a better control on mixed lists. This result will be important in Section 5.

Lemma 3.3. Suppose that B = (L1, . . . ,Ln−1) is a basis of (1,0) vector fields in V (p0) satisfying conditions (A) and (B) at

a point p ∈V (p0)∩∂Ω for a fixed δ .

Then there exists a function α(K), depending on K and the data, such that, if B satisfies B(α) for α ≤ α(K), there exists

a constant K1, depending on K, M and n, such that:

If L 0 ∈LM(B) satisfies
∣∣L 0cii(p)

∣∣≥ 1
K

δFi(p,δ )F(p,δ )L /2 then there exists k0, 2k0+2≤ |L |, such that ℜe
((

LiLi

)k0 cii

)
(p)>

1
K1

δFi(p,δ )(2k0+2)/2. In particular,

Fi(p,δ )≥ 1
K′ ∑

ℜe
(
(LiLi)

k
cii

)
(p)>0

2k+1≤M




ℜe
((

LiLi

)k
cii

)
(p)

δ




2
2k+2

,

where K′ is a constant depending only on K and the data.

Proof. First we fix the notations used in the proof. We know that there is a coordinate system Φδ
p adapted to B. We denote

by (zi) theses coordinates. Let Dαβ denote the derivative ∂ |α+β |

∂ zα ∂ z̄β with respect to (zi), and if L is a list of vector fields let DL

be the derivative Dαβ with αi = l1
i (L ) and βi = l2

i (L ) (notation of Lemma 3.2.2).
In the proof we will use a general result on derivatives of positive functions proved in Section 8.
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Suppose L ∈ LM(B) is such that L (∂ρ) = L
0cii and |L (∂ρ)(p)|&K δFi(p,δ )F(p,δ )L /2. Then we can write

L (∂ρ) = DL
0
cii + ∑

|α+β |<|L 0|
cαβ Dαβ cii

with
∣∣cαβ

∣∣.K FL
0/2F−(α+β )/2.

Thus there exists a derivative Dαβ satisfying
∣∣Dαβ cii(0)

∣∣&K δFiF
(α+β )/2 and |α +β | ≤

∣∣L 0
∣∣ and αn +βn = 0 (indeed,

if αn + βn ≥ 1,
∣∣cαβ (0)

∣∣ .K FL
0/2F−(α+β )/2 ≤ δFL

0/2, and, as
∣∣Dαβ cii

∣∣ .K 1,
∣∣cαβ Dαβ cii

∣∣≪ δFL /2). Then applying

Lemma 8.1 to the function g(z) = δF−1
i (p,δ )cii ◦Φ−1

p,δ
(z′), where z′ =

(
cF

−1/2
1 z1, . . . ,cF

−1/2
n−1 (p,δ )zn−1,0

)
with c ≤ c0, c0

given by Proposition 3.6, we conclude that there exists a derivative Dα1β 1
, satisfying α1

j = β 1
j , ∀ j, α1

n = β 1
n = 0, such that

Dα1β 1
cii(0)≥K FiF

(α1+β 1)/2.

Writing L ′ =
(
LiLi

)α1
i ∏ j 6=i, j<n

(
L jL j

)α1
j and L ′cii = Dα1β 1

cii +∑|α+β |<|L ′| cαβ Dαβ cii, by induction we conclude that

there exists a differential operator L 1 of the form L 1 =
(
LiLi

)αi
∏ j 6=i, j<n

(
L jL j

)α j such that ℜe
(
L 1cii

)
(p)&K δFL

1/2Fi.
Suppose there exists j 6= i such that α j 6= 0. Then

L
1cii = L

′L jL jcii = L
′L j

(
−γ j

i c j j +Lkc jk +
(

ai
jk − aī

ī j

)
cii − ∑

p 6=i

(
a

p̄

ī j
cip − a

p
jicpi

)
+ ∑

p 6= j

γ p̄
i cip

)
.

The controls of the coefficients a
p
i j and of the lists L ckp, k 6= p (by condition (B)), imply, for α sufficiently small (depending

only on K), that
∣∣L ′L jc j j

∣∣&K δFL
′/2F

3/2
j and

∣∣∣γ j
i

∣∣∣&K FiF
−1/2
j .

Repeating the initial procedure, we conclude that there exists a list L ′′ ∈ L (B), “completely even”, |L ′′| ≤ |L ′| such
that

∣∣L ′′c j j

∣∣&K δFL
′′/2Fj. Consider then

L
′′L jcii = L

′′
(
−γ

j
i c j j +Lkc jk +

(
ai

jk − aī
ī j

)
cii − ∑

p 6=i

(
a

p̄

ī j
cip − a

p
jicpi

)
+ ∑

p 6= j

γ p̄
i cip

)
.

Thus
∣∣∣L ′′c j jγ

j
i

∣∣∣& δFL
′′/2F

1/2
j Fi, and, by similar arguments, for α sufficiently small, we conclude that there exists a list L 2,

∣∣L 2
∣∣<
∣∣L 0

∣∣such that L 2cii &K δFL
2/2Fi, and we can repeat the procedure. The Lemma is thus proved by induction. �

Proposition 3.8. There exist constants α0 and K′ depending on K and the data such that if the basis B satisfies (A), (B) and

B(α) for α ≤ α0 at (p,δ ), p ∈V (p0), then B is (K′, p,δ )-extremal.

Proof. We may suppose the basis ordered so that the weights Fi = F(Li, p,δ ) are ordered decreasingly. Let L = ∑n−1
i=1 aiLi,

ai ∈C, ∑ |ai|2 = 1 so that cLL = ∑n−1
i=1

∣∣a2
i

∣∣cii. Denote F(L) = F(L, p,δ ). By hypothesis (B) it is clear that F(L).K ∑ |ai|2 Fi.
To show the converse inequality, we prove the following assertion:

Claim. For every constant K > 0, there exists a constant K1, depending on K and the data, such that:

if i0 ∈ {1, . . . ,n− 1} and k0 ∈ {1, . . . ,M} are such that
∣∣ai0

∣∣2 Fi0(p) ≥ ∑|ai|2Fi(p)
K

and ℜe
(
Li0 Li0

)k0 ci0i0(p) > δ
F

k0+1
i0

(p)

K
,

then:

• either ℜe(LL̄)
k0 cLL̄ > δ

(∑|ai|2Fi(p))
k0+1

K1
,

• or there exist i1 and k1 < k0 such that |ai1 |2 Fi1(p)≥ ∑|ai|2Fi(p)
K1

and ℜe
(
Li1Li1

)k1 ci1i1(p)> δ
F

k1+1
i1

(p)

K1
.

Proof of the Claim. We have

(3.9) (LL̄)
k0 cLL̄ = ∑ |ai|2k0+2 (

LiLi

)k0 cii +∑αL L (∂ρ),

where the second sum contains lists of length 2k0 + 2 containing Li or Li for, at least, two different values of i. As

∣∣ai0

∣∣2k0+2
ℜe
(
Li0Li0

)k0 ci0i0(p)> δ

(
∑ |ai|2 Fi(p)

)k0+1

Kk0+2 ,

the conclusion is clear except in the two following cases:

• in the first sum of (3.9), there is a term whose real part is <−A =−δ
(∑|ai|2Fi(p))

k0+1

CKk0+2 ;
• in the second sum of (3.9), there is a term which is, in modulus, bigger than A, with a constant C depending only on

M and the coefficients ai.
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Suppose first that there exists an index i 6= i0 such that |ai|2k0+2 ℜe
(
LiLi

)k0 cii(p) < −A. This implies first |ai|2 Fi(p) ≥
∑|ai|2Fi(p)

K′
1

and secondly ℜe
(
LiLi

)k0 cii(p) < −δ 1
K′′

1
F

k0+1
i . By Lemma 3.3 there exists k1 < k0 such that ℜe

(
LiLi

)k1 cii(p) >

δ 1
K′′′

1
F

k1+1
i . Thus the second assertion of the Claim is verified.

Suppose now that there is a term αL L (∂ρ) in the second sum of (3.9) satisfying |αL L (∂ρ)| > A. Denote by li the
number of times the vector fields Li and Li appear in L . If lk 6= 0, hypothesis (B) implies immediately |ak|2 Fk & ∑ |ai|2 Fi

and |L |(∂ρ)& δ ∏F
li/2
i . �

�

Corollary. Suppose that p0 ∈ ∂Ω is a point of finite type τ where the Levi form is locally diagonalizable. Then there exists

a neighborhood V (p0) of p0 and constants K and δ0 > 0 such that at every point p of V (p0)∩∂Ω and for every 0 < δ ≤ δ0,

the basis diagonalizing the Levi form is (M, p,δ )-extremal (with M = M′(τ)).

Proof. Properties (A) and (B) were proved in [CD06b], and, by definition the basis diagonalizing the Levi form satisfies B(α)
for all α > 0. �

Definition 3.5. B is called (K,α, p,δ )-strongly-extremal if it is (K, p,δ )-extremal and, if, it satisfies B(α) at (p,δ ).

Note that the first part of Proposition 3.2 says that every (K, p,δ )-extremal basis is (K,α, p,δ )-strongly-extremal for some
large positive number α depending on K and Ω. Thus this is an extra hypothesis only for small α .

The next Proposition shows that for a strongly extremal basis some derivatives of the diagonal terms of the Levi matrix
satisfy a better control:

Proposition 3.9. Suppose p0 is of finite 1-type τ and let M = M′(τ). Then there exists a neighborhood V (p0) of p0 with the

following property:

for α > 0, there exist constants δ0 = δ0(α,data) and K′ = K′(K,data) such that:

if B is a (K,α, p,δ )-strongly-extremal basis, ordered so that Fi are decreasing, then for all lists L ∈ L2M(B) such that

there exists j > i with l j 6= 0 we have |L cii(p)| ≤ K′αF(p,δ )L /2Fi(p,δ ).

Proof. Let L = L ′ ( )

L j

( )

LpL
′′ with j ≤ i and write

L cii = L
′ ( )

Lp

( )

L jL
′′cii +∑L

′
(

ak
( )

j
( )

p
Lk + ak̄

( )

j
( )

p
Lk

)
L

′′cii.

Then successive application of Lemma 3.2 show that there exists a list L̃ = L̃ ′L j such that, for all k, l̃k = lk and
∣∣∣L̃ cii −L cii

∣∣∣≤
K2αFL /2Fi.

Now the result is trivial, applying once again Lemma 3.2, Lemma 3.2.1 and the hypothesis B(α). �

Proposition 3.10. If the basis B is (K,α, p,δ )-strongly extremal, the conclusion of Proposition 3.9 is still valid at each point

q ∈ Bc0(p,δ ) with α replaced by 2α for δ ≤ δ (α) (δ (α) depending on α , K and the data).

3.5. Localization of extremal bases.

3.5.1. Definition of the local domain.

Definition 3.6. Let Ω be a bounded pseudo-convex domain in Cn. Suppose that P0 is a boundary point of Ω and W (P0) ⋐
V (P0) are neighborhoods of P0. Let O be a point of the real normal to ∂Ω at P0 and denote by d the distance from O to P0.
Let us denote by (zi)1≤i≤n the coordinate system obtained translating the origin at O.

Let µ > 0 and ψ(z) = ϕ
(
|z|2
)

where

ϕ(x) =

{
0 if x ≤ µ2,

K0e−1/(x−µ2) if x ≥ µ2,

with 4
3 d ≤ µ ≤ 2d.

Let us denote r(z) = ρ(z)+ψ(z). Then d is chosen small enough and K0 large enough such that, in particular:

• D = {r(z)< 0} ⊂W (P0) and r is a defining function of D;
• D have a C ∞ boundary and is pseudo-convex;
• At each point of ∂Ω\ ∂D, the boundary of D is strictly pseudo-convex;
• In the closure of B(0,2µ) the vector z (in the coordinate system centered at 0) is not tangent to ρ (i.e. ∑n

i=1
∂ρ
∂ zi

zi 6= 0
everywhere in the closure of B(0,2µ)).
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The fact that such a domain always exits for any d > 0 small and K0 > 0 large is based on the construction of R. Gay and
A. Sebbar in [GS85] (Théorème 2.1). Simply, note that, on ∂D\∂Ω, the function r is strictly pluri-subharmonic if K0 is large

enough and µ small enough (the hessian of ρ is O
(

ϕ
(
|z|2
))

). Moreover, if P0 is of finite type, then all the boundary points

of D are of finite type because the order of contact of ∂Ω with ∂D is infinite at the points of ∂ (∂Ω∩∂D).
The goal of this Section is to prove the following:

Theorem 3.3. Suppose that P0 is a point of finite 1-type τ of ∂Ω and choose M′(τ) (c. f. Proposition 3.5). Let δ > 0 and

K > 0. If at every point of ∂Ω∩V (P0) there is a (K, p,δ )-extremal basis then one can construct the domain D contained in

V (P0) so that, at every point p′ of its boundary there exists a (K′, p′,δ )-extremal basis with K′ depending only on K and the

data.

The proof of this theorem is done in the two following sections.

3.5.2. Preliminary remarks. We fix now some general notations.
Let π be the C ∞ projection of V (P0)∩ Ω̄ onto ∂Ω defined with the integral curves of the real normal to ρ . It is clear that

there exists a neighborhood U of ∂Ω∩V(p0) such that π is a C ∞ diffeomorphism of ∂D∩U onto an open set of ∂Ω∩U .
If L is a C

∞ vector field, defined on an open set U of ∂D∩U , tangent to ∂D, we associate to it a vector field Lρ ,
defined in the open set π(U)⊂ ∂Ω, tangent to ∂Ω using π (considered as a C ∞ diffeomorphism of U onto π(U)) as follows:
if L = ∑ai

∂
∂ zi

, considering it as an application of U into Cn, we denote by L ◦ π−1 the vector field in π(U) defined by

L◦π−1 = ∑ai ◦π−1 ∂
∂ zi

, and

(3.10) Lρ = L◦π−1 −β N,

where N is the complex unitary normal to ρ and β = L◦π−1(ρ).
Clearly, L 7→ Lρ is an isomorphism from T

1,0
∂D∩U

onto T
1,0

∂Ω∩π(U) (V(P0) and U sufficiently small), and thus, we also consider

L associated to Lρ by L = Lρ ◦π +(β ◦π)N ◦π . As L is tangent to ∂D and (Lρ ◦π)(ρ) is identically zero on ∂Ω, we have

(3.11) β ◦π(z) =
−〈Lρ ◦π ,z〉ϕ ′(|z|2)

(N ◦π)(ρ)+ 〈N ◦π ,z〉ϕ ′(|z|2)
+ k,

where k is a C ∞ function whose derivatives of order less than M are O(ϕ(|z|2)) with constants controlled by the C 2M norm
of L, and, if L = ∑ai

∂
∂ zi

(in the coordinate system of Definition 3.6), 〈L,z〉 denotes the usual scalar product ∑aizi, and
〈L,L′〉= ∑aia

′
i.

With the previous notations, let P be a point of ∂D such that ψ(P) = 0 (thus P ∈ ∂D∩ ∂Ω) and let V (P) ⊂ U be a
neighborhood of P such that π is a diffemorphism of V (P)∩∂D onto V (P)∩∂Ω.

Let p ∈ ∂D∩V (P). Essentially, the construction of the extremal basis B at p for D is done using a suitable basis Bρ of
the tangent space of ∂Ω near the point π(p) translated at p (using π) then projected onto the tangent space of ∂D, to get a
basis B̃ which will be used (in the next section) to define the basis B.

Currently, we only look at the relation between the weights of the basis B̃ and Bρ .
Thus, if B̃ = {L̃1, . . . , L̃n−1} is a basis of T

1,0
∂D

in V (P)∩∂D, with our notations, the basis Bρ = {L
ρ
1 , . . . ,L

ρ
n−1} of T

1,0
∂Ω

(in
V (P)∩∂Ω) is given by

(3.12) L
ρ
i = L̃i ◦π−1 −βiN,

with βi = L̃i ◦π−1(ρ), and

(3.13) L̃i = L
ρ
i ◦π +(βi ◦π)N ◦π .

with

(3.14) βi ◦π =
−
〈
L

ρ
i ◦π ,z

〉
ϕ ′(|z|2)

(N ◦π)(ρ)+ 〈N ◦π ,z〉ϕ ′(|z|2)
+ k.

Let us calculate the weights F(L̃i, p,δ ) in terms of the weights F(L
ρ
i ,π(z),δ ) and the derivatives of ϕ . We suppose that

L
ρ
i are normalized. Writing c̃i j =

[
L̃i, L̃ j

]
(∂ r) and c

ρ
i j =

[
L

ρ
i ,L

ρ
j

]
(∂ρ), using that (N ◦π)(ρ) is identically 1 on ∂Ω, a simple

computations shows

(3.15)

c̃i j = c
ρ
i j ◦π +

〈
L

ρ
i ◦π ,L

ρ
j ◦π

〉
ϕ ′(|z|2)+

〈
L

ρ
i ◦π ,z

〉〈
L

ρ
j ◦π ,z

〉
ϕ ′′(|z|2)+

+ϕ ′(|z|2)∑n−1
k=1

(
∗
〈
L

ρ
k ◦π ,z

〉
+ ∗
〈

L
ρ
k ◦π ,z

〉)
+ k,

= c
ρ
i j ◦π +ϕ ′(|z|2)

(〈
L

ρ
i ◦π ,L

ρ
j ◦π

〉
+ h
)
+
〈
L

ρ
i ◦π ,z

〉〈
L

ρ
j ◦π ,z

〉
ϕ ′′(|z|2)+ k,

where all the derivatives of k are O(ϕ(|z|2)) and the functions ∗ have a bounded C M norm, the constants depending only on
Ω and the C 2M norms of the L̃i.
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As L
ρ
i are normalized, we also have

(3.16)
c̃ii = c

ρ
ii ◦π +ϕ ′(|z|2)+

∣∣〈Lρ
i ◦π ,z

〉∣∣2 ϕ ′′(|z|2)+ϕ ′(|z|2)∑n−1
k=1

(
∗
〈
L

ρ
k ◦π ,z

〉
+ ∗
〈

L
ρ
k ◦π ,z

〉)
+ k

= cii ◦π +ϕ ′(|z|2)(1+ h)+
∣∣〈Lρ

i ◦π ,z
〉∣∣2 ϕ ′′(|z|2)+ k

and d is chosen small enough such that the C M norm of h is small.
Now we need to introduce a new notation. Let L be a C

∞(∂D∩V (P)) vector field tangent to ∂D. For z ∈ ∂D∩V (P) let
us define

F̃ϕ(L,z,δ ) =
M/2

∑
k=1

(
ϕ(k)(|z|2)

δ

)1/k

+ |〈Lρ ◦π(z),z〉|2
M

∑
2

∣∣∣∣∣
ϕ(k)(|z|2)

δ

∣∣∣∣∣

2/k

+ δ−1/M.

