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EXTREMAL BASES, GEOMETRICALLY SEPARATED DOMAINS AND APPLICATIONS

PHILIPPE CHARPENTIER & YVES DUPAIN

ABSTRACT. In this paper we introduce the notion of extremal basis of tangent vector fields at a boundary point of finite type of
a pseudo-convex domain in C", n > 3. Using this notion we define the class of geometrically separated domains at a boundary
point and we give a description of their complex geometry. Examples of such domains are given, for instance, by locally lineally
convex domains, domains with locally diagonalizable Levi form at a point or domains for which the Levi form have comparable
eigenvalues near a point. Moreover we show that geometrically separated domains can be localized. We also give an example of a non
geometrically separated domains. Next we define what we call “adapted pluri-subharmonic function” and give sufficient conditions,
related to extremal bases, for their existence. Then, for these domains, when such functions exist, we prove global and local sharp
estimate for the Bergman and Szegd projections. As an application, we strengthen a result by C. Fefferman, J. J. Kohn and M.
Machedon ([FKM90]) for the local Holder estimate of the Szego projection removing the arbitrary small loss in the Holder index and
giving a stronger non-isotropic estimate.

1. INTRODUCTION

The study of the regularity with sharp estimates for the Bergman and Szeg6 projections for pseudo-convex domains in C”
became very active for domains of finite type when D. Catlin proved his fundamental characterization of subelliptic estimates
([Cat87]).

Quite quickly, the case of domains in C> was completely solved by D. Catlin in [Cat89], A. Nagel, J.-P. Rosay, E. M. Stein
and S. Wainger in [NRSW89], M. Christ in [Chr88], C. Fefferman and J. J. Kohn in [FK88] and J. McNeal in [McN89].

In higher dimensions, the situation is more complicated and, until now, there are only partial results. One of the main
difficulties is the description of the geometry of the domain: there are some special bases of the complex tangent space at
the boundary playing an important role in this description and also in the Lipschitz estimates of the projectors. Thus the first
results concern domains for which these bases are more or less evident. For example, the class of domains for which the Levi
form have rank larger than n — 2 was studied by M. Machedon in [Mac88] (see also S. Cho [Cho94, Cho96], [AC99]) and,
even in that case, the situation is not so simple. An other example is given by decoupled domains, treated by several authors
(see for example [McN91], [CGY4)).

A typical example where the choice of special bases is essential, and not evident, is the case of convex domains in C". In
[McN94, McNO02] J. Mc Neal introduced some special bases (called g-extremal in [BCD98]) and gave a description of the
complex geometry with the construction of a pseudo-distance near the boundary related to these bases. With that geometry,
and a construction of a “good” pluri-subharmonic function, he proved sharp point-wise estimates for the Bergman kernel and
its derivatives. Using this geometry J. Mc Neal and E. M. Stein ([MS94] and [MS97]) proved sharp estimates for the Bergman
and Szegd projections.

More recently similar results were obtained, when the Levi form has comparable eigenvalues, by K. Koenig in [Koe02]
and S. Cho in [Cho03], [Cho02b].

In [FKMO90] C. L. Fefferman, J. J. Kohn and M. Machedon studied the case where the Levi form is locally diagonalizable
near a point pg of the boundary. They solved the d,-Neuman problem and deduced that if f is a L?(9Q) function which is
locally in the classical Lipschitz space Ay (near pg) then, for all € > 0 it’s Szegd projection Sf is locally (near pg) in Ag—_¢
(an application of our theory will remove the loss of € in this estimate and get, in fact, a better non-isotropic estimate).

The main idea of the present paper is to introduce a general notion of “extremal basis” of the complex tangent space
at a boundary point of a pseudo-convex domain in C?, n > 3, generalizing the e-extremal bases of the convex case. With
this notion we define a class of pseudo-convex domains, containing all previously studied classes, called “geometrically
separated”, for which a good family of extremal bases exists near a point of the boundary. The fundamental properties of
an extremal basis allow one to prove that, for these domains, there exists an associated structure of homogeneous space on
the boundary (and an extension of that structure inside the domain) which describes the complex geometry of the domain.
An important property of domains which are geometrically separated at a boundary point is that this structure can be nicely
localized (see the end of Section 2 for more details).

Moreover, when special pluri-subharmonic functions (called “adapted pluri-subharmonic functions” in this paper) exist,
this structure is used to obtain sharp global and local estimates for the Bergman kernel, the Bergman and Szeg6 projection
and the classical invariant metrics. The existence of such adapted pluri-subharmonic functions for geometrically separated
domains is not evident in general. For example, if the domain is locally convex (or more generally lineally convex), this is
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done using special support functions (see [DF99, McNO02]) which cannot exist, in general, without convexity. Here we prove
their existence, under an additional condition (which is satisfied, for example, when the Levi form is locally diagonalizable)
on the extremal bases, for the domain and also for the localized one (see the end of Section 2 for more details).

2. NOTATIONS AND ORGANIZATION OF THE PAPER

In all the paper, Q = {p < 0} denotes a bounded domain in C", n > 3, with a € boundary, and p € €= (C") is a defining
function of Q such that |[Vp| =1 on dQ. We denote by N = ﬁ Yy g—g a% the unitary complex normal vector field to p (i.e.
Np =1land||N||=1).

For each point p of the boundary let us denote Tp] 9(0Q) the subbundle of T,(9Q) of tangential complex vectors and
T,? ! (dQ) its conjugate. As usual, we will say that a family (L;)|<;j<,—1 of € vector fields is a basis of the complex tangent
space at dQ in a open neighborhood V C dQ of a point pg in dQ if it is a basis of sections of T'0(dQ) in V (i.e. Li(p) =0
in V, a condition which is independent of the defining function).

Clearly, every €™ vector field L in an open neighborhood V C dQ can be extended to an open neighborhood V(pg) C C”
so that L(p) =0 in V(po). Of course this extension depends on the defining function p, but all the stated results will be
independent of such a choice. Thus, in all the paper, the tangent vector fields considered in V(pg) are always supposed to
annihilate p in V(pp), and we will use the terminology of “vector fields tangent to p” for this property.

Let L and L' be two (1,0) vector fields tangent to p. The bracket [L,L’] being tangent to p, can be written
L] =2vV—lcpyT+L"

where T is the imaginary part of N and L” € T, *(9Q) & T\"' (9Q). Thus ¢, = [L,L)(dp) = (dp;:[L,L']). The Levi form
of dQ at p is defined as the hermitian form whose value at (L,ﬁ) is the number ¢;;/. The pseudo-convexity of Q means that
this hermitian form is non-negative. If (L;)i<;<,—1 is a local basis of (1,0) vector fields tangent to p, then (cy,z;);; is the
matrix of the Levi form in the given basis. This matrix will be generally denoted (¢; j)l.,j. '

Let pp € Q and V (po) be a neighborhood of pg in C". If W is a set of € (V (po)) (1,0) complex vector fields, then £ (W)
denotes the set of all lists .¥ = (Ll, ... ,Lk) such that L/ € WUW, and, for [ € N, £ (W) denotes the set of such lists £ of
length |.Z| =k € {0,1,...,1}. If W contains only one vector field L, then we will write .2’ (L) and .%(L) instead of .2 ({L})
and .Z;({L}). Moreover, if |.Z| = k > 2, we denote

L(@p)=L"...[F2 (<ap, {L"’l,L"} >) :

Note that if L~ and L* are both (1,0) or both (0, 1) then (dp, [L¥~!, L*]) is identically zero. Thus if £(dp) is not identically
zero, it is equal to + a derivative of the value taken by the Levi form on (L¥~!, LX) or (L¥,LF=1).

LetLbea %> (V(po)) (1,0) complex vector field tangent to p and M > 2 be an integer. We define the weight Fyz(L, p,§) =
F(L,p,8) = F®(L) associated to L at the point p € V(pg) and to § > 0 by

Z(9p)(p)
B

2/|Z| 2/|2]+2
=2

LeLy (L)

g(CLL)
1)

F(L,p,8)= Y
LeLy(L)

where .7 ( (crr) =L'...LF(cpp) if 7= (Ll, ... ,Lk). Moreover, for the complex normal direction N we define L, = N and
F(L,,p,8) = F(N,p,8) = §2. When there is no ambiguity (typically when there is only one domain) we will omit the
superscript Q.

Note that, with the conditions on p, the functions .Z(dp) restricted to dQ do not depend on the choice of the defining
function p. By the finite type hypothesis, for 0 small, the weights will be large. Thus if we consider them in §-strips near
the boundary, they are intrinsically attached to the boundary of the domain and do not depend on the choice of the defining
function p.

In all the paper the defining function p of Q is fixed and the number M also. When we say that some number depends on
“1” and on “the data”, we mean that it depends on “9”, n, M, and p but neither on the point p in V(pg) nor on § < .
If B={Ly,...,L,—1} is a €= basis of (1.0) vector fields tangent to p in V(py), and .Z € L (B U{N}), we denote

n
F(p,8)** =T F(Li,p.8)"">,
i=1
where [; = [;(.£) is the number of times L; or L; appears in ., i <n— 1, and [, = [,(.£) the number of times N or N appears
in Z (and thus | .Z|=k=Y",1).

The organization of the paper is as follows:

In Section 3 we define the notion of extremal basis and give some examples. Then we give their basic properties and, in
Section 3.3, we prove a fundamental property of an extremal basis at a point of finite type: there exists a coordinate system
which is adapted to the basis in the sense that all the derivatives of the matrix of the Levi form (in that basis) are controlled
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by the weights attached to the basis. We give also some sufficient conditions of extremality for a given basis, useful for some
examples. Finally, in Section 3.5 we show how the existence of extremal bases can be localized in the sense that, near a
boundary point py of Q of finite type, if there exist extremal bases at every boundary points near pg, then one can construct
a small pseudo-convex domain D of finite type inside the original domain, containing a piece of the boundary of Q in its
boundary such that there exist extremal bases a every point of the boundary of D.

In Section 4 we define the notion of geometrically separated domains at a point pg of its boundary and give examples.
Then we show that a geometrically separated domain is automatically equipped with a local structure of homogeneous space
on its boundary. In Section 4.3 we prove that the structure of geometrically separated domain can always be localized (in the
sense described above).

In Section 5 we study the existence of pluri-subharmonic functions adapted to a given geometrically separated domain. In
particular, we prove their existence when the domain is “strongly” geometrically separated at a point pg of its boundary, and
we prove that, in this case, such functions exist for the localized domain at every point of its boundary.

In the last Section (6) we show that all the sharp global and local results for Bergman kernel, Bergman and Szegd
projections and invariant metrics can be established for geometrically separated domains when there exist adapted pluri-
subharmonic functions. The local sharp estimate of the Szeg6 projection when the Levi form is locally diagonalizable is an
example of these results.

3. EXTREMAL BASES
3.1. Definition and examples.

Definition 3.1. Let Q and V(py) defined on Section 2. Let 8 = {L,,...,L,_1} be a €* basis of (1,0) vector fields tangent
to p in V(po) and M an integer. Let p € V(po) and 0 < 8. We say that B = {L,,...,L,_1} is (M,K, p, §)-extremal (or simply
(K, p, §)-extremal or K-extremal) if the "> norms, in V(po), of all L; are bounded by K, the Jacobian of % is bounded from
below by 1/K on V(py), and the two following conditions are satisfied:

EB; For any vector field L of the form L = ):;’;11 a;L;, a; € C, we have

1 =l n—1
E |at|2F(Llapa6)SF(Lapa6)§K2|a1|2F(Llapa6)
i=1 i=1

1 1

EB, For all indexes i, j, k such that i, j < n, k <n and all lists .Z of £y (BU{N}),

F(Lk7p75)l/2

zaﬁw(m] < KF(p,8)”/*F(Li.p,8)'*F(L;,p,8)'",
i,j
where af:f o 1s the coefficient of the bracket {(L_;, (L_)]} in the direction (L_,)( (with L, = N), and Z; means L; or L;.
i.j
Remark. In general this Definition depends of the choice of the defining function p. But note that, for p € d€, it does not: it
depends only on the restriction of % to dQ NV (py).

Example 3.1.

(1) Locally lineally convex domains. A first example of extremal basis concerns the case of a locally convex domain

near a point of finite type: it can be easily shown, using the work of Mc Neal [McN94] (see also [Hef04]), that if Q
is convex near a point of finite type pg € dQ, if the canonical coordinate system is chosen so that the last coordinate
is the complex normal at pg, and, if P is the projection onto the complex tangent space of the defining function of Q
parallel to the last coordinate, then for each point p in a small neighborhood of pg, and each & < &, the P-projection
of the first n — 1 vectors of the Mc Neal §-extremal basis at p (c.f. [BCD98, McN94]) is (K, p,d)-extremal in our
sense for a constant K depending only on the data.
More generally, the same thing can be done for locally lineally convex domains using the work of Conrad, M. [Con02]
(recall that Q is said lineally convex at a point p € dQ if there is a neighborhood U of p such that the intersection of
the complex tangent space to dQ at p with QN U is empty; see [Kis98, DF03] for the precise definition and a useful
characterization). Some details are given in Section 7.1.

(2) Levi form with comparable eigenvalues. A second example is given by a pseudo-convex domain having a point of
finite type po € dQ where the eigenvalues of the Levi form are comparable (see [Koe02, Cho02b, Cho03, Cho02a]).
Indeed, in [ChoO3] it is proved that any (normalized) basis of the complex tangent space is K-extremal for a well
controlled constant K.

(3) Locally diagonalizable Levi form. In Section 3.4 we will show that if at a point of finite type py € dQ the Levi form
is locally diagonalizable then the basis diagonalizing the Levi form is K-extremal for a constant K depending only
on the data (in fact, this basis is K-strongly-extremal (see Definition 3.5) for every constant & > 0 with 0 < &y, &
small depending on ).

(4) Localization. Another important example will be given in Section 3.5: for any 7 > 0 there exists M(7) such that if a
family of (M(7),K, p, §)-extremal bases exists in a neighborhood of a boundary point py, of finite type 7, of Q, then
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one can construct a small smooth pseudo-convex domain D contained in Q and containing a neighborhood of pg in
d<Q in its boundary and for which there exists an (M(7),K’,q, 8)-extremal basis at every points g € dD.

3.2. Basic properties of extremal bases. The first property states that an extremal basis at p can be orthogonalized at the
point p:

Proposition 3.1. For any K there exists a constant K' depending only on K and the data such that, if B is a basis of complex

(1,0) vector fields tangent to p in an open set V(po) which is (K, p, 0)-extremal, then there exists a basis %', orthonormal at

p which is (K', p,8)-extremal.

Proof. We can suppose that the vector fields L; of & are ordered such that F(L;,p,6) < F(L;,p,0), fori <n— 1. Then,

afl’
l

using the Graam-Schmidt process, we first define a basis %) by decreasing induction, Li1 = Z;f;i] Otij L, Ocl.j e€C,and )

1. The determinant condition implies that there exists ¢ > 0 such that |o/| > c. Then

F(Lzlapa6) =K Z

2
OC,»]’ F(Lj,p,0) ~¢ F(L;,p,0).
Jj>i

Now, let L=1Y; al-Li1 be a linear combination, with constant coefficients, of the Ll.l. Then

2
F(L7p76) 2KZ Za,ﬂf F(LkapaS) ZKZ|ak|2F‘(Lk7pv§)a
i<k

k

using that ‘Zigk a,-aﬂ > clag| — Yk |ai| and the fact that the F (Ly, p, 6) are decreasing. This proves EB; for 4.

Note now that the decreasing property shows that property EB, for # trivially implies the same property for %, because
Li1 involves only fields L}. for j > 1.

Finally, define %' by L; = L! / ||L! |. The condition on the > norm of the vectors L; immediately implies the result. [J

Let us now prove that the mixed derivatives of the Levi form in the directions of an extremal basis are controlled by the
pure ones, that is by the weights associated to the vector fields of the basis:

Proposition 3.2. Let = {L;, 1 <i<n—1} be a €= basis of complex (1,0) vector fields tangent to p in V(po) which is
(K, p,0)-extremal for a fixed § > 0. Let £ be a list of vector fields belonging to £y (B JI{N}). Then there exits a constant
C > 0 depending only on Q and K such that |.Z(dp)(p)| < CSFZ/%(p,8).

Proof. Recall the notation ¢;; = (dp, [Li,L;]).

Lemma 3.2.1. With the previous notations (and the definition of the coefficients a;; given in Definition 3.1):
Ljcjx = Licji + Zai;cjs — Zafjcsk — Zaikcis,
Lijcy = Lycij+ Za‘;l—(csj + a‘}icsk - Za‘l%cix.

Proof. The first formula is simply obtained considering the coefficient of 3mN in the Jacobi’s identity applied to the bracket
[Lj,[Li,L]], and the second by the same way using [L;, [L;, L |]. O

The proof of Proposition 3.2 is done by induction on the length of the lists. Suppose first |-Z| = 2. Hypothesis EB| imply
that, for all numbers a and b and all index i and j,

|a|2cii + |b|2ij + al;c,'j + 51)6‘]'1'

Suppose both F; and F; are non zero. Taking a = Fjl/QFfl/zl and b=, |A| and |u| less than 1, the equivalence of norms in
finite dimensional spaces gives the result. If /; = 0 or F; = 0 a similar argument gives ¢;; = ¢;; = 0.

To continue the proof, we need the following notation: if £ € £(%U{N}), we denote by I} (resp. /?) the number of
times L; (resp. L;) appears in .Z (thus [; = l,»' + ll-z).

For lists of greater length, we prove, at the same time, by induction, the estimate and the following Lemma:

2
<8 (1af i+ bl ).

Lemma 3.2.2. Let & and &' be two lists of Lyu(BU{NY}), ZL(9p) = Lcij and L' (dp) = L|cx, such that I} = Il
2 =1}, Then £ (dp) ~ £ (dp) in the sense that

Zp)-L'(9p)= Y, azZ(9p),
|Z]<I2]

where a g satisfies FZ) |L"a 5] S SF(Z+2")2 g ¢ Ly(PBUI{N}), the constant depending only on K and the data.

Suppose thus the estimates and the Lemma proved for all lists of length less than or equal to N.
First, we prove Lemma 3.2.2 for lists of length N+ 1. Let us write £ (dp) = Zic;j and £/ (dp) = ZLrcy. Then three
cases can happen:
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() (i,j) = (k,1);

Q) ik j#£L

(3) i#kand j=lori=kand j#I.
The first case is a trivial consequence of EB,. For the second, the hypothesis on the length and case (1) imply that there
exists a list gsuch that £ ¢;j ~ .,?LkL_,c,'j and % ¢y ~ .,?L,-L_jckl, in the sense of Lemma 3.2.2. By Lemma 3.2.1 and EB,,
Licij ~ Ljcy;. The result is obtained using another time EB,, Lemma 3.2.1 and the induction hypothesis. The third case is
similar.

