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EXTREMAL BASIS, GEOMETRICALLY SEPARATED DOMAINS AND APPLI CATIONS

PHILIPPE CHARPENTIER & YVES DUPAIN

ABSTRACT. In this paper we introduce the notion of extremal basis of tangent vector fields at a boundary point of finite type of
a pseudo-convex domain inCn, n ≥ 3. Using this notion we define the class of geometrically separated domains at a boundary
point and we give a description of their complex geometry. Examples of such domains are given, for instance, by locally lineally
convex domains, domains with locally diagonalizable Levi form at a point or domains for which the Levi form have comparable
eigenvalues near a point and moreover we show that geometrically separated domains can be localized. We also give an example
of a non geometrically separated domains. Next we define whatwe call “adapted pluri-subharmonic function” and give sufficient
conditions, related to extremal basis, for their existence. Then, for these domains, when such functions exist, we prove global and
local sharp estimate for the Bergman and Szegö projections. As an application, we strengthen a result by C. Fefferman, J. J. Kohn and
M. Machedon ([FKM90]) for the local Hölder estimate of the Szegö projection removing the arbitrary small loss in the Hölder index
and giving a stronger non-isotropic estimate.

1. INTRODUCTION

The study of the regularity with sharp estimates for the Bergman and Szegö projections for pseudo-convex domains inCn

became very active for domains of finite type when D. Catlin proved his fundamental characterization of subelliptic estimates
([Cat87]).

Quite quickly, the case of domains inC2 was completely solved by D. Catlin in [Cat89], A. Nagel, J.-P. Rosay, E. M.
Stein and S. Wainger in [NRSW89], M. Christ in [Chr88] and by C. Fefferman and J. J. Kohn in [FK88] and J. Mc Neal in
[McN89].

In higher dimensions, the situation is more complicated and, until now, there are only partial results. One of the main
difficulties is the description of the geometry of the domain: there are some special basis of the complex tangent space at
the boundary playing an important role in this description and also in the Lipschitz estimates of the projectors. Thus the first
results concern domains for which these basis are more or less evident. For example, the class of domains for which the Levi
form have rank larger thann−2 was studied by M. Machedon in [Mac88] (see also S. Cho [Cho94, Cho96], [AC99]) and,
even in that case, the situation is not so simple. An other example is given by decoupled domains, treated by several authors
(see for example [McN91], [CG94]).

A typical example where the choice of the special basis is essential, and not evident, is the case of convex domains inCn.
In [McN94, MN02] J. Mc Neal introduced some special basis (calledε-extremal in [BCD98]) and gave a description of the
complex geometry with the construction of a pseudo-distance near the boundary related to these basis. With that geometry,
and a construction of a “good” pluri-subharmonic function,he proved sharp point-wise estimates for the Bergman kerneland
its derivatives. Always using the geometry related to thesebasis J. Mc Neal and E. M. Stein ([MS94] and [MS97]) proved all
sharp estimates for the Bergman and Szegö projections.

More recently similar results were obtained, when the Levi form have comparable eigenvalues, by K. Koenig in [Koe02]
and S. Cho in [Cho03], [Cho02b].

In [FKM90] C. L. Fefferman, J. J. Kohn and M. Machedon studied the case where the Levi form is locally diagonalizable
near a pointp0 of the boundary. They solved thē∂b-Neuman problem and deduced that iff is aL2(∂Ω) function which is
locally in the classical Lipschitz spaceΛα (nearp0) then, for allε > 0 it’s Szegö projectionS f is locally (nearp0) in Λα−ε
(an application of our theory will remove the loss ofε in this estimate and get, in fact, a better non-isotropic estimate).

The main idea of the present paper is to introduce a general notion of “extremal basis” of the complex tangent space at a
boundary point of a pseudo-convexdomain inCn, n≥ 3, generalizing theε-extremal basis of the convex case. With this notion
we define a class of pseudo-convex domains, containing all previously studied classes, called “geometrically separated”, for
which a good family of extremal basis exist near a point of theboundary. The fundamental properties of extremal basis allow
one to prove that, for these domains, there exists an associated structure of homogeneous space on the boundary (and an
extension of that structure inside the domain) which describes the complex geometry of the domain. An important property
of domains which are geometrically separated at a boundary point is that this structure can be nicely localized (see the end of
Section2 for more details).