Lemma 3.4. For δ and V (P) small enough and for z ∈ ∂D∩V (P), we have:

F̃ϕ (L,z,δ ) ≃ ϕ ′(|z|2)
δ

+ |〈Lρ ◦π ,z〉|2 ϕ ′′(|z|2)
δ

+ δ−1/M.

Proof. It suffices to consider the case when |z|2 = µ2 + x > µ2. Note that, for V (P) small, ϕ(k)(µ2 + x) ≃ Ke−1/xx−2k and( 1
x

)2k ≤ e1/Mx, for k ≤ M.

Suppose
(

ϕ(k)(µ2+x)
δ

)1/k

> δ−1/M and e−1/x < δ . Then

(
ϕ(k)(µ2 + x)

δ

)1/k

≃
(

K0e−1/x

δ

)1/k
1
x2 . K

1/2
0 δ−1/kM ≤ δ−1/M,

for δ small. Thus, for δ ≤ δ0(K0),
(

ϕ(k)(µ2+x)
δ

)1/k

> δ−1/M implies e−1/x > δ and ∑
M/2
1

(
ϕ(k)(µ2+x)

δ

)1/k

≃ ϕ ′(µ2+x)
δ .

Similarly,
(

ϕ(k)(µ2+x)
δ

)2/k

> δ−1/M implies e−1/x > δ and ∑M
2

(
ϕ(k)(µ2+x)

δ

)2/k

≃ ϕ ′′(µ2+x)
δ . �

Thus, we denote

Fϕ (L,z,δ ) =
ϕ ′(|z|2)

δ
+ |〈Lρ ◦π ,z〉|2 ϕ ′′(|z|2)

δ
+ δ−1/M,

F
ϕ
i = F

ϕ
i (z,δ ) = Fϕ (L̃i,z,δ ), 1 ≤ i ≤ n− 1 and F

ϕ
n = δ−2. Let L̃n denotes the unitary complex normal to r (the defining

function of D) and L
ρ
n the unitary complex normal to ρ .

Proposition 3.11. Let L̃ be a list of LM

(
B̃∪

{
L̃n

})
and L ρ be the list obtained replacing

( )

L̃i in L by
( )

L
ρ
i . Then, reducing

V (P) if necessary, on ∂D∩V (P) we have (l̃i denoting the number of times the vector fields L̃i or L̃i appears in L̃ ):

(1)

∣∣∣L̃ (c
ρ
i j ◦π)− (L ρ c

ρ
i j)◦π

∣∣∣. δ ∏n
k=1

(
F

ϕ
k

)l̃k/2
, for

∣∣∣L̃
∣∣∣≥ 2,

(2)

∣∣∣L̃ ϕ(|z|2)
∣∣∣. δ ∏n

i=1

(
F

ϕ
i

)l̃i/2
,

∣∣∣L̃
∣∣∣≥ 2,

the constants depending only on Ω and the C M+2 norms of the L̃i.

Proof. These properties are trivially satisfied if l̃n 6= 0, thus we suppose l̃n = 0. Using (3.15) and the fact that if f is a C ∞

function on ∂Ω∩V(P) and if Lρ ρ ≡ 0 then (Lρ ◦π)( f ◦π)− (Lρ f ) ◦π = O f (ϕ) on ∂D∩V (P), the Proposition is an easy
consequence of (3.14) and the following Lemma:

Lemma 3.5. Let L ρ ,π be a list of LM

{
L

ρ
i ◦π , i ≤ n− 1

}
of length ≥ 1. Then |L ρ ,π ψ |. δ ∏n−1

i=1

(
F

ϕ
i

)li/2
.

Proof of Lemma 3.5. By induction, we have

L
ρ ,πψ = L

ρ ,π
(

ϕ
(
|z|2
))

=
[m−1

2 ]

∑
l=1

∗ϕ(l)
(
|z|2
)
+

m

∑
l=[m+1

2 ]

αlϕ
(l)
(
|z|2
)
,

with
αm−k = ∑

L
∗={W∗

1 ,...,W
∗
m∗}⊂L

ρ,π

m∗≤m−2k

∗ ∏
W ∗

i ∈L ∗

〈
W ∗

i ,
( )

z
〉
,

where
〈

W ∗
i ,

( )

z

〉
denotes 〈W ∗

i ,z〉 if W ∗
i is of type (0,1) and 〈W ∗

i , z̄〉 if not, and the C 2M norms of the functions ∗ are controlled

by the C 2M norms of the vector fields L̃i. Now, the proof of Lemma 3.4 shows that

[m−1
2 ]

∑
l=1

∗ϕ(l)
(
|z|2
)

δ
.


δ−1/M +

ϕ ′
(
|z|2
)

δ




m/2

,
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and it is enough to see that
∣∣∣αlϕ

(l)
(
|z|2
)∣∣∣ . δ (Fϕ)L /2, for l ∈

{[
m+1

2

]
, . . . ,m

}
. If l = m, this follows from Lemma 3.4;

suppose l = m− k, k ≥ 1.

Suppose

∣∣∣∣
ϕ(m−k)(|z|2)

δ

∣∣∣∣
2/(m−k)

≥ δ−1/M. By Lemma 3.4

∣∣∣∣
ϕ(m−k)(|z|2)

δ

∣∣∣∣
2/(m−k)

≤ ϕ ′′(|z|2)
δ . Let L ∗ ⊂ L of length m∗ =

m− 2k = ∑n−1
i=1 l∗i . The corresponding term in αm−k is bounded by

∗




ϕ ′′
(
|z|2
)

δ




(m−k)/2

∏
i

∣∣〈Lρ
i ◦π ,z

〉∣∣l∗i = ∗




ϕ ′′
(
|z|2
)

δ




k/2
n−1

∏
i=1




ϕ ′′
(
|z|2
)

δ

∣∣〈Lρ
i ◦π ,z

〉∣∣2



l∗i /2

. ∗




ϕ ′
(
|z|2
)

δ




k

n−1

∏
i=1

(
F

ϕ
i

)l∗i /2
,

because the hypothesis implies

(
ϕ ′′(|z|2)

δ

)1/2

.
ϕ ′(|z|2)

δ . �

To finish the proof of Proposition 3.11 note that, for
∣∣∣L̃
∣∣∣≥ 1,

∣∣∣L̃ (βi ◦π)(z)
∣∣∣≤ Fϕ(z,δ )L̃ /2F

ϕ
i (z,δ )1/2,

and use (3.14). �

Finally the relations between the weights associated to B̃ and to Bρ are as follows.
Let L̃ a holomorphic vector field on ∂D tangent to ∂D near p and Lρ the associated vector field tangent to ∂Ω. Then

Proposition 3.12. For V (P) sufficiently small, we have, if 1
K
≤
∥∥∥L̃

∥∥∥≤ K,

F(L̃,z,δ )≃ F(Lρ ,π(z),δ )+Fϕ(L̃,z,δ ),

with constants depending on the C 2M norm of L̃, K and the data.

Proof. From Proposition 3.11 it easily follows that F(L̃,z,δ ) . F(Lρ ◦π ,z,δ )+Fϕ (L̃,z,δ ). Let us then see that there ex-

ists a list L̃ composed of L̃ and L̃ such that L̃ c̃
L̃L̃

≃ δ
(

F(Lρ ◦π ,z,δ )+Fϕ (L̃,z,δ )
)(|L̃ |+2)/2 def

= δF (|L̃ |+2)/2. If ϕ ′
δ +

|〈Lρ ◦π(z),z〉|2 ϕ ′′
δ ≃ F , then c

L̃L̃
do it. Suppose ϕ ′

δ + |〈Lρ ◦π(z),z〉|2 ϕ ′′
δ ≪ F . Then, there exists a list L ρ such that

|L ρ cLρ Lρ (π(z))| ≃ δF (|L̃ |+2)/2. Then calculating L̃ c̃
L̃L̃

in term of L ρ(cLρ Lρ ) ◦ π , the result follows Proposition 3.11,
(3.16) and the properties of the functions h and k.

�

3.5.3. Extremal bases on D. In this Section, we assume that p0 is of finite type τ , M = M′(τ) and that, at all points q of
V (P0)∩ ∂Ω and for all δ > 0, 0 < δ ≤ δ0, there exists a (K,q,δ )-extremal basis. Then we will show that at all points p of
∂D and for all δ > 0 there exists a (K′, p,δ )-extremal basis (for D) with a constant K′ controlled by K and the data.

If P is a point of ∂D such that |P| > µ then ∂D is strictly pseudo-convex near P and the construction of extremal basis
in V (P)∩ ∂D is trivial (for V (P) small). If |P| < τ then V (P)∩ ∂D is contained in ∂Ω and the existence of extremal basis
is the hypothesis. Thus, we have only to consider neighborhood of points P ∈ ∂D such that |P| = µ (that is points P in the
boundary of ∂Ω∩∂D).

As we said before, the final extremal basis for D, at p ∈ V (P)∩ ∂D, will be obtained extending a basis B̃ defined on
V (P)∩∂D which is a projection onto the tangent space to r of a translation of a basis Bρ , at π(p), tangent to ρ .

Formula (3.16) shows that the expressions
〈
L

ρ
i ◦π ,z

〉
plays an important role: we have to take into account the vector fields

which are orthogonal to z. In particular, to construct an extremal basis on ∂D, we cannot simply translate an extremal basis
on ∂Ω and project it onto the tangent space to ∂D, because, even if the basis (Lρ

i ) is extremal, we may have
〈
L

ρ
i ◦π ,z

〉
6= 0,

for all i, and there are linear combinations of the L
ρ
i ◦π which are orthogonal to z.

From now the point p and the positive number δ are fixed. We suppose we have a (K,π(p),δ )-extremal (for ρ) basis
B

Ω = {LΩ
1 , . . . ,L

Ω
n−1} at the point π(p) (the LΩ

i being C
∞ in V (P)), such that the vectors LΩ

i (π(p)) are orthogonal (c.f.
Proposition 3.1) and we construct the basis Bρ = {L

ρ
1 , . . . ,L

ρ
n−1} using it. The weights associated to BΩ are denoted FΩ

i =

FΩ
i (π(p),δ ) = FΩ(LΩ

i ,π(p),δ ), and we suppose FΩ
i+1 ≤ FΩ

i , for i ≤ n− 2, changing the order of LΩ
i if necessary.

Recall that the canonical coordinate system is centered at the point O of Definition 3.6, thus |z(P)|= µ .
For simplicity of notations, we denote q = π(p) (thus p = π−1(q), π being considered as a diffeomorphism between open

sets of the boundaries of Ω and D).
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Let

Hn−1 =
{

W = ∑aiL
Ω
i , ai ∈ C, ∑ |ai|2 = 1, such that 〈W (q), p〉= 0

}
.

Let Wn−1 = ∑an−1
i LΩ

i ∈ Hn−1 such that ∑n−2
i=1

∣∣an−1
i

∣∣2 F(LΩ
i ,q,δ ) = infW=∑aiL

Ω
i ∈Hn−1

∑n−2
i=1 |ai|2 F(LΩ

i ,q,δ ), and define

(3.17) L
ρ
n−1 =

{
LΩ

n−1 if ∑n−2
i=1

∣∣an−1
i

∣∣2 F(LΩ
i ,q,δ )≥

ϕ ′′(|p|2)
δ

∣∣〈LΩ
n−1(q), p

〉∣∣2 ,
Wn−1 otherwise.

Suppose L
ρ
n−l are defined for 1 ≤ l ≤ k− 1 < n. Let Hn−k = Hn−1 ∩

[
E (L

ρ
n−1, . . . ,L

ρ
n−k+1)

]⊥
, E (L

ρ
n−1, . . . ,L

ρ
n−k+1) being

the linear space spaned by L
ρ
n−1, ..., L

ρ
n−k+1, the orthogonality being taken at q. Let Wn−k = ∑n−1

i=1 an−k
i LΩ

i a vector in Hn−k

minimizing ∑n−k−1
i=1 |ai|2 F(LΩ

i ,q,δ ) for vectors ∑n−1
i=1 aiL

Ω
i ∈ Hn−k. Let Tn−k be a vector field, of norm 1 at q, in Gn−k =

E (LΩ
n−1, . . . ,L

Ω
n−k)∩

[
E (L

ρ
n−1, . . . ,L

ρ
n−k+1)

]⊥
. Then L

ρ
n−kis defined by

L
ρ
n−k =

{
Tn−k if ∑n−k−1

i=1

∣∣an−k
i

∣∣2 F(LΩ
i ,q,δ )≥

ϕ ′′(|p|2)
δ |〈Tn−k(q), p〉|2 ,

Wn−k otherwise.

Note that {L
ρ
i (q), 1 ≤ i ≤ n− 1} is orthonormal. We will note later that if the dimension of Gn−k is strictly greater than 1

then Fρϕ(L
ρ
n−k

) (see below) is, up to a multiplicative constant, independent of the choice of Tn−k.
The next two Lemmas prove some important properties of the vector fields L

ρ
i . Let us denote Bρ =

{
L

ρ
i , i < n

}
and L

ρ
n

the unitary complex normal to ρ .
For L = ∑n−1

i=1 aiL
ρ
i , ai ∈ C, let us denote

Fρϕ(L) = F(L,q,δ )+
ϕ ′
(
|p|2
)

δ
+ |〈L(q), p〉|2

ϕ ′′
(
|p|2
)

δ
,

F
ρϕ
i = Fρϕ(L

ρ
i ), 1 ≤ i ≤ n− 1, F

ρϕ
n = 1

δ 2 and (Fρϕ)L /2 = ∏i

(
F

ρϕ
i

)li/2
, if L is a list of LM(Bρ ∪

{
L

ρ
n

}
), with the usual

notation for li.
We will show that, up to constants, the vector fields L

ρ
i give the successive minima of the functions Fρϕ(L) for L = ∑aiL

Ω
i ,

∑
∣∣a2

i

∣∣= 1.

Lemma 3.6. There exits a constant K′ depending only on K such that:

(1) If L = ∑aiL
Ω
i , ∑ |ai|2 = 1, is orthogonal, at q, to the space generated by L

ρ
j , i+ 1 ≤ j ≤ n− 1, i ≤ n− 1, then

Fρϕ(L)≥ 1
K′ F

ρϕ(L
ρ
i );

(2) Fρϕ(L
ρ
i )≥ 1

K′ F
ρϕ(Li+1), i < n− 1;

(3) Fρϕ(L
ρ
i )≥ 1

K′ F(LΩ
i ,q,δ ), i < n.

Proof. Note first that if property (2) is satisfied for i ≥ k then property (3) is also satisfied for i ≥ k. Indeed, more generally,
if L is orthogonal to the vectors L

ρ
j , i+ 1 ≤ j ≤ n− 1, and if property (2) is satisfied for i+ 1, . . . ,n− 1, then

(3.18) Fρϕ(L)& max
{

FΩ(L),FΩ(L
ρ
i+1) . . . ,F

Ω(L
ρ
n−1)

}
& FΩ(LΩ

i ,q,δ ) = F(LΩ
i ,q,δ ) = FΩ

i ,

because the L
ρ
j and L are orthogonal and the basis

(
LΩ

i

)
i

is extremal.

Now we show that if L = ∑aiL
Ω
i , ∑ |ai|2 = 1, then Fρϕ(L)& F

ρϕ
n−1.

If LΩ
n−1 ∈ Hn−1, then L

ρ
n−1 = LΩ

n−1 and F
ρϕ
n−1 = F(LΩ

n−1,q,δ )+
ϕ ′(|p|2)

δ which gives the result. Suppose thus LΩ
n−1 /∈ Hn−1.

We separate the two cases of (3.17):
Suppose we are in the first case (Lρ

n−1 = LΩ
n−1). If L ∈ Hn−1, then the inequality is an immediate consequence of the

extremality (EB1) of BΩ. Suppose L /∈ Hn−1. Then we can write L = α
(
L

ρ
n−1 + γH

)
with H ∈ Hn−1. Writing H = ∑a′iL

Ω
i ,

we have

Fρϕ(L)≃ |α|2
[

n−2

∑
i=1

∣∣γa′i
∣∣2 F(LΩ

i ,q,δ )+
∣∣1+ γa′n−1

∣∣2 F(LΩ
n−1,q,δ )

]
+

ϕ ′
(
|p|2
)

δ
+ |α|2

ϕ ′′
(
|p|2
)

δ

∣∣∣
〈

LΩ
n−1(q), p

〉∣∣∣
2
,

and as ∑n−2
i=1 |a′i|

2
F(LΩ

i ,q,δ )≥ ∑n−2
i=1

∣∣an−1
i

∣∣2 F(LΩ
i ,q,δ )≥

ϕ ′′(|p|2)
δ

∣∣〈LΩ
n−1(q), p

〉∣∣2, we obtain

Fρϕ(L) & |α|2
(

1+ |γ|2
) ϕ ′′

(
|p|2
)

δ

∣∣∣
〈

LΩ
n−1(q), p

〉∣∣∣
2
&K

ϕ ′′
(
|p|2
)

δ

∣∣∣
〈

LΩ
n−1(q), p

〉∣∣∣
2
,

because, by equivalence of norms in finite dimensional spaces, |α|2
(

1+ |γ|2
)
&K 1. The extremality of BΩ implies

F(L,q,δ ) & F(LΩ
n−1,q,δ ), and the inequality is proved.
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Let us now look to the case L
ρ
n−1 =Wn−1. The result is trivial if L ∈ Hn−1, thus we suppose L /∈ Hn−1. Using the same

decomposition as before, we get

Fρϕ(L) & |α|2
(

1+ |γ|2
) n−2

∑
i=1

∣∣an−1
i

∣∣2 F(LΩ
i ,q,δ )&

n−2

∑
i=1

∣∣an−1
i

∣∣2 F(LΩ
i ,q,δ ),

and, as Fρϕ(L) & F(L,q,δ ) & F(LΩ
n−1,q,δ ), we have Fρϕ(L)& F(Wn−1,q,δ ).