Now we prove the estimate of the Proposition for lists of length N + 1. Suppose that the vector fields are ordered so that
there exists an integer ng € {0,...,n — 1} such that, for k < ng, F; #0, and, forn—1>k > ng, F, =0. Let L = Ya;L;,
aj = Slanlo/szfl/z if j <ng and aj = A; if j > nop, with |lj} < 1. If we apply the extremality property to F (L), then we
obtain, for example, forall k <N — 1,

sup
|2;]<1

LkZkaflCLL‘ < 58(N+1)/2Fn(év+1)/2

. . . .. —N—k—1 = . . L .
with the convention F,; = 0 if ngp = 0. Writing LFT crL = Z,Caﬁl“lﬁ, the equivalence of norms in finite dimensional
spaces gives, when € — 0,

Cop =0 if there exits j > ng such that or; + 3; > 0,

3.1 ’Cocﬁ’ < SF@HB)/2 otherwise.

Let &,p be the set of lists . such that [} (£) = o and I? = B;. Then Cop = Y ves,5 £ (9p). Now, Lemma 3.2.2 and the
induction hypothesis give the required estimation for each list in &5 and finishes the proof of the Proposition. 0

The statement of the last Proposition is not really a statement on the vector fields of an extremal basis but on the linear
space generated by an extremal basis. In fact the following Proposition is easily proved:

Proposition 3.3. In the conditions of Proposition 3.2, there exists a constant C such that, if L' j, 1 < j < k are vector fields
belonging to the linear space generated by the extremal basis (L;); then for every £ € Ly(L'y,...,L'y), if L'j or L j appear

Z(9p)(p)| S ST F(L,p,8)/°.
3.3. Adapted coordinates system for points of finite 1-type.

l} times in £,

3.3.1. Definition of an adapted coordinate system and statement of the main result. Let py € dQ and V(py) a neighborhood
of pg in C".
Definition 3.2. A basis # = (Li,...,L,_1) of sections of (1,0) complex tangent vector fields to p in V(py) and a coordinate
systemin C", z = CIDg (Z), are called (M, K, 0)-adapted (or simply (K, 0)-adapted) at the point p in V (po) if <I>§ and (@ﬁ)’l
are polynomial (of degree less than (2M)"~!) diffeomorphisms of C" centered at p (i.e. CI>2 (p) = 0) satisfying (with the
notation F; = Fi(p,8) = F(L;, p,9)):

(1) The coefficients of the polynomials of CI>§ and (<I:°g)’l (and the Jacobians of CI>§ and (CIJg)") are bounded by K

9%(po 5\—1 9% (po 5\—1
(2) Forall [a] < 2um, 20 DO _ 2% = JO 0,7 = (a1, za):

(3) IfL; = zalja%, then a{(O) = §;; and, for all & € Ly (B U{N}),

‘Zalj»

< K in®,(V(po)) and ;" ’za{(O)’ < KF\*FZ1,

9% (po(®3)~1)(0)

(4) Forall (a,B), |a+B| <M, 920978

< Kmin {SF@P/2 1},
One of our main goals is to prove the following existence Theorem:

z\n—1 n—1
Theorem 3.1. Suppose py is of finite 1-type T, and choose an integer M larger than 2 (LZH) . For any positive
constant K, there exist a constant 8 > 0, a neighborhood V (py), both depending on the data, and a constant K’ depending
on K and the data such that if = {L;, 1 <i<n—1}is a €= basis of (1,0) complex vector fields tangent to p in V(po)
which is (M,K, p,8)-extremal at a point p € V(po) N IQ, then there exists a coordinate system (z;)1<i<n centered at p which
is (K, 6)-adapted to B.

The proof is divided in two steps: for the first one, in the next Section, we work without the assumption of finite type and
we construct an adapted coordinate system using modified weights; in the second one, which is Section 3.3.3, we use the
finite type hypothesis to deduce the Theorem.
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3.3.2. Construction of an adapted coordinate system. In this Section we suppose that the integer M is fixed. Let p € V(po)
and 0 > 0. Suppose Z = (Ly,,L,—) is a basis of (1,0) vector fields tangent to p in V(py), satisfying the following proper-
ties:
(A) The €*(V(po)) norms of all L; are bounded by K and 4 is ordered so that F(L;11,p,8) < F(L;,p,5).
(B) Let p € W(py) € V(po) and § > 0. Denoting F; = F;+ 1 = F(L;, p,8) + 1:

(By) Foralllist £ € Ly(BU{NY), | L(dp)(p)| < KSF(p,8)%</%;

(By) A satisfies condition EB; of Definition 3.1 with the F(Ls, p, §) replaced by the F,.

Then under these hypotheses, we have:

Proposition 3.4. There exists a constant K' depending on K, M and the data (but neither on p nor on 8) such that there exists
a (M,K',8)-adapted coordinate system to % at p in the sense of Definition 3.2, the weights F(L;, p, ) being replaced by F;.

Proof. In [CDO6b] (Prop 3.2, p. 85) we proved that hypothesis (A) implies the existence of a coordinate system @, s
satisfying conditions (1) and (2) of Definition 3.2 and

(3.2) 2%al0) _

azla

{ For j <i<n,and &= (ai,...,0 1) € N""! such that || <M, o, =0if p>iorp<,

We now prove that under condition (B) the two last properties of Definition 3.2 (with the E) are satisfied. This follows
quite closely the ideas of p. 87-90 of [CDO06b], but, as the context here is more general and as it is a fundamental tool, we
write it completely.

Let . € £(%U{N}) be considered as a differential operator. Denoting by D*F the derivative 3305 aﬁﬁ in the coordinate
system z = Cl>ﬁ, it is easy to see that, if |.Z| =
_ f of
L= Y Y gD
meN" Ot,+ﬂ, m;
1<|m|<S

where
S o
Cﬁizcaﬁzzlz*aljll" lp H ka< )
=

where the summation in the second formula is taken over the derivatives associated to the multiindex sy satisfying Zf: pr1Sk+
(my,---,my) = ):f:l x (i), ):le x () = (L1, ,1,—1,1,) and the coefficients x are absolute constants. The following Lemma
is then easily established:

—1)2

. ~ ~1/2~
|Dai (0)| i, F2F, PE2, then

(3.3) lcap(0)| < FZI2F2"

To fix notations, recall that if f is a €’ function and L and L' are two vector fields, then (90 f;L,L) =L'Lf + [L,L'] (9f),
and, in particular, if Lp =0, <89p;L,Z> = [L,Z} (dp) = cr, where ¢y is the coefficient of the Levi form in the direction L.
In all the proof that follows, we denote [L;,L;] (dp) = cij.

To state the second Lemma let us introduce the notation p = p o (d)i)*'

Lemma 2.

|D!p(0)| < SF!/%, where D! is any derivative = a& ﬁ with |o.+ B| = L.

“

(2) For every multiindex m # (0,---,0), |m| < M, and every i, j,

j Em/2 1 /25-1/2
Dma{(O)‘sF”/zFi/ F'2

Proof. Note first that, for (2), it suffices to get the estimate for Dma{ (0) and that the estimate (1) (resp. (2)) is trivial if , > 0
(resp. m, > 0) (recall F,, = § 2 and the fact that the €>" norms of the fields L; are controlled). We then suppose 1, = m,, = 0.
The proof is done by induction: the induction hypothesis %, is the two conclusions of the proposition for |/| < ko and
|m| < ko.

Remark first that &7, and the first property of &7 imply the second property of % | for j = n: this is evident if

i=j=nand,ifi < j=n, L;y = 0 implies
N ~
g (9PN k9P
i azn = lazka

and the result is clear because g—i (0) =0 fork <n.

Moreover, note also that, the weights I?,-, i <n—1,being “decreasing”, the second inequality of '@ko istrivialif i < j <n
and if i = n. Thus it suffices to prove this inequality when j < i < n.
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Let us now prove & by induction. The case ko = 1 is trivial. Let us study first the case ky = 2. By definition of the

2 ~
coordinate system, % (0) =0, and, using the notations and remarks stated before the statement of the Lemma, we have
i0%j

2°p
1 92,97

— a p k. p
(3.4) daj5—=—=c;— Y, da]
19z0z; 1 S

which implies %(O) = c,»]v(O) and gives the first inequality by definition of F. To prove the second inequality, let us look

at the definition of the functions a(,(, Writing the bracket [L;, L,] with the coordinate system and taking the component of 2 3

ij
we get

n—1 X j
(3.5) Y dbal, = Z o ( ) cipd.
=1 k
Extracting the term -2 (a’ ) and taking all at zero we obtain -2~ (@’ ) (0) = a’_(0) and the inequality follows from (B,)
g 7% (@ g A G i
hypothesis.
j ~
We have now to consider 24 If q < Jj, the inequality comes from the decreasing property of Fy, and, if j < g < i, this
dzg g
derivative is zero at the origin by the properties of the coordinate system. Suppose then j < i < g. Looking at the Lie bracket
g g
L;,L,| and taking the component of i, we obtain
y =g g p dz
")

(3.6) aai(a/)—aq ( ) Z q8zk( ) Za— af +Za1q .

and then, at the origin, aizq (a{) (0) = a%_ (aé) (0)— a{é(O) = —aq(O) by the properties of the coordinate system, and the
conclusion comes again from (B5). This proves &%,.

Let us now suppose '@ko verified (kg < 2M). Let D! be a derivative of order ko+ 1. If Dl is purely holomorphic or
anti-holomorphic, then D, p(0) =0. Then we suppose D = D’ ‘9 ‘9 , and we denote by L= ZLLL; alist of vectors fields

associated to D' (in the obvious sense that, if 9 /dz; (resp. d/ 8z,) appears I; (resp I;) times in D! then L; (resp. L;) appears [;

(resp ;) times in ). Applying (3.4), we get
9*p °p
! - -(0) — ho( g
D (aZiaZ_j) (0) Ze;;(0) *D (alaj) D" (8&31]) (0)

1170
L+h=I
’p
N - L o(dat k) o
(kp)#(0.1) 9207,
_ Z Ca/ﬁ/Daﬁ (CU_)(O)’
|a!|+|B |[<ko—1

with %« =0 or 1. The first term of the right hand side of (3.7) satisfies the desired inequality (i.e. < 5131/2}31/2}31/2 in modulus)
by (B1). For the second, /; being non 0, we can apply the induction hypothesis to D" ( i 3’) ',) (0) to get the right estimate.

The third term is of the same nature because, for (k, p) # (i, j), a* j(O) = 0. If we replace ¢;; by its expression in (3.4), the
induction hypothesis &7 implies directly (for s < ko — 1):

|Dci;(0)| < 6F/2F 7R},

and then, using Lemma 1 for S = ky (whose hypothesis are also verified by the induction hypothesis Z7), we prove that the
last term in (3.7) satisfies also the right estimate.
We finish now proving the second inequality of &7 . It suffices to consider the case j < i < n. Let us first look at a

derivative D" of the form D™ = DS |s| = ko — 1. Using formula (3.5), we can write
n—1
D"al =D* Z xdizal — Y xd, )\t xcipal | = D°(A) — D*(B) + D*(C),
1#p

where 3 is equal to % In D*(B), to get a non zero term at 0, @ must be derivated because p # t; this gives derivatives of
74
aiz_k (al) of order < ko — 1 which are well controlled by the induction hypothesis and then |D*(B)(0)| < F Fm/ 2F 2F /

Consider now the terms D* (%aﬁpai) .
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Claim. For |I| < k, D' (aa_,) <FVPRIPEVRR2,
ip
Proof of the Claim. We do it by induction on |/|. (By) proves the result for |/| = 0. Assume the claim proved for |/| < k' <

ko — 1 and suppose |/| = k’. Then,
Dla;n( ) gl [u + Z C’ DS tn )

|s']<l
But, by (B),
1/2 1 2 71 2
‘Z’aﬁp(o)’ Fl/ZF/ / / ,
and for the second term of the previous identity, we have |s'| < [ and we can apply the induction hypothesis and Lemma 1
whose hypotheses are satisfied, using Z%,, because |/| < k. O
Then the estimate of D* ( " a) ) follows from the induction hypothesis %, because |s| < ko. Thus
=m/21/2751)2
D' (A)(0)| S F"2F°F;
Finally, the terms D* (%ciﬁa{;) satisfy also the good estimates because a}(0) = 0 and, for |s'| < ko — 1, we have seen that

‘DS/ (cip)(O)‘ < 8FY/ 21?1.1/ zﬁ,,l /2, and, the derivatives of aj, are controlled by the induction hypothesis F, .

To finish, we have to consider the case where D™ is a holomorphic derivative. Note that the inequality is trivial if i < j
or if there exists k < j such that my # 0. Suppose then, for all k < j, m; =0 and j < i < n. Let g be the largest index such
that my > 0. If ¢ < i, we have D’"aj (0) = 0 by the properties of the coordinate system. If ¢ > i, then write D™ = D* -~ d

924"
To conclude it suffices then to use (3.6), the first Claim and the fact that D‘ ( {,) (0) = 0 also by the properties of the
coordinates system. This completes the proof of the Lemma. 0

To finish the proof of Proposition 3.4, it suffices to note that, in addition to the estimates of the coefficients cfb given by
Lemma 1, we also have, for |0+ ] < 2M,

(3.8) p¥= Y 4Pz
1<|.Z|<|a+B]

with a8 (0)| < Fle9)2(p, 5)F 12 .
For an extremal basis we have thus proved (using Proposition 3.2):

Corollary. If # is (M,K,p,)-extremal, for § small enough, there exists a coordinate system (M,K'(K),§)-adapted to P
in the sense of Definition 3.2 with the weights F; replaced by F; = F; + 1.

3.3.3. Proof of Theorem 3.1. If pg is a point of finite 1-type 7, then, by a Theorem of D’Angelo (see [D’A82, Cat87])

there exists a neighborhood U (pg) such that, if p € dQNU(py), then p is of finite 1-type less than 7/ = 2 (%)"71. We

assume that V(po) C U(pg). Then, if £ is a (M,K,p,5)-extremal basis, by the Corollary of Proposition 3.4 we have a
~ A\ n—1
coordinate system @, 5 adapted to % in terms of the F;. Suppose M larger than 2 (%) . Then, considering the manifold

¢ —(0,...0,¢,0,...,0), || < o, Theorem 3.4 of [Cat87] (applied with a suitable constant &) gives us a derivative of
p = po®, s which is bounded from below by a constant depending only on the data. The last property of Definition 3.2

shows thus that F(p,8) = 6 %™ with a constant depending only on the data, and, of course, the same is true for F;(p, §).
This proves the following essential Proposition:

Proposition 3.5. Ler py € dQ be a point of finite 1-type T. Let M = M(1) = [2 (%)nil} + 1. Then for any integer K
there exist a real number & > 0 and a constant C, depending on K and the data, such that, if there is a coordinate system

(M,K,8)-adapted to a basis B = (Ly,...,L, 1) at po, then Fy(Li,po,8) > C8 *M. In particular, if T =2 (%)%1 and
N\ n—1
M =M'(1)= [2 (%) ] + 1, for any integer K there exists a neighborhoodV (py), a real number & > 0 and a constant C

(depending on T, Q and K) such that, for p € V(po) N9dQ and 0 < & < &, if there is a coordinate system (M’ K, 8)-adapted
to a basis = (Ly,...,L,—1) at p, then F(L;,p,0) > Ccs—M,

This proves completely Theorem 3.1.

Remark 3.2. Note that the proofs show that if a basis 4 satisfies only properties (A) and (B) of the beginning of Section 3.3.2,
then, under the assumption of finite 1-type, the conclusions of Proposition 3.5 and Theorem 3.1 are still valid.

A simple consequence (which will be used in Section 3.5) of the minoration of the weights F; is the following:
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Lemma 3.1. Suppose the point pg of finite 1-type T. For any K, there exist two constants C and &), depending only on K,

T and the data, such that if 8 = {Lf’a7 i<n}is (K,p,8)-extremal, p € V(po) NI, and (0y) is a family of €* functions,

of €M norm < K and 1/K < || < K, then the basis $, = {L;}, where L; = aiiL{”S, is (C,p, 8)-extremal, and, moreover,
[

F(YaiLi,p,8) ~cF (ZaiLf’ ,P,5)), a; €C.

3.3.4. Associated polydiscs and pseudo-balls for finite type points. In this Section we assume py is of finite 1-type 7 and we

choose M = M’ (7). Now we will associate to an adapted coordinate system some special “polydiscs™ and give some related
properties.

Definition 3.3. Let W(po) € V(po) small enough. Suppose that for some point p € W(po) NdQ and 0 < § there is a basis
B(p,0) = {Lip’a} of (1,0) vector fields tangent to p in V(py) satisfying conditions (A) and (B) (of Section 3.3.2) and let

CI>2 = ®,, be a coordinate system which is (K, §)-adapted to %(p, §). Then the functions F(L;, p,§) = F;(p,d) do not vanish
and, for 0 < ¢ < 1, we denote

Ac(p,8) = {z € C" such that || < cF, /? 1 <i<n},
and
B(p,8) = @, (Ac(p,8)) NV (o).
Taylor’s formula, Proposition 3.2 and Theorem 3.1 lead easily to the following properties (denoting L; = L” ’5):

Proposition 3.6. There exist three constants co, Ky and &, depending only on K and the data, such that the following
properties hold:

(1) IfLi = Lal 3 and 32 = LbiL,

o+ Bl <M, forz € A, (p,6),

pPal)| < KF“PRp 8 (p,8)F  (p,5),

A

KoF @ B)2(p 8)F 2 (p,8)F; ' *(p.6).

D8] (2)|
(2) If & € Ly (B(p,8)U{N}), |L| =S, and DT is a derivative in the coordinate system (z) with |T| < M, then
L =Y s|<scsD’, DT = Yiz<ir|de L', and, for z € Ay (p,8) and g = @p(z) we have

les(2)] < KoF'“Z™972(p, ),
do(q)| < KFZ=2)2(p,8).

(3) For L= ZaiLi) a; € (C,forall qc B (p76)’ %F(Lapa 8) < F(L7q76) < ZF(Lapa 8)
(4) Forall list £, |.L| < M belonging to £y () and all point q € B(p,d),

(@) |2(0p)(q)| < KoSF(p,5)7 )

(b) with the notation introduced in EB; in Definition 3.1,

Zaé;@)‘ < KoFZ/(p,8)F*(p,8)F!* (p,8)F, " (p.§).