Moreover, when special pluri-subharmonic functions (called “adapted pluri-subharmonic functions” in this paper) exist,
this structure is used to obtain sharp global and local estimates for classical analytic objects as Bergman kernel, Bergman
and Szegö projection and invariant metrics. The existenceof such adapted pluri-subharmonic functions for geometrically
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2 PHILIPPE CHARPENTIER & YVES DUPAIN

separated domains is not evident in general. For example, ifthe domain is locally convex, this is done using special support
functions (see [DF99, MN02]) which cannot exist, in general, without convexity. Here we prove their existence, under an
additional condition (which is satisfied, for example, whenthe Levi form is locally diagonalizable) on the extremal basis, for
the domain and also for the localized one (see the end of Section2 for more details).

2. NOTATIONS AND ORGANIZATION OF THE PAPER

In all the paper,Ω = {ρ < 0} denotes a bounded domain inCn, n≥ 3, with aC ∞ boundary, andρ ∈ C ∞(Cn) is a defining
function ofΩ such that|∇ρ | = 1 on∂Ω. We denote byN = 1

|∇ρ | ∑ ∂ρ
∂ z̄i

∂
∂zi

the unitary complex normal vector field toρ (i.e.
Nρ ≡ 1 and‖N‖ ≡ 1).

For each pointp of the boundary let us denoteT1,0
p (∂Ω) the subbundle ofTp(∂Ω) of tangential complex vectors and

T0,1
p (∂Ω) its conjugate. As usual, we will say that a family(Li)1≤i≤n−1 of C ∞ vector fields is a basis of the complex tangent

space at∂Ω in a open neighborhoodV ⊂ ∂Ω of a pointp0 in ∂Ω if it is a basis of sections ofT1,0(∂Ω) in V (i.e. Li(ρ) ≡ 0
in V, a condition which is independent of the defining function).

Clearly, allC ∞ vector fieldL in a open neighborhoodV ⊂ ∂Ω can be extend in a open neighborhoodV(p0) ⊂ Cn so that
L(ρ) ≡ 0 onV(p0). Of course this extension depends on the defining functionρ , but all the results we will state will be
independent of such a choice. Thus, in all the paper, the tangent vector fields considered inV(p0) are always supposed to
annihilateρ in V(p0), and we will use the terminology of “vector fields tangent toρ” for this property.

Let L andL′ be two(1,0) vector fields tangent toρ . The bracket[L,L′] being tangent toρ , it can be written

[L,L′] = 2
√
−1cLL′T +L′′

whereT is the imaginary part ofN andL′′ ∈ T1,0
p (∂Ω)⊕T0,1

p (∂Ω). ThuscLL′ = [L,L′](∂ρ) =
〈
∂ρ ; [L,L′]

〉
. The Levi form

of ∂Ω at p is defined as the hermitian form whose value at(L,L′) is the numbercLL′ . The pseudo-convexity ofΩ means that
this hermitian form is non-negative. If(Li)1≤i≤n−1 is a local basis of(1,0) vector fields tangent toρ , (cLiL j )i, j is then the
matrix of the Levi form in the given basis. This basis will be generally denoted(ci j )i, j .

Let p0 ∈ Ω andV(p0) be a neighborhood ofp0 in C
n. If W is a set ofC ∞ (V (p0)) (1,0) complex vector fields,L (W)

denotes the set of all listsL =
(
L1, . . . ,Lk

)
such thatL j ∈W∪W, and, forl ∈ N, Ll (W) denotes the set of such listsL of

length|L | = k∈ {0,1, . . . , l}. Moreover, if|L | = k≥ 2, we denote

L (∂ρ) = L1 . . .Lk−2
(〈

∂ρ ,
[
Lk−1,Lk

]〉)
.