The induction is as follows. Suppose Fρϕ(L
ρ
i+1)& Fρϕ(L

ρ
i+2)& . . .& Fρϕ(L

ρ
n−1) and that for all L = ∑aiL

Ω
i , ∑ |ai|2 = 1,

orthogonal to the L
ρ
j , i + 2 ≤ j ≤ n− 1, then Fρϕ(L) & Fρϕ(L

ρ
i+1). Let L = ∑aiL

Ω
i , ∑ |ai|2 = 1, orthogonal to the L

ρ
j ,

i+ 1 ≤ j ≤ n− 1. Suppose Ti is chosen. If Ti ∈ Hi then L
ρ
i = Ti, Fρϕ (Ti). FΩ

i + ϕ ′
δ and, using (3.18), Fρϕ(L) & Fρϕ (L

ρ
i ).

Suppose now Ti /∈ Hi. If L
ρ
i = Ti then, decomposing L = α (Ti + γH) as in the first step, we obtain Fρϕ(L)& ϕ ′′

δ |〈Ti(q), p〉|2

and we use (3.18). Otherwise L
ρ
i = Wi and, again, the same decomposition gives Fρϕ(L) & ∑n−i−1

j=1 |ai|2 F(LΩ
i ,q,δ ) and we

conclude with (3.18).
Finally we obtain Fρϕ(L) & Fρϕ(L

ρ
i ) (which proves the statement about the choice of Tn−k), and, as L

ρ
i is orthogonal to

L
ρ
i+1, . . . ,L

ρ
n−1, the induction hypothesis imply Fρϕ(L

ρ
i )& Fρϕ(L

ρ
i+1) and finishes the proof. �

We now estimate the brackets of the vector fields L
ρ
i , i < n, at the point q.

Lemma 3.7. Let

[
( )

L
ρ
k ,

( )

L
ρ
s

]
= ∑n

t=1 bt
( )

k
( )

s
L

ρ
t +∑n

t=1 bt̄
( )

k
( )

s
L

ρ
t . For all lists L , of LM

(
B

ρ ∪
{

L
ρ
n

})
, we have

∣∣∣∣L
(

b
( )

t
( )

k
( )

s

)
(q)

∣∣∣∣< K′ (Fρϕ)L /2 (
F

ρϕ
k

)1/2
(Fρϕ

s )1/2 (
F

ρϕ
t

)−1/2

with K′ depending only on K and the data.

Proof. Note that the Lemma is trivial if ln(L ) ≥ 1 and if F
ρϕ

t .
ϕ ′′(|p|2)

δ (because F
ρϕ
k and F

ρϕ
s are both ≥ to ϕ ′(|p|2)

δ and

ϕ ′′(|p|2)
δ ≥ δ−2/M implies

∣∣∣ϕ ′(|p|2)
δ

∣∣∣
2
≥
∣∣∣ϕ ′′(|p|2)

δ

∣∣∣). Moreover, we also have F
ρϕ

t . F(L
ρ
t ,q,δ )+

ϕ ′′(|p|2)
δ , and, if L

ρ
t = Tt , then,

by the definition of Tt and the extremality of BΩ, F(L
ρ
t ,q,δ ). F(LΩ

t ,q,δ ), and, if Lt =Wt , then F(L
ρ
t ,q,δ ). F(LΩ

t ,q,δ )+
ϕ ′′(|q|2)

δ .
Thus, it suffices to prove that if ln = 0

∣∣∣L
(

bt
( )

k
( )

s

)
(q)
∣∣∣. (Fρϕ)L /2 (

F
ρϕ
k

)1/2
(Fρϕ

s )1/2
(

F(LΩ
t ,q,δ )

)−1/2
.

Let us write L
ρ
k = ∑α i

kLΩ
i and LΩ

k = ∑β i
kL

ρ
i . Using the notation

[
( )

LΩ
i ,

( )

LΩ
j

]
= ∑n

i=1 am
( )

i
( )

j
LΩ

m +∑n
i=1 am̄

( )

i
( )

j
LΩ

t , a computation

gives, if t < n,

bt
( )

k
( )

s
= ∑

m

(

∑
i, j

( )

α i
k

( )

α j
s am

( )

i
( )

j

)
β t

m,

with β t
m = 1

det(α) ∑σ εσ ∏i α
σ(i)
i , where σ describes the set of permutations from {1, . . . ,n−1}\{t} onto {1, . . . ,n−1}\{m},

and

bn
( )

k
( )

s
= ∑

i, j

( )

α i
k

( )

α j
s C( )

i
( )

j

with C( )

i
( )

j
=

[
( )

LΩ
i ,

( )

LΩ
j

]
(∂ρ) (note that this notation gives ci j =Ci j̄).

First, we prove that, if t < m, then |β t
m| .

(
F

ρϕ
k

)1/2 (
F

ρϕ
s

)1/2 (
F(LΩ

t ,q,δ )
)−1/2

for any k and s. In that case, there exists

an index i > t such that σ(i)≤ t; if L
ρ
i = Ti then α

σ(i)
i = 0, and if L

ρ
i =Wi then

∣∣∣ασ(i)
i

∣∣∣≤
[

ϕ ′′(|p|2)
δ

(
F(LΩ

σ(i),q,δ )
)−1

]1/2

≤
(

ϕ ′′(|p|2)
δ

)1/2(
F(LΩ

t ,q,δ )
)−1/2

≤
(
F

ρϕ
k

)1/2
(Fρϕ

s )1/2
(

F(LΩ
t ,q,δ )

)−1/2
,

because F
ρϕ
m & δ−1/M + ϕ ′(|p|2)

δ and ϕ ′′(|p|2)
δ ≥ δ−2/M implies

(
ϕ ′(|p|2)

δ

)2
≥ ϕ(|p|2)

δ .

To finish the proof, it suffices to remark that the extremality of BΩ implies
∣∣α i

k

∣∣. F(L
ρ
k ,q,δ )

1/2F(LΩ
i ,q,δ )

−1/2,
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and
∣∣∣∣L
(

am
( )

i
( )

j

)∣∣∣∣ . ∏F(LΩ
k ,q,δ )

lk/2F(LΩ
i ,q,δ )

1/2F(LΩ
j ,q,δ )

1/2F(LΩ
m ,q,δ )

−1/2

. (Fρϕ)L /2
F(LΩ

i ,q,δ )
1/2F(LΩ

j ,q,δ )
1/2F(LΩ

t ,q,δ )
−1/2,

by Lemma 3.6, for t ≥ m. �

Then, with the notations introduced before, we consider the basis at p (for D)

B̃ = {L̃1, . . . , L̃n−1} with L̃i =
1∥∥L

ρ
i ◦π

∥∥
(
L

ρ
i ◦π +(βi ◦π)Nρ ◦π

)
.

Note that Lemma 3.6 and Lemma 3.7 are proved for the vector fields L
ρ
i but it is easy to see that they are also valid for the

vector fields L
ρ
i /
∥∥L

ρ
i

∥∥.

To simplify the notations, in the remainder of the proof, the vector fields
L

ρ
i

‖L
ρ
i ‖ will be denoted by L

ρ
i , and the function

βi

‖L
ρ
i ‖ will be denoted βi so that L̃i =

(
L

ρ
i ◦π +(βi ◦π)Nρ ◦π

)
.

Proposition 3.13. The basis B̃ is (K′, p,δ )-extremal for a constant K′ depending only on K and the data.

Proof. We first prove condition EB1, that is, if αi are complex numbers then

F

(
n−1

∑
i=1

αiL̃i, p,δ

)
≃

n−1

∑
i=1

|αi|2 F
(

L̃i, p,δ
)
.

By induction, it suffices to see that, for all k,

F

(
n−k

∑
i=1

αiL̃i, p,δ

)
≃ F

(
n−k−1

∑
i=1

αiL̃i, p,δ

)
+ |αn−k|2 F

(
L̃n−k, p,δ

)
.

To simplify notations we write X̃ = ∑n−k−1
i=1 αiL̃i and Xρ = ∑n−k−1

i=1 αiL
ρ
i . By Proposition 3.12, we have to prove that

(3.19) F(Xρ +αn−kL
ρ
n−k,q,δ )+

ϕ ′′(|p|2)
δ

∣∣〈(Xρ +αn−kL
ρ
n−k

)
◦π(p), p

〉∣∣+ ϕ ′(|p|2)
δ

≃ F(Xρ ,q,δ )+ |αn−k|2 F(L
ρ
n−k,q,δ )+

ϕ ′′(|p|2)
δ

(
|〈(Xρ ◦π)(p), p〉|2 + |αn−k|2

∣∣〈(Lρ
n−k ◦π)(p), p

〉∣∣2
)
+

ϕ ′(|p|2)
δ

.

Indeed, if β (q)=
‖∑t

i=1 αiL
ρ
i ‖(q)

‖∑t
i=1 αiL

ρ
i ‖(p)

, then the C M norm of β−1 is controlled by K and F
(

β−1 ∑t
i=1 αiL̃i, p,δ

)
≃K F

(
∑t

i=1 αiL̃i, p,δ
)

.

Note that if Y and Z are two linear combinations (with constant coefficients) of the LΩ
i , by extremality, F(Y +Z,q,δ ) ≤

K2 [F(Y,q,δ )+F(Z,q,δ )], and then

(3.20) F(Y +Z,q,δ )≥ 1
K2 F(Y,qδ )−F(Z,q,δ ).

This implies that the left hand side of (3.19) is . than the right hand side, and we have only to prove the converse inequality.
To do it, we consider separately the two possibilities for L

ρ
n−k.

Suppose first L
ρ
n−k = Tn−k.

If the right hand side of (3.19) is equivalent to F(Xρ ,q,δ )+ |αn−k|2 F(L
ρ
n−k,q,δ ), by (3.20), we have only to consider the

case when F(Xρ ,q,δ )≃ |αn−k|2 F(L
ρ
n−k,q,δ ). Using that F(Tn−k,q,δ ). F(LΩ

n−k,q,δ ), Lemma 3.6 gives the result.
Suppose now that the right hand side of (3.19) is equivalent to

ϕ ′′(|p|2)
δ

(
|〈(Xρ ◦π)(p), p〉|2 + |αn−k|2

∣∣〈(Lρ
n−k ◦π)(p), p

〉∣∣2
)
.

Then, we only have to consider the case when 〈(Xρ ◦π)(p), p〉 = −(1+ ε)αn−k

〈
(L

ρ
n−k ◦π)(p), p

〉
, with ε small. Then

if W is the vector field Xρ + (1 + ε)αn−kL
ρ
n−k normalized at q, W ∈ Hn−k and thus F(W,q,δ ) ≥ ϕ ′′

δ |〈Tn−k(q), p〉|2 =
ϕ ′′
δ

∣∣〈Lρ
n−k(q), p

〉∣∣2. Then F(Xρ ,q,δ )& 1
K2

(
ϕ ′′
δ

∣∣〈Lρ
n−k(q), p

〉∣∣2
)
− 2F(L

ρ
n−k,q,δ ), and the conclusion follows.

To finish, suppose that L
ρ
n−k =Wn−k.

If the right hand side of (3.19) is equivalent to ϕ ′′(|p|2)
δ

(
|〈(Xρ ◦π)(p), p〉|2 + |αn−k|2

∣∣〈(Lρ
n−k ◦π)(p), p

〉∣∣2
)

, there is noth-

ing to do because
〈
L

ρ
n−k ◦π(p), p

〉
= 0.
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Suppose then that the right hand side of (3.19) is equivalent to F(Xρ ,q,δ )+ |αn−k|2 F(L
ρ
n−k,q,δ ). As before, the conclu-

sion is evident except if F(Xρ ,q,δ )≃ |αn−k|2 F(L
ρ
n−k,q,δ ). Suppose

F(Xρ +αn−kL
ρ
n−k,q,δ )+

ϕ ′(|p|2)
δ

≪ |αn−k|2 F(Wn−k,q,δ ).

Note that 〈Tn−k(q), p〉 6= 0, and we can define W = Xρ +αn−kL
ρ
n−k + µTn−k such that 〈W (q), p〉= 0. Then by Lemma 3.6,

|αn−k|2 F(Wn−k,q,δ )≫ F(LΩ
n−k,q,δ ),

and (extremality of BΩ) |〈Tn−k(q), p〉|2 ϕ ′′(|p|2)
δ > 1

K
(F(Wn−k,q,δ )−KF(LΩ

n−k,q,δ ). From this we deduce |µ | ≪ |αn−k| and
W is of norm almost 1 at q. Then

F(W,q,δ ) ≤ K2
(

F(Xρ +αn−kL
ρ
n−k,q,δ )+ |µ |2 F(Tn−k,q,δ )

)

≪ |αn−k|2
(

F(Wn−k,q,δ )+F(LΩ
n−k,q,δ )

)
,

because Tn−k ∈ E
(
LΩ

n−k, . . . ,L
Ω
n−1

)
, and thus F(W,q,δ )≪ F(Wn−k,q,δ ) which contradicts the definition of Wn−k.

To see that B̃ satisfy EB2, a simple computation shows that it suffices to apply Lemma 3.7 and Proposition 3.11. �

Then, by Lemma 3.1 we conclude:

Proposition 3.14. The basis B previously defined by B = {Li, . . . , ln−1}, with Li = L
ρ
i ◦ π +(βi ◦π)Nρ ◦ π is (K′, p,δ )-

extremal for a constant K′ depending on the constant K of extremality of BΩ and the data.

Now the proof of Theorem 3.3 is complete.

4. GEOMETRICALLY SEPARATED DOMAINS

4.1. Definition and examples.

Definition 4.1. Let Ω= {ρ < 0} be a bounded pseudo-convex domain with C ∞ boundary (∇ρ 6= 0 in a neighborhood of ∂Ω).
We say that Ω is K-geometrically separated at p0 ∈ ∂Ω if p0 is a point of finite 1-type τ and there exist two neighborhoods
of p0, W (p0)⋐V (p0), a constant δ0 > 0, a constant K > 0, an integer M larger than τ +1 and a basis B0 = {L0

1, . . . ,L
0
n−1} of

(1,0) vector fields tangent to ρ in V (p0), whose C 2M norm are bounded by K and their “determinant” bounded from below
by 1/K, and a positive real number δ0 such that:

For each point p∈W (p0)∩∂Ω and each δ , 0< δ < δ0, there exits a (M,K, p,δ ) extremal basis B(p,δ ) = {L
p,δ
1 , . . . ,Lp,δ

n−1}
such that, for each i, the vector field L

p,δ
i can be written (on V (p0)) L

p,δ
i = ∑ j a

j
i L0

j with a
j
i ∈ C, ∑ |ai|2 = 1. In other words,

the L
p,δ
i are normalized vector fields belonging to the vector space E0 generated by B0.

A notable property (that will not be used later) of these domains is that the weights Fi satisfy a better estimate than the one
given in Proposition 3.5:

Proposition. Suppose Ω is geometrically separated at p0 (of type τ). Then for V (p0) and δ0 sufficiently small, there exists a

constant C > 0 depending only on K and Ω, such that the extremal basis B(p,δ ) =
{

L
p,δ
i , 1 ≤ i ≤ n− 1

}
, p ∈W (p0)∩∂Ω,

0 < δ < δ0, satisfies FM(Lp,δ
i , p,δ )≥Cδ−2/τ+1, for all i and all δ ∈ [0,δ0], with M = [τ]+ 1.

Proof. Suppose there exists a sequence of points pm converging to p0, a sequence δm in ]0,δ0[ and an integer i ≤ n− 1 such
that, denoting B(pm,δm) =

(
Lm

1 , . . . ,L
m
n−1

)
the (M,K, pm,δm)-extremal basis at pm, we have ∑L∈LM(Lm

i )
|L (∂ρ)(pm)| ≤

1/m. Then Lm
i = ∑a

j
i (pm)L

0
j , ∑

∣∣∣a j
i (pm)

∣∣∣
2
= 1, and we may suppose that the sequences n 7→ a

j
i (pm) converge to complex

numbers a j satisfying ∑
∣∣a j
∣∣2 = 1. Then, by uniform convergence, the vector field L = ∑a jL0

j satisfies FM(L, p0,δ ) = 0, for

all δ . But, we have L = ∑bkL
p0
k , ∑ |bk|2 ≥K 1, and, by extremality F(L, p0,δ ) ≃K ∑ |bk|2 FM(L

p0
k , p0,δ ), thus there exists k

such that FM(Lp0
k , p0,δ ) = 0, i. e. ∑

L∈LM(L
p0
k

)
|L (∂ρ)(p0)|= 0. Then, by (4) of Definition 3.2 this contradicts the definition

of the 1-type. �

Thus, in all the paper, for a geometrically separated domain at a boundary point p0, the integer M could be changed to
[τ]+1. As this change gives no advantage, we will keep M =M′(τ) and then we can apply directly the results of the preceding
Sections.

Remark 4.1. Suppose Ω is geometrically separated at p0 ∈ ∂Ω. Let p be a point of Ω ∩W (p0). If π is the projection
onto ∂Ω defined in Section 3.5.2 let q = π(p). Then, reducing W (p0) and δ0 if necessary, if − 1

3 ρ(p) < δ < δ0, the basis

B(q,δ ) = (Lq,δ
1 , . . . ,Lq,δ

n−1) is clearly (2K, p,δ )-extremal, and FM(Lq,δ
i , p,δ )≥C′δ−2/τ+1 for a constant C′ depending only on

K and the data. Thus we will always assume that a geometrically separated domain is equipped, by definition, with extremal

bases of the form given in the definition, at every point of V (p0)∩Ω for − 1
3 ρ(p)< δ < δ0.
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This is clear, because if L ∈ LM(B), then |L (∂ρ)(p)−L (∂ρ)(π(p))| = O(δ ), where O depends only on K and Ω.
Then EB1 is satisfied because Fi(p,δ )≥Cδ−2/M with C depending only on Ω and EB2 is also satisfied because Fk(p,δ )≤ δ−2

(δ0 small enough).

Example 4.1.

(1) The three first examples of extremal basis given in Example 3.1 immediately show that, if p0 is a point of finite type
of ∂Ω then Ω is geometrically separated at p0, under one of the following four conditions:
(a) ∂Ω is convex near p0, or, more generally, lineally convex near p0 (see Section 7.1);
(b) The eigenvalues of the Levi form are comparable at p0;
(c) The Levi form is locally diagonalizable at p0.
(d) Near p0, ∂Ω belongs to the class introduced by M. Derridj in [Der99].

(2) Moreover, we will see in Section 4.3 that, if Ω is geometrically separated at p0 then the local domain D defined in
Section 3.5.1 is geometrically separated at every point of its boundary.

Example 4.2. The domain Ω =
{

z ∈ C3 such that ℜez1 + |z2|6 + |z3|6 + |z2z3|2 < 0
}

studied by G. Herbort in [Her83] is not

geometrically separated at (0,0) (see Section 7.2 for details).