(5) p(B(p,8)) C [~38.39].
The proofs are almost straightforward computations.
In Section 4 we will need to use two other kinds of “pseudo-balls” and we will prove that they are closely related to the
“polydisc” B:
Definition 3.4. Suppose that = (Ly,...,L,_1) is a basis satisfying conditions (A) and (B) (at a point of finite 1-type).
(1) Denote %; = ReL; and %;,, = SmL;, 1 <i < n (recall L, = N). Then we denote by B, (%4, p,0) the set of points
g € V(po) for which there exists a piecewise ¢! curve ¢ : [0,1] — V such that ¢(0) = p, (1) = ¢ and ¢'(t) =

Y a;%(¢(t)), with max(|a;|, |a;n|) < cF~'/2(L;,p,8),0<c < 1.
2) exp,, denoting the exponential map based at p associated to the vector fields %; (defined in (1)), for 0 < ¢ < 1, we put

B (p,8) = {q — exp, (i1, -y tizy), such that max(|u], uisn]) < cF,-(p,s)*l/Z} AV (po).

exp
The terminology used in Definition 3.1 is justified by the following property:

Proposition 3.7. Let # = {L,,...,L,_1} be a basis (of (1,0) complex vector fields, tangent to p in V(py)) satisfying con-
ditions (A) and (B) (for example if it is K-extremal) at p € W (py) N Q. Let B' = {L%, .. 7L}l*1} be another basis in V (py)
such that, for all i, Ll-l = Z,alj L;, alj eC Yy |a,~|2 = 1. Then there exists a constant A depending only on K, T and the dimension
n such that B, (%', p,8) C BX(p,$).

The proof of this Proposition immediately follows from property (B).
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3.4. Sufficient conditions of extremality. In this Section we always assume that pg is a point of finite 1-type T and choose
M= M(1).

Here and in Section 5.2 we will need a stronger control on certain derivatives of the coefficients of the Levi form. Thus we
introduce the following condition: suppose 4 is a basis of (1,0) vector fields tangent to p in V(pg). We say that it satisfies
condition B(@), o > 0, if for all lists .Z € Zjy_» (%) we have

B(a)  fori# j1<ij<n—1,[ZLc;(p)| < adF(p,8)%/*F(Li,p,8)/*F(L;,p,8)"/>.
Note that B(o) together with conditions (A) and (B) implies a new condition on the brackets of the vector fields:

Lemma 3.2. Suppose A satisfies conditions (A) and (B). Then there exist two constants Ky = K| (K,M,n) and & depending
on K, o and the data such that, for all i £k, i,k <n, j<nandall & € Lu(BUI{N}), if B satisfies B(a) at (p,0),
pEW(pg), 0< 6 < 8y, then

“

’i”ai.,(p)’ < K\aF (p,8)%/*F(p,8)'*Fi(p,8)'*F;(p,8) "/,
k

i

Proof. To simplify the notations we write the proof for aj:l-(. Choose & so that C§,, M g , where C is the constant of

Proposition 3.5. Note that the property is trivial if [, #0Q orif [, =0 and j =n (a:._’l-( = %cik and al’.’_k = 0), thus we suppose
I, =0and j < n. As the property is also trivial if j or k is > i, we have to study only the case when j < min(i,k).
To simplify the notations, we introduce the following spaces of functions:

k = {e, ed"., ec., where € € {—1,0,1,—/—1,v/—1}},
ij.ij

and

~ = 3 ~
= JL; U d = i, fi € .
., U ik Uk and % {Zlf f *m}
The elements of sk will be generically denoted by ;.
k —
The Jacobi identity applied to the bracket [L s [Li, Lkﬂ implies

J p i b k P
agcjj + Ljci + Z aﬂ-ccj,, —agcCii —Licjr — Z aﬂ—cci,, —4jiCkk — Z ajiCpk = 0
P#] p# p#k

which we write al{;-(cjj = x0Cii + *ocix + h. Then, by induction on the length [ of a list £ € %)y (Lj), it is easy to show that

alLejj=%h+ Y (wLcit+x L ) + ) «L'cjj,
f’Gﬁg‘(L.j) $/€$$|7I(L.f)

and choosing .Z so that |.chj (p)| > §F(p,8)<1+2)/2 the Lemma is easily proved using the control on the lists and the
hypothesis. 0

Now we first prove that conditions B(a), (A) and (B) imply the extremality of the basis and then that Lemma 3.2 implies
a better control on mixed lists. This result will be important in Section 5.

Lemma 3.3. Suppose that = (Ly,...,L,_1) is a basis of (1,0) vector fields in V(py) satisfying conditions (A) and (B) at
a point p € V(po) NIQ for a fixed d.

Then there exists a function a(K), depending on K and the data, such that, if 2 satisfies B(o) for o < a(K), there exists
a constant Ky, depending on K, M and n, such that:

If £° € Ly(B) satisfies |.£ cii(p)| > L8F(p,8)F (p,8)%/? then there exists ko, 2ko+2 < |.£

KLlSFi(p, 8)0+2)/2 In particular,

, such that Re ((LIE) o Cii) (p) >

2 _
9«{6 ((LlE)k Cl'[) (p) 2k+2
)3 5 :
%e((Lifi)kCii) (p)>0
2k+1<M

1
Fi(p,8) 2 =

where K' is a constant depending only on K and the data.

Proof. First we fix the notations used in the proof. We know that there is a coordinate system <I>‘; adapted to . We denote

gz‘zgjl; with respect to (z;), and if . is a list of vector fields let D%

be the derivative D8 with o; = I! (%) and B; = [?(.Z) (notation of Lemma 3.2.2).
In the proof we will use a general result on derivatives of positive functions proved in Section 8.

by (z;) theses coordinates. Let D*P denote the derivative
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Suppose . € () is such that £ (dp) = £ c;i and | L (dp)(p)| 2k SF:(p,8)F(p,8)%/?. Then we can write

2@p) =D ci+ Y capDPe;
la+B|<|-2°]
With [cqs| Sk FZ'2F-(@+B)12
Thus there exists a derivative D%P satisfying ‘D“ﬁ cii(O)’ Zk OFF (@+B)/2 and la+B| < ",2”0‘ and o, + B, = 0 (indeed,
if o, + B, > 1, 0)| <« FL2p—~(atB)/2 < §FZ°/2 and, as |D* ﬁc,,| <k 1, |caﬁD°‘ﬁcl,| < 8F</?). Then applying
Lemma 8.1 to the function g(z) = 8F, ' (p, 8)ci odD;’g(z'), where 7/ = (chl/zZ] s CF 1/2(p76)z,,,] ,0) with ¢ < ¢, ¢o

given by Proposition 3.6, we conclude that there exists a derivative p'p! , satisfying o} ;= j, vj, (x,} = Bnl =0, such that
Dalﬁlcii(o) > FF@+BY/2,
— 1 _ 1
Writing . = (LiLi) % T2, j<n (Lij)a-f and .L¢;; = Do‘]ﬁlcﬁ +Xjatpl<| 2| CaﬁDaﬁCﬁ, by induction we conclude that

there exists a differential operator .#! of the form .2 = (L;L;) “ [1i.j<n (L;L;)® such that Re (L ¢ir) (p) 2k SFZ'I2F,
Suppose there exists j # i such that ¢¢; # 0. Then

PLleii= XLLC,,—XL < Y/CJJ+Lijk+( —a: )c,l Z(agcip—a?icpi)—i—Z%ﬁcip).
pF#i P#j

The controls of the coefficients aipj and of the lists Zcy,, k # p (by condition (B)), imply, for « sufficiently small (depending
only on K), that

’glL_JCJj’ ZK 5F$’/2F~J3/2 and ‘%J‘ ZK F}F}*I/Q-

Repeating the initial procedure, we conclude that there exists a list & € £ (%), “completely even”, |.£"| < |.£’| such
that |.2"c;;| 2k 8F<"/2F;. Consider then

f”L_jCii — Dzﬂ” (—’Y/C}j +chjk + (a;k —Cli—j) Cij — Z (a’;c,p Cllepl) Z 'ypczp>

pFi P#j

Thus ‘X”cj y" > 6F$N/2F4I/QF,-, and, by similar arguments, for o sufficiently small, we conclude that there exists a list %2,

|-22| < |-£°|such that #2c;; >k 6F £2/2F; and we can repeat the procedure. The Lemma is thus proved by induction. [J

Proposition 3.8. There exist constants oy and K' depending on K and the data such that if the basis P satisfies (A), (B) and
B(a) for a < oy at (p,8), p € V(po), then B is (K', p, §)-extremal.

Proof. We may suppose the basis ordered so that the weights F; = F(L;, p,0) are ordered decreasingly. Let L = Zl | a, is
a;i € C, Y |a;|* = 1 so that ¢y = Yol |a?| cii. Denote F(L) = F(L, p,8). By hypothesis (B) it is clear that F (L) Sgx ¥ |ai|* F;.
To show the converse inequality, we prove the following assertion:

Claim. For every constant K > 0, there exists a constant K;, depending on K and the data, such that:

ko1
12F — F,
ifip € {1,...,n—1} and ko € {1,...,M} are such that ‘aio‘zl*}o(p) > w and Re (LiOLiO)kociOiO(p) > 6"’7(’7),

then:

- 12 ko+1
o cither e (L)1 ¢y > 5 AT

F-kl+l( )

e or there exist i and k; < ko such that |a;, |2F,-1( ) > Z‘a" F( ) and Re (LilL_il)k' ciyiy (p) > 5%
Proof of the Claim. We have
- —\k
3.9) (LL) O cpp =Y | (L) ci+ Y o 2(p),

where the second sum contains lists of length 2k + 2 containing L; or L; for, at least, two different values of i. As

2 0
1" Fi(p)
2ko+2 +—\k (Z jail” Fi
’aio‘ 0 SKC (LiOLiO) 0 CiOiO (p) > 5 Kk0+2 y
the conclusion is clear except in the two following cases:
2 ko+1
e in the first sum of (3.9), there is a term whose real partis < —A = —6%;
e in the second sum of (3.9), there is a term which is, in modulus, bigger than A, with a constant C depending only on

M and the coefficients a;.
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Suppose first that there exists an index i # i such that |a;|**"? Re (Lif,-)ko cii(p) < —A. This implies first |a;|* F(p) >

2 — —
w and secondly Re (LiLi)kO ci(p) < —S%Fik"ﬂ. By Lemma 3.3 there exists k; < ko such that Re (L,Li)k1 ci(p) >
1 1
9 ﬁFik‘H. Thus the second assertion of the Claim is verified.
1
Suppose now that there is a term 0.».Z(dp) in the second sum of (3.9) satisfying |0ty £ (dp)| > A. Denote by /; the
number of times the vector fields L; and L; appear in .Z. If [; # 0, hypothesis (B) implies immediately |ak|2Fk >y |a,~|2F,-

and || (9p) Z STIF. 0
O

Corollary. Suppose that py € 0Q is a point of finite type T where the Levi form is locally diagonalizable. Then there exists
a neighborhood V (pg) of po and constants K and & > 0 such that at every point p of V(po) N dQ and for every 0 < & < &,
the basis diagonalizing the Levi form is (M, p, 8 )-extremal (with M = M'(1)).

Proof. Properties (A) and (B) were proved in [CDO6b], and, by definition the basis diagonalizing the Levi form satisfies B(a)
for all o > 0. O

Definition 3.5. Z is called (K, ct, p, 0)-strongly-extremal if it is (K, p, d)-extremal and, if, it satisfies B() at (p,0).

Note that the first part of Proposition 3.2 says that every (K, p, 8 )-extremal basis is (K, o, p, §)-strongly-extremal for some
large positive number o depending on K and Q. Thus this is an extra hypothesis only for small o.

The next Proposition shows that for a strongly extremal basis some derivatives of the diagonal terms of the Levi matrix
satisfy a better control:

Proposition 3.9. Suppose py is of finite 1-type T and let M = M’ (7). Then there exists a neighborhood V (po) of po with the
following property:

for o0 > 0, there exist constants & = & (o, data) and K' = K'(K,data) such that:

if Bisa (K,o,p,d)-strongly-extremal basis, ordered so that F; are decreasing, then for all lists £ € L5y (B) such that
there exists j > i with [; # 0 we have | .ZLc;i(p)| < K'aF (p,8)%/*F(p,$).

Proof. Let ¥ = Z'(L_;f;,f" with j < and write

Leii = f/l(;l(j}f”cii + Zgl (af“_,Lk + aZ‘,v[_)L_k) g”c,’,’.
JpP JpP

Then successive application of Lemma 3.2 show that there exists a list L= ; such that, for all , l; =/ and ‘,ifﬂvc,-i —ZLci| <
K,aF</2F,.
Now the result is trivial, applying once again Lemma 3.2, Lemma 3.2.1 and the hypothesis B(). U

Proposition 3.10. [fthe basis A is (K, o, p, §)-strongly extremal, the conclusion of Proposition 3.9 is still valid at each point
q € B(p, 8) with a replaced by 20 for § < d(a) (8(a) depending on a, K and the data).

3.5. Localization of extremal bases.

3.5.1. Definition of the local domain.

Definition 3.6. Let Q be a bounded pseudo-convex domain in C". Suppose that P, is a boundary point of Q and W (Py) €
V(Py) are neighborhoods of Fy. Let O be a point of the real normal to dQ at By and denote by d the distance from O to P.
Let us denote by (z;)1<i<, the coordinate system obtained translating the origin at O.

Letu >0and y(z) = @ (|z|2) where

0 if x < p?,
o) = { Koe /6 if x > u2,

with 3d < < 2d.
Let us denote 7(z) = p(z) + W(z). Then d is chosen small enough and K large enough such that, in particular:
D ={r(z) <0} C W(Py) and r is a defining function of D;

D have a ¥* boundary and is pseudo-convex;
At each point of dQ \ dD, the boundary of D is strictly pseudo-convex;

In the closure of B(0,2t) the vector z (in the coordinate system centered at 0) is not tangent to p (i.e. Y1, g—f_zi #£0
everywhere in the closure of B(0,2u)).
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The fact that such a domain always exits for any d > 0 small and K > 0 large is based on the construction of R. Gay and
A. Sebbar in [GS85] (Théoreme 2.1). Simply, note that, on D\ dQ, the function r is strictly pluri-subharmonic if Kj is large

enough and p small enough (the hessian of p is O ((p <|z|2) ) ). Moreover, if P is of finite type, then all the boundary points

of D are of finite type because the order of contact of dQ with dD is infinite at the points of d (dQ N dID).
The goal of this Section is to prove the following:

Theorem 3.3. Suppose that Py is a point of finite 1-type T of dQ and choose M'(t) (c. f. Proposition 3.5). Let & > 0 and
K > 0. If at every point of dQ NV (Ry) there is a (K, p, d)-extremal basis then one can construct the domain D contained in
V(Ry) so that, at every point p’ of its boundary there exists a (K', p’, 8)-extremal basis with K" depending only on K and the
data.

The proof of this theorem is done in the two following sections.

3.5.2. Preliminary remarks. We fix now some general notations.
Let 7 be the €™ projection of V(Py) NQ onto dQ defined with the integral curves of the real normal to p. It is clear that
there exists a neighborhood % of dQ NV (py) such that 7 is a € diffeomorphism of dD N % onto an open set of IQN % .
If L is a € vector field, defined on an open set U of dDN %, tangent to dD, we associate to it a vector field LP,
defined in the open set T(U) C dQ, tangent to JQ using 7 (considered as a €™ diffeomorphism of U onto 7(U)) as follows:
if L= Zaia%, considering it as an application of U into C", we denote by Lo n~! the vector field in 7(U) defined by
Lom™ ! = Zaion’l%, and
(3.10) [P =Lon '—BN,

where N is the complex unitary normal to p and § = Lot~ !(p).

Clearly, L — LP is an isomorphism from Tal Dy Onto Talg’;)ﬂ (V) (V(Py) and % sufficiently small), and thus, we also consider

L associated to LP by L=LP o+ (Bom)Nom. As L is tangent to dD and (LP o w)(p) is identically zero on dQ, we have
’ 2
(3.11) Bon(z) = —(LPomz)9'(|2]) ik
(Nom)(p)+ (Nom,z) ¢'(|2]")
where k is a 4" function whose derivatives of order less than M are O(¢(|z|*)) with constants controlled by the 4" norm
of L, and, if L = Zaia% (in the coordinate system of Definition 3.6), (L,z) denotes the usual scalar product ¥ a;7;, and
(L,L') =Y ad..

With the previous notations, let P be a point of dD such that y(P) =0 (thus P € dDNJIQ) and let V(P) C % be a
neighborhood of P such that 7 is a diffemorphism of V(P)NdD onto V(P)NJQ.

Let p € dDNV(P). Essentially, the construction of the extremal basis 4 at p for D is done using a suitable basis %P of
the tangent space of dQ near the point 7(p) translated at p (using 7) then projected onto the tangent space of dD, to get a
basis % which will be used (in the next section) to define the basis 4.

Currently, we only look at the relation between the weights of the basis % and P .

Thus, if Z = {L,,...,L,_, } is a basis of Tall’)0 in V(P) N aD, with our notations, the basis #° = {L?,...,L° |} of Talg’;) (in
V(P)NdQ)is given by

(3.12) P =Lion ' — BN,
with B; = Lo~ !(p), and

(3.13) Li=Lon+ (Biom)Nonm.
with

— (L om,2) ¢'(12*)
(Nom)(p)+ (Nom,2) ¢'(]2*)
Let us calculate the weights F(L;, p,8) in terms of the weights F (L, 7(z),8) and the derivatives of @. We suppose that

(3.14) Biom =

L are normalized. Writing ¢;; = [Z,,LT]} (dr) and cf’j = {Lf,L_ﬂ (dp), using that (Nox)(p) is identically 1 on dQ, a simple
computations shows
cj = cf)j o+ <Lf) o E,Lf o 7r> (p'(|z|2) + <Lf o 7r,z> <L’j) o 7r,z>(p”(|z|2)+
(3.15) +' (2P 5t (<(1f o2y ++ (L om,2)) +k,
= Fom+¢(|z) (<Lf om, 5o 7r> +h) + (L om,2) <L‘; o 7r,z>(p”(|z|2) +k,

where all the derivatives of k are O(@(|z|*)) and the functions * have a bounded €™ norm, the constants depending only on
Q and the €** norms of the L;.
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As Lf are normalized, we also have
G = Gonto/(dP)+ (L om2) 9" (2P) + ¢/ (P Kz (+(L o) 4+ (L omz) ) +k
ciro T+ ¢/ ([27)(1+ 1) + [(Lf o m,2)| 9" (|12) +k

and d is chosen small enough such that the €™ norm of £ is small.
Now we need to introduce a new notation. Let L be a € (dDNV (P)) vector field tangent to dD. For z € dDNV (P) let
us define

(3.16)

2/k

Al

~1/M

_ M2 ( o®2)\ M
FO(Lz,8)=) <%> +|{LPom(z Z
2

k=1

Lemma 3.4. For § and V(P) small enough and for z € dD NV (P), we have:
(1512 (1,12
F?(L,z,0) ~ P ((|SZ| ) +[(LP o7, 2)[* glz) (5|Z| ) +61/M,

Proof. Tt suffices to consider the case when |z|* = u2 +x > 2. Note that, for V(P) small, ¢®) (u? +x) ~ Ke~'/*x~ 2 and
()% < e!/Mx for k < M.