Let L be aC ∞(V(p0)) (1,0) complex vector field tangent toρ andM ≥ 2 be an integer. We define the weightFΩ
M (L, p,δ ) =

FΩ(L, p,δ ) = FΩ(L) associated toL at the pointp∈V(p0) and toδ > 0 by

FΩ(L, p,δ ) = ∑
L∈LM(L)

∣∣∣∣
L (∂ρ)(p)

δ

∣∣∣∣
2/|L |

.

Moreover, for the complex normal directionN we defineLn = N and FΩ(N, p,δ ) = δ−2. When there is no ambiguity
(typically when there is only one domain) we will omit the superscriptΩ.

Note that, with the conditions onρ , the functionsL (∂ρ) restricted to∂Ω does not depend on the choice of the defining
functionρ . Thus, as the weights will be large, by the finite type hypothesis, and considered (except in some technical details
of proofs) inδ -strips near the boundary, they are intrinsically attachedto the boundary of the domain and does not depend of
the defining functionρ .

Thus the defining functionρ of Ω is suppose to be fixed and the numberM also. When we say that some number depend
on “ϑ ” and on “the data”, we mean that it depends on “ϑ ”, n, M, andρ but neither on the pointp in V(p0) nor onδ ≤ δ0.

If B = {L1, . . . ,Ln−1} is aC ∞ basis of(1.0) vector fields tangent toρ in V(p0), andL ∈ L (B∪{N}), we denote

F(p,δ )L /2 =
n

∏
i=1

F(Li , p,δ )l i/2,

wherel i = l i(L ) is the number of timesLi or Li appears inL , i ≤ n−1, andln = ln(L ) the number of timesN or N appears
in L (and thus|L | = k = ∑n

i=1 l i).

The organization of the paper is as follows:
In Section3 we define the notion of extremal basis and give some examples.Then we give their basic properties and, in

Section3.3 we prove the following fundamental property of a extremal basis at a point of finite type: under this hypothesis
there exists a coordinate system which is adapted to that basis in the sense that all the derivatives of the matrix of the Levi
form in that basis are controlled by the weights attached to the extremal basis. We give also some sufficient conditions of
extremality for a given basis, useful for some examples. Finally, in Section3.5we show how the existence of extremal basis
can be localized in the sense that, near a boundary pointp0 of Ω of finite type, if there exists extremal basis at every boundary



EXTREMAL BASIS, GEOMETRICALLY SEPARATED DOMAINS 3

points nearp0, then one can construct a small pseudo-convex domainD of finite type inside the original domain, containing
a piece of the boundary ofΩ in its boundary such that there exists extremal basis a everypoint of the boundary ofD.

In Section4 we define the notion of geometrically separated domains at a point p0 of its boundary and give examples.
Then we show that a geometrically separated domain is automatically equipped with a local structure of homogeneous space
on its boundary. In Section4.3we prove that the structure of geometrically separated domain can always be localized (in the
sense described above).

In Section5 we study the existence of a pluri-subharmonic functions adapted to a given geometrically separated domain.
In particular, we prove their existence when the domain is “strongly” geometrically separated at a pointp0 of its boundary,
and we prove that, in this case, such function exists for the localized domain at every point of its boundary.

In the last Section (6) we show that all the sharp global and local results for Bergman kernel, Bergman and Szegö pro-
jections and invariant metrics can be established for geometrically separated domains when there exists adapted pluri-
subharmonic functions. The local sharp estimate of the Szegö projection when the Levi form is locally diagonalizable is
an example of these results.