4.2. Structure of homogeneous space. First recall that we define in Section 3.3.4 the “polydisc” Bc(B, p,δ ) (Definition 3.3)
and the “pseudo-balls” Bc

exp(B, p,δ ) and Bc
C
(B, p,δ ) (Definition 3.4).

In general, we will just denote by Bc
exp(p,δ ) and Bc

C
(p,δ ) the pseudo-balls Bc

exp(B, p,δ ) and Bc
C
(B, p,δ ) omitting B,

but recall that, if δ1 6= δ2, the balls Bc
exp(p,δ1) and Bc

exp(p,δ2) are not necessarily constructed with the same basis.
Then by the methods used in [CD06b] (based on the Campbell-Hausdorf formula and the ideas of [NSW85]), reducing

W (p0) if necessary, one can prove the following properties of the balls:

Proposition 4.1. There exist constants c0, δ0, α , β and γ such that, for p ∈ W (p0)∩ ∂Ω, δ ≤ δ0 and c ≤ c0, we have

Bαc
exp(p,δ )⊂ Bc(p,δ )⊂ B

β c
exp(p,δ ) and Bc

exp(p,δ )⊂ Bc
C
(p,δ )⊂ B

γc
exp(p,δ ).

The importance of this Proposition to construct the structure of homogeneous space is the following: to be able to use
Taylor’s formula, we have to work with a coordinates system, which is easy in the sets Bc(p,δ ); the hypothesis of geometric
separation and Proposition 3.6 imply that the sets associated to curves are associated to a pseudo-distance; and, finally, the
sets associated to the exponential map are used to prove that all these sets are equivalent.

Ideas of the proof of Proposition 4.1. It is similar to the proofs of Proposition 3.4 (p. 96) and Lemma 3.16 (p. 101) of
[CD06b]. Thus we will only give the main articulations.

The first inclusion comes easily from the control of the coefficients of the vector fields Li in the coordinate system (zi) in
the polydisc (Proposition 3.6). The second one is more complicated.

Let expp be the exponential map based at p relatively to the vector fields Yi (real an imaginary parts of the Li). Let

Ψp =
(
Ψp

i

)
i=2,...,2n

=
(
expp

)−1
. We establish the following estimate on the derivatives of the functions Ψp

i : there exist
constants β and K1, depending on K and the data, such that

(4.1) if q = expp(u), max{|ui| , |ui+n|} ≤ β Fi(p,δ )−1/2 then
∣∣∣YkΨp

j (q)
∣∣∣≤ K1Fk(p,δ )1/2Fj(p,δ )−1/2,

with the notation of Definition 3.4.
To prove this, we estimate the derivatives of the exponential map. Considering, for u ∈ Rn, the vector field Yu = ∑uiYi,

the derivatives of expp are estimated via the Campbell-Hausdorff formula. Let q = q(u) = expp(u), |u| ≤ u0,
∣∣∣∣∣dexpp

(
∂

∂ui

)
(u)−Yi(q)+

M

∑
k=2

αk [Yu, [. . . [Yu,Yi] . . .]] (q)

∣∣∣∣∣≤C |u|M+1 ,

where αk are universal constants corresponding to brackets of length k (see Lemma 1 (p. 97) of [CD06b]). The brackets are
then estimated with Proposition 3.6 and thus (4.1) is easily obtained. The second inclusion of the Proposition is then easily
proved.

The equivalence between the sets defined with the exponential map and the curves is a quite simple consequence of
(4.1). �

Proposition 4.2. Let Ω be a bounded pseudo-convex domain K-geometrically separated at p0 ∈ ∂Ω. Let B denote one of

the sets Bc
C

, Bc
exp or Bc. Then there exists a constant c0 > 0, depending on K and the data such that, for all c ≤ c0, the sets

B(B(p,δ ), p,δ ) are associated to a pseudo-distance in the following sense: there exists a constant C depending on K and

the data (but not on c) such that, if p ∈W (p0)∩∂Ω and δ ≤ δ0, and if q ∈ B(B(p,δ ), p,δ )∩∂Ω, then

B(B(q,δ ),q,δ ) ⊂ B(B(p,δ ), p,Cδ ).
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Remark. If we define γ , on W (p0)∩∂Ω, by

(4.2) γ(p,q) = inf{δ such that q ∈ B(B(p,δ ), p,δ )} ,

then γ is a real pseudo-distance.

Lemma.

(1) For all A > 0 there exists B depending on A and K such that

BAc
C (B(q,δ ),qδ ) ⊂ Bc

C (B(q,Bδ ),q,Bδ ).

(2) For all B > 0 there exists C depending on B such that

Bc
C (B(q,Bδ ),q,Bδ )⊂ BCc

C (B(q,δ ),q,δ ).

Proof of the Lemma. Let us denote by Li(q,δ ) (resp Li(q,Bδ )) the vector fields of B(q,δ ) (resp. B(q,Bδ )). By the hypoth-
esis on Ω, we have Li(q,δ ) = ∑k β k

i Lk(q,Bδ ), with β k
i constants. By extremality,

∣∣∣β k
i

∣∣∣ ≤ KF(Li(q,δ ),q,Bδ )1/2F(Lk(q,Bδ ),q,Bδ )−1/2

≤ KB−1/MF(Li(q,δ ),q,δ )
1/2F(Lk(q,Bδ ),q,Bδ )−1/2,

which proves the first part of the Lemma with B = (AK(n− 1))M. The second part is proved similarly with C = (BK(n−
1))M . �

Proof of Proposition 4.2. To prove the assertion on the pseudo-distance in the Proposition, by Proposition 4.1, it is enough to
prove that, there exists a constant K0 such that if q,q′ ∈ Bc

C
(B(p,δ ), p,δ ) then q′ ∈ B

K0c
C

(B(q,δ ),q,δ ). But there ex-
ists ϕ , C 1 piecewise smooth, such that ϕ(0) = q, ϕ(1) = q′ and, almost everywhere, ϕ ′(t) = ∑2n

i=1 ai(t)Yi(ϕ(t)), with
max{|ai(t)| , |ai+n(t)|} ≤ 2cF(Li(p,δ ), p,δ ) ≤ 4cF(Li(p,δ ),q,δ ), if we choose c small enough (Proposition 3.6). Now,
as in the Lemma, writing Li(p,δ ) = ∑αk

i Lk(q,δ ) (with αk
i constants) and using extremality, we easily conclude q′ ∈

B
K0c
C

(B
q,δ
1 ,q,δ ). �

Let us now define the “pseudo-balls” centered at points of Ω∩W (p0), denoted πBc(q,δ ) (resp. πBc
C
(q,δ ), πBc

exp(q,δ )) by

πBc(q,δ ) =
{

q′ ∈V (p0) such that π(q′) ∈ Bc (B(π(q),δ ),π(q),δ ) and ρ(q′) ∈ [ρ(q)− cδ ,ρ(q)+ cδ ]
}
.

Then:

Theorem 4.1. Let Ω be a pseudo-convex domain geometrically separated at p0 ∈ ∂Ω. There exists a constant c0 > 0,

depending on K and the data, such that, for all c ≤ c0, the sets B(q,δ ) define a structure of “homogeneous space” on

W (p0)∩ Ω̄ in the following sense: there exists a constant C, depending only on K and the data (not on c) such that, if

q1 ∈W (p0)∩ Ω̄, δ < δ0, and q2 ∈ B(q1,δ ), we have

B(q2,δ )⊂ B(q1,Cδ )

and

Vol(B(q,2δ ))≤CVol(q,δ )) ,

B denoting one of the sets πBc
C

, πBc
exp or πBc.

Proof. The first assertion follows immediately the Proposition. To prove the second assertion, we use the fact that both
Bc

C
(B(p,δ ), p,δ ) and Bc

exp (B(p,δ ), p,δ ) are equivalent to Bc (B(p,δ ), p,δ ), the fact that the coordinate system associated
to the extremal basis have a Jacobian uniformly bounded from above and below and the preceding Lemma. �

Remark 4.2.

(1) For p ∈ ∂Ω, the sets πBc(q,δ )∩ ∂Ω (for each definition) are the pseudo-balls of a structure of homogeneous space
on ∂Ω∩W(p0).

(2) On ∂Ω, as in [NRSW89], we could define equivalent pseudo-balls using complex tangent curves.
(3) It is not difficult to see that the pseudo-balls of the structure of homogeneous space can also be defined directionnally:

they are equivalent to the sets Bc
dir(p,δ ) defined as to be the set of points q of the form q = expp(a,b), where expp

is the exponnential map associated to the vector field aℜeL+bℑmL, L being a vector field of the linear space E , the
coefficients a and b satisfying max(|a|, |b|)≤ cF(L, p,δ )−1/2.
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4.3. Localization. Suppose that Ω is K-geometrically separated at p0 ∈ ∂Ω, and consider the domain D constructed in
Section 3.5.1 near that point. Then D is K-geometrically separated at each point of ∂Ω∩∂D, and, by strict pseudo-convexity,
the same is true on ∂D\ ∂Ω∩∂D.

Suppose that P is a point of the boundary of ∂Ω∩ ∂D, and let p be a point of V (P)∩ ∂D and δ small enough (with the

notations of the previous Section). Let us denote by B(p,δ ) =
{

L
p,δ
1 , . . . ,Lp,δ

n−1

}
the extremal basis given by Proposition 3.14

and by B0,Ω =
{

L
0,Ω
1 , . . . ,L0,Ω

n−1

}
the basis denoted B0 in Definition 4.1. Then, by the construction of B(p,δ ) made in the

previous Section, we have L
p,δ
i = L

ρ
i ◦π −β (L

ρ
i )N

ρ ◦π with L 7→ β (L) linear. Thus, if we define B0,D =
{

L
0,D
1 , . . . ,L0,D

n−1

}

by L
0,D
i = L

0,Ω
i ◦ π − β (L0,Ω

i )Nρ ◦ π , then we see that the vector fields of B(p,δ ) are linear combinations (with constant
coefficients) of the vector fields of B0,D. Thus, we have proved the following result:

Theorem 4.2. If Ω is K-geometrically separated at p0 ∈ ∂Ω, then the domain D defined in Definition 3.6 is K′-geometrically

separated (at every point of its boundary) for a constant K′ depending only on K and the data.

Remark. Recall that every point of ∂D is of finite 1-type.

5. ADAPTED PLURI-SUBHARMONIC FUNCTION FOR GEOMETRICALLY SEPARATED DOMAINS

5.1. Definition and examples.

Definition 5.1. Let Ω be geometrically separated at p0. Let E be the vector space generated by B
0 ∪ {N}, and, if L =

∑n−1
i=1 biL

0
i + bnN = Lτ + bnN ∈ E denotes, for δ ≤ δ0, F(L,q,δ ) = F(Lτ ,q,δ )+

|bn|2
δ 2 .

A C 3 pluri-subharmonic function in Ω, Hδ , is said to be β -adapted to B0 at p0 if there exists a constant β such that the
following properties hold:

(1) |Hδ | ≤ 1 on Ω;
(2) For q ∈W (p0)∩Ω∩{ρ ≥−2δ} and for all vector fields L ∈ E ,

〈
∂ ∂̄ Hδ ;L,L

〉
(q)≥ 1

β
F(L,q,δ );

(3) For q ∈W (p0)∩Ω∩{ρ ≥−2δ} and for all lists L ∈ L3(E),

|L Hδ |(q)≤ β ∏
L∈L

F(L,q,δ )1/2.

Remark 5.1. Note that (3) implies in particular that, for all L ∈ L3(B(π(q),δ )∪{N}),
|L Hδ |(q). F(B(π(q),δ ),q,δ )L /2.

Definition 5.2. A bounded pseudo-convex domain Ω is called “K-completely geometrically separated” at p0 if it is K-
geometrically separated and, there exists δ0 > 0 such that, for all 0 < δ ≤ δ0, there exists a pluri-subharmonic function Hδ

which is K-adapted to B0 at p0.

Example 5.1.

(1) If the boundary of Ω is locally convex near p0 (a point of finite type), then it is proved in [McN94, McN02] that it
is completely geometrically separated at p0. More generally, using the results of [DF03] it can be shown that if Ω
is locally lineally convex near p0 (see [Kis98]) then it is completely geometrically separated at p0 (see Section 7.1
for some details on the construction). Moreover, when the boundary of Ω is locally convex, resp. locally lineally
convex, near p0, the local domain D can be chosen convex, resp. lineally convex, (choosing d small enough and K0

large enough) and thus, in both cases, it is completely geometrically separated at every point of its boundary.
(2) In [Cho02b, Cho02a, Cho03], it is proved that, at a point of finite type, if the eigenvalues of the Levi form are

comparable at p0 then it is also completely geometrically separated at p0.
(3) In the next Section, we prove that geometrically separated domains whose extremal bases are strongly extremal with a

sufficiently small α are completely geometrically separated, and, moreover that, for those domains, the local domain
defined in Section 3.5 is completely geometrically separated at every point of its boundary. In particular, this applies
when the Levi form is locally diagonalizable at p0.

(4) It can also be proved that if a domain is of the type considered by M. Derridj in [Der99] near a boundary point p0

then it is completely geometrically separated at p0.

5.2. The case of geometrically separated domains with strongly extremal bases. In this Section we prove the two fol-
lowing Theorems:

Theorem 5.1. Suppose Ω is K-geometrically separated at p0 ∈ ∂Ω. Then there exists a constant α0, depending on K and the

data, such that, if for all p∈W (p0)∩∂Ω and δ ≤ δ0, the bases B(p,δ ) are (K,α, p,δ )-strongly extremal (c.f. Definition 3.5)

with α ≤ α0 then it is completely geometrically separated at p0.
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The second theorem deals with the local domain D constructed in Section 3.5.1, and, in fact contains the first one:

Theorem 5.2. Suppose that Ω is K-geometrically separated at p0 ∈ ∂Ω. There exists a constant α1, depending on K and the

data such that, if for all p ∈W (p0)∩∂Ω and δ ≤ δ0, the bases B(p,δ ) are (K,α, p,δ )-strongly extremal with α ≤ α1, then

the local domain constructed in Section 3.5.1 is K′-completely geometrically separated at every point of its boundary for a

constant K′ depending only on K and Ω.

We will prove in details the first Theorem and only give the modifications needed to obtain the second one.

5.2.1. Proof of Theorem 5.1. Here we suppose that the bases B(p,δ ), p ∈ W (p)∩ ∂Ω, δ ≤ δ0, are (K,α, p,δ )-strongly
extremal for a constant α not yet fixed. During the proof, we will impose successive conditions on α (depending on K, M

and n) to be able to construct the good pluri-subharmonic function. The existence of α will be clear at the end of the proof
but we will not give an explicit value. Now, we fix δ > 0.

The ideas of construction are comparable to those developed in [CD06b] (following ideas of [Cat87]) but the technical
proofs are slightly different. On the one hand the basis are local instead of global and we have to construct local “almost
pluri-subharmonic” functions and then add them using the structure of homogeneous space instead of constructing directly
a global function. On the other hand, the control of lists following our hypothesis are weaker than those following the local
diagonalizability of the Levi form. Thus, for reader’s convenience, we will write the proof with enough details.

Let us first introduce some new notations: δ being fixed, we denote by Qc(p,δ ) the points q in W (p0) such that π(q)

belongs to the polydisc Bc(p,δ ), associated to the extremal basis B(p,δ ) = (Lp,δ
i )i (see Definition 3.3). If L is a vector field

in E (the vector space generated by B0 and N), we write it L = Lτ + anN, where Lτ is tangent to ρ . Ω being geometrically
separated we can write Lτ = ∑n−1

i=1 a
p
i L

p,δ
i (ap

i ∈C). As usual, c
p
ii will denote the coefficient of the Levi form associated to the

vector field L
p,δ
i ∈ B(p,δ ), and Ωε = {−ε < ρ < 0}.

With these notations, we now we state a local result and show how it leads to Theorem 5.1. For the proof we need only
estimates in the strip Ω3δ = {−3δ ≤ ρ ≤ 0}, but in Section 5.2.3 we will need corresponding results in a larger domain, and
thus we state the local result for the sets Qc(p,δ ):

Proposition 5.1. For all constants C > 1 there exist constants α0 (depending only on K, c, C and the data), β and γ1 such

that if the bases B(p,δ ) are (K,α, p,δ )-extremal with α ≤ α0, then for all δ ≤ δ (α0) (depending on α0, K and the data)

and all point p ∈ W (p0)∩ ∂Ω, there exists a function Hp,δ = H with support in Qc(p,δ ) satisfying, for every vector field

L ∈ E, the following conditions:

(1) |H| ≤ 1;

(2)
〈
∂ ∂̄ H;L, L̄

〉
(q)≥ β F(Lτ ,q,δ )− γ1

(
∑n−1

i=1

∣∣ap
i

∣∣2 cii

δ + |an|2
δ 2 + 1

)
(q), for q ∈ Qc/2(p,δ )∩Ω3δ ,

(3)
〈
∂ ∂̄ H;L, L̄

〉
(q)≥− β

C
F(Lτ ,q,δ )− γ1

(
∑n−1

i=1

∣∣ap
i

∣∣2 cii

δ + |an|2
δ 2 + 1

)
(q), for q ∈ Qc/2(p,δ )∩Ω3δ ,

(4) For L ∈ L3 (B(p,δ )∪{N}), |L H|(q)≤ γ2 ∏L∈L F(L,q,δ )1/2, for q ∈ Qc/2(p,δ )∩Ω3δ .

We will prove this Proposition in the next Section. Now we show how Theorem 5.1 follows this Proposition:

Proof of Theorem 5.1. We cover ∂Ω∩W (p0) with a minimal system of pseudo-balls πBc/2(pk,δ )∩ ∂Ω, pk ∈ ∂Ω. As the
pseudo-balls are associated to a structure of homogeneous space, there exists an integer S, independent of δ , such that each
point of W (p0) belongs to at most S sets Qc(p j,δ ). Applying Proposition 5.1 with C = 2SC1 we get a function Hpk,δ .

For all point q ∈ V (P0)∩Ω3δ there exists j0 such that q ∈ Qc/2(p j0 ,δ ) and thus (denoting ck
ii the coefficient of the Levi

form in the direction L
pk
i and ak

i = a
pk
i ), by Proposition 5.1,

(5.1)

〈
∂ ∂̄ ∑

k

Hpk,δ ;L, L̄

〉
(q)≥ β

2
F(Lτ ,q,δ )− γ1 ∑

k s.t. q∈Qc(pk,δ )

(
n−1

∑
i=1

∣∣∣ak
i

∣∣∣
2
∣∣ck

ii(q)
∣∣

δ
+

|an|2
δ 2 + 1

)
.