1/k
Suppose (M) > 8 /M and ¢~1/* < §. Then

1/k 1/k

k 2 —1/x

((p( )(I,é +x)> N (Koe / ) lQ SJKS/267|/1<MS671/11/17
X

0

for & small. Thus, for & < 0(Ko), (M) v > & 1/M implies ¢~ 1/* > § and ZM/2 (w) v ~ ‘P/(“;er).
Similarly, (%)z/k S 5-1/M implies ¢~/ > § and ¥ M (%)Z/k R ]
Thus, we denote

Fi(p = Fi(p (z,0) = F‘P(l:-,z, 0),1<i<n-—1and E? = 672, Let L, denotes the unitary complex normal to r (the defining
function of D) and L the unitary complex normal to p.

(=)

Proposition 3.11. Let & bealist of Lu (éu {fn}) and P be the list obtained replacing L; in £ by Lf). Then, reducing
V(P) if necessary, on 9D NV (P) we have (I; denoting the number of times the vector fields L; or Z appears in Z):
(1) ‘.,é;(cfj om) — (L) o n’ <STI, (FO), for .,?] >,
— 2
) [Zo(l?)| s 8T (7)), | 2] 22

the constants depending only on Q and the €M+? norms of the L.

Proof. These properties are trivially satisfied if /, # 0, thus we suppose , = 0. Using (3.15) and the fact that if f is a €
function on dQ NV (P) and if LPp =0 then (LP o) (fom) — (LP f) om = O¢(¢) on dD NV (P), the Proposition is an easy
consequence of (3.14) and the following Lemma:

Lemma 3.5. Letfp”beallstoffM{Lpon i<n—1} oflength > 1. Then | <£P"y| < ST/ l(F(p)l/2

Proof of Lemma 3.5. By induction, we have

2o my =207 (g () = ¥ o (1e?) + Y ap (1)
with

LWy L WENCLPT Wieg
m* §m72k
where <Wl*,[z> denotes (W, z) if W* is of type (0,1) and (W, Z) if not, and the %> norms of the functions * are controlled
by the > norms of the vector fields L;. Now, the proof of Lemma 3.4 shows that

2 2\ \ /2
(5] @ 6<|z|)5 5'/M+(pl<|;|) |

T
|
-
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and it is enough to see that ‘oq(p(l) (|z|2)’ S8(FP)“72 for e {[mH],...,m}. If I = m, this follows from Lemma 3.4;

suppose [ =m—k, k> 1.

(p(m—k)(‘z‘Z) 2/(”171{) 2/(m—k)
o

Suppose > §'/M_ By Lemma 3.4

(m—k) 2 (1,12
%(\z\) < ¢ ((‘;‘ ). Let & C £ of length m* =

m—2k = 21’.‘;11 I}. The corresponding term in ¢, is bounded by

o' ()\" "

k/2
X (PII |Z|2 el (P” |Z|2
| —5— [T om )|’ = » o (i) [ %Wf’omf

I7/2

0

A
-e\
g
KAl
(3]
N———
-
7
L
—
e
SN—
-3
~
[3e)

1 2 / / 2
because the hypothesis implies ((p ((‘;‘ )) < ¢ ((‘;‘ ). O

To finish the proof of Proposition 3.11 note that, for ",?‘ >1,

(L (Brom) (2)] < FO(2. )7 PP (2,8)' 2
and use (3.14). O

Finally the relations between the weights associated to % and to P are as follows.
Let L a holomorphic vector field on dD tangent to dD near p and LP the associated vector field tangent to dQ. Then

Proposition 3.12. For V(P) sufficiently small, we have, if % < HZH <K,

F(L,z,8) ~F(L",n(z),8)+ F?(L,z,0),
with constants depending on the €M norm on, K and the data.
Proof. From Proposition 3.11 it easily follows that F(L,z,8) < F(LP o m,z,8) + F?(L,z,8). Let us then see that there ex-
ists a list fcomposed of L and L such that jﬂ/cfzvz ~ (F(LP om,z,0) +F‘P(Z,z,5)) (21422 def sp(12]4+2)/2 1f %’ +
(LP o 7(2),2) | %N ~ F, then cj; do it. Suppose %/ +(LP o m(2),2)| %” < F. Then, there exists a list £ such that

|-LPerpre(m(z2))] =~ SFUZ1+2/2 Then calculating ,,gc?z in term of ZP (cpprp) o 7, the result follows Proposition 3.11,
(3.16) and the properties of the functions % and k.

O

3.5.3. Extremal bases on D. In this Section, we assume that p is of finite type T, M = M’(7) and that, at all points g of
V(Py) NdQ and for all § > 0, 0 < & < &y, there exists a (K,q, §)-extremal basis. Then we will show that at all points p of
dD and for all § > 0 there exists a (K’, p, §)-extremal basis (for D) with a constant K’ controlled by K and the data.

If P is a point of dD such that |P| > p then dD is strictly pseudo-convex near P and the construction of extremal basis
in V(P)NdD is trivial (for V(P) small). If |P| < 7 then V(P)NdD is contained in JQ and the existence of extremal basis
is the hypothesis. Thus, we have only to consider neighborhood of points P € dD such that |P| = u (that is points P in the
boundary of QN dD).

As we said before, the final extremal basis for D, at p € V(P) N dD, will be obtained extending a basis ,%7 defined on
V(P) N dD which is a projection onto the tangent space to r of a translation of a basis %P, at 7(p), tangent to p.

Formula (3.16) shows that the expressions <Lf’ oT, z> plays an important role: we have to take into account the vector fields
which are orthogonal to z. In particular, to construct an extremal basis on dD, we cannot simply translate an extremal basis
on d€ and project it onto the tangent space to dD, because, even if the basis (Lf) is extremal, we may have (Lf o 7,z) # 0,
for all i, and there are linear combinations of the Lf ot which are orthogonal to z.

From now the point p and the positive number 6 are fixed. We suppose we have a (K,7(p),§)-extremal (for p) basis
B = {L},...,L |} at the point 7(p) (the L;* being € in V(P)), such that the vectors L*(7(p)) are orthogonal (c.f.
Proposition 3.1) and we construct the basis AP = {L’]) been ,LfH} using it. The weights associated to % are denoted F* =
F2(n(p),8) = F*(L?,n(p),5), and we suppose Fi2| < F{%, for i < n — 2, changing the order of L{* if necessary.

Recall that the canonical coordinate system is centered at the point O of Definition 3.6, thus |z(P)| = u.

For simplicity of notations, we denote ¢ = 7(p) (thus p = 7~ !(g), 7 being considered as a diffeomorphism between open
sets of the boundaries of Q and D).
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Let
Ay ={W =Y aif,a;eC Y | =1, such that (W(g),p) =0}.

LetW, | = Zaﬁ’*lng € 1 such that 7~ ’a” : ‘ F(L{,q,8) = ian:ZaiL,-QE%‘iH ):;’;12 |ai|2F(ng,q, ), and define

. _ 112 " 2 2
(3.17) p =4 L if Y2 e R (LR, q,8) > T (12 (g),p) ],
" W,_, otherwise.

Suppose szl are defined for 1 <I<k—1<n.Let 7, _,=,_1N [é’(Lp

n—17"

p p
erfk+l)} g(l‘n 1
the orthogonality being taken at g. Let W, = ¥/ 11 al” kLQ

L ri1) being
the linear space spaned by Lﬁfl, thkﬂ ,
minimizing ):l’.';kfl |ai|2F( lg,q,ﬁ) for vectors ):;’;11 a,'ng € ;. Let T, be a vector field, of norm 1 at ¢, in ¥, _; =

EIL . L2 )N [ELP .. 1P )] . ThenL? s defined by

a vector in J7;,_;

" 2 2
=4 T 3T R .8) > TR (T (). o)
" W,_. otherwise.

Note that {Lf (q), 1 < i <n— 1} is orthonormal. We will note later that if the dimension of &,  is strictly greater than 1
then F' P‘P(Lg _,) (see below) is, up to a multiplicative constant, independent of the choice of 7, .

The next two Lemmas prove some important properties of the vector fields Lf . Let us denote P = {Lf ,i< n} and L
the unitary complex normal to p.

For L = Z?;l a,-Lf, a; € C, let us denote

2
g o' (o) 9" (1e)
FP? =FPO(L0), 1 <i<n—1,F? =1 and (FP?)*2 =], (FP?)"2 it & is a list of (P U {LE}), with the usual
notation for /;.
We will show that, up to constants, the vector fields Lf’ give the successive minima of the functions FP? (L) for L = ):a,-ng,

S| =1.
Lemma 3.6. There exits a constant K' depending only on K such that:
(1) If L= Zaing, Z|al~|2 =1, is orthogonal, at q, to the space generated by L’;, i+1<j<n—1,i<n—1, then
FPO(L) > g FPO(LY);
(2) FPO(LY) > LFPO(Livy), i<n—1;
(3) FPO(LY) > LF(LP,q,8), i<n.

Proof. Note first that if property (2) is satisfied for i > k then property (3) is also satisfied for i > k. Indeed, more generally,
if L is orthogonal to the vectors L’;, i+1<j<n—1,andif property (2) is satisfied for i+ 1,...,n — 1, then

(3.18) FP9(L) > max {FQ(L) Fo(LP

1+l) F (Lp ])}ZFQ(LIQWI)6):F(L;'Qv%a):F'Q

i

because the Lf and L are orthogonal and the basis (ng)i is extremal.
Now we show that if L = ¥ a;L®, ¥ |a;|* = 1, then FP?(L) > FP%.

IfLE | € i, thenl? | =12 and F’% =F(LE |,
We separate the two cases of (3.17):

Suppose we are in the first case (Lﬁf1 = Lfl{l). If L € J2,_;, then the inequality is an immediate consequence of the
extremality (EB;) of . Suppose L ¢ 7%, ;. Then we can write L = o (Lgi1 + }/H) with H € J2,_;. Writing H = ):aZLlQ,
we have

q,90) +2 (‘p‘ ) which gives the result. Suppose thus L | ¢ 7%, ;.

o (Ipf 0" (Ipl* 2
FPO(L) ~ |af [Zh@} F(L®,q,8)+ |1+ yd,_,|"F(LE 1,4.8) | + <6 )+|06|2 <6 )‘<Lfl(q),p> ,
and as ):l'.’;lz |a§|2F(Ll.Q,q,5) ‘a” 1‘ F(L ,q,5) > (p”(lgp‘z) ‘<Ln971(q),p> 2, we obtain

" 2 " 2
FP(L) 2 laf’ (1 + ) % (1210).9)| 2k %’7') (2210

because, by equivalence of norms in finite dimensional spaces, |o |2 (1 + |y|2) >k 1. The extremality of % implies
F(L,q,8) 2 F(L? |,q,8), and the inequality is proved.
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Let us now look to the case Lﬁq = W,_1. The result is trivial if L € J,_, thus we suppose L ¢ %, ;. Using the same
decomposition as before, we get

n—2 n—2
12 12
FPOL) 2 o (14 17P) ¥l F(Lfq.8) 2 X [a! | F(18,4,9),
i=1 i=1
and, as FP?(L) > F(L,q,8) 2 F(L% |,q,8), we have FP?(L) > F(W,_1,q,8).
The induction is as follows. Suppose FP‘P(LfH) z FP‘P(LfH) >...2 FP?(Lf |)andthatforall L=YaL? Y, lai)* =1,
orthogonal to the L’;, i+2<j<n-—1, then FP?(L) = FP‘P(LfH). Let L = ZaiLl-Q, Z|a,~|2 = 1, orthogonal to the L;’,
/
i+1<j<n-—1. Suppose T; is chosen. If T; € 7 then Lf =T, FP?(T) < Fl.QJr % and, using (3.18), FP?(L) > FP‘P(Lf).
Suppose now T; ¢ 4. If L = T; then, decomposing L = o (T; + YH) as in the first step, we obtain FP?(L) > %” (Ti(q),p)|
and we use (3.18). Otherwise L = W; and, again, the same decomposition gives FP?(L) > Z;f;i’l |ai|* F(L2,q,8) and we
conclude with (3.18).
Finally we obtain FP?(L) > FP?(L!) (which proves the statement about the choice of 7,_), and, as L! is orthogonal to

Lﬂrl, . 5 » the induction hypothesis imply FP? (L) > FP‘P(Lf)H) and finishes the proof. O

We now estimate the brackets of the vector fields Lf , 1 < n, at the point q.

(=)

Lemma 3.7. Let {Lg, ] yr lbf,ULp +Yr lbf, Lp For all lists £, of Ly (%P U {LP}) we have

2 (0L, ) (] < (7 ) R ) P )

with K' depending only on K and the data.

2
Proof. Note that the Lemma is trivial if [,(.#) > 1 and if % < ¢ ‘p‘ (because FP(P and F? are both > to (‘5‘ ) and

/(112 /(1|2 (1|2

¢ ((\Sp\ ) > §-2/M implies | 2 (\;\ ) @ ((\317\ ) FP? <F(LP,q,8)+ ¢’ (\317\ ,and, if LP = T;, then,

by the definition of 7; and the extremality of %, F(L! ,q,8) < F(L?,q,8), and, if L, =W, then F (L} ,q,8) < F(L2,q,8) +
(\q\ )|

Thus it suffices to prove that if [, =0

}'g (b;é;f) (‘1)‘ S (FPO)7 1 (RE®)' 2 (Rp0) 1 (F ( (LE,q, 6))71/2.

=) —)
Let us write Lf = Z‘,Oc}{ng and LkQ = Z,B,éLf. Using the notation [L?,L?] =" W,LQ +Yr W, L2, a computation

gives, if t < n,

> (z ) g

m \ i,j

with B}, = det Lol ), where o describes the set of permutations from {1,...,n—1}\{z} onto {1,...,n—1}\ {m},
and

=) =)
DL = Zakacm
B
( )

with C[ o = {L?,Lﬂ (dp) (note that this notation gives ¢;; = C;;).
FlI'St, we prove that, if t < m, then |B!,| < (FF?) 1/2 (FP?) 12 (F(L?,q, 6))71/2 for any k and s. In that case, there exists
an index i > ¢ such that o (i) <t; if Lf = T; then (xid(i) =0, and if Lf =W, then

. IR y 1/2 _ -
e l<p Urf) (rz5,.4.5)) ] _ (%) (F.0.8) " < (507) 2 (r00) 2 (F(12.0.9))

i

/ 2 " 2 ’ 24\ 2 2
because F? > §-1/M 9 (\SP\ ) and 2 ((\SP\ ) > §~2/M implies (<P (\SP\ )) > <P(\§\ ) |
To finish the proof, it suffices to remark that the extremality of % implies

lof| S F(LD,q,8)'?F(LE,q,8)7 /2,



18 PHILIPPE CHARPENTIER & YVES DUPAIN

“(s)
i
(FPO)? /P F(LR,q,8) 2 F (LS, q,8) 2 F (L®,q,8) '/,

by Lemma 3.6, for r > m. OJ

and

A

T1F(LR.q.8) > F(L?,q.8)'*F(L}.q,8) 2 F (LS, q,6) 7"/

A

Then, with the notations introduced before, we consider the basis at p (for D)

éz{l},...,lﬁ}withziz (LfonJr(ﬁion)Npon).

L7 o
Note that Lemma 3.6 and Lemma 3.7 are proved for the vector fields Lf’ but it is easy to see that they are also valid for the

vector fields Lp/ HLP H
p

To simplify the notations, in the remainder of the proof, the vector fields will be denoted by Lf , and the function

it

~ o

”L—,_‘J” will be denoted f3; so that Li= (Lf o+ (Biom)NP o 7r).

Proposition 3.13. The basis Bis (K', p, 8)-extremal for a constant K' depending only on K and the data.

Proof. We first prove condition EBy, that is, if ¢ are complex numbers then

n—1 _
F<ZaiLi;pa ) Z|al| F( irPs )
i=1

By induction, it suffices to see that, for all &,
n—k n—k—1
F(Y aLip,8|~F( Y oLi,p,8 |+l F( n— k,P,5)-
i=1 i=1
To simplify notations we write X = Zl’.';]'"l o;L; and XP = Zl’.‘;{"l o;L?. By Proposition 3.12, we have to prove that
2
?'(lpl°)
15}

" 2 ’ 2
~ (X7, q.8) + loni F(L0.8) + T (00 0 ) (), P + s (04 om) (), )7 + L)

2
(3.19) F(XP+ o4 Lf_.q.8)+ % [(XP + 0k L2 ) o (), p)| +

Indeed, if B(g) = ”? :ZjLPH , then the € norm of B! is controlled by K and F (ﬁ Yi o l,p,6) ~¢F (Z?:l (xiL~i,p,6).

Note that if Y and Z are two linear combinations (with constant coefficients) of the Li , by extremality, F(Y +Z,q,8) <
K?[F(Y,q,8)+F(Z,q,8)], and then

1

This implies that the left hand side of (3.19) is < than the right hand side, and we have only to prove the converse inequality.
To do it, we consider separately the two possibilities for Lﬁ,k

Suppose first Lﬁfk =T, .
If the right hand side of (3.19) is equivalent to F(XP,q,6)+ |, k| F(L? i, 0), by (3.20), we have only to consider the

case when F(XP g, 8) ~ |04, _i|* F(L? P .q,8). Using that F(T,_y,q,8) < F(L ;,q,8), Lemma 3.6 gives the result.
Suppose now that the right hand side of (3.19) is equivalent to

L((';pl ) (I((X" om)(p), p)* + |t [{(LE_, 0 n)(p),p>|2) _

Then, we only have to consider the case when ((XP o 7)(p),p) = —(1+€)a,_ (LY , om)(p),p), with & small. Then
if W is the vector field XP + (1 + €)ay,_xL? , normalized at g, W € 5, and thus F(W,q,8) > %N (T—i(q),p)* =
%N |<L57k(q) >} Then F(XP,q,8) 2, Kl2 (%ﬁ }<L57k(q),p>| ) 2F(L5 »4,90), and the conclusion follows.

To finish, suppose that L =W

If the right hand side of (3. 19) is equivalent to £ ("" ) (|<(Xp o) (p), p)* + |cty_i]? (L2, om)(p), p>]2), there is noth-

ing to do because <L57k o n(p),p> =0.
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Suppose then that the right hand side of (3.19) is equivalent to F(X?,q,8) + |oc,,,k|2 F(Lﬁfk7 q,96). As before, the conclu-
sion is evident except if F(XP,q,8) ~ |(xn,k|2F(L57k,q, ). Suppose
o2
F(XP+ Oc,,,kLﬁik,q, o)+ % < |Ocn,k|2F(Wn,k,q,5).

Note that (7,,_«(q), p) # 0, and we can define W = XP + a,_¢L” , + uT,_; such that (W(g), p) = 0. Then by Lemma 3.6,
|O‘n7k|2F(ank7q75) > F(LQ k4> 8)7

n—

1 2
and (extremality of %) [(T,_(q), p)|* % > £ (F(Wy—t,q,8) — KF(L2 ;. q,8). From this we deduce || < |04,_¢| and
W is of norm almost 1 at g. Then

FW,q.8) < K*(F(XP+ay 4Lf 1,q,8)+ |1l F (T, 1.4,))
< o il (FWt,0,8) + F(L21,0.9))

because T, € & (L ..., L2 ), and thus F(W,q,8) < F(W,_,q,8) which contradicts the definition of W,,_.