3. EXTREMAL BASIS

3.1. Definition and examples.

Definition 3.1. Let Ω andV(p0) defined on Section2. Let B = {L1, . . . ,Ln−1} be aC ∞ basis of(1,0) vector fields tangent
to ρ in V(p0) andM an integer. Letp∈V(p0) and 0< δ . We say thatB = {L1, . . . ,Ln−1} is (M,K, p,δ )-extremal (or simply
(K, p,δ )-extremal orK-extremal) if theC 2M norms, inV(p0), of theLi are bounded byK, the Jacobian ofB is bounded
from below by 1/K onV(p0), and the two following conditions are satisfied:

EB1 For any vector fieldL of the formL = ∑n−1
i=1 aiLi , ai ∈ C, we have

1
K

n−1

∑
i=1

|ai|2F(Li , p,δ ) ≤ F(L, p,δ ) ≤ K
n−1

∑
i=1

|ai|2F(Li , p,δ ).

EB2 For all indexi, j,k such thati, j < n, k≤ n and all listL of LM (B∪{N}),

F(Lk, p,δ )1/2

∣∣∣∣L a
( )

k
( )

i ,
( )

j
(p)

∣∣∣∣≤ KF(p,δ )L /2F(Li , p,δ )1/2F(L j , p,δ )1/2,

wherea
( )

k
( )

i ,
( )

j
is the coefficient of the bracket

[
( )

Li ,
( )

L j

]
in the direction

( )

Lk (with Ln = N), and
( )

Li meansLi orLi .

Remark. In general this Definition depends of the choice of the defining functionρ . But note that, forp∈ ∂Ω, it does not
and depends only on the restriction ofB to ∂Ω∩V(p0).

Example 3.1.

(1) Locally lineally convex domains.A first example of extremal basis concerns the case of a locally convex domain
near a point of finite type: it can be easily shown, using the work of Mc Neal [McN94], that if Ω is convex near a
point of finite typep0 ∈ ∂Ω, if the canonical coordinate system is chosen so that the last coordinate is the complex
normal atp0, and, ifP is the projection onto the complex tangent space of the defining function ofΩ parallel to the
last coordinate, then for each pointp in a small neighborhood ofp0, and eachδ ≤ δ0, theP-projection of the first
n−1 vectors of the Mc Nealδ -extremal basis atp (c.f. [BCD98, McN94]) is (K, p,δ )-extremal in our sense for a
constantK depending only on the data.
More generally, the same thing can be done forlocally lineally convex domainsusing the work of Conrad, M. [Con02]
(see Section7.1for some details).

(2) Levi form with comparable eigenvalues.A second example is given by a pseudo-convex domain having a point of
finite typep0 ∈ ∂Ω where the eigenvalues of the Levi form are comparable (see [Koe02, Cho02b, Cho03, Cho02a]).
Indeed, in [Cho03] it is proved that any (normalized) basis of the complex tangent space isK-extremal for a well
controlled constantK.

(3) Locally diagonalizable Levi form.In Section3.4we will show that if at a point of finite typep0 ∈ ∂Ω the Levi form
is locally diagonalizable then the basis diagonalizing theLevi form is K-extremal for a constantK depending only
on the data (in fact, this basis isK-strongly-extremal (see Definition3.5) for every constantα > 0 with δ ≤ δ0, δ0

small depending onα).
(4) Localization.An other important example will be given in Section3.5: for anyτ > 0 there existsM(τ) such that if a

family of (M(τ),K, p,δ )-extremal basis exists in a neighborhood of a boundary pointp0, of finite typeτ, of Ω then
one can construct a small smooth pseudo-convex domainD containing a neighborhood ofp0 in ∂Ω in its boundary
and for which there exists(M(τ),K′,q,δ )-extremal basis at every pointsq∈ ∂D.
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3.2. Basic properties of extremal basis.The first property states that an extremal basis atp can be orthogonalized at the
point p:

Proposition 3.1. For any K there exists a constant K′ depending only on K and the data such that, ifB is a basis of complex
(1,0) vector fields tangent toρ in an open set V(p0) which is(K, p,δ )-extremal, there exists a basisB′, orthonormal at p
which is(K′, p,δ )-extremal.