Let us consider the function
H = ∑

k

Hpk,δ +Ae−ρ/δ +B |Z|2 ,

for suitable constants A and B and α small enough:

Claim. There exist constants A, B, γ and α ′
0 depending only on K and the data such that if α ≤ α ′

0:

(1) H is uniformly bounded, independently of δ ≤ δ0, on Ω3δ ;

(2) For any vector field L ∈ E and any q ∈ Ω3δ ∩W (p0),
〈
∂ ∂̄ H;L, L̄

〉
(q)≥ β

2 F(Lτ ,q,δ )+
|an|2
δ 2 ;

(3) For q ∈ Ω3δ ∩W (p0) and all lists L ∈ L3(E), |L H|(q)≤ γ2 ∏L∈L F(L,q,δ )1/2.

Proof of the Claim. For every k such that q ∈ Qc(pk,δ ),

〈
∂ ∂̄eρ/δ ;L, L̄

〉
(q) = eρ/δ

[
1
δ

(
1
2

n−1

∑
i, j=1

ak
i ak

jc
k
i j + 2ℜe

(
n−1

∑
i=1

ak
i ak

n

〈
∂ ∂̄ρ ;L

pk
i , N̄

〉
)
+ |an|2

〈
∂ ∂̄ρ ;N, N̄

〉
)
+

|an|2
δ 2

]
.
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Then, we use the hypothesis of strong extremality and Taylor’s formula to estimate
∣∣∣ck

i j

∣∣∣, i 6= j, in the set Qc(pk,δ )∩Ω3δ .

Using the fact that cii = |cii|+O(δ ) (recall Ω is pseudo-convex), this gives a constant K0 depending on K and the data such
that

〈
∂ ∂̄ eρ/δ ;L, L̄

〉
(q)≥−K0 +

e−3

2δ 2 |an|2 +
e−3

2δ

n−1

∑
i=1

∣∣∣ak
i

∣∣∣
2 ∣∣∣ck

ii(q)
∣∣∣− 4n2KαF(Lq

τ ,q,δ ),

because, by definition of c, in the sets Qc(pk,δ ), we have F(Lτ ,q)≤ 3F(Lτ , pk) (see Proposition 3.6).
Now if we choose A = 2Se3γ1 + 1 and B = K0A+ γ1, the Claim follows easily (5.1). �

To finish the proof of Theorem 5.1, we truncate H to adapt it to good neighborhoods V (p0) and W (p0) and to the strip
{δΩ(p)< 2δ}, and we add D |z|2 with a large constant D. More precisely, the cutting functions are defined as follows:

Let ϑ = ϑ1ϑ2 where ϑ1(q) = χ1

(
1
2
|q−p0|

r

)
, with χ1 a C ∞ increasing function equal to 0 on ]−∞,0], 1 on [1/4,+∞[

and χ1(t) = t4 on [0,1/8], and ϑ2(q) = χδ (ρ(q)) with χδ (t) = χ(t/δ ), χ being even, increasing on ]−∞,0[, equal to 0 on

]−∞,−4], to 1 on ]− 2,0[ and to (t+4)4

16 for t ∈ [−4,−8/3].
Then, remarking that

〈
∂ ∂̄ϑ ;L, L̄

〉
≥−O(1) the final computation is made as in [CD06b, Section 4.2.3].

�

5.2.2. Proof of Proposition 5.1. The proof uses essentially the ideas developed in Section 4.1 of [CD06b], except that we
have to work locally around the point p. Thus the technique is more complicated (it needs to use the structure of homogeneous
space) and we will give it with some details.

For p ∈W (p0)∩∂Ω and δ ≤ δ0 fixed, let B(p,δ ) = {L
p,δ
i = Li, 1 ≤ i ≤ n−1} be the (K,α, p,δ )-strongly extremal basis

and Φ = Φδ
p be the adapted change of coordinates at (p,δ ).

For i = 1, . . . ,n− 1 and l = 3, . . . ,M, let us define

E
i
l = {ℜe(L (∂ρ), ℑm(L (∂ρ), |L |= l − 1,L = {L1, . . . ,Ll−1}, Lk ∈ {Li,Li}},

E
i =

⋃

l

E
i
l .

For ϕ ∈ E i, if ϕ ∈ E i
l , we denote l̃(ϕ) = l.

Note that Fi(.,δ ) = F(Li, .,δ )≃ |cii|
δ +∑ϕi∈E i

∣∣∣ Liϕi

δ

∣∣∣
2/l̃(ϕi)

. The functions |cii|
δ and

∣∣∣ Liϕi

δ

∣∣∣
2/l̃(ϕi)

are called the components of

Fi and are denoted generically fi. We also define l(cii) = 2, and, for the other functions fi, l( fi) = l̃(ϕi). In the following proof,
these components cannot be considered individually. Thus, we introduce the terminology of “(n− 1)-uplet” of components:
f = ( f1, . . . , fn−1), where fi are component of Fi, is called a (n−1)-uplet of components of the weights Fi. The set of all such
(n− 1)-uplet is denoted by H . H is ordered by the lexicographic order.

First we define a cutoff function with support in Qc(p,δ ) and in the set where a component is ”dominant”. More precisely,
if B is a positive number and f = ( fi) a (n− 1)-uplet of components of Fi, we define, for fixed c ≤ c0,

χ f ,B = ∏
i

χB

(
fi ◦π

Fi(p,δ )

)
χ0 = χ ′

f ,Bχ0,

where χB(t) = χ(Bt), χ : [0,+∞[ 7→ [0,1], being a C ∞ function equal to 0 on [0,1/2] and 1 on [1,+∞[, and χ0(q) =

χ1

((
Fi(p,δ )1/2

c
Φp(π(q))i

)
i

)
, with χ1 a C ∞ function identically 1 on B(0,1/2) and with compact support in B(0,1).

We say that f is B dominant if χ ′
f ,B = 1.

Then, to each (n− 1)-uplet f = ( fi) and to each i such that fi =
∣∣∣ L

p
i ϕi

δ

∣∣∣
2/l( fi)

, we associate, for λ > 1, the function

Hi( f ,λ ,B) = λ−3/2eλ ψi χ f ,B,

where ψi(q) =
ϕi(π(q))

δ Fi(p,δ )
1−l̃(ϕi)

2 .

Lemma 5.1. For each constant B > 0, there exists a constant K0 depending only on B, c, K and the data such that, for each

i, if q ∈ Qc(p,δ )∩Ω3δ , for each L = ∑n
j=1 a jL j, ∑

∣∣a j

∣∣2 = 1, we have the following estimates:

(1) |Lψi(q)| ≤ K0

(
F(Lτ ,q,δ )

1/2 + |an|
δ

)
, and |L̄L(ψi)(q)| ≤ K0

(
F(Lτ ,q,δ )+

|an|2
δ 2

)
;

(2)
∣∣Lχ f ,B(q)

∣∣≤ K0

(
F(Lτ ,q,δ )

1/2 + |an|
δ

)
, and

∣∣L̄Lχ f ,B

∣∣≤ K0

(
F(Lτ ,q,δ )+

|an|2
δ 2

)
;

(3) |[L, L̄] (∂ (Hi( f ,λ ,B))| ≤ K0λ−1/2eλ ψi

(
F(Lτ ,q,δ )

1/2 + |an|
δ

)
.

Proof. If q ∈ ∂Ω, the inequality |Lψi(q)| ≤ K0

(
F(Lτ ,q,δ )

1/2 + |an|
δ

)
follows immediately from Proposition 3.6 and the

extremality of the basis (Li) at (p,δ ). The general case for (1) follows.
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Property (2) is obtained using the fact that, if (z) is the coordinates system associated to Φ and Li = ∑a
j
i

∂
∂ z j

, then
∣∣∣a j

i

∣∣∣. F
1/2
i (p,δ )F

−1/2
j (p,δ )

for q ∈ Qc(p,δ )∩∂Ω (Proposition 3.6), and techniques similar to those used for (1).
Finally (3) is proved similarly, using the estimates of the coefficients of the brackets [LiL j ] in Qc(p,δ )∩ ∂Ω (Proposi-

tion 3.6). �

For f = ( f1, . . . , fn−1), a (n− 1)-uplet of components of the weights Fi, let us denote by I the set of indexes i such that

fi =
∣∣∣L

p
i ϕi

δ

∣∣∣
2/l( fi)

. Then we consider the function

H( f ,λ ,B) = ∑
i∈I

Hi( f ,λ ,B).

The next Lemma gives some properties of the function H( f ,λ ,B). To state it we need to introduce the following set:
For f a (n− 1)-uplet of components of the weights Fi and B′ a positive number, we set

UB′, f =
{

q ∈ Qc(p,δ ) for which there exists f ′ < f such that f ′(q) is B′ dominant
}
.

Lemma 5.2. Let f be a (n− 1)-uplet of component, A, B and ε three positive fixed real numbers. Then there exist positive

constants α0, λ , A′, B′, A′ > A, B′ > B, ε ′ ≤ ε and K1, depending only on A, B, ε , K and the data, such that, if the constant α
of strong extremality is ≤ α0, then the function H( f ,A,B,ε) = H( f ,λ ,B) = H satisfies, on Qc(p,δ )∩Ω3δ :

(1) |H| ≤ K1;

(2) If L = ∑n
i=1 aiL

p
i = Lτ + anN, ai ∈C, ∑ |ai|2 = 1, then

∣∣〈∂ ∂̄ H;L, L̄
〉∣∣(q)≤ A′

(
F(Lτ ,q,δ )+

|an|2
δ 2

)
;

(3) If L = ∑n
i=1 aiL

p
i = Lτ + anN, ai ∈C, ∑ |ai|2 = 1, q /∈UB′ , χ ′

f ,B(q) = 1 and χ0(q)≥ ε , then

〈
∂ ∂̄H;L, L̄

〉
(q)≥ AF(Lτ ,q,δ )−K2

(
n−1

∑
i=1

|ai|2
|cii(q)|

δ
+

|an|2
δ 2 + 1

)
;

(4) If L = ∑n
i=1 aiL

p
i = Lτ + anN, ai ∈ C, ∑ |ai|2 = 1, the condition

〈
∂ ∂̄ H;L, L̄

〉
(q) ≤ −

(
F(Lτ ,q,δ )+

|an|2
δ 2

)
implies

q ∈UB′ and χ0(q)≥ ε ′.
(5) For all lists L ∈ L3 (B(p,δ )∪{N}), |L H(q)| ≤ K2

(
∏L∈L F(L,q,δ )1/2

)
.

Proof. Recall that H = ∑i∈I Hi, thus the properties are trivially satisfied if I = /0 and we suppose I 6= /0. The functions |ψi|
being bounded by 2 (see Proposition 3.6), (1) is satisfied with a constant K1 depending only on λ and n.

Let i ∈ I. Then
〈
∂ ∂̄Hi;L, L̄

〉
= L̄LHi +[L, L̄] (∂Hi), and as

L̄LHi = λ−3/2eλ ψi

[(
λ 2 |Lψi|2 +λ L̄Lψi

)
χ f ,B +λ

(
LψiL̄χ f ,B + L̄ψiLχ f ,B

)
+ L̄Lχ f ,B

]
,

Lemma 5.1 implies
〈
∂ ∂̄Hi;L, L̄

〉
(q)≥ λ−3/2eλ ψi

(
λ 2 |Lψi|2 χ f ,B −K′

0λ F(Lτ ,q,δ )+
|an|2
δ 2 + 1

)
and thus shows the existence

of a constant A′, depending only on the choice of λ , B, c, K and the data, satisfying (2).
Now, if for all i ∈ I, |λ ψi| ≤ 1, then, for λ large enough, we have

〈
∂ ∂̄ H;L, L̄

〉
≥−F(L). Thus we suppose that there exists

an i ∈ I such that |λ ψi(q)|= λ |ϕi(π(q))|
δ Fi(p,δ )(1−l̃(ϕi))/2 ≥ 1. Then there exists a constant B′ > B, depending on λ , such that

∣∣∣ϕi(π(q))
δ

∣∣∣
2/(l̃(ϕi)−1)

> 4
B′ Fi(p,δ ), and this implies that there exists a (n− 1)-uplet f ′ < f which is B′-dominant at the point

q. In other words, to each choice of λ we can associate B′ such that the first conclusion in (4) is true. Moreover, λ , B and
c being fixed, χ1 being C ∞, there exists ε ′, depending on λ , B, c and χ1, such that the hypothesis of (4) implies the second
conclusion (i. e. χ0(q)≥ ε ′).

Let us now show that we can choose λ (thus A′, B′, K1 and ε ′ will be fixed) such that (3) is satisfied if α is small enough.
Suppose then χ ′

f ,B(q) = 1and χ0(q)> ε . The hypothesis of strong extremality and the invariance of the Fi(q) and the ak
i j in

Bc(p,δ ) ( Propositions 3.6 and 3.10) give, if δ ≤ δ (α),

|Lψi(q)|2 ≥
1
4

∣∣∣∣∣∑
j≤i

a j(L jψi)(q)

∣∣∣∣∣

2

− 4nC(K)

(
2α ∑

n−1≥ j>i

∣∣a j

∣∣2 Fj(p)+
|an|2
δ 2

)
,

and then, by extremality at p,

|Lψi(q)|2 ≥
1
4

∣∣∣∣∣∑
j≤i

a jL jψi(q)

∣∣∣∣∣

2

−C1(K)

(
α2F(Lτ ,q,δ )+

|an|2
δ 2 + 1

)
.

Now we make use of the following Lemma:
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Lemma. Let β j
i be complex numbers, i = 1,2, · · · ,n− 1, j ≤ i, verifying

∣∣β i
i

∣∣ ≥ cαi and

∣∣∣β j
i

∣∣∣ ≤ Cα j for j < i. Then there

exists a constant W =W (c,C,n) such that ∑n−1
i=1

∣∣∣∑i
j=1 β j

i

∣∣∣
2
≥W ∑n−1

i=1 (αi)
2.

The above lemma implies, using the invariance of Fi(q) and F(L,q) in the ball and the extremality of the basis at p, that
there exist constants W , K3 and K4, depending on B, M, K and the data, such that:

∑
i∈I

|Lψi(q)|2 +∑
i/∈I

|cii(q)|
δ

≥ W

2K
F(Lτ ,q,δ )−αK3 (F(Lτ ,q,δ )+ 1)−K4

|an|2
δ 2 ,

and thus, for α0 =W/4KK3 (depending only on the data M, K, B, c and n),

∑
i∈I

|Lψi(q)|2 +∑
i/∈I

|cii(q)|
δ

≥W ′F(Lτ ,q,δ )−K4

(
|an|2
δ 2 + 1

)
.

This finishes the proof of Lemma 5.2 for a choice of λ depending on A, ε , B, M, K and c, c depending itself only on M, K

and the data, the property (5) being trivial. �

Proof of Proposition 5.1. First, note that there exists a constant D, depending on M and n, such that, for p ∈ W (p0) and
δ ≥ 1

3 |ρ(p)|, there exists a component fi of Fi(p,δ ) verifying fi(q)≥ 1
D

Fi(p,δ ) for all points q ∈ Bc(p,δ ), c ≤ c0 (Proposi-
tion 3.6).

To define completely our function H, we have to define, for each (n− 1)-uplet of component f ∈ H (the set of (n− 1)-
uplets of components of the weights Fi(p,δ )), the constants A f , B f and ε f from which λ ( f ) is constructed. Let f 0 be
the largest element of H for the lexicographic order. Define A f0 = C4Mn+1, B f0 = D and ε f0 = 1. Suppose we have
constructed the constants A f , B f and ε f for f ≥ f 1. Consider the constants A′

f 1 , B′
f 1 and ε ′

f 1 obtained applying Lemma 5.2

for the constants A f 1 , B f 1 and ε f 1 , and define, for f 2 preceding f 1, A f 2 = 3C ∑ f> f 2 A′
f , B f 2 = B′

f 1 and ε f 2 = ε ′
f 1 . Thus

H = ∑ f∈H H( f ,A f ,B f ε f ) is well defined.
For q ∈ Qc(p,δ ) define the following subsets of H :

E1(q) =
{

f ∈ H such that there exists f ′ < f , such that f ′(q) is B′
f -dominant and χ0(q)≥ ε ′f

}
,

E3(q) =
{

f ∈ H such that χ ′
f ,B f

(q) = 1 and χ0(q)≥ ε f

}
,

E2(q) = H \ {E1(q)∪E3(q)} .
Note that if E1(q) is not empty, and if f is its smallest element, then there exists f ′ < f such that f ′(q) is B′

f dominant, that
is χ ′

f ′,B f ′
(q) = 1, and, as ε f ′ ≤ ε ′f , we also have χ0(q)≥ ε f ′ which means f ′ ∈ E3(q), f being the smallest element of E1(q).

Now suppose first that q ∈ Qc/2(p,δ ). Then, by definition of D, E3(q) is not empty, and, if E1(q) is also not empty there
exists in E3(q) some strict minorant of E1(q). Then, by Lemma 5.2

〈
∂ ∂̄ H;L, L̄

〉
(q)≥

(

∑
f∈E3(q)

A f − ∑
f∈E1(q)

A′
f − #E2(q)

)
F(Lτ ,q,δ )−∑K2(A f ,B f ,A

′
f )

(
n−1

∑
i=1

|ai|2
cii(q)

δ
+

|an|2
δ 2 + 1

)
,

for α small enough, depending only on M, K and n (#E2( f ) denotes the number of elements of E2( f )). Then, the preceding
remark and the fact that #E2(q)≤ 4Mn ≤ 1

4C
A f 0 imply

〈
∂ ∂̄ H;L, L̄

〉
(q)≥C4MnF(Lτ ,q,δ )− γ1

(
n−1

∑
i=1

|ai|2
|cii(q)|

δ
+

|an|2
δ 2 + 1

)
.

Finally, if q is any point in Bc(p,δ ) then E3(q) may be empty, but then E1(q) is also empty, and thus

〈
∂ ∂̄ H;L, L̄

〉
(q)≥−4MnF(Lτ ,q,δ )− γ1

(
n−1

∑
i=1

|ai|2
|cii(q)|

δ
+

|an|2
δ 2 + 1

)
.

This finishes the proof of Proposition 5.1, property (4) being trivial. �

5.2.3. Proof of Theorem 5.2. If P is a point of the boundary of D then, by the definition of D and Theorem 5.1, to prove that
there exists a pluri-subharmonic function adapted to the structure of geometrically separated domain near P, we have only
to consider the case where P is in the boundary of ∂Ω∩ ∂D. Thus, with the notations introduced just before, we prove the
following reformulation of Theorem 5.2:

Proposition 5.2. Let P be a point of the boundary of ∂Ω∩∂D, and V (P) the neighborhood considered in the previous Section.