0 n—1

To see that Z satisfy EB,, a simple computation shows that it suffices to apply Lemma 3.7 and Proposition 3.11. 0
Then, by Lemma 3.1 we conclude:

Proposition 3.14. The basis A previously defined by B = {L;,...,l,—1}, with L; = Lf o+ (Biow)NPor is (K',p,0)-
extremal for a constant K' depending on the constant K of extremality of % and the data.

Now the proof of Theorem 3.3 is complete.

4. GEOMETRICALLY SEPARATED DOMAINS
4.1. Definition and examples.

Definition 4.1. Let Q = {p < 0} be a bounded pseudo-convex domain with € boundary (Vp # 0 in a neighborhood of dQ).
We say that Q is K-geometrically separated at pg € dQ if pg is a point of finite 1-type T and there exist two neighborhoods
of po, W(po) € V(po), a constant & > 0, a constant K > 0, an integer M larger than 7+ 1 and a basis 2° = {LJ,...,L? |} of
(1,0) vector fields tangent to p in V(py), whose > norm are bounded by K and their “determinant” bounded from below
by 1/K, and a positive real number & such that:

For each point p € W (pg) NdQ and each §, 0 < & < &y, there exits a (M, K, p, §) extremal basis Z(p,d) = {L‘;”’S7 . ,Lff] }
such that, for each i, the vector field L{”S can be written (on V(py)) Lf’a =Y; a{L? with a{ eC Y |a,~|2 = 1. In other words,

the LY 9 are normalized vector fields belonging to the vector space Ej generated by %°.

A notable property (that will not be used later) of these domains is that the weights F; satisfy a better estimate than the one
given in Proposition 3.5:
Proposition. Suppose Q is geometrically separated at py (of type T). Then for V(po) and & sufficiently small, there exists a
constant C > 0 depending only on K and Q, such that the extremal basis B(p,0) = {L{”S, 1<i<n-—1 } pEW(py)NaQ,

0 < 8 < &, satisfies FM(Lf’S,p,S) > 82" foralliandall § € [0,8), with M = [t] + 1.

Proof. Suppose there exists a sequence of points p,, converging to py, a sequence 0, in ]0, /[ and an integer i < n— 1 such
that, denoting Z(pm.,6») = (L',...,L" ) the (M,K, pn,&y)-extremal basis at p,,, we have Yoez,wn L 0p)(pm)| <

1 n—1

. 2 .
1/m. Then L" =Y a (pm)L(]?, y =1, and we may suppose that the sequences n > a](p,) converge to complex

a/(pn)
numbers a’ satisfying ¥ ’aj ‘2 = 1. Then, by uniform convergence, the vector field L = ):ajL(; satisfies Fy (L, po,0) = 0, for
all 5. But, we have L = Y. b, L°, ¥ |bk|2 >k 1, and, by extremality F (L, po,d) ~¢ 2|bk|2FM(Lf°,p0,5), thus there exists k
such that Fy (LY, po,8) =0, i. e. Zﬁf’efM(Lf“) |-Z(dp)(po)| = 0. Then, by (4) of Definition 3.2 this contradicts the definition
of the 1-type. 0

Thus, in all the paper, for a geometrically separated domain at a boundary point pg, the integer M could be changed to
[t] + 1. As this change gives no advantage, we will keep M = M’ (1) and then we can apply directly the results of the preceding
Sections.

Remark 4.1. Suppose Q is geometrically separated at py € dQ. Let p be a point of QN W(py). If 7 is the projection
onto JQ defined in Section 3.5.2 let ¢ = 7m(p). Then, reducing W (po) and & if necessary, if —1p(p) < 8 < &, the basis
B(q,6) = (L‘l”’s7 . ,Lff]) is clearly (2K, p, §)-extremal, and FM(L?"s,p7 8) > '8 2/7+! for a constant C’ depending only on
K and the data. Thus we will always assume that a geometrically separated domain is equipped, by definition, with extremal
bases of the form given in the definition, at every point of 'V (po) N Q for — %p (p) < 8 < .
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This is clear, because if . € Zy(#), then |.L(dp)(p) —-ZL(dp)(n(p))| = O(8), where O depends only on K and Q.
Then EB, is satisfied because F;(p, §) > C82/M with C depending only on Q and EB, is also satisfied because Fi(p,§) < § 2
(0o small enough).

Example 4.1.

(1) The three first examples of extremal basis given in Example 3.1 immediately show that, if pg is a point of finite type
of dQ then Q is geometrically separated at pg, under one of the following four conditions:
(a) dQ is convex near pg, or, more generally, lineally convex near pg (see Section 7.1);
(b) The eigenvalues of the Levi form are comparable at py;
(c) The Levi form is locally diagonalizable at py.
(d) Near py, dQ belongs to the class introduced by M. Derridj in [Der99].
(2) Moreover, we will see in Section 4.3 that, if Q is geometrically separated at pg then the local domain D defined in
Section 3.5.1 is geometrically separated at every point of its boundary.

Example 4.2. The domain Q = {z € C? such that Rez; + |22|° + |23/° + |23 )* < 0} studied by G. Herbort in [Her83] is not
geometrically separated at (0,0) (see Section 7.2 for details).

4.2. Structure of homogeneous space. First recall that we define in Section 3.3.4 the “polydisc” B°(%, p, §) (Definition 3.3)
and the “pseudo-balls” BS, (%, p,§) and B, (%, p,d) (Definition 3.4).

exp
In general, we will just denote by B¢, (p,6) and BS,(p, ) the pseudo-balls Bg,, (%, p,8) and B, (%, p,5) omitting %,
but recall that, if & # &, the balls B¢, (p, 61) and B, (p, 62) are not necessarily constructed with the same basis.

Then by the methods used in [CDO6b] (based on the Campbell-Hausdorf formula and the ideas of [NSW85]), reducing
W (po) if necessary, one can prove the following properties of the balls:

Proposition 4.1. There exist constants co, &, &, B and 7y such that, for p € W(pp) NdQ, & < & and ¢ < ¢y, we have
B (p.8) C B(p,8) C Bhy(p, 8) and Biyy(p, 8) € BS(p,8) C Bliy(p, 8).

The importance of this Proposition to construct the structure of homogeneous space is the following: to be able to use
Taylor’s formula, we have to work with a coordinates system, which is easy in the sets B°(p, d); the hypothesis of geometric
separation and Proposition 3.6 imply that the sets associated to curves are associated to a pseudo-distance; and, finally, the
sets associated to the exponential map are used to prove that all these sets are equivalent.

Ideas of the proof of Proposition 4.1. 1t is similar to the proofs of Proposition 3.4 (p. 96) and Lemma 3.16 (p. 101) of
[CDO6b]. Thus we will only give the main articulations.

The first inclusion comes easily from the control of the coefficients of the vector fields L; in the coordinate system (z;) in
the polydisc (Proposition 3.6). The second one is more complicated.

Let exp, be the exponential map based at p relatively to the vector fields %; (real an imaginary parts of the L;). Let
PP = (‘I—‘lp )i:Z o = (expp)il. We establish the following estimate on the derivatives of the functions W7: there exist

.....

constants 3 and K, depending on K and the data, such that
.1 if g = exp, (1), max {[u] uiea|} < BFi(p.8)™/2 then | %) (q)| < KiFilp,8)'*F;(p,8) ™,

with the notation of Definition 3.4.
To prove this, we estimate the derivatives of the exponential map. Considering, for u € R”", the vector field %;, = ¥ u; %,
the derivatives of exp,, are estimated via the Campbell-Hausdorff formula. Let g = g(u) = exp,, (), [u| < up,

5 u vt
dexp, <a—> (0-3a) + L alil. (%9 @) <Clu"*!

where oy are universal constants corresponding to brackets of length & (see Lemma 1 (p. 97) of [CDO06b]). The brackets are
then estimated with Proposition 3.6 and thus (4.1) is easily obtained. The second inclusion of the Proposition is then easily
proved.

The equivalence between the sets defined with the exponential map and the curves is a quite simple consequence of
4.1). O

Proposition 4.2. Let Q be a bounded pseudo-convex domain K-geometrically separated at py € dQ. Let B denote one of
the sets Bfg, ngp or B¢. Then there exists a constant co > 0, depending on K and the data such that, for all ¢ < ¢y, the sets

B(%A(p,8),p,0) are associated to a pseudo-distance in the following sense: there exists a constant C depending on K and
the data (but not on c) such that, if p € W(py) NdQ and 6 < &, and if ¢ € B(#(p,0),p,0) NI, then

B(#(q,6),4,6) € B(A(p,6),p,C9).
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Remark. If we define y, on W (po) N 9Q, by
“2) ¥(p.q) = inf {8 such that ¢ € B(B(p.5).p.5)}
then ¥ is a real pseudo-distance.

Lemma.
(1) Forall A > 0 there exists B depending on A and K such that

B (#(q,6),48) C B (#(q,B8),q,BS).
(2) For all B > 0 there exists C depending on B such that
B (%(q,B8),q,B8) C B (#(4,6),4,5).

Proof of the Lemma. Let us denote by L;(g,0) (resp Li(q,Bd)) the vector fields of (g, ) (resp. %(g,Bd)). By the hypoth-
esis on Q, we have L;(¢,8) = Y B*Ly(¢,BS), with B¥ constants. By extremality,

IN

Bt KF(Li(q,8),9,B8)"*F (Li(q,BS),q,B5) "/

KB™'™MF(Li(q,5),q.8)"/°F (L(g,B8),q,B8) "',

IN

which proves the first part of the Lemma with B = (AK(n — 1))M. The second part is proved similarly with C = (BK(n —
)M, O

Proof of Proposition 4.2. To prove the assertion on the pseudo-distance in the Proposition, by Proposition 4.1, it is enough to
prove that, there exists a constant Ky such that if ¢,¢4' € B, (%(p,5),p,d) then ¢’ € Bg’c(%’(gﬁ),qﬁ). But there ex-
ists @, €' piecewise smooth, such that ¢(0) = ¢, @(1) = ¢’ and, almost everywhere, ¢'(r) = Y7, a:(t)%(o(t)), with
max {|a;(t)|,|airn(t)|} < 2¢F(Li(p,8),p,08) < 4cF(Li(p,0),q,0), if we choose ¢ small enough (Proposition 3.6). Now,
as in the Lemma, writing L;(p,8) = ¥ ofL;(¢,8) (with off constants) and using extremality, we easily conclude ¢’ €

Koc 0
B (#°,q.9). O
Let us now define the “pseudo-balls” centered at points of QW (py), denoted *B¢(q, ) (resp. "B, (q,6), "Bex,(q,0)) by

"B(q,8) = {4 € V(po) such that 7(¢') € B (#(n(q),6),7(q),8) and p(q') € [p(q) —¢8,p(g) +¢d]}.
Then:

Theorem 4.1. Let Q be a pseudo-convex domain geometrically separated at py € dQ. There exists a constant cy > 0,
depending on K and the data, such that, for all ¢ < ¢, the sets B(q,0) define a structure of “homogeneous space” on
W(po) NQ in the following sense: there exists a constant C, depending only on K and the data (not on c) such that, if
g1 €W (po)NQ, 8§ < &, and q> € B(qy,8), we have

B(g2,0) C B(q1,C9)

and

Vol (B(¢,268)) < CVol(q,9)),

B denoting one of the sets "B, "Bg,, or "BC.

exp

Proof. The first assertion follows immediately the Proposition. To prove the second assertion, we use the fact that both
B, (#(p,0),p,0) and By, (%(p,0), p, ) are equivalent to B° (%(p,d), p, ), the fact that the coordinate system associated
to the extremal basis have a Jacobian uniformly bounded from above and below and the preceding Lemma. 0

Remark 4.2.

(1) For p € 9Q, the sets "™B°(q,6) N dQ (for each definition) are the pseudo-balls of a structure of homogeneous space
on dQNW(py).

(2) On dQ, as in [NRSW89], we could define equivalent pseudo-balls using complex tangent curves.

(3) Itis notdifficult to see that the pseudo-balls of the structure of homogeneous space can also be defined directionnally:
they are equivalent to the sets Bg; (p,8) defined as to be the set of points g of the form g = exp),(a,b), where exp,
is the exponnential map associated to the vector field aReL + b3 mL, L being a vector field of the linear space E, the
coefficients a and b satisfying max(|al, |b|) < ¢F(L,p,8)~"2.
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4.3. Localization. Suppose that Q is K-geometrically separated at py € d€, and consider the domain D constructed in
Section 3.5.1 near that point. Then D is K-geometrically separated at each point of QN dD, and, by strict pseudo-convexity,
the same is true on dD\ dQ N ID.

Suppose that P is a point of the boundary of QN dD, and let p be a point of V(P) N dD and § small enough (with the

notations of the previous Section). Let us denote by #(p,5) = {Lf’g, L8 } the extremal basis given by Proposition 3.14

»n—1

and by %% = {L?’Q, O A } the basis denoted B in Definition 4.1. Then, by the construction of %(p,§) made in the

»Hn—1

previous Section, we have Lip’(s =L o — B(LY)NP o &t with L — B(L) linear. Thus, if we define #°P = {L?’D, O it }

’“n—1
by L?’D = L?’Q om— ﬁ(L?’Q)NP o7, then we see that the vector fields of A(p,d) are linear combinations (with constant
coefficients) of the vector fields of 8%, Thus, we have proved the following result:

Theorem 4.2. If Q is K-geometrically separated at py € dQ, then the domain D defined in Definition 3.6 is K'-geometrically
separated (at every point of its boundary) for a constant K' depending only on K and the data.

Remark. Recall that every point of dD is of finite 1-type.

5. ADAPTED PLURI-SUBHARMONIC FUNCTION FOR GEOMETRICALLY SEPARATED DOMAINS
5.1. Definition and examples.

Definition 5.1. Let Q be geometrically separated at py. Let E be the vector space generated by %° U {N}, and, if L =
Zl’.‘;ll b,-L? +byN = Ly +byN € E denotes, for 6 < &, F(L,q,0) = F(L,q,8) + ‘b,oi—lf.
A €3 pluri-subharmonic function in Q, Hy, is said to be B-adapted to #° at py if there exists a constant 8 such that the
following properties hold:
(1) |Hs| < lonQ;
(2) Forge W(po)NQN{p > —28} and for all vector fields L € E,

(d0Hs:L,L)(q) > %F(L,qﬁ);

(3) Forge W(po)NQN{p > —28} and for all lists £ € A (E),

|$H5| (q) <B H F(Lacb6)l/2'
Lez

Remark 5.1. Note that (3) implies in particular that, for all £ € % (%(n(q),8) U{N}),
L Hs\(q) S F(#(n(9),8),4,8)7 .

Definition 5.2. A bounded pseudo-convex domain Q is called “K-completely geometrically separated” at po if it is K-
geometrically separated and, there exists 0y > 0 such that, for all 0 < d < &y, there exists a pluri-subharmonic function Hg
which is K-adapted to %" at py.

Example 5.1.

(1) If the boundary of Q is locally convex near pg (a point of finite type), then it is proved in [McN94, McNO2] that it
is completely geometrically separated at pyp. More generally, using the results of [DF03] it can be shown that if Q
is locally lineally convex near pg (see [Kis98]) then it is completely geometrically separated at pg (see Section 7.1
for some details on the construction). Moreover, when the boundary of Q is locally convex, resp. locally lineally
convex, near pg, the local domain D can be chosen convex, resp. lineally convex, (choosing d small enough and K
large enough) and thus, in both cases, it is completely geometrically separated at every point of its boundary.

(2) In [Cho02b, Cho02a, Cho03], it is proved that, at a point of finite type, if the eigenvalues of the Levi form are
comparable at pg then it is also completely geometrically separated at pg.

(3) Inthe next Section, we prove that geometrically separated domains whose extremal bases are strongly extremal with a
sufficiently small & are completely geometrically separated, and, moreover that, for those domains, the local domain
defined in Section 3.5 is completely geometrically separated at every point of its boundary. In particular, this applies
when the Levi form is locally diagonalizable at py.

(4) It can also be proved that if a domain is of the type considered by M. Derridj in [Der99] near a boundary point py
then it is completely geometrically separated at pg.

5.2. The case of geometrically separated domains with strongly extremal bases. In this Section we prove the two fol-
lowing Theorems:

Theorem 5.1. Suppose Q is K-geometrically separated at py € 0. Then there exists a constant 0, depending on K and the
data, such that, if for all p € W (po) N9Q and & < &, the bases B(p, ) are (K, o, p,d)-strongly extremal (c.f. Definition 3.5)
with oo < o then it is completely geometrically separated at py.
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The second theorem deals with the local domain D constructed in Section 3.5.1, and, in fact contains the first one:

Theorem 5.2. Suppose that Q is K-geometrically separated at py € Q. There exists a constant ¢, depending on K and the
data such that, if for all p € W(po) NdQ and & < &y, the bases B(p,d) are (K, a, p,8)-strongly extremal with o < @y, then
the local domain constructed in Section 3.5.1 is K'-completely geometrically separated at every point of its boundary for a
constant K' depending only on K and Q.

We will prove in details the first Theorem and only give the modifications needed to obtain the second one.

5.2.1. Proof of Theorem 5.1. Here we suppose that the bases #(p,0), p € W(p) NI, § < &, are (K, a, p,§)-strongly
extremal for a constant & not yet fixed. During the proof, we will impose successive conditions on & (depending on K, M
and n) to be able to construct the good pluri-subharmonic function. The existence of & will be clear at the end of the proof
but we will not give an explicit value. Now, we fix § > 0.

The ideas of construction are comparable to those developed in [CD0O6b] (following ideas of [Cat87]) but the technical
proofs are slightly different. On the one hand the basis are local instead of global and we have to construct local “almost
pluri-subharmonic” functions and then add them using the structure of homogeneous space instead of constructing directly
a global function. On the other hand, the control of lists following our hypothesis are weaker than those following the local
diagonalizability of the Levi form. Thus, for reader’s convenience, we will write the proof with enough details.

Let us first introduce some new notations: 0 being fixed, we denote by Q°(p,d) the points ¢ in W(py) such that 7(g)
belongs to the polydisc B°(p, §), associated to the extremal basis ZB(p,d) = (L{”S)i (see Definition 3.3). If L is a vector field
in E (the vector space generated by %8° and N), we write it L = L; +a,N, where L; is tangent to p. Q being geometrically

separated we can write L; = Zl’.';ll aip Lf’ 0 (aip € C). As usual, cﬁ will denote the coefficient of the Levi form associated to the

vector field Ll»p’(s € B(p,d), and Q; ={—e < p <0}.

With these notations, we now we state a local result and show how it leads to Theorem 5.1. For the proof we need only
estimates in the strip Q35 = {—36 < p <0}, but in Section 5.2.3 we will need corresponding results in a larger domain, and
thus we state the local result for the sets Q°(p,d):

Proposition 5.1. For all constants C > 1 there exist constants o (depending only on K, ¢, C and the data), B and Y, such
that if the bases #(p, ) are (K, o, p,0)-extremal with o« < &, then for all 5 < 6(o) (depending on o, K and the data)
and all point p € W(po) N 9Q, there exists a function H, 5 = H with support in Q°(p, ) satisfying, for every vector field
L € E, the following conditions:

(1) [H[<1;

(2) (99H:L,L)(q) > BF(Lz,q,8) 11 ()Z Ha?|? ””+‘“”‘ +1)(q),foquQc/z(Pﬁ)ﬁQas,
(3) (IOH;L.L) () > —2F(Le.,8) — 1 (X1 ol % + 2 +1) (). for g € 0 (p,8) N s,
(4) For £ € %5 (H(p,8) U{N}), (q) < plliex F(L,q,8)"2 for g € 0% (p,8) N Q5.

We will prove this Proposition in the next Section. Now we show how Theorem 5.1 follows this Proposition:

Proof of Theorem 5.1. We cover dQNW (po) with a minimal system of pseudo-balls *B/2(p;,8) N 9Q, pi € Q. As the
pseudo-balls are associated to a structure of homogeneous space, there exists an integer S, independent of 8, such that each
point of W(p) belongs to at most S sets Q°(p;, §). Applying Proposition 5.1 with C = 25C; we get a function H,,

For all point g € V(Py) N Qs there exists jo such that g € Q°/2(p;,,8) and thus (denoting ¢ the coefficient of the Levi
form in the direction Ll’.’ k and af? = af %), by Proposition 5.1,

B v | @] | |a
(5.1 <aaz 55 Ls L> )>EF(LT,q,5)fy] Y |4 %Ha’ﬂ +1
k S.t. geQ°(py,8) \i=l
Let us consider the function

—p/d 2
H:zk:Hpk’(;JrAe PIO 1 B|ZP,

for suitable constants A and B and o small enough:

Claim. There exist constants A, B, ¥ and o depending only on K and the data such that if o < of/:
(1) H is uniformly bounded, independently of & < &, on Qs
- _ 2
(2) For any vector field L € E and any g € Q35 "W (p), (00H;L,L) (q) > %F(Lf,q7 o)+ ‘“é—lz‘;
(3) Forg € Q35NW(py) and all lists .€ € L (E), (@) <Plliey F(L,q,8)"/>.

Proof of the Claim. For every k such that g € Q°(py, 8),

<39€p/5;L7i> (q) =eP/® [ ( Z aka"ck +2%Re (Za ak(ddp;LI* N _>> + |an]? <89p;N,N>> + |Cg’2|

[\S]
| S|
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Then, we use the hypothesis of strong extremality and Taylor’s formula to estimate ’ cij ’, i # j, in the set O°(pg, 6) N Qs5.

Using the fact that ¢;; = |¢;;| +O(8) (recall Q is pseudo-convex), this gives a constant Ky depending on K and the data such
that

3 S.1 71
<aaeP/ ,L,L> (q) > K0+252 lan? +

ck q)’ —4n’KaF (L1,q,8),

because, by definition of ¢, in the sets Q°(py, 6), we have F(Lr, ) § 3F(Lr, pr) (see Proposition 3.6).
Now if we choose A = 2S¢y, + 1 and B = KyA + 71, the Claim follows easily (5.1). 0

To finish the proof of Theorem 5.1, we truncate H to adapt it to good neighborhoods V(pg) and W (po) and to the strip
{8a(p) <28}, and we add D |z|* with a large constant D. More precisely, the cutting functions are defined as follows:

Let ¥ = ©% where ¥;(q) = X1 (1 la— p"‘) with x; a € increasing function equal to 0 on | —o0,0], 1 on [1/4,+eo|
and x;(¢) =t* on [0,1/8], and % (q) = xs5(p(q)) with x5(¢) = x(t/8), x being even, increasing on | — o, 0], equal to 0 on
4
] —eo,—4],to 1 on | —2,0] and to (’H) fors € [—4,—-8/3].

Then, remarking that <8819,L,L> > —O0(1) the final computation is made as in [CDO6b, Section 4.2.3].
O

5.2.2. Proof of Proposition 5.1. The proof uses essentially the ideas developed in Section 4.1 of [CD06b], except that we
have to work locally around the point p. Thus the technique is more complicated (it needs to use the structure of homogeneous
space) and we will give it with some details.

For p € W(pp)NIQ and § < &y fixed, let B(p, ) = {Lf’6 =L, 1<i<n—1}bethe (K,a,p,5)-strongly extremal basis
and ® = CI>1‘§ be the adapted change of coordinates at (p, §).

Fori=1,...,n—1and [l =3,...,M, let us define

& ={Re(ZL(9p), Im(L(9p), | £ =1-1, 2 ={L',....L" "}, " € {L;, i},
=4
I

For ¢ € &', if ¢ € &', we denote [() = I.

Note that Fi(.,8) = F(L;,.,0) ~ ‘C”‘ +Lgesi ’L a1 . The functions ‘Cg‘ and ’L i ‘ i) are called the components of
F; and are denoted generically f;. We also define /(c;;) = 2, and, for the other functions f;, I(f;) = I(¢;). In the following proof,
these components cannot be considered individually. Thus, we introduce the terminology of “(n — 1)-uplet” of components:
f=f1,--.,fu_1), where f; are component of F}, is called a (n — 1)-uplet of components of the weights F;. The set of all such
(n—1)-uplet is denoted by 7. 7 is ordered by the lexicographic order.

First we define a cutoff function with support in Q(p,d) and in the set where a component is “dominant”. More precisely,
if B is a positive number and f = (f;) a (n — 1)-uplet of components of F;, we define, for fixed ¢ < ¢y,

HXB ( ) Xo= %},BXO,

where xp(t) = x(Bt), x : [0,4oo[— [0,1], being a €= function equal to 0 on [0,1/2] and 1 on [I,4eo[, and xo(q) =
X ((wcbp(n(q))i) ) , with ; a @ function identically 1 on B(0,1/2) and with compact support in B(0, 1).
1
We say that f is B dominant if x}!B =1

Then, to each (n — 1)-uplet f = (f;) and to each i such that f; =

2/1(f)
—‘ , we associate, for A > 1, the function

Hi(f,A,B) = A73/2eMiy, p,
where v;(q) = oi(m ( ))F(p,S)%w").

Lemma 5.1. For each constant B > 0, there exists a constant Ky depending only on B, ¢, K and the data such that, for each
i, if g € Q°(p,6) N Qss, foreach L=Y;_ya;L;, . ’aj‘z = 1, we have the following estimates:

(1) 1LWi()| < Ko (F(Le,q,8)' 2+ %1, and |LL(yi) ()| < Ko (F(Le,9.8) + %)

(2) [L21.5(0)] < Ko (F(L,0,8)' 2+ 141, and L1175 < Ko (F(Le,0.8) + 45 )
(3) L LI Q(Hi(f 2 B))| < KoA™12eM (F(Le,q,8)12 + 1),

Proof. 1If g € dQ, the inequality |Ly;(q)| < Ko (F (Le,q,8)'/% + ‘%’") follows immediately from Proposition 3.6 and the
extremality of the basis (L;) at (p, ). The general case for (1) follows.
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Property (2) is obtained using the fact that, if (z) is the coordinates system associated to ® and L; = Za{ %, then
J

al| S (p.8)F; (p,6)

for ¢ € Q°(p, 6) N IQ (Proposition 3.6), and techniques similar to those used for (1). o
Finally (3) is proved similarly, using the estimates of the coefficients of the brackets [L;L;] in Q°(p, ) N dQ (Proposi-

tion 3.6). ]
For f = (fi,...,fu—1), a (n — 1)-uplet of components of the weights F;, let us denote by I the set of indexes i such that
P |2/1(f3)
= %‘ . Then we consider the function

H(fakaB) = ZHl(fvlvB)
iel
The next Lemma gives some properties of the function H(f,A,B). To state it we need to introduce the following set:
For f a (n— 1)-uplet of components of the weights F; and B’ a positive number, we set

Up s = {q € Q°(p,8) for which there exists f* < f such that f’(g) is B’ dominant} .

Lemma 5.2. Let f be a (n— 1)-uplet of component, A, B and € three positive fixed real numbers. Then there exist positive
constants 0y, A, A, B, A" > A, B' > B, €' < € and K, depending only on A, B, €, K and the data, such that, if the constant o
of strong extremality is < o, then the function H(f,A,B,&) = H(f,A,B) = H satisfies, on Q°(p,0) N Qss:

(1) [H| < Ki; ,

(2) FL=Y" &L’ =Lc+ayN, a; € C, ¥ |a;|* =1, then|(ddH;L,L)|(q) <A’ (F(Lf,q,a) + %)

(3) IFL=Y &Ll =Lc+a,N, a; € C, Llail> = 1, q ¢ U, 2} 5(q) = 1 and x0(q) > €, then

—1 2
g7 T £ 2 Jeii(q)| | lan .
<88H»L7L> (q) > AF(Lc,q,0) — Ka <,Z] |ai| T‘f‘?-i-] ;

(4) If L=Y! 4L’ =L+ ayN, a; € C, Z|a,~|2 =1, the condition <89H;L,L> (q) < — (F(Lr,q,5) + ‘%‘2) implies
q € Up and xo(q) > €.
(5) Forall lists & € %5 (B(p,8) U{N}), | LH(q)| < K> (Tpe.v F(L,q,8)"/?).

Proof. Recall that H = Y ;. H;, thus the properties are trivially satisfied if I = @ and we suppose I # 0. The functions | ;]|
being bounded by 2 (see Proposition 3.6), (1) is satisfied with a constant K; depending only on A and n.
Leti € 1. Then (ddH;;L,L) = LLH; + [L,L] (9H;), and as

LLH; = A73/%eMVi [(lz \Lwi|* + M_,Ly/i) X8+ A (Lwilxs s+ Lwilxs ) +Z,fo73} :

- _ 2
Lemma 5.1 implies (d9H;;L,L) (q) > A~3/2e*Vi (12 Lyl %75 — KOAF (Le,q, &) + 12 + 1) and thus shows the existence
of a constant A’, depending only on the choice of A, B, ¢, K and the data, satisfying (2).
Now, if forall i € I, |Ay;| < 1, then, for A large enough, we have <88H;L, Z> > —F(L). Thus we suppose that there exists

an i € [ such that [Ay;(q)| = %ﬂ(gmlfi(p, 5)(14(“’!'))/2 > 1. Then there exists a constant B’ > B, depending on A, such that

. 2/(I(p)—1)
‘w‘ > %Fi(p, ), and this implies that there exists a (n — 1)-uplet f/ < f which is B’-dominant at the point
g. In other words, to each choice of A we can associate B’ such that the first conclusion in (4) is true. Moreover, A, B and
c being fixed, x| being €, there exists €', depending on A, B, ¢ and Y, such that the hypothesis of (4) implies the second
conclusion (i. e. xo(g) > €').

Let us now show that we can choose A (thus A/, B, K| and €’ will be fixed) such that (3) is satisfied if o is small enough.
Suppose then l}',B(‘I) = land (g) > €. The hypothesis of strong extremality and the invariance of the F;(¢) and the af»‘j in

B“(p,d) (Propositions 3.6 and 3.10) give, if 6 < §(a),

2 2
(@) > ¢ | L astsw)la)| —4nc(K) (Za Y ol Fp)+ )
i<i n—1>j>i
and then, by extremality at p,
2 2
i) > § | atwila)| —Gi(K) (aznu,q,sw .y 1) .
J<i

Now we make use of the following Lemma:
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Lemma. Let 8/ be complex numbers, i =1,2,--- ,n—1, j <, verifying ’ﬁf‘ > ca; and ’ﬁi]‘ < Ca; for j <i. Then there
2 n—1 2

> WYL (o)™

The above lemma implies, using the invariance of F;(g) and F(L,q) in the ball and the extremality of the basis at p, that
there exist constants W, K3 and Ky, depending on B, M, K and the data, such that:

exists a constant W = W (c¢,C,n) such that ):?;11 ’):;:l ﬁij

|Cu |a”|
E E > — —
,e]|LlVl | +l¢[ ZKF(L17Q75) aK3 (F(LT7Q75)+]) 62 ’

and thus, for oy = W /4K K3 (depending only on the data M, K, B, ¢ and n),

2
Cn An
Y |Lyi(9)] +Z| (Lf,q,6)1<4<|62| +1>.

iel i¢l

This finishes the proof of Lemma 5.2 for a choice of A depending on A, €, B, M, K and c, ¢ depending itself only on M, K
and the data, the property (5) being trivial. O

Proof of Proposition 5.1. First, note that there exists a constant D, depending on M and n, such that, for p € W(py) and
6> % lp(p)l,  of Fy(p,8) verifying fi(g) > L Fi(p,8) for all points g € B(p,§), ¢ < co (Proposi-
tion 3.6).

To define completely our function H, we have to define, for each (n — 1)-uplet of component f € .77 (the set of (n—1)-
uplets of components of the weights F;(p, §)), the constants Ay, By and & from which A(f) is constructed. Let fO be
the largest element of % for the lexicographic order. Define Ay = C4M"*1 B, = D and €7, = 1. Suppose we have
constructed the constants Ay, By and &7 for f > f. ! Consider the constants A’ e B}l and 8}1 obtained applying Lemma 5.2

for the constants A1, By and €1, and define, for f? preceding f!, Ap =3CYL, pAy Bp = B}., and € = 8}.1. Thus
H=YnrH(f, Af,stf) is well defined.

For g € 0°(p, 6) define the following subsets of 77
Ei(q) = 1{f € suchthatthereexists f' < f, such that f'(q) is Bj-dominant and yo(g) > 8}} ,
Es(q) = < f € such that x}-,B/ (¢) =1 and xo(q) > Sf},
Ey(q) = A\{Ei(q)UEs3(q)}.

Note that if E;(q) is not empty, and if f is its smallest element, then there exists f’ < f such that f/(q) is B’f dominant, that
is x}.,,B// (q)=1,and, as gy < 8}», we also have xo(q) > € which means f’ € E3(g), f being the smallest element of E1(q).

Now suppose first that ¢ € Q%/?(p,8). Then, by definition of D, E3(g) is not empty, and, if E|(g) is also not empty there
exists in E3(q) some strict minorant of E;(¢). Then, by Lemma 5.2

<39H;L,L> < Z Af— Z Af #E>(q )F(L17‘I75)_ZK2(Af7Bf7Af <Z| z|2€” |an| +1>

f€E3(q) f€E1(q)

for o small enough, depending only on M, K and n (#E,(f) denotes the number of elements of E;(f)). Then, the preceding
remark and the fact that #E;(g) < 4M" < LA 0 imply

(99H:L.L) (g) = C4"'F (Lz.q.8) (Zm'c”q wlal +1>

Finally, if ¢ is any point in B(p, ) then E3(g) may be empty, but then £ (g) is also empty, and thus

<8(§H;L,Z>(q)Z*4MnF(Lr,q,6) <Z| l| |Cu( )| |05n2| Jrl)

This finishes the proof of Proposition 5.1, property (4) being trivial. 0

5.2.3. Proof of Theorem 5.2. 1f P is a point of the boundary of D then, by the definition of D and Theorem 5.1, to prove that
there exists a pluri-subharmonic function adapted to the structure of geometrically separated domain near P, we have only
to consider the case where P is in the boundary of dQ N dD. Thus, with the notations introduced just before, we prove the
following reformulation of Theorem 5.2:

Proposition 5.2. Let P be a point of the boundary of QN dD, and V (P) the neighborhood considered in the previous Section.
For all K > 0, there exist constants oy and O; depending on K and the data such that if Q is K-geometrically separated at
po € 9Q and if the extremal bases of Q are (K, o, p,8)-strongly extremal with o < o, then, for 0 < § < 8y, there exists a
pluri-subharmonic function Hg on the local domain D which is (8,K')-adapted to 8°P at P.
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Proof. The proof is a modification of the proof of Theorem 5.1 and we will only indicate the differences. Here we have to
consider both weights associated to the domains Q and D, denoted F<* and FP, which are constructed respectively with the
defining functions p and p + .

We fix 6 small enough and then we will omit the subscript § in the notations of the vector fields. Consider, as in Sec-
tion 5.2.1 the covering of 9D NV (P) by the pseudo-balls B/?(g;, §) N dQ (note that here P plays the role of py in the previous
Sections).

We denote py = m(q) and fix k. Let (Lf?)l. = (L;); be the J-extremal basis (for D) at the point g;. Let Lf) be the vector
field tangent to p associated to L; (i. e. L; = Lf o+ (B om)Ngom). We saw (in Section 3.5.3) that the weights FP(L;,.,5)
associated to the vector fields L; are equivalent to

/ 9" (I
FQ(Lf,n(.),6)+"’g'|)+ (5 )\<Lf(n(.)),.>\2.

Let (ngk) = (ng)l. be the §-extremal (for Q) basis at py so that the vector fields L! are linear combinations of the L{2.
1
Let

(1axl?)
I, = { i such that F© (ng,pk,S) > —5

We suppose I; non empty. As the vector fields ng are ordered so that their weights are decreasing, I is a segment of N,
{1,2,...,n;}. Then, we consider the n;-uplets of components of the weights Fo (L2, pi,8), i < ny, f = (fl Ve ,fnk) and the

function
fiow
H AB <FQ Lg,pk,6) X0;

i<ny

where xo(q) = X1 (M&Dqk (77:D(q)) , Tp being the projection onto dD associated to the real normal to D.

To obtain the good estimates of the derivatives of ) p with respect to the vector fields L;, we first estimate the derivatives
of the functions f; o 7 at the point ¢;:
Lemma 5.3. Fori€ I, if |fi(pk)| > 55 F (L2, pr.8), for £ € L (Ly,...,Ly_1), we have
2 (fiom) (qu)| S5 F L, i, 6)F (g1, 8) 712,

Proof. Let us consider the case |.£| =1. AsL; = L’? o+ (Bjom)Ngom, for p=n(q),

L (fom) (@] < [ (p) (f0m) (@) +O (|B,(p)]) -

P <0 (1) S o' (o) +0 (0 (1aF)) =0 (' (Ia*) ). thus
Bip)| < P (L2 pe8)F (L. 41,8)

because i € Iy. As L’; are tangent to p, L’; (p)(fiom)(q) = L’; (p)(fi)(p), and, as L’; are in the space spanned by the L, by
Proposition 3.3, we have

(2000 (0] < P2 (1. p.8) P2 (12.0.5)

and thus
(1ax?)
(L 00() 00| < 72 (12,908 72 (12.p18) 4 L.

Derivatives of higer order are treated similarly. O

Corollary. Under the same hypothesis, for g € 0f,(qx, ) ND3s and £ € Ly (Ly,...,L,—1), we have
| (fiom) (q)| S8 FA(LY, i, 6)FP (i, 6)7 2.

The derivatives of g being trivial, we deduce from (3.8) and Taylor’s formula:

Lemma 5.4. Fori€ I, and q € 05,(qx,0) N Dss, for £ € Ly (Ly,...,Ly_1), we have
| L xr.5(q)] Sp FP (i 8)%/%.