For all K > 0, there exist constants α1 and δ1 depending on K and the data such that if Ω is K-geometrically separated at

p0 ∈ ∂Ω and if the extremal bases of Ω are (K,α, p,δ )-strongly extremal with α ≤ α1, then, for 0 < δ ≤ δ1, there exists a

pluri-subharmonic function Hδ on the local domain D which is (δ ,K′)-adapted to B
0,D at P.
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Proof. The proof is a modification of the proof of Theorem 5.1 and we will only indicate the differences. Here we have to
consider both weights associated to the domains Ω and D, denoted FΩ and FD, which are constructed respectively with the
defining functions ρ and ρ +ϕ .

We fix δ small enough and then we will omit the subscript δ in the notations of the vector fields. Consider, as in Sec-
tion 5.2.1 the covering of ∂D∩V (P) by the pseudo-balls Bc/2(qk,δ )∩∂Ω (note that here P plays the role of p0 in the previous
Sections).

We denote pk = π(qk) and fix k. Let
(
Lk

i

)
i
= (Li)i be the δ -extremal basis (for D) at the point qk. Let L

ρ
i be the vector

field tangent to ρ associated to Li (i. e. Li = L
ρ
i ◦π +(β ◦π)NΩ ◦π). We saw (in Section 3.5.3) that the weights FD(Li, .,δ )

associated to the vector fields Li are equivalent to

FΩ(L
ρ
i ,π(.),δ )+

ϕ ′ (|.|)
δ

+
ϕ ′′
(
|.|2
)

δ

∣∣〈Lρ
i (π(.)) , .

〉∣∣2 .

Let
(

L
Ω,k
i

)
i
=
(
LΩ

i

)
i

be the δ -extremal (for Ω) basis at pk so that the vector fields L
ρ
i are linear combinations of the LΩ

i .

Let

Ik =



i such that FΩ

(
LΩ

i , pk,δ
)
>

ϕ ′
(
|qk|2

)

δ



 .

We suppose Ik non empty. As the vector fields LΩ
i are ordered so that their weights are decreasing, Ik is a segment of N,

{1,2, . . . ,nk}. Then, we consider the nk-uplets of components of the weights FΩ(L
Ω
i , pk,δ ), i ≤ nk, f =

(
f1, . . . , fnk

)
and the

function

χ f ,B = ∏
i≤nk

χB

(
fi ◦π

FΩ

(
LΩ

i , pk,δ
)
)

χ0,

where χ0(q) = χ1

(
FD,i(q,δ )

c
Φ̃qk

(πD(q)
)

, πD being the projection onto ∂D associated to the real normal to D.

To obtain the good estimates of the derivatives of χ f ,B with respect to the vector fields Li, we first estimate the derivatives
of the functions fi ◦π at the point qk:

Lemma 5.3. For i ∈ Ik, if | fi(pk)| ≥ 1
2B

FΩ(LΩ
i , pk,δ ), for L ∈ LM (L1, . . . ,Ln−1), we have

|L ( fi ◦π)(qk)|.B FΩ(LΩ
i , pk,δ )F

D(qk,δ )
L /2.

Proof. Let us consider the case |L |= 1. As L j = L
ρ
j ◦π +(β j ◦π)NΩ ◦π , for p = π(q),

∣∣L j ( f ◦π)(q)
∣∣≤
∣∣∣Lρ

j (p)( f j ◦π)(q)
∣∣∣+O

(∣∣β j(p)
∣∣) .

By (3.11),
∣∣β j(p)

∣∣. ϕ ′
(
|p|2
)
. ϕ ′

(
|q|2
)
+O

(
ϕ
(
|q|2
))

= O
(

ϕ ′
(
|q|2
))

, thus

∣∣β j(pk)
∣∣ . FΩ1/2

(LΩ
i , pk,δ )F

D1/2
(L j,qk,δ )

because i ∈ Ik. As L
ρ
j are tangent to ρ , L

ρ
j (p)( fi ◦π)(q) = L

ρ
j (p)( fi)(p), and, as L

ρ
j are in the space spanned by the LΩ

i , by
Proposition 3.3, we have ∣∣∣

(
L

ρ
j (pk)( fi)

)
(pk)

∣∣∣. FΩ
(

LΩ
i , pk,δ

)
FΩ
(

L
ρ
j , pk,δ

)1/2
,

and thus
∣∣∣
(

L
ρ
j (pk)( fi)

)
(qk)

∣∣∣ . FΩ
(

LΩ
i , pk,δ

)
FΩ
(

L
ρ
j , pk,δ

)1/2
+

ϕ
(
|qk|2

)

δ
.

Derivatives of higer order are treated similarly. �

Corollary. Under the same hypothesis, for q ∈ Qc
D(qk,δ )∩D3δ and L ∈ LM (L1, . . . ,Ln−1), we have

|L ( fi ◦π)(q)|.B FΩ(LΩ
i , pk,δ )F

D(qk,δ )
L /2.

The derivatives of χ0 being trivial, we deduce from (3.8) and Taylor’s formula:

Lemma 5.4. For i ∈ Ik and q ∈ Qc
D(qk,δ )∩D3δ , for L ∈ LM (L1, . . . ,Ln−1), we have

∣∣L χ f ,B(q)
∣∣.B FD(qk,δ )

L /2.

We now define the basic functions H( f ,λ ,B) used here. Let I =
{

i ≤ nk such that fi 6= |cii|
δ

}
, and, for i ∈ I, if fi =

∣∣∣ Liϕi

δ

∣∣∣
2/l( fi)

, we put

Hi( f ,λ ,B) = λ−3/2eλ ψi χ f ,B where ψi =
ϕi

δ

∣∣∣∣
Liϕi

δ

∣∣∣∣
1

l̃(ϕi)−1
,
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and we define H by

H = H( f ,λ ,B) = ∑
i∈I

Hi( f ,λ ,B).

If L = ∑n
i=1 aiLi = Lτ + anLn (∑ |ai|2 = 1), as in the proof of Lemma 5.2, using the last Lemma we get

〈
∂ ∂̄ Hi;L, L̄

〉
(q)≥ λ−3/2eλ ψi

(
λ 2 |Lψi|2 χ f ,B −K0

(
λ FD(Lτ ,qk,δ )+

|an|2
δ

+ 1

))
,

for q ∈ Qc
D(qk,δ )∩D3δ . The estimate of |Lψi|2 has now to be done more carefully.

The formula Lτ(q) = L
ρ
τ (p)+β (p)NΩ gives

|Lτ ψi|2 (q)≥
1
4

∣∣Lρ
τ (p)ψi

∣∣2 (q)−C




ϕ ′
(
|q|2
)

δ
+

ϕ
(
|q|2
)
+ δ

δ


 .

Then, decomposing L
ρ
τ on the δ -extremal basis at pk (

(
LΩ

i

)
i
), L

ρ
τ = ∑n−1

j=1 b jL
Ω
j , we obtain, using the strong extremality

hypothesis,

∣∣Lρ
τ (p)ψi

∣∣2 (q)≥ 1
4

∣∣∣∣∣∑
j≤i

b jL
Ω
j ψi

∣∣∣∣∣

2

(q)−C


α2FΩ(L

ρ
τ , pk,δ )+

ϕ
(
|q|2
)
+ δ

δ


 .

Using the same method, we sum all these inequality to get (writing cΩ
ii =

[
LΩ

i ,L
Ω
i

]
(∂ρ))

∑
i∈I

∣∣Lρ
τ ψi

∣∣2 (q) ≥ β FΩ

(
nk

∑
j=1

b jL
Ω
j , pk,δ

)
−C


 ∑

i/∈I, i≤nk

|bi|2
∣∣cΩ

ii

∣∣
δ

(q)+α2FΩ(L
ρ
τ , pk,δ )+

ϕ
(
|q|2
)

δ
+ 1




≥ β FΩ(L
ρ
τ , pk,δ )−C


 ∑

i/∈I, i≤nk

|bi|2
∣∣cΩ

ii

∣∣
δ

(q)+α2FΩ(L
ρ
τ , pk,δ )+

ϕ ′
(
|q|2
)

δ
+ 1


 ,

and, as |Lψi|2 ≥ 1
4 |Lτ ϕi|2 −C

|an|2
δ 2 , we finally obtain

∑
i∈I

|Lψi|2 ≥ β FΩ(L
ρ
τ , pk,δ )−C


 ∑

i/∈I, i≤nk

|bi|2
∣∣cΩ

ii

∣∣
δ

(q)+
|an|2

δ
+α2FΩ(L

ρ
τ , pk,δ )+

ϕ ′
(
|q|2
)

δ
+ 1


 .

Then the proof is finished as in the previous Section using that, in Qc
D(qk,δ )∩D3δ , we have

〈
∂ ∂̄ er/δ ;L, L̄

〉
(q)≥ β




n−1

∑
i=1

|bi|2
∣∣cΩ

ii

∣∣
δ

(q)+
|an|2
δ 2 +

ϕ ′
(
|q|2
)
+ϕ ′′

(
|q|2
)∣∣〈Lρ

τ (p),q
〉∣∣2

δ


−K

(
αFΩ(L

ρ
τ , pk,δ )+ 1

)
.

Indeed, a direct calculation gives

(5.2)
〈

∂ ∂̄ er/δ ;L,L
〉
= er/δ

(
2ℜe

(
an

〈
∂ ∂̄ r;Lτ , N̄

〉)

δ
+

|an|2
δ 2

)
(q)+

〈
∂ ∂̄er/δ ;Lτ ,Lτ

〉
(q).

For q ∈ {r ≥−3δ}, the first term of (5.2) is ≥ 1
2e3

|an|2
δ 2 −K0. Let us look at the second term of (5.2).

〈
∂ ∂̄ er/δ ;Lτ ,Lτ

〉
=

er/δ

δ

(〈
∂ ∂̄ ρ ;Lτ ,Lτ

〉
+ ‖Lτ‖2 ϕ ′

(
|q|2
)
+
∣∣〈Lρ

τ (p),q
〉∣∣2 ϕ ′′

(
|q|2
))

.

But 〈
∂ ∂̄ ρ ;Lτ ,Lτ

〉
(q) =

〈
∂ ∂̄ ρ ;L

ρ
τ (p),L

ρ
τ (p)

〉
(q)+O

(
ϕ ′
(
|q|2
)∣∣〈Lρ

τ (p),q
〉∣∣2
)

and, first we can choose V small enough so that ϕ ′
(
|q|2
)∣∣〈Lρ

τ (p),q
〉∣∣2 ≪ ϕ ′

(
|q|2
)
+ϕ ′′

(
|q|2
∣∣〈Lρ

τ (p),q
〉∣∣2
)

, and secondly

〈
∂ ∂̄ρ ;L

ρ
τ (p),L

ρ
τ (p)

〉
(q) = ∑bib jc

Ω
i j(q)

≥ ∑ |bi|2
∣∣∣cΩ

ii

∣∣∣(p)+O
[
αδFΩ(L

ρ
τ (p))+ϕ

(
|q|2
)
+ δ
]
.

The proof of Proposition 5.2 is now complete. �
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6. APPLICATIONS TO COMPLEX ANALYSIS

6.1. Statements of the results for geometrically separated domains. In [CD06b] and [CD06a] we proved that the methods
introduced, for the study of the Bergman and Szegö projection, by A. Nagel, J. P. Rosay, E. M. Stein and S. Wainger in C2

([NRSW89]) and by J. McNeal and E. M. Stein for convex domains ([MS94, MS97]) can be adapted to pseudo-convex
domains having an “adapted geometry”. The work made in the previous Sections shows that it is the case for completely
geometrically separated domains and thus we have the following sharp estimates:

Theorem 6.1. Suppose Ω is completely geometrically separated at p0 ∈ ∂Ω. Let KB(z,w) be the Bergman kernel of Ω. There

exists a neighborhood W (p0) of p0 such that:

(1) For p ∈W (p0)∩Ω, KB(p, p)≃ Πn
i=1F(L

p,δ (p)
i , p,δ∂Ω(p)), where δ∂Ω(p) is the distance from p to ∂Ω.

(2) For p1, p2 ∈ W (p0)∩Ω, for all integer N, there exists a constant CN depending on Ω and N, such that for all lists

LZ1 = {L1
1, . . . ,L

k
1} (resp LZ2 = {L1

2, . . .L
k′
2 }) of length k ≤ N (resp. k′ ≤ N) with L

j
1 ∈ B(π(p1),τ)∪ {N} (resp.

L
j
2 ∈ B(π(p1),τ)∪{N}), we have

∣∣LZ1LZ2KB(Z1,Z2)(p1, p2)
∣∣≤CN

n

∏
i=1

F(L
π(p1),τ
i ,π(p1),τ)

1+li/2,

where τ = δ∂Ω(p1)+δ∂Ω(p2)+ γ(π(p1),π(p2)), γ(π(p1),π(p2)) is the pseudo-distance from π(p1) to π(p2) asso-

ciated to the structure of homogeneous space and li is the number of times the vector fields L
π(p1),τ
i or L

π(p1),τ
i appear

in the union of the lists LZ1 and LZ2 .

Corollary. Suppose Ω satisfies the hypothesis of Theorem 5.2. Let D be the local domain considered in Theorem 5.2. Then

the Bergman kernel KD(z,w) of D satisfy all the estimates stated in the Theorem at any point of its boundary.

Using the methods of Section 5 of [CD92] the following result on invariant metrics is easily proved:

Theorem 6.2. Suppose Ω is completely geometrically separated at p0 ∈ ∂Ω. Let us denote by BΩ(z,L) (resp. CΩ(z,L), resp.

KΩ(z,L)) the Bergman (resp. Caratheodory, resp. Kobayashi) metric of Ω at the point z∈Ω. Then there exists a neighborhood

V (p0) such that, for all vector fields L∈E (E being the vector space spaned by the basis B0 (see Definition 4.1), L= Lτ +anN,

we have, for q ∈V (p0)∩Ω,

BΩ(q,L)≃CΩ(q,L)≃ KΩ(q,L)≃ F(Lτ ,q,δ (q))+
|an|

δ∂Ω(q)
,

where the constants in the equivalences depend only on the constant of geometric separation and the data.

Remark. The last point of Remark 4.2 and this Theorem show that the structure of homogeneous space we associate to a
completely geometrically separated domain is essentially unique.

Theorem 6.3. Suppose Ω is completely geometrically separated at every point of its boundary. Then the following results

hold:

(1) Let PB be the Bergman projection of Ω. Then:

(a) for 1 < p <+∞ and s ≥ 0, PB maps continuously the Sobolev space L
p
s (Ω) into itself;

(b) for 0 < α <+∞, PB maps continuously the Lipschitz space Λα(Ω) into itself;

(c) for 0 < α < 1/M, PB maps continuously the Lipschitz space Λα(Ω) into the non-isotropic Lipschitz space

Γα(Ω).
(2) Let PS be the Szegö projection of Ω. Then:

(a) for 1 < p <+∞ and s ∈ N, PS maps continuously the Sobolev space L
p
s (∂Ω) into itself;

(b) for 0 < α <+∞, PS maps continuously the Lipschitz space Λα(∂Ω) into itself;

(c) for 0 < α < 1/M, PS maps continuously the Lipschitz space Λα(∂Ω) into the non-isotropic Lipschitz space

Γα(∂Ω).

Note.

(1) Statements (1) (c) and (2) (c) can be extended to all α > 0 with convenient definitions of the spaces Γα(Ω) and
Γα(∂Ω).

(2) In view of Example 5.1, the previous theorem applies in particular for all lineally convex domains of finite type.

Corollary. Suppose Ω satisfy the hypothesis of Theorem 5.2. Let D be the local domain considered in Theorem 5.2. Then all

the results stated for Ω in the previous Theorem are valid for D.

Using an idea of M. Machedon [Mac88] we deduce local estimates for the Szegö projection:

Theorem 6.4. Suppose Ω satisfies the hypothesis of Theorem 5.2. Let PS be the Szegö projection of Ω. Then if f is a

L2(∂Ω) function which is locally near p0 in the Sobolev space L
p
s , 1 < p <+∞ and s ∈ N, (resp. in the Lipschitz space Λα ,

0 < α < 1/M) then its projection PS( f ) is locally near p0 in L
p
s (resp. in the non-isotropic Lipschitz space Γα ). In particular

this applies if the Levi form of Ω is locally diagonalizable at p0.
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Proof. if f ∈ L2(Ω) and if χ ∈ C
∞(∂Ω) has compact support in a sufficiently small neighborhood of p0 and χ = 1 in a

neighborhood of p0, then the subelliptic estimates for �b and Kohn’s theory ([Koh85, KN65]) implies PS((1− χ) f ) is C ∞

near p0, and, denoting PD
S the Szegö projection of D, (PS −PD

S )(χ f ) is C ∞ in a neighborhood of p0 (see also [Kan90]); the
result follows thus the previous Corollary. �

6.2. A guide for the proofs of the results of Section 6.1. Let U be a neighborhood of ∂Ω where we can define a projection
π onto ∂Ω using the integral curve of the real normal to ρ . We will always suppose that V (p0)⊂U .

The two notions of “weak homogeneous space” and “adapted pluri-subharmonic function” plays a crucial role in [CD06b,
CD06a]:

Definition 6.1. We say that the domain Ω satisfies the hypothesis of “weak homogeneous space” at a boundary point p0 of
finite type τ if there exist two neighborhoods V (p0) and W (p0)⋐V (p0) and a constant K such that:

(1) There exists δ0 > 0 such that, for every p ∈W (p0), ∀δ ∈ [− 1
3 ρ(p),δ0], there exists a basis of vector fields tangent to

ρ in V (p0), B(p,δ ), for which there exists a K-adapted coordinate system
(2) There exists two constants C and c0, depending on K and τ , such that, for c ≤ c0, the sets Bc (B(p,δ ), p,δ ) (asso-

ciated to the coordinate system), Bc
C
(B(p,δ ), p,δ ) and Bc

exp (B(p,δ ), p,δ ) satisfy, for all p ∈ W (p0)∩ Ω̄ and all

δ ∈ [− 1
3 ρ(p),δ0], the following conditions:

(a) for q ∈ Bc
0(p,δ ), Bc

0(B(q,δ ),q,δ ) ⊂ Bc
1(B(p,δ ), p,Cδ ), where Bc

0 and Bc
1 denotes one of the sets Bc, Bc

C
or

Bc
exp.

(b) Vol
(
Bc

0(B(p,2δ ), p,2δ )
)
≤CVol

(
Bc

0(B(p,δ ), p,δ )
)
.