We now define the basic functions H(f,A,B) used here. Let [ = {z < ny such that f; # leal }, and, fori e I, if f; =

o |2/1(f1)
‘%‘ , we put

Hi(f,A,B) = A"2eMViy; s where y; = (g ‘L;’
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and we define H by
= H(fakaB) = ZHl(fvlvB)

iel
KL=Y! aLi=L:+a,L, (¥ |a,-|2 = 1), as in the proof of Lemma 5.2, using the last Lemma we get

2
<89Hf;L7i><q>Zl3/26“""(“wwzxﬂg—m(“D@r,qk,es) r >>

for g € 0% (qx, 8) N Dss. The estimate of |Ly;|> has now to be done more carefully.
The formula L;(q) = L2 (p) + B(p)Nq gives
o (1a7) o (la?)+o

2 1 2
Loy (q)ZZ\L’r’(p)ll/i\ (g9)—C R 5

Then, decomposing L? on the §-extremal basis at py (( ) ), P = Z” 'b LQ, we obtain, using the strong extremality
hypothesis,

2
(CI) —-C azFQ(LI‘gvpkaS)—’— ﬂ

1
o 1
L2 (p)wi|® (9)> 5 5

Y bl v
i<

1

Using the same method, we sum all these inequality to get (writing c{? [LQ LQ} (dp))

Yl g > ﬁFQ<ZbJ~L§%pk,6>—C Y )+ o)+ (a L
j=1

icl i¢l,i<n;

Y

cf 4]
ﬁFQ(LI‘;7pk’6)_C Z |bl|2u(Q)+a2FQ(LI‘?apka6)+ (—) +] ’
il i<n 6 o

‘“n‘

82

and, as |Ly;|* > ! IL.gi|* —C we finally obtain

0 o (la
Y Ly > BF(L2, pi.8)-C| ) IbiIZM(qH'“”' +a2F“(L€,pk,6)+M+1

i€l igl,i<ng g g 6
Then the proof is finished as in the previous Section using that, in 0%, (g, 6) N D35, we have
2 " 2 p 2
s ot 1@ a2 @ (1aP)+ o (1aP) (B ()a)]
(93¢ LL) (@)= B | Y |b,~|2%<q>+ ol 5 ~K (aF(L2,pi8)+1).
i=1
Indeed, a direct calculation gives
- _ 2R 00r;L;,N 2 - _
(5.2) <aaer/5;L,L> :e’/5< e (an < rloN)) | |‘;”2| )(q)+<88e’/5;LT,LT>(q).

2
For g € {r > —36}, the first term of (5.2) is > % ‘a"z‘ — Kp. Let us look at the second term of (5.2).

r/é

(907 L Te) = S ((90pi Le. L) + L9 (Ial?) + [(L2(p).a) [P @ (1aF) ) -

But

(99p:Le,I2) (9) = (99p: L2 (p). L2 (1) ) (9) + O (@' (1al”) [{L5(p).0) ")
and, first we can choose V small enough so that ¢’ <|q|2) (L2 (p).4) |2 < <|q|2) +¢" (|q|2 (L2 (p).q) |2) , and secondly
Zbibjcfjl'(Q)
Y16l || () +0 [@8F(LE(p) + 0 (lal*) + 6]

The proof of Proposition 5.2 is now complete. 0

(99p:12(p).L2(p) ) (a)

Y
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6. APPLICATIONS TO COMPLEX ANALYSIS

6.1. Statements of the results for geometrically separated domains. In [CD06b] and [CD06a] we proved that the methods
introduced, for the study of the Bergman and Szego projection, by A. Nagel, J. P. Rosay, E. M. Stein and S. Wainger in C?
(INRSW89]) and by J. McNeal and E. M. Stein for convex domains ([MS94, MS97]) can be adapted to pseudo-convex
domains having an “adapted geometry”. The work made in the previous Sections shows that it is the case for completely
geometrically separated domains and thus we have the following sharp estimates:

Theorem 6.1. Suppose Q is completely geometrically separated at py € Q. Let Kg(z,w) be the Bergman kernel of Q. There
exists a neighborhood W (po) of po such that:
(1) Forp e W(po) N, Kg(p,p) ~ H;’ZIF(Lip’s(p),pﬁag(p)), where 8y (p) is the distance from p to dQ.
(2) For pi,p2 € W(po) NQ, for all integer N, there exists a constant Cy depending on Q and N, such that for all lists
Ly ={L},... Lk} (resp 4, = {L%,...L’g}) of length k < N (resp. k' < N) with L{ € B(n(p1),T) U{N} (resp.
L, € B(n(p1),7) U{N}), we have

n
| L2, %2,K8(Z1,22) (p1,p2)| < CNHF(L;T(p])’T,n(pl),7)1“:'/2,
i=1

where T = 0yq(p1)+ 8ya(p2) +Y(m(p1),7(p2)), Y(m(p1),m(p2)) is the pseudo-distance from mt(py) to w(p2) asso-

ciated to the structure of homogeneous space and l; is the number of times the vector fields Lj-r(m ) or Lf(p”’

in the union of the lists £z, and £7,.

T
appear

Corollary. Suppose Q satisfies the hypothesis of Theorem 5.2. Let D be the local domain considered in Theorem 5.2. Then
the Bergman kernel Kp(z,w) of D satisfy all the estimates stated in the Theorem at any point of its boundary.

Using the methods of Section 5 of [CD92] the following result on invariant metrics is easily proved:

Theorem 6.2. Suppose Q is completely geometrically separated at py € dQ. Let us denote by Bo(z,L) (resp. Ca(z,L), resp.
Ka(z,L)) the Bergman (resp. Caratheodory, resp. Kobayashi) metric of Q at the point z € Q. Then there exists a neighborhood
V(po) such that, for all vector fields L € E (E being the vector space spaned by the basis %° (see Definition 4.1), L = L +a,N,
we have, for g € V(po) NQ,

|an|
5&9(‘])7

where the constants in the equivalences depend only on the constant of geometric separation and the data.

BQ(qu) = CQ(qu) = KQ(%L) = F(LTaQaS(q)) +

Remark. The last point of Remark 4.2 and this Theorem show that the structure of homogeneous space we associate to a
completely geometrically separated domain is essentially unique.

Theorem 6.3. Suppose Q is completely geometrically separated at every point of its boundary. Then the following results
hold:

(1) Let Pp be the Bergman projection of Q. Then:
(a) for 1 < p < +eoand s > 0, Pg maps continuously the Sobolev space Lf (Q) into itself;
(b) for 0 < o0 < 400, Pg maps continuously the Lipschitz space Ay (Q) into itself;
(c) for 0 < a < 1/M, Pg maps continuously the Lipschitz space Aq(Q) into the non-isotropic Lipschitz space
I (Q).
(2) Let Pg be the Szego projection of Q. Then:
(a) for 1 < p < +ooand s € N, Ps maps continuously the Sobolev space L{ (0Q) into itself;
(b) for 0 < a0 < 400, Ps maps continuously the Lipschitz space Aq(9€Q) into itself;
(c) for 0 < o < 1/M, Ps maps continuously the Lipschitz space Aq(dQ) into the non-isotropic Lipschitz space

I (0Q).
Note.
(1) Statements (1) (c) and (2) (c) can be extended to all & > 0 with convenient definitions of the spaces I'¢,(Q) and
[y (09Q).

(2) In view of Example 5.1, the previous theorem applies in particular for all lineally convex domains of finite type.

Corollary. Suppose Q satisfy the hypothesis of Theorem 5.2. Let D be the local domain considered in Theorem 5.2. Then all
the results stated for Q in the previous Theorem are valid for D.

Using an idea of M. Machedon [Mac88] we deduce local estimates for the Szeg6 projection:

Theorem 6.4. Suppose Q satisfies the hypothesis of Theorem 5.2. Let Ps be the Szegd projection of Q. Then if f is a
L?(9Q) function which is locally near py in the Sobolev space L}, 1 < p < +oo and s €N, (resp. in the Lipschitz space Aq,
0 < & < 1/M) then its projection Ps(f) is locally near pg in Lf (resp. in the non-isotropic Lipschitz space T'y). In particular
this applies if the Levi form of Q is locally diagonalizable at py.
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Proof. if f € L*(Q) and if y € €~ (dQ) has compact support in a sufficiently small neighborhood of py and ¥y = 1 in a
neighborhood of py, then the subelliptic estimates for [J, and Kohn’s theory ([Koh85, KN65]) implies Ps((1 — x)f) is €
near py, and, denoting P? the Szegd projection of D, (Ps — PP)(x f) is ¢ in a neighborhood of py (see also [Kan90]); the
result follows thus the previous Corollary. 0

6.2. A guide for the proofs of the results of Section 6.1. Let U be a neighborhood of dQ where we can define a projection
7 onto dQ using the integral curve of the real normal to p. We will always suppose that V(pg) C U.

The two notions of “weak homogeneous space” and “adapted pluri-subharmonic function” plays a crucial role in [CDO6b,
CDO06al:

Definition 6.1. We say that the domain Q satisfies the hypothesis of “weak homogeneous space” at a boundary point pg of
finite type 7 if there exist two neighborhoods V (pg) and W (pg) € V(py) and a constant K such that:
(1) There exists 8 > 0 such that, for every p € W(py), V8 € [—1p(p), &), there exists a basis of vector fields tangent to
p inV(py), B(p,0), for which there exists a K-adapted coordinate system
(2) There exists two constants C and o, depending on K and , such that, for ¢ < co, the sets B°(%(p,d), p,0) (asso-
ciated to the coordinate system), B, (%(p,d),p,0) and B, (%(p,6),p, ) satisfy, for all p € W(po) N and all
5 € [—1p(p), &), the following conditions:
(a) for g € B{(p,9d), B;(#(q,6),q9,8) C B{(#(p,0),p,C3), where Bj and B{ denotes one of the sets B, B, or
By
(b) Vol (B§(%(p,28),p,28)) < CVol (B§(#(p,8),p,9)).
Note that, in this Definition the weights F; are defined with M = M’ (7).

Definition 6.2. Let # = {L;,...,L,_1} be a basis of vector fields tangent to p in a neighborhood V(py) of a boundary point
po and 0 < 6 < &. We say that a pluri-subharmonic function H € PSH(Q) is (po,K,c, 6)-adapted to this basis 2 if the
following properties are satisfied:
|H| < 1in Q, and, for all point p € W(py) NQ, p(p) > —38, the two following inequalities are verified for points
q € B, (A,p,0)NQ:
(1) Foral L=Y" ,a;Li,a; € C,

(d0H,L,L) > !

_E |ai|2F(Liapa6)'

\M:

i=1
(2) For & € L4(BU{N}),
\ZH| <K [] F(L,p,8)">.
LeZ
Note that this Definition depends on the values of the vector fields L{’ at points g in Q. But, in the situation of the
applications below (i.e. with a finite type hypothesis) it can be shown that it depends only (up to uniform constants) on the
restriction of the basis on dQ.

The following Proposition follows from the work in [CD06b, CD06a]:

Proposition 6.1. Let Q be a bounded pseudo-convex domain and po be a boundary point of finite type (resp. a bounded
pseudo-convex domain of finite type). Then, if Q satisfies the hypothesis of “weak homogeneous space” at pg (resp. at every
point of its boundary) and if there exists a pluri-subharmonic function 7 adapted to B(p,8) for all p € W (py) NQ and all
de[— %, O] (resp. if this property holds at every point py of Q) then the conclusions of Theorem 6.1 (resp. Theorem 6.3)
hold.

To prove Theorems 6.1 and 6.3 it suffices then to use the properties of extremal bases and to note the two following facts:

(1) The existence of extremal bases and adapted coordinate systems for points of dQ N W (py) allows us to define bases
and coordinate systems for points inside Q (see Remark 4.1);

(2) if p1 € W(po) N, p = m(p1), the sets B;(A(p,0),p1,0), —%p(pl) < 6 < &, defined by g € B{(%A(p,6),p1,0) if
n(q) € By(A(p,68),p,0) and |p(q) — p(p1)| < ¢0 induce a structure of “weak homogeneous space”.

6.3. Main articulations of the proof of Proposition 6.1. In Section 2 of [CD06b] we showed that if the Levi form is locally
diagonalizable then the local hypothesis of the Proposition is satisfied, and in [CD06a, CD06b], even if the statements are
given in the case of a locally diagonalizable Levi form, the proofs of the estimates on the Bergman and Szeg6 projections are
done only using the hypothesis of the Proposition. We just give here the main articulations of the proofs:

o The Bergman kernel estimates on the diagonal is done using Theorem 6.1 of [Cat89] and the change of coordinates
®,, adapted to the basis Z(p,S(p)).

e The estimates on the derivatives of the Bergman kernel outside the diagonal follow the methods developed by A.
Nagel, J. P. Rosay, E. M. Stein and S. Wainger [NRSW89] and J. Mc Neal [McN89] for the pseudo-convex domains
of finite type in C2, and used for some generalizations (see the introduction) in particular by J. Mc Neal [McN94]
in the case of convex domains. It consists to obtain uniform local estimates for the Neumann operator .4” and then
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to apply the ideas developed by N. Kerzman [Ker72] in the study of the strictly pseudo-convex case. This requires
scaling.

The starting point is to write the Bergman kernel Kf} using the Bergman projection. More precisely, if y¢ is a
radial function centered at { with compact support in Q and of integral 1, and Péz is the Bergman projection of

Q, then D*DVKR(w,{) = Di P (DZ We)(w). Then, P& being related to the d-Neumann problem by the formula

sz =Id— ®.4 9, where ¥ is the formal adjoint to @ and .4 the inverse operator of d9* + 0*d, the estimates on
sz are obtained via estimates on .#". To obtain these estimates, we use the theory developed by J. J. Kohn and L.
Nirenberg [KN65] which gives local Sobolev estimates for .4 if there exists a local sub-elliptic estimates for the
0-Neumann problem and the famous work of D. Catlin ([Cat87]), where it is proved that the existence of an adapted
pluri-subharmonic function implies the existence of a sub-elliptic estimates for the 0-Neumann operator.
The study of the Bergman kernel is not directly done in Q but in ®,(€), where ®, is a coordinate system adapted
to the basis B(p,dya(p) + 6yalq) + y(n(p),m(q))), where ¥ is the pseudo-distance on dQ. One difficulty is to
see that all the constants appearing in the estimates and all the domains where the estimates are done are uniformly
controlled.

e The estimates for the Bergman and Szego projectors are obtained adapting the methods developed by J. Mc Neal and
E. M. Stein in [MS94, MS97] (and also [NRSW89]), related, in particular, to the theory of non isotropic smoothing
operators, to non convex domains.

Remark. The results on the Szegd projection are thus obtained adapting the theory of NIS operators to our settings. The Ag
estimates, for example, for the domains considered by M. Derridj in [Der99] can also be obtained using the estimate for [J;, of
Derridj’s paper, the estimate on the Bergman projection derived from the fact that these domains are completely geometrically
separated and the results on the comparison of the Bergman and Szego projection obtained by K. D. Koenig in [Koe07].

7. EXAMPLES AND ADDITIONAL REMARKS

7.1. The lineally convex case. In this Section we show, with some details the statements made on lineally convex domains
in Example 3.1, Example 4.1 and Example 5.1.
Suppose Q = {p < 0} is lineally convex near py € dQ, a point of finite type, and W is a small neighborhood of py. (Z;);

is a coordinate system centered at pg such that Z, is the complex normal to dQ at pg, and aZ ~linW.

We begin with the statement in Example 3.1 (1). Let p € dQNW and 8 > 0. Let (z;); be the d-extremal basis (considered
as a coordinate system) at p defined by M. Conrad in [Con02] (the main results concerning this basis are summarized in
[DF06]), which is centered at p. To be coherent with our previous notations, we suppose that the complex normal to dQ at p
is z, (in M. Conrad paper this normal is z7).

To each vector v = (ay,...,a,—1,0) € C" we associate the (1,0)-vector field, tangent to p,

d d
(7.1) L, *Zal +ﬁv :VﬁLﬁva_Zn

-1
d
(thus B, = —V(p) (65) )-
Ifvi = (6;) g 1 S i< n—1, we denote L; = Ly, = % + Blaizl Note that the vector fields L; depend on p and o
(L; = Li(p, 8)) and are the vector fields of a basis of the complex tangent space to p in W.

Proposition 7.1. There exists a constant K such that, for all p € dQNW and all § < &, & small enough, the basis (Li(p,9));
is (K, 0)-extremal at p.

Proof. p and § being fixed, we drop them in the notations. First we express the weights F(L,, p,d) in terms of the vector
field V of (7.1).

Lemma. Let . be a list composed of a L, and 8 L,,

v|| < 1. Then

Zp)=2vVPp)+ Y ¥V (p)

o'+p'<o+p
where * are functions of €*"~%*B) norm uniformly bounded in p and §.

Proof. Look first at ¢, =2 [Ly,L,] (9p): ¢y = —2L,(By) 9 _2LV(p)+=V(p)=2VV(p)++V(p). The Lemma is then
proved by induction. 0

Corollary. F (L,,p,0) ~ ):,|ai|2F(Li,p, 0) uniformly in p and §.
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Proof. It suffices to prove this formula when ||v|| = 1. By the Lemma
2
vavs(p) |7

F(Ly,p,0) =~ Z 5

2<o+B<m

o+p a+B
B y %(P)(F—i— Av)ia=o o
B )

2<o+f<m

) 2
(T(p, v,6) ) ’
where 7(p,v,8) is Conrad’s notation.
Using properties (iii) and (iv) of Proposition 3.1 of [DF06] we get

F(Ly,p,5) i i
)p) = . eV
' 2 T(pa Vi, 6)2
As all constants are uniform in p and 8§ the Corollary is proved. 0

To finish the proof of Proposition 7.1 we have to prove property EB, of Definition 3.1. For example, let us look at the
bracket [L;, L;]:

_ Jd 5 0 d 0 d —\ d 2] 2]
L,’,L‘ = —= P— i) =— -_— i — i — =a— b—.
ILi,L] ( az,+ﬁ’az,,>(ﬁ)8zn+<8z,-+ﬁazn) (B)az” ”az,,+ 0Z,
Let £ € %y (Li,...,L,—1). As, for all k, F,;l/2 > 6 and (9‘97" = ):oc,'a% with @; uniformly bounded in €™ norm, it is enough

to show that s s
(|-Lal+12bl) (p) < SF*(p,S)F, /( )]/( )

e 90\~ ) -
12 =0.a(p) = 2£-(0) (52)  (p) and.if |2] = 1. Lua(p) = 222 (0) (7
i0%j
the result follows from Lemma 3.2 of M. Conrad’s paper [Con(02] which states

) 9%p . Thus, in those cases,
azk8z,

aOhLBp 1 a;+Pi (a+B)/2
7.2) <o (7) ~ 8F(p,o ,
( g | S 5ns) %)
the last equivalence resulting of the proof of the previous Corollary. The case of a general . is easily done similarly. O

Now let us prove the statement made in Example 5.1 (1). The construction of the adapted plurisubharmonic function is
inspired by the McNeal’s construction for convex domains, using support function, written in [McNO2]. We use the support
function for lineally convex domains constructed by J. E. Fornaess and K. Diederich in [DF03]. The right behavior in the
normal direction is obtained, as in Section 5.2, adding the functions KeP/9 and K |z|*.

Consider the support function constructed by K. Diederich and J. E. Fornaess in [DF03] at the point p:

2m /
: 1 3/p(0)
Sp(ziyeevzn) = *SZMZJGJ' Z al 9% a
j=2 lal=j, 0, =0 "

= () o (i)

where A, is a € function, uniformly bounded (in p), such that A,(0) = 0. Shrinking W (po) if necessary, S, is uniformly
bounded on W (py).

Then there exists a constant My (> 8n and independent of p and 0) such that, if § =
(1) Re(S) <0
(2) Re(S(z)) < —n, if there exists i < n such that |z;| > F(p,8)~"/%;
(3) —1/4<Re(S(z)) ifz € cP(p,8) = {z such that |z < cFi(p,8)" /2, i=1,...,n}.
Let F be the function defined by F(z) = Y= Fi(p,8) |z 2
and x(x) = ¢! — 1 on] — 1, +oo[. Define then

H, :x(FnLS—%IanZ).

Clearly H; = 0 on a neighborhood of the boundary of P(p,d). Thus we denote by H the function equal to H; in P(p,d) and
0 outside. Then:

(1) Supp(H) C P(p,90);
(2) |H| < Co;

M()EKC(SP) .
—5 =, we have:

, and x be the convex function such that y =0 on | —co, —1]
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(3) On P(p,d) we have
_ nzl g5 nzl 9 n—1 )
. L > _ |4 F .
<aaH,izlalaZi,izlalaZi> >y (F+5- 35l )i; ail Fi(p, )

We now estimate (90H;L,L) in P(p,8) for a vector field L= biL) where LY = 5% — B 5%, for i < n, and L{} = N the

complex normal vector (recall that the extremal bases are linear combinations of these L?). Denote L = L; + b,N, so that L
is tangent to p. Then

(7.3) (00H;L,L) = (90H;L;,L;) +2Re (by (9H; Ls,N)) + |by|* (9IH;N,N) .

The last term of the right hand side of this equality is > —O (|b,,|2)(’ (F +S— % |z,,|2) lz) and, if (L;) is the 8-extremal
basis at p and L; = ):,;’;ll a;L;, we have

_ B _ n—1 J _ _ 9 B
(00H;L;,N) = <88H;izla,~a—Zi,N>+<88H;(Zaiﬁ,~) az,,’N>'

Using (7.2) the first term of the right hand side of this equality is O (% x (F +S§ - % |Zn|2) ) , and, using also the fact that

Bi(p) = 0 implies B; = O (8F;(p,8)"/?), the second term is O (%7(' <F+Sf 5 |zn|2) ):,|ai|l*}(p,5)1/2). Notice that, by
extremality, ¥ |a;| Fi(p,8)"/? ~ F(L;, p,8)"/?, thus, there exists a constant K; such that

2
2Re (by (90H;Le,N)) + |by|* (JOH;N,N) > —K1 x' (F+S——| 2l ) ('%"J |l;”|F(LT,p,5)1/2>.

52

Let us now look at the first term of the right hand side of (7.3):

2
(00H;L;,L7) = x'(F+sf§|zn|2) <aé <F+Sn|1§2|>;LT,L7>+

2
<
Lr <F+Si’l|5n2| )

A > x’(F—i—S 52l )[ Z|a,| F(p,d) §‘<39|ZH|Z;LT,L_T>

2

n
+%// <F+S* ﬁ |Zn|2)
= A+B.

Shrinking W (po) if necessary, we have

|

Z lBl

Y]

x’(FJrS <5 |2l ) g lai|* Fi(p, & ?O_,’Z

To estimate B, write

Lo (Fas—nl2L nzl O (pis—nlel nZl B: a Fisonlol
‘ 82 ‘9z 82 b 82 )
Then the first term of the right hand side of this equality is O (F(L<, p, 8) 1/ %) by extremality (use (7.2)), and
d [ ! My 9 z d
F+S—n | =0(F(L 2y 42 S 7).
az,,( +8-nigy | =0 (F(Lep.8))+ 55 - a0 ) oW 5737, (@)

But, if W (po) i 3% (i) | € 1/2,3/2) and.in P(p, ), 5
Thus, as " = x’, for § small enough, we have, by the choose of My,

<

0 —
a7, (2nZn) Fn

_ o n—1
(90H:Le, L) > 1/ (F+Sf % |z,,|2) Y al* F(p, ).
i=1

Using again the extremality of the basis (L;), we conclude that

S bul® | 1B
(20H:L.L) > ay! (F+5— 55 [aP) [F(Lf,pﬁ)z@'y' AL 'F(Lf,p,és)'/zl ,
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and, using Cauchy-Schwarz inequality, we get

1B
52

(doH;L,L) > By (F—i—S— % |Zn|2) lF(anﬁ) —K3

| S|

In particular, on cP(p, §), we have
|bu”
6%’

(00H;L,L) > yF (L, p,8) — K

- _ 2
and (d0H;L,L) > —K‘bﬁ"! on P(p,d).
If we note that choosing ¢ sufficiently small we have F (L, p,8) ~ F(Lz,q,8), we get:
Proposition 7.2. There exist two constants 'y and K depending only on the data such that, if L= L +b,N = Z;’;ll biL? +b,N,

- _ 2 - _ 2
we have <88H;L,L> > —K‘ba”z‘ , and, if ¢ € ¢cP(p,8), we have <83H;L,L> (q) > vF(L¢,q,0) — K%.

To finish the construction of the plurisubharmonic function adapted to the structure of Q at p, as in the proof of Theo-
rem 5.1, we have to add functions of the precedent type to get a local function. Thus, we cover dQNW (pg) with a minimal
system of polydiscs §P(pid), pr € IQNW(po) and, then, there exists an integer J, independent of &, such that every point
of Q belongs to at most J polydiscs P(py,0). Indeed, there exists a constant C such that

P(p.28) C 5P(p.8) C P(p,cC8)
and the polydiscs P(p, ) are associated to a structure of homogeneous space.

Consider H = ) H),, where the function H), is the one considered in the previous Proposition relatively to the point p = py
(notice that ||H|| < JCp). Then, shrinking eventually W (py) and choosing p equivalent to the distance to the boundary with
a constant close to 1, for all point ¢ € W(pg) N {0 > p > —58} there exists ko such that g € P(py,,5) and the set E(q) of
index k so that ¢ € cP(py, 8) has at most J elements and we have

2

- b,
(90H:LL) (¢) > 7F (Le.q.8) ~ K121

Moreover, without conditions on g, we have

|bn?
6%

(doH;LL) (q) > —KJ

and dJH(q) = 0if p(q) < —28.
We now evaluate <88ep/5;L,i> in W(po):

B _ 1 1,!,1 o n—1 _ |bn|2
(906212 L,L) > e/? lg <5i’j21bibjc?j+9teizl b,»bn<88p;L?,N>> + 552

c?j being the coefficient of the Levi form in the direction (L?,L_S?). As the level set of p are pseudo-convex (in W(py)), we
get

. _ 1 |b|*
<aaeP/5;L,L> > oP/8 (5% —K1> .

Consider now H = H + K;eP/% + K, |z|2, for K; and K, large enough (independent of §). Then A is plurisubharmonic on
QMW (po), uniformly bounded (with respect to §) and satisfies, on W (po) N {0 >p > —58}

|bal®
26%°
To change §6 in 24 it suffices to apply the relations between F(.,.,d) and F(.,.,0).

Finally, we extend A to a bounded plurisubharmonic function in Q using the function ©¥; of the end of the proof of
Theorem 5.1.

(90H;L,L) > yF (Ls,.,8) +

7.2. Example of non geometrically separated domain. The example presented here is the domain of C? introduced by G.
Herbort in [Her83]:

Q= {Z € C3 such that Rez; + |22|° + |z3]° + |22)* 23] < 0} :

Let L) = 3% +ﬁia%, i=23,B=— (6|zz|45+2|13|25) and B3 = — (6|Z3|4E+2|zz|25) so that (L9,LY) is a basis
of (1,0) tangent vector fields in a neighborhood of the origin.
The fact that this domain is not geometrically separated at the origin is a consequence of the stronger following result:
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Proposition 7.3. For all real constants K and C, there exists & > 0 such that for all §, 0 < 8§ < &, there does not exist a
basis (L‘?,L‘zs) of (1,0) tangent vector fields in a neighborhood of the origin of €°® norm bounded by C satisfying property
EBj; of Definition 3.1, for the constant K, at the origin.

Proof. Let L be a (1,0) tangent vector field in a neighborhood of the origin, and, with our usual notations, F(L,0,6) =

ap) |21 )
Lzec(L) ’ 5)(5 2) ’ (0). We write L = aL + bL).

Lemma. F(L,0,8) ~ WJF (%)1/3_

Proof. Because ¢;; = 2[L,L](dp), it is easy to see that:

crz(0) = LCL_Z_(()) =Ley7(0) = 0_5 B

LLc;;(0) = LLe; 7 (0) = 0 and LLc; 7 (0) = LLe; 7 (0) = 4|a(0)b(0)[*;

e There exists a constant Cy depending only of the €® norm of a and b (i.e. of L) such that, if |.Z| = 3, |.Lc;;(0)] <
Cola(0)b(0)];

e There exists a constant o depending only of the € norm of L, such that F(L,0,8) > agd~'/3. Indeed, the origin

being of type 6, this follows from a result of T. Bloom [Blo81] and a compactness argument.

Then, the Lemma follows the fact that, for all x > 0, (%)2/ 3 < ﬁ + (%) 1/3. O

We now finish the proof of the Proposition. Let & be small enough. Suppose that there exists a (K, §)- extremal basis
at the origin, (L?,L3), the € norms of the vector fields bounded by C. Let L = otL{ + BLS and L' = o/L? + B'LS with
a, 3,0/, B’ € C chosen so that L(0) = L9(0) and L'(0) = L3(0). Then, by extremality of (L‘?,lf) and the Lemma, we get

1

1/3
(@ F(L.0.0)+ B F(13,0.8) =k F(L.0.8) = (5 )

and

113
o' PF(L3,0,8) +|B'| F(L3,0,8) ~k F(L',0,8) ~c (5) .

Similarly, the extremality would imply
1\ 1/3
F(L+L,0,8) > o+’ F(L8,0,8)+ |B +B'| F(L3,0,8) Sc (3) :

But the Lemma gives F(L+L',0,8) ~¢ # which is a contradiction for 6 small. O

7.3. Additional remarks. Let Q be geometrically separated at p € dQ. In Definitions 3.3 and 3.4 we defined the pseudo-
balls B¢(p,8), B (p,8) and B¢, (p, 6), which are equivalent by Proposition 4.1, and we expressed the Bergman kernel at
(p, p) with their volumes.

Let (z;) be the coordinate system adapted to the extremal basis (Li);<;c, | = (Lf’a) at p. B(p,0) is defined (in the

coordinate system) using only the directions of the extremal basis. Let us now define a new pseudo-ball using all the directions
of the linear space generated by the vector fields L; (i.e. the space Ey) (compare to the last point of Remark 4.2):
For |Z| =1,Z € C", define Ly = Z?;ll Z;L; 4+ Z,N and (in the coordinate system (z;))

Dz(p,8) = {ocZ such that |of] < CF(Lz,p,5)’1/2}

and
1Z]=1
Then, property EB; of extremality for (L;), implies that these pseudo-balls D(p, ) are equivalent (in the sense that they
define the same structure of homogeneous space) to the previous ones. Indeed, if z € Dz(p, d),
—1/2
z(LIZP F(Lip.s))

|zil = |azi] S <F(L;,p,9),

2
and use Propositions 4.1 and 4.2. Conversely, if z € B(p,0), z#0, and Z = z/||z||, then F(Lz,p,5) ~ ZﬁF(Li,pﬁ) <

ncz

A thus ||z]|* < nc?F(Lz, p,8) and we conclude as before.

Note that this shows that, if Q is completely geometrically separated at py € dQ then the Bergman kernel K(p,p) at a
point p near py is equivalent to the inverse of the volume of D(p, §).

If Q is not geometrically separated at po choosing a coordinate system and a basis of tangent (1,0) vector fields conve-
niently associated (in a sense to be defined), one can always define a “pseudo-ball” D(p, §).
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Let us do this, for example, for the domains considered in the previous Section, at the origin with the canonical coordinate
system (z;) and the vector fields L? (note that (z;) is not adapted to the basis (L?) in the sense of Definition 3.2 because, even
if condition (3) is satisfied, the conditions on the derivatives of p are not).

A direct computation shows that, at the point p5 = (—8,0,0), the volume of D(ps, ) is Vol (D(ps,8)) ~ (8> log (3 ))
(uniformly in §), thus B(pg,0) and D(pg, 0) are not equivalent, and the result of G. Herbort ([Her83]) shows that the Bergman
kernel K of the domain satisfies K (pg, ps) ~ Vol (D(ps,8)) .

Then it is natural to ask if, for that example, the “pseudo-balls” D(p, §) define a structure of homogeneous space. Unfor-
tunately this is absolutely not the case. Indeed, in D(0,8) consider the two points p = (0,—a8'/4,0) and ¢ = (0,0,5'/4)
(for o small enough, these points are in D(0,9) for all §, 0 < & < &) and estimate a constant K so that ¢ € D(p,K9). In

the coordinate system centered at p, we have ¢ = (O, ad'/e, a5'/6) =208'/° (0, 1/V/2, 1/\/5); then calculating ¢;; for

L= \%L? + %Lg we see that

-1

25-2/3
F(L,p,K8) > % ie. F(Lp,K8) /> <VK8'/3.

Then g belongs to D(p,K§) implies K > §~/3.

8. APPENDIX

The following Lemma is an improvement of Lemma 3.9 of [CDO6b]:

Lemma 8.1. Let B; be the unit ball in C/. Let K, be a positive real number, M and n two positive integers. There exists a
constant C(K) depending on Ky, M and n such that, for j=1,...,n— 1, if g is a non negative function of class € on B;

satisfying supBi{‘D“ﬁg(w)‘ ,|oe+ B| < M} < Ky, where D*F = Lol then, for all (a°,B°) € (Nj)z, |a® + BO| < M, there

owowB’
. : . 2
exists a € N/, 2|al < |a® + BO| such that, denoting A® the differential operator [[._, A%, where A; = B__ is the Laplacian
8 P i=15% 707 4
= 0%
in the z; coordinate,

‘2|“0+ﬁ0|

1
A%g(0) >

> Gy |75

Note that there is no absolute value in the left hand side of the inequality.

Proof. We only indicate how the proof of Lemma 3.9 of [CD06b] has to be modified.
Without loss of generality, we can suppose |D%Pog(0)| = Max| g (40 0| |D*F(0)|. By induction, it is enough to
prove that there exist two constants ¢ and C, depending on M and n, such that one of the following two cases holds:

First case there exists a € N/, 2|a| = | + B°| such that A“g(0) > ¢ D“Oﬁog(O) ;

Second case  there exists (&, B) € (Nj )2,

&+E‘ < |a®+ B such that

= 1 00 —|a+B|+|a+B0]+1
D% g(0)| = = D™’ (0)| .

Let p = |a® + B°
formula:

,E=ue, uelo,1], e = (&), |&| <1, and, as in the proof of Lemma 3.9 of [CDO06D] let us write Taylor

p—1
Z u* Z «D"P g(0)e*&P + u» Z *D*g(0)e%&P + uP*'R(e, 1)
k=0 |a+B|=k lo+Bl=p

= A1(8) +uPAx(E) + uP IR (e, 1),

where * are multinomial coefficients and |R| < K| K>, K, depending only on M and n.
Remark now that, g being non negative,

*){ If there exists { ~ ‘D“Oﬁog(O)‘ such that A>(§) + uR(e, 1) < —cy ‘D“Oﬁog(O)
case hold.

(%)

, ¢1 > 0, then the Second

In the proof of Lemma 3.9 of [CD06b] we introduced a multi-index ¢ (|¢| = p), depending on g, and complex numbers &;
(Vi, |&| > ¢(M,n)), depending on g and K (M, n), such that

‘D‘”O[’Og(o)‘
K

(8.1 Y

lo+Bl=p
o+B#c

«DPg(0)e%gP ‘ <
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and
030
i ‘D“ b g(O)‘
(8.2) Y «D*g(0)e%ef| >4l —
a+p=c
To finish the proof, we show now that, either we can find € and u satisfying the hypothesis of (*), or we are in the First
case.

030 030
DY B g(0 DY B g(0
We take it = JT;;()L Then |A7 (&) + uR(&E)| > JTg()[ and A»(&) + 1R(E) has the sign of ¥, g «DPg(0)e*&P.
If Yo g *D*Pg(0)e*&P < 0, then (*) is satisfied, thus we consider the case where Yotp=c «D*Pg(0)e%eP > 0.

If there is an index i such that ¢; is odd, taking &’ defined by &} = ¢; if j # i and &/ = —¢;, then

— 4
Z *D(Xﬁg(o)glag/ﬁ < _? ‘Daﬂﬁog(o)
o+f=c

)

and, by (8.1), (*) is verified.
So we suppose that for all i, ¢; = 2c§, and we write

Yy «DBg(0)e'%e” = Y T Ale), . e,
a+B=c k=0
with |€/| = ||, and choose ¢ < 4/K. We separate two cases.
First suppose that A, (&, .., &) < ¢ ‘Da"ﬁ"g(())‘. If ¢; = 0 then (8.2) implies
1

Z «D%Pg(0)e%eP < —¢
o+PB=c

030
D*P'4(0)

which gives (*). Thus suppose ¢1 # 0. Let
&y ={€, suchthat g =¢,i> 1, & = Ve, with 91 = 1}.
Thus
Y Y «Dg(0)g 78’ = 1Al e
e'eéya+p=c :
Then, by (8.2), there exists €' € & such that
) *D“ﬁg(O)SIO‘gﬁ <"
a+p=c

0R0
D“ﬁg(o)‘,

(recall || > ¢(M,n)) and (*) is verified as before.

Suppose now A, (&,....&,) > ¢ D"‘Oﬁog(O) ’ Write
1

2
Ai,l =) 852 Al(e,... ).
k=0

As before, if c; = 0 or if A2 (&3,...&,) <"
©

DB’ g(O)‘ then we can change & such that we obtain

1 / / I
AC,I (82,...8n) S —C

030
D“Pg(0)].

and we conclude that (*) is satisfied. If A5,2(837 &) > D“Uﬁog(o)

variable. Then, by induction, if the process does not stop, the last step shows that if (*) is not satisfied, then the inequality on
D g(0) implies that we are in the First case. O

, we do another time the same thing, on the third
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