Note that, in this Definition the weights Fi are defined with M = M′(τ).

Definition 6.2. Let B = {L1, . . . ,Ln−1} be a basis of vector fields tangent to ρ in a neighborhood V (p0) of a boundary point
p0 and 0 < δ ≤ δ0. We say that a pluri-subharmonic function H ∈ PSH(Ω) is (p0,K,c,δ )-adapted to this basis B if the
following properties are satisfied:

|H| ≤ 1 in Ω, and, for all point p ∈ W (p0) ∩ Ω̄, ρ(p) ≥ −3δ , the two following inequalities are verified for points
q ∈ Bc

C
(B, p,δ )∩Ω:

(1) For all L = ∑n
i=1 aiLi, ai ∈ C,

〈
∂ ∂̄H,L,L

〉
≥ 1

K

n

∑
i=1

|ai|2 F(Li, p,δ ).

(2) For L ∈ L3(B∪{N}),
|L H| ≤ K ∏

L∈L

F(L, p,δ )1/2.

Note that this Definition depends on the values of the vector fields L
p
i at points q in Ω. But, in the situation of the

applications below (i.e. with a finite type hypothesis) it can be shown that it depends only (up to uniform constants) on the
restriction of the basis on ∂Ω.

The following Proposition follows from the work in [CD06b, CD06a]:

Proposition 6.1. Let Ω be a bounded pseudo-convex domain and p0 be a boundary point of finite type (resp. a bounded

pseudo-convex domain of finite type). Then, if Ω satisfies the hypothesis of “weak homogeneous space” at p0 (resp. at every

point of its boundary) and if there exists a pluri-subharmonic function Hδ adapted to B(p,δ ) for all p ∈W (p0)∩ Ω̄ and all

δ ∈ [− 1
3 ,δ0] (resp. if this property holds at every point p0 of ∂Ω) then the conclusions of Theorem 6.1 (resp. Theorem 6.3)

hold.

To prove Theorems 6.1 and 6.3 it suffices then to use the properties of extremal bases and to note the two following facts:

(1) The existence of extremal bases and adapted coordinate systems for points of ∂Ω∩W (p0) allows us to define bases
and coordinate systems for points inside Ω (see Remark 4.1);

(2) if p1 ∈W (p0)∩Ω, p = π(p1), the sets B̃c
0(B(p,δ ), p1,δ ), − 1

3 ρ(p1)< δ ≤ δ0, defined by q ∈ B̃c
0(B(p,δ ), p1,δ ) if

π(q) ∈ Bc
0(B(p,δ ), p,δ ) and |ρ(q)−ρ(p1)|< cδ induce a structure of “weak homogeneous space”.

6.3. Main articulations of the proof of Proposition 6.1. In Section 2 of [CD06b] we showed that if the Levi form is locally
diagonalizable then the local hypothesis of the Proposition is satisfied, and in [CD06a, CD06b], even if the statements are
given in the case of a locally diagonalizable Levi form, the proofs of the estimates on the Bergman and Szegö projections are
done only using the hypothesis of the Proposition. We just give here the main articulations of the proofs:

• The Bergman kernel estimates on the diagonal is done using Theorem 6.1 of [Cat89] and the change of coordinates
Φp adapted to the basis B(p,δ (p)).

• The estimates on the derivatives of the Bergman kernel outside the diagonal follow the methods developed by A.
Nagel, J. P. Rosay, E. M. Stein and S. Wainger [NRSW89] and J. Mc Neal [McN89] for the pseudo-convex domains
of finite type in C2, and used for some generalizations (see the introduction) in particular by J. Mc Neal [McN94]
in the case of convex domains. It consists to obtain uniform local estimates for the Neumann operator N and then
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to apply the ideas developed by N. Kerzman [Ker72] in the study of the strictly pseudo-convex case. This requires
scaling.
The starting point is to write the Bergman kernel KΩ

B using the Bergman projection. More precisely, if ψζ is a
radial function centered at ζ with compact support in Ω and of integral 1, and PΩ

B is the Bergman projection of
Ω, then DµD̄νKΩ

B (w,ζ ) = D
µ
wPΩ

B (D̄ν
ζ

ψζ )(w). Then, PΩ
B being related to the ∂̄ -Neumann problem by the formula

PΩ
B = Id−ϑN ∂̄ , where ϑ is the formal adjoint to ∂̄ and N the inverse operator of ∂̄ ∂̄ ∗+ ∂̄ ∗∂̄ , the estimates on

PΩ
B are obtained via estimates on N . To obtain these estimates, we use the theory developed by J. J. Kohn and L.

Nirenberg [KN65] which gives local Sobolev estimates for N if there exists a local sub-elliptic estimates for the
∂̄ -Neumann problem and the famous work of D. Catlin ([Cat87]), where it is proved that the existence of an adapted
pluri-subharmonic function implies the existence of a sub-elliptic estimates for the ∂̄ -Neumann operator.
The study of the Bergman kernel is not directly done in Ω but in Φp(Ω), where Φp is a coordinate system adapted
to the basis B(p,δ∂Ω(p) + δ∂Ω(q)+ γ(π(p),π(q))), where γ is the pseudo-distance on ∂Ω. One difficulty is to
see that all the constants appearing in the estimates and all the domains where the estimates are done are uniformly
controlled.

• The estimates for the Bergman and Szegö projectors are obtained adapting the methods developed by J. Mc Neal and
E. M. Stein in [MS94, MS97] (and also [NRSW89]), related, in particular, to the theory of non isotropic smoothing
operators, to non convex domains.

Remark. The results on the Szegö projection are thus obtained adapting the theory of NIS operators to our settings. The Λα

estimates, for example, for the domains considered by M. Derridj in [Der99] can also be obtained using the estimate for �b of
Derridj’s paper, the estimate on the Bergman projection derived from the fact that these domains are completely geometrically
separated and the results on the comparison of the Bergman and Szegö projection obtained by K. D. Koenig in [Koe07].

7. EXAMPLES AND ADDITIONAL REMARKS

7.1. The lineally convex case. In this Section we show, with some details the statements made on lineally convex domains
in Example 3.1, Example 4.1 and Example 5.1.

Suppose Ω = {ρ < 0} is lineally convex near p0 ∈ ∂Ω, a point of finite type, and W is a small neighborhood of p0. (Zi)i

is a coordinate system centered at p0 such that Zn is the complex normal to ∂Ω at p0, and ∂ρ
∂Zn

≃ 1 in W .
We begin with the statement in Example 3.1 (1). Let p ∈ ∂Ω∩W and δ > 0. Let (zi)i be the δ -extremal basis (considered

as a coordinate system) at p defined by M. Conrad in [Con02] (the main results concerning this basis are summarized in
[DF06]), which is centered at p. To be coherent with our previous notations, we suppose that the complex normal to ∂Ω at p

is zn (in M. Conrad paper this normal is z1).
To each vector v = (a1, . . . ,an−1,0) ∈ Cn we associate the (1,0)-vector field, tangent to ρ ,

(7.1) Lv =
n−1

∑
i=1

ai
∂

∂ zi

+βv
∂

∂Zn

:=V +βv
∂

∂Zn

(thus βv =−V(ρ)
(

∂ρ
∂Zn

)−1
).

If vi =
(
δ i

k

)
1≤k≤n

, 1 ≤ i ≤ n− 1, we denote Li = Lvi
= ∂

∂ zi
+ βi

∂
∂Zn

. Note that the vector fields Li depend on p and δ

(Li = Li(p,δ )) and are the vector fields of a basis of the complex tangent space to ρ in W .

Proposition 7.1. There exists a constant K such that, for all p∈ ∂Ω∩W and all δ ≤ δ0, δ0 small enough, the basis (Li(p,δ ))i

is (K,δ )-extremal at p.

Proof. p and δ being fixed, we drop them in the notations. First we express the weights F(Lv, p,δ ) in terms of the vector
field V of (7.1).

Lemma. Let L be a list composed of α Lv and β Lv, ‖v‖ ≤ 1. Then

L (∂ρ) = 2V αV̄ β (ρ)+ ∑
α ′+β ′<α+β

∗V α ′
V̄ β ′

(ρ)

where ∗ are functions of C 2m−(α+β ) norm uniformly bounded in p and δ .

Proof. Look first at cvv̄ = 2
[
Lv,Lv

]
(∂ρ): cvv =−2Lv(βv)

∂ρ
∂Zn

= 2LvV (ρ)+ ∗V(ρ) = 2V̄V (ρ)+ ∗V(ρ). The Lemma is then
proved by induction. �

Corollary. F (Lv, p,δ )≃ ∑ |ai|2 F(Li, p,δ ) uniformly in p and δ .
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Proof. It suffices to prove this formula when ‖v‖= 1. By the Lemma

F (Lv, p,δ ) ≃ ∑
2≤α+β≤m

∣∣∣∣∣
V αV̄ β (ρ)

δ

∣∣∣∣∣

2
α+β

= ∑
2≤α+β≤m

∣∣∣∣∣∣

∂ α+β

∂λ α ∂ λ̄ β (ρ)(p+λ v)|λ=0

δ

∣∣∣∣∣∣

2
α+β

≃
(

2
τ(p,v,δ )

)2

,

where τ(p,v,δ ) is Conrad’s notation.
Using properties (iii) and (iv) of Proposition 3.1 of [DF06] we get

F (Lv, p,δ )≃
m

∑
2

|ai|2
τ(p,vi,δ )2 .

As all constants are uniform in p and δ the Corollary is proved. �

To finish the proof of Proposition 7.1 we have to prove property EB2 of Definition 3.1. For example, let us look at the
bracket [Li,L j]:

[Li,L j] =

(
− ∂

∂ z̄ j

+ β̄ j
∂

∂Zn

)
(βi)

∂

∂Zn

+

(
∂

∂ zi

+βi
∂

∂Zn

)(
βi

) ∂

∂Zn

= a
∂

∂Zn

+ b
∂

∂Zn

.

Let L ∈LM (L1, . . . ,Ln−1). As, for all k, F
−1/2
k ≥ δ and ∂

∂Zn
= ∑αi

∂
∂ zi

with αi uniformly bounded in C M norm, it is enough
to show that

(|L a|+ |L b|)(p). δFα/2(p,δ )F
1/2
i (p,δ )F

1/2
j (p,δ ).

If |L |= 0, a(p) = ∂ 2ρ
∂ zi∂ z j

(0)
(

∂ρ
∂Zn

)−1
(p) and, if |L |= 1,

( )

Lka(p) = ∂ 3ρ

∂
( )

zk∂ zi∂ z j

(0)
(

∂ρ
∂Zn

)−1
(p)+∗ ∂ 2ρ

∂
( )

zk∂ z j

. Thus, in those cases,

the result follows from Lemma 3.2 of M. Conrad’s paper [Con02] which states

(7.2)

∣∣∣∣∣
∂ α+β ρ

∂ zα ∂ zβ
(p)

∣∣∣∣∣. δ ∏
(

1
τ(p,vi,δ )

)αi+βi

≃ δF(p,δ )(α+β )/2,

the last equivalence resulting of the proof of the previous Corollary. The case of a general L is easily done similarly. �

Now let us prove the statement made in Example 5.1 (1). The construction of the adapted plurisubharmonic function is
inspired by the McNeal’s construction for convex domains, using support function, written in [McN02]. We use the support
function for lineally convex domains constructed by J. E. Fornaess and K. Diederich in [DF03]. The right behavior in the
normal direction is obtained, as in Section 5.2, adding the functions Keρ/δ and K |z|2.

Consider the support function constructed by K. Diederich and J. E. Fornaess in [DF03] at the point p:

Sp(z1, . . . ,zn) = −ε
2m

∑
j=2

M2 j

σ j ∑
|α |= j,αn=0

1
α!

∂ jρ(0)
∂ zα

zα

+zn

(
1

1−Ap(z)

)
+K0

(
zn

1−Ap(z)

)2

,

where Ap is a C ∞ function, uniformly bounded (in p), such that Ap(0) = 0. Shrinking W (p0) if necessary, Sp is uniformly
bounded on W (p0).

Then there exists a constant M0 (> 8n and independent of p and δ ) such that, if S =
M0ℜe(Sp)

δ , we have:

(1) ℜe(S)≤ 0;
(2) ℜe(S(z))≤−n, if there exists i < n such that |zi| ≥ Fi(p,δ )−1/2;
(3) −1/4 ≤ ℜe(S(z)) if z ∈ cP(p,δ ) =

{
z such that |zi| ≤ cFi(p,δ )−1/2, i = 1, . . . ,n

}
.

Let F be the function defined by F(z) = ∑n−1
i=1 Fi(p,δ ) |zi|2, and χ be the convex function such that χ ≡ 0 on ]−∞,−1[

and χ(x) = ex−1 − 1 on ]− 1,+∞[. Define then

H1 = χ
(

F + S− n

δ 2 |zn|2
)
.

Clearly H1 ≡ 0 on a neighborhood of the boundary of P(p,δ ). Thus we denote by H the function equal to H1 in P(p,δ ) and
0 outside. Then:

(1) Supp(H)⊂ P(p,δ );
(2) |H| ≤C0;
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(3) On P(p,δ ) we have
〈

∂ ∂̄H;
n−1

∑
i=1

ai
∂

∂ zi

,
n−1

∑
i=1

ai
∂

∂ zi

〉
≥ χ ′

(
F + S− n

δ 2 |zn|2
) n−1

∑
i=1

|ai|2 Fi(p,δ ).

We now estimate
〈
∂ ∂̄ H;L, L̄

〉
in P(p,δ ) for a vector field L =n

i=1 biL
0
i where L0

i =
∂

∂Zi
−β 0

i
∂

∂Zn
, for i < n, and L0

n = N the

complex normal vector (recall that the extremal bases are linear combinations of these L0
i ). Denote L = Lτ + bnN, so that Lτ

is tangent to ρ . Then

(7.3)
〈
∂ ∂̄H;L, L̄

〉
=
〈
∂ ∂̄ H;Lτ ,Lτ

〉
+ 2ℜe

(
bn

〈
∂ ∂̄ H;Lτ , N̄

〉)
+ |bn|2

〈
∂ ∂̄ H;N, N̄

〉
.

The last term of the right hand side of this equality is ≥−O
(
|bn|2 χ ′

(
F + S− n

δ 2 |zn|2
)

1
δ 2

)
, and, if (Li) is the δ -extremal

basis at p and Lτ = ∑n−1
i=1 aiLi, we have

〈
∂ ∂̄ H;Lτ , N̄

〉
=

〈
∂ ∂̄ H;

n−1

∑
i=1

ai

∂

∂ zi

, N̄

〉
+

〈
∂ ∂̄ H;

(
∑aiβi

) ∂

∂Zn

, N̄

〉
.

Using (7.2) the first term of the right hand side of this equality is O
(

1
δ χ ′

(
F + S− n

δ 2 |zn|2
))

, and, using also the fact that

βi(p) = 0 implies βi = O
(
δFi(p,δ )1/2

)
, the second term is O

(
1
δ χ ′

(
F + S− n

δ 2 |zn|2
)

∑ |ai|Fi(p,δ )1/2
)

. Notice that, by

extremality, ∑ |ai|Fi(p,δ )1/2 ≃ F(Lτ , p,δ )1/2, thus, there exists a constant K1 such that

2ℜe
(
bn

〈
∂ ∂̄H;Lτ , N̄

〉)
+ |bn|2

〈
∂ ∂̄ H;N, N̄

〉
≥−K1χ ′

(
F + S− n

δ 2 |zn|2
)( |bn|2

δ 2 +
|bn|
δ

F(Lτ , p,δ )1/2

)
.

Let us now look at the first term of the right hand side of (7.3):

〈
∂ ∂̄H;Lτ ,Lτ

〉
= χ ′

(
F + S− n

δ 2 |zn|2
)〈

∂ ∂̄

(
F + S− n

|zn|2
δ 2

)
;Lτ ,Lτ

〉
+

+χ ′′
(

F + S− n

δ 2 |zn|2
)∣∣∣∣∣Lτ

(
F + S− n

|zn|2
δ 2

)∣∣∣∣∣

2

= A+B.

Shrinking W (p0) if necessary, we have

A ≥ χ ′
(

F + S− n

δ 2 |zn|2
)[1

2

n−1

∑
i=1

|ai|2 Fi(p,δ )− n

δ 2

∣∣∣
〈

∂ ∂̄ |zn|2 ;Lτ ,Lτ

〉∣∣∣
]

≥ χ ′
(

F + S− n

δ 2 |zn|2
)

1

2

n−1

∑
i=1

|ai|2 Fi(p,δ )− 2n

δ 2

∣∣∣∣∣
n−1

∑
i=1

aiβi

∣∣∣∣∣

2

 .

To estimate B, write

Lτ

(
F + S− n

|zn|2
δ 2

)
=

n−1

∑
i=1

ai
∂

∂ zi

(
F + S− n

|zn|2
δ 2

)
+

(
n−1

∑
i=1

aiβi

)
∂

∂Zn

(
F + S− n

|zn|2
δ 2

)
.

Then the first term of the right hand side of this equality is O
(
F(Lτ , p,δ )1/2

)
by extremality (use (7.2)), and

∂

∂Zn

(
F + S− n

|zn|2
δ 2

)
= O

(
F(Lτ , p,δ )1/2

)
+

M0

δ

∂

∂Zn

(
zn

1−Ap(z)

)
+O(1)− n

δ 2

∂

∂Zn

(znzn) .

But, if W (p0) is small enough,
∣∣∣ ∂

∂Zn

(
zn

1−A(z)

)∣∣∣ ∈ [1/2,3/2], and, in P(p,δ ), 1
δ 2

∣∣∣ ∂
∂Zn

(znzn)
∣∣∣≤ 2n

δ .

Thus, as χ ′′ = χ ′, for δ small enough, we have, by the choose of M0,

〈
∂ ∂̄ H;Lτ ,Lτ

〉
≥ χ ′

(
F + S− n

δ 2 |zn|2
) n−1

∑
i=1

|ai|2 Fi(p,δ ).

Using again the extremality of the basis (Li), we conclude that

〈
∂ ∂̄ H;L, L̄

〉
≥ αχ ′

(
F + S− n

δ 2 |zn|2
)[

F(Lτ , p,δ )−K2
|bn|2
δ 2 +K2

|bn|
δ

F(Lτ , p,δ )1/2

]
,
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and, using Cauchy-Schwarz inequality, we get

〈
∂ ∂̄ H;L, L̄

〉
≥ β χ ′

(
F + S− n

δ 2 |zn|2
)[

F(Lτ , p,δ )−K3
|bn|2
δ 2

]
.

In particular, on cP(p,δ ), we have
〈
∂ ∂̄H;L, L̄

〉
≥ γF(Lτ , p,δ )−K

|bn|2
δ 2 ,

and
〈
∂ ∂̄ H;L, L̄

〉
≥−K

|bn|2
δ 2 on P(p,δ ).

If we note that choosing c sufficiently small we have F(Lτ , p,δ )≃ F(Lτ ,q,δ ), we get:

Proposition 7.2. There exist two constants γ and K depending only on the data such that, if L = Lτ +bnN = ∑n−1
i=1 biL

0
i +bnN,

we have

〈
∂ ¯∂H;L, L̄

〉
≥−K

|bn|2
δ 2 , and, if q ∈ cP(p,δ ), we have

〈
∂ ¯∂H;L, L̄

〉
(q)≥ γF(Lτ ,q,δ )−K

|bn|2
δ 2 .

To finish the construction of the plurisubharmonic function adapted to the structure of Ω at p, as in the proof of Theo-
rem 5.1, we have to add functions of the precedent type to get a local function. Thus, we cover ∂Ω∩W (p0) with a minimal
system of polydiscs c

2 P(pkδ ), pk ∈ ∂Ω∩W (p0) and, then, there exists an integer J, independent of δ , such that every point
of Ω belongs to at most J polydiscs P(pk,δ ). Indeed, there exists a constant C such that

P
(

p,
c

C
δ
)
⊂ c

2
P(p,δ )⊂ P(p,cCδ )

and the polydiscs P(p,δ ) are associated to a structure of homogeneous space.
Consider H = ∑Hpk

where the function Hpk
is the one considered in the previous Proposition relatively to the point p = pk

(notice that ‖H‖ ≤ JC0). Then, shrinking eventually W (p0) and choosing ρ equivalent to the distance to the boundary with
a constant close to 1, for all point q ∈ W (p0)∩

{
0 > ρ >− c

2 δ
}

there exists k0 such that q ∈ P(pk0 ,δ ) and the set E(q) of
index k so that q ∈ cP(pk,δ ) has at most J elements and we have

〈
∂ ∂̄H;LL̄

〉
(q)≥ γF(Lτ ,q,δ )−KJ

|bn|2
δ 2 .

Moreover, without conditions on q, we have

〈
∂ ∂̄H;LL̄

〉
(q)≥−KJ

|bn|2
δ 2 ,

and ∂ ∂̄ H(q) = 0 if ρ(q)<−2δ .
We now evaluate

〈
∂ ∂̄ eρ/δ ;L, L̄

〉
in W (p0):

〈
∂ ∂̄eρ/δ ;L, L̄

〉
≥ eρ/δ

[
1
δ

(
1
2

n−1

∑
i, j=1

bib jc
0
i j +ℜe

n−1

∑
i=1

bibn

〈
∂ ∂̄ ρ ;L0

i , N̄
〉
)
+

|bn|2
δ 2

]

c0
i j being the coefficient of the Levi form in the direction

(
L0

i ,L
0
j

)
. As the level set of ρ are pseudo-convex (in W (p0)), we

get
〈

∂ ∂̄eρ/δ ;L, L̄
〉
≥ eρ/δ

(
1
2
|bn|2
δ 2 −K1

)
.

Consider now H̃ = H +K1eρ/δ +K2 |z|2, for K1 and K2 large enough (independent of δ ). Then H̃ is plurisubharmonic on
Ω∩W (p0), uniformly bounded (with respect to δ ) and satisfies, on W (p0)∩

{
0 > ρ >− c

2 δ
}

〈
∂ ∂̄ H̃;L, L̄

〉
≥ γF(Lτ , .,δ )+

|bn|2
2δ 2 .

To change c
2 δ in 2δ it suffices to apply the relations between F(., .,αδ ) and F(., .,δ ).

Finally, we extend H̃ to a bounded plurisubharmonic function in Ω using the function ϑ1 of the end of the proof of
Theorem 5.1.

7.2. Example of non geometrically separated domain. The example presented here is the domain of C3 introduced by G.
Herbort in [Her83]:

Ω =
{

z ∈ C
3 such that ℜez1 + |z2|6 + |z3|6 + |z2|2 |z3|2 < 0

}
.

Let L0
i =

∂
∂ zi

+βi
∂

∂ z1
, i = 2,3, β2 = −

(
6 |z2|4 z2 + 2 |z3|2 z2

)
and β3 = −

(
6 |z3|4 z3 + 2 |z2|2 z3

)
so that

(
L0

2,L
0
3

)
is a basis

of (1,0) tangent vector fields in a neighborhood of the origin.
The fact that this domain is not geometrically separated at the origin is a consequence of the stronger following result:
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Proposition 7.3. For all real constants K and C, there exists δ0 > 0 such that for all δ , 0 < δ ≤ δ0, there does not exist a

basis
(
Lδ

1 ,L
δ
2

)
of (1,0) tangent vector fields in a neighborhood of the origin of C 6 norm bounded by C satisfying property

EB1 of Definition 3.1, for the constant K, at the origin.

Proof. Let L be a (1,0) tangent vector field in a neighborhood of the origin, and, with our usual notations, F(L,0,δ ) =

∑L∈L6(L)

∣∣∣L (∂ρ)
δ

∣∣∣
2/|L |

(0). We write L = aL0
2 + bL0

3.

Lemma. F(L,0,δ ) ≃ |a(0)b(0)|
δ 1/2 +

(
1
δ

)1/3
.

Proof. Because cLL̄ = 2 [L, L̄] (∂ρ), it is easy to see that:

• cLL̄(0) = LcLL̄(0) = L̄cLL̄(0) = 0:
• LLcLL̄(0) = L̄L̄cLL̄(0) = 0 and LL̄cLL̄(0) = L̄LcLL̄(0) = 4 |a(0)b(0)|2;
• There exists a constant C0 depending only of the C 6 norm of a and b (i.e. of L) such that, if |L |= 3, |L cLL̄(0)| ≤

C0 |a(0)b(0)|;
• There exists a constant α0 depending only of the C 6 norm of L, such that F(L,0,δ ) ≥ α0δ−1/3. Indeed, the origin

being of type 6, this follows from a result of T. Bloom [Blo81] and a compactness argument.

Then, the Lemma follows the fact that, for all x ≥ 0,
(

x
δ

)2/5 ≤ x

δ 1/2 +
(

1
δ

)1/3
. �

We now finish the proof of the Proposition. Let δ be small enough. Suppose that there exists a (K,δ )- extremal basis
at the origin,

(
Lδ

1 ,L
δ
2

)
, the C 6 norms of the vector fields bounded by C. Let L = αLδ

1 + β Lδ
2 and L′ = α ′Lδ

1 + β ′Lδ
2 with

α,β ,α ′,β ′ ∈C chosen so that L(0) = L0
2(0) and L′(0) = L0

3(0). Then, by extremality of
(
Lδ

1 , l
δ
2

)
and the Lemma, we get

|α|2 F(Lδ
1 ,0,δ )+ |β |2 F(Lδ

2 ,0,δ )≃K F(L,0,δ ) ≃C,K

(
1
δ

)1/3

and
∣∣α ′∣∣2 F(Lδ

1 ,0,δ )+
∣∣β ′∣∣2 F(Lδ

2 ,0,δ )≃K F(L′,0,δ )≃C,K

(
1
δ

)1/3

.

Similarly, the extremality would imply

F(L+L′,0,δ )≃K

∣∣α +α ′∣∣2 F(Lδ
1 ,0,δ )+

∣∣β +β ′∣∣2 F(Lδ
2 ,0,δ ).C,K

(
1
δ

)1/3

.

But the Lemma gives F(L+L′,0,δ )≃C
1

δ 1/2 which is a contradiction for δ small. �

7.3. Additional remarks. Let Ω be geometrically separated at p ∈ ∂Ω. In Definitions 3.3 and 3.4 we defined the pseudo-
balls Bc(p,δ ), Bc

C
(p,δ ) and Bc

exp(p,δ ), which are equivalent by Proposition 4.1, and we expressed the Bergman kernel at
(p, p) with their volumes.

Let (zi) be the coordinate system adapted to the extremal basis (Li)1≤i≤n−1 =
(

L
p,δ
i

)
at p. B(p,δ ) is defined (in the

coordinate system) using only the directions of the extremal basis. Let us now define a new pseudo-ball using all the directions
of the linear space generated by the vector fields Li (i.e. the space E0) (compare to the last point of Remark 4.2):

For |Z|= 1, Z ∈ Cn, define LZ = ∑n−1
i=1 ZiLi +ZnN and (in the coordinate system (zi))

DZ(p,δ ) =
{

αZ such that |α|< cF(LZ , p,δ )−1/2
}

and
D(p,δ ) =

⋃

|Z|=1

DZ(p,δ ).

Then, property EB1 of extremality for (Li), implies that these pseudo-balls D(p,δ ) are equivalent (in the sense that they
define the same structure of homogeneous space) to the previous ones. Indeed, if z ∈ DZ(p,δ ),

|zi|= |αzi|.
∣∣∣∣Zi

(
∑ |Zi|2 F(Li p,δ )

)−1/2
∣∣∣∣≤ F(Li, p,δ ),

and use Propositions 4.1 and 4.2. Conversely, if z ∈ Bc(p,δ ), z 6= 0, and Z = z/‖z‖, then F(LZ , p,δ ) ≃ ∑
|zi|2
‖z‖2 F(Li, p,δ ) ≤

nc2

‖z‖2 , thus ‖z‖2 . nc2F(LZ , p,δ ) and we conclude as before.

Note that this shows that, if Ω is completely geometrically separated at p0 ∈ ∂Ω then the Bergman kernel K(p, p) at a
point p near p0 is equivalent to the inverse of the volume of D(p,δ ).

If Ω is not geometrically separated at p0 choosing a coordinate system and a basis of tangent (1,0) vector fields conve-
niently associated (in a sense to be defined), one can always define a “pseudo-ball” D(p,δ ).
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Let us do this, for example, for the domains considered in the previous Section, at the origin with the canonical coordinate
system (zi) and the vector fields L0

i (note that (zi) is not adapted to the basis
(
L0

i

)
in the sense of Definition 3.2 because, even

if condition (3) is satisfied, the conditions on the derivatives of ρ are not).

A direct computation shows that, at the point pδ = (−δ ,0,0), the volume of D(pδ ,δ ) is Vol(D(pδ ,δ ))≃
(
δ 3 log

(
1
δ

))−1

(uniformly in δ ), thus B(pδ ,δ ) and D(pδ ,δ ) are not equivalent, and the result of G. Herbort ([Her83]) shows that the Bergman
kernel K of the domain satisfies K(pδ , pδ )≃ Vol(D(pδ ,δ ))

−1.
Then it is natural to ask if, for that example, the “pseudo-balls” D(p,δ ) define a structure of homogeneous space. Unfor-

tunately this is absolutely not the case. Indeed, in D(0,δ ) consider the two points p =
(
0,−αδ 1/4,0

)
and q =

(
0,0,αδ 1/4

)

(for α small enough, these points are in D(0,δ ) for all δ , 0 < δ ≤ δ0) and estimate a constant K so that q ∈ D(p,Kδ ). In

the coordinate system centered at p, we have q =
(
0,αδ 1/6,αδ 1/6

)
=

√
2αδ 1/6

(
0,1/

√
2,1/

√
2
)

; then calculating cLL̄ for

L = 1√
2
L0

1 +
1√
2
L0

2 we see that

F(L, p,Kδ ) &
α2δ−2/3

K
i.e. F(L, p,Kδ )−1/2 .

√
Kδ 1/3.

Then q belongs to D(p,Kδ ) implies K & δ−1/3.

8. APPENDIX

The following Lemma is an improvement of Lemma 3.9 of [CD06b]:

Lemma 8.1. Let B j be the unit ball in C j. Let K1 be a positive real number, M and n two positive integers. There exists a

constant C(K1) depending on K1, M and n such that, for j = 1, . . . ,n− 1, if g is a non negative function of class C Mon B j

satisfying supB j
{
∣∣Dαβ g(w)

∣∣ , |α +β | ≤M} ≤K1, where Dαβ = ∂ |α+β |

∂wα ∂ w̄β , then, for all (α0,β 0)∈
(
N j
)2

,
∣∣α0 +β 0

∣∣<M, there

exists a ∈ N j, 2 |a| ≤
∣∣α0 +β 0

∣∣ such that, denoting ∆a the differential operator ∏
j
i=1 ∆ai

i , where ∆i =
∂ 2

∂ zi∂ z̄i
is the Laplacian

in the zi coordinate,

∆ag(0)≥ 1
C(K1)

∣∣∣Dα0β 0
g(0)

∣∣∣
2|α0+β0|

.

Note that there is no absolute value in the left hand side of the inequality.

Proof. We only indicate how the proof of Lemma 3.9 of [CD06b] has to be modified.
Without loss of generality, we can suppose

∣∣Dα0β0g(0)
∣∣ = max|α+β |=|α0+β 0|

∣∣Dαβ g(0)
∣∣. By induction, it is enough to

prove that there exist two constants c and C, depending on M and n, such that one of the following two cases holds:

First case there exists a ∈ N j, 2 |a|=
∣∣α0 +β 0

∣∣ such that ∆ag(0)≥ c

∣∣∣Dα0β 0
g(0)

∣∣∣;

Second case there exists (α̃, β̃ ) ∈
(
N

j
)2

,
∣∣∣α̃ + β̃

∣∣∣<
∣∣α0 +β 0

∣∣ such that

∣∣∣Dα̃β̃ g(0)
∣∣∣≥ 1

C

∣∣∣Dα0β 0
g(0)

∣∣∣
−|α̃+β̃ |+|α0+β 0|+1

.

Let p =
∣∣α0 +β 0

∣∣, ξ = µε , µ ∈]0,1[, ε = (εi), |εi| ≤ 1, and, as in the proof of Lemma 3.9 of [CD06b] let us write Taylor
formula:

g(ξ ) =
p−1

∑
k=0

µk ∑
|α+β |=k

∗Dαβ g(0)εα ε̄β + µ p ∑
|α+β |=p

∗Dανg(0)εα ε̄β + µ p+1R(ε,µ)

= A1(ξ )+ µ pA2(ξ )+ µ p+1R(ε,µ),

where ∗ are multinomial coefficients and |R| ≤ K1K2, K2 depending only on M and n.
Remark now that, g being non negative,

(*)

{
If there exists µ ≃

∣∣∣Dα0β 0
g(0)

∣∣∣ such that A2(ξ )+ µR(ε,µ) < −c1

∣∣∣Dα0β 0
g(0)

∣∣∣, c1 > 0, then the Second

case hold.

In the proof of Lemma 3.9 of [CD06b] we introduced a multi-index c (|c|= p), depending on g, and complex numbers εi

(∀i, |εi| ≥ c(M,n)), depending on g and K(M,n), such that

(8.1) ∑
|α+β |=p
α+β 6=c

∣∣∣∗Dαβ g(0)εα ε̄β
∣∣∣≤

∣∣∣Dα0β 0
g(0)

∣∣∣
K
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and

(8.2)

∣∣∣∣∣ ∑
α+β=c

∗Dαβ g(0)εα ε̄β

∣∣∣∣∣≥ 4

∣∣∣Dα0β 0
g(0)

∣∣∣
K

.

To finish the proof, we show now that, either we can find ε and µ satisfying the hypothesis of (*), or we are in the First

case.

We take µ =

∣∣∣Dα0β0
g(0)

∣∣∣
KK1K2

. Then |A2(ξ )+ µR(ξ )| ≥
∣∣∣Dα0β0

g(0)
∣∣∣

K
and A2(ξ )+µR(ξ ) has the sign of ∑α+β=c∗Dαβ g(0)εα ε̄β .

If ∑α+β=c∗Dαβ g(0)εα ε̄β < 0, then (*) is satisfied, thus we consider the case where ∑α+β=c∗Dαβ g(0)εα ε̄β > 0.
If there is an index i such that ci is odd, taking ε ′ defined by ε ′j = ε j if j 6= i and ε ′i =−εi, then

∑
α+β=c

∗Dαβ g(0)ε ′α ε ′
β ≤− 4

K

∣∣∣Dα0β 0
g(0)

∣∣∣ ,

and, by (8.1), (*) is verified.
So we suppose that for all i, ci = 2c′i, and we write

∑
α+β=c

∗Dαβ g(0)ε ′α ε ′
β
=

c1

∑
k=0

ε ′k1ε ′
c1−k

1 A1
k(ε

′
2, . . . ,ε

′
n),

with |ε ′i |= |εi|, and choose c ≪ 4/K. We separate two cases.

First suppose that A1
c′1
(ε2, . . . ,εn)≤ c

∣∣∣Dα0β 0
g(0)

∣∣∣. If c1 = 0 then (8.2) implies

∑
α+β=c

∗Dαβ g(0)εα εβ ≤−c′
∣∣∣Dα0β 0

g(0)
∣∣∣

which gives (*). Thus suppose c1 6= 0. Let

E0 = {ε ′, such that ε ′i = εi, i > 1, ε ′1 = ϑε1, with ϑ c1 = 1}.
Thus

∑
ε ′∈E0

∑
α+β=c

∗Dαβ g(0)ε ′α ε ′
β
= c1A1

c′1
|ε1|c1 .

Then, by (8.2), there exists ε ′ ∈ E0 such that

∑
α+β=c

∗Dαβ g(0)ε ′α ε ′
β ≤−c′′

∣∣∣Dα0β 0
g(0)

∣∣∣ ,

(recall |ε1|> c(M,n)) and (*) is verified as before.

Suppose now A1
c′1
(ε2, . . . ,εn)> c′

∣∣∣Dα0β 0
g(0)

∣∣∣. Write

A1
c′1
=

c2

∑
k=0

εk
2 ε2

c2−kA2
k(ε3, . . .εn).

As before, if c2 = 0 or if A2
c′2
(ε3, . . .εn)≤ c′′′

∣∣∣Dα0β 0
g(0)

∣∣∣ then we can change ε2 such that we obtain

A1
c′1
(ε ′2, . . .ε

′
n)≤−c′′′′

∣∣∣Dα0β 0
g(0)

∣∣∣ ,

and we conclude that (*) is satisfied. If A2
c′2(ε3, . . .εn) ≥ c′′′

∣∣∣Dα0β 0
g(0)

∣∣∣, we do another time the same thing, on the third

variable. Then, by induction, if the process does not stop, the last step shows that if (*) is not satisfied, then the inequality on
Dc′c′g(0) implies that we are in the First case. �
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