Proof. We can suppose that the vector fieldsLi of B are ordered such thatF(Li+1, p,δ ) ≤ F(Li , p,δ ), for i < n−1. Then,

using the Graam-Schmidt process, we first define a basisB1 by decreasing induction,L1
i = ∑n−1

j=i α j
i L j , α j

i ∈ C, and∑
∣∣∣a j

i

∣∣∣
2
=

1. The determinant condition implies that there existsc > 0 such that
∣∣α i

i

∣∣> c. Then

F(L1
i , p,δ ) ≃K ∑

j≥i

∣∣∣α j
i

∣∣∣
2
F(L j , p,δ ) ≃K F(Li , p,δ ).

Now, letL = ∑i aiL1
i be a linear combination, with constant coefficients, of theL1

i . Then

F(L, p,δ ) ≃K ∑
k

∣∣∣∣∣∑i≤k

aia
k
i

∣∣∣∣∣

2

F(Lk, p,δ ) ≃K ∑ |ak|2F(Lk, p,δ ),

using
∣∣∑i≤k aiak

i

∣∣≥ c|ak|−∑i<k |ai| and the fact that theF(Lk, p,δ ) are decreasing. This proves EB1 for B1.
Note now that property EB2 for B trivially implies the same property forB1 becauseL1

i involves only fieldsL1
j for j ≥ i

(and the decreasing property).
Finally, defineB′ by L′

i = L1
i /
∥∥L1

i

∥∥. The condition on theC 2M norm of the vectorsLi immediately implies the result.�

Let us now prove that the mixed derivatives of the Levi form inthe directions of an extremal basis are controlled by the
pure ones, that is by the weights associated to the vector fields of the basis:

Proposition 3.2. Let B = {Li , 1≤ i ≤ n−1} be aC ∞ basis of complex(1,0) vector fields tangent toρ in V(p0) which is
(K, p,δ )-extremal for a fixedδ > 0. LetL be a list of vector fields belonging toLM(B∪{N}). Then there exits a constant
C > 0 depending only onΩ and K such that|L (∂ρ)(p)| ≤CδFL /2(p,δ ).

Proof. Recall the notation notationsci j =
〈
∂ρ ,

[
Li ,L j

]〉
.

Lemma 3.2.1. With the previous notations (and the definition of the coefficients asi j given in Definition3.1):

L jcik = Lic jk +∑as̄
kīc js−∑as

i j csk−∑as̄
j k̄cis,

L jcik = Lkci j +∑as
ik̄cs j +∑as

j̄i csk−∑as̄
k̄ j̄cis.

Proof. The first formula is simply obtained considering the coefficient of ℑmN in Jacobi’s identity applied to the bracket[
L j ,
[
Li ,Lk

]]
, and the second using

[
L j ,
[
Li ,Lk

]]
. �

The proof ofProposition3.2 is done by induction on the length of the lists. Suppose first|L | = 2. Hypothesis EB1 imply
that, for all numbersa andb and all indexi and j,∣∣∣|a|2cii + |b|2c j j +ab̄ci j + ābcji

∣∣∣. δ
(
|a|2Fi + |b|2 Fj

)
.

Suppose bothFi andFj non zero. Takinga = F1/2
j F−1/2

i λ andb = µ , |λ | and|µ | less than 1, the equivalence of norms in
finite dimensional spaces gives the result. IfFi = 0 orFj = 0 a similar argument givesci j = c ji = 0.

Now we use the following notation: ifL ∈ L (B ∪{N}), we denote byl1i (resp. l2i ) the number of timesLi (resp. Li )
appears inL (thusl i = l1i + l2i ).

For lists of greater length, we prove, at the same time, by induction the estimate and the following Lemma:

Lemma 3.2.2. Let L and L ′ be two lists ofLM(B ∪ {N}), L (∂ρ) = L1ci j and L ′(∂ρ) = L ′
1ckl , such that l1i = l ′1i ,

l2i = l ′2i ,. ThenL (∂ρ) ≃ L
′(∂ρ) in the sense that

L (∂ρ)−L
′(∂ρ) = ∑

|L̃ |<|L |
a

L̃
L̃ (∂ρ),

where a
L̃

satisfy,∀L ′′ ∈ LM(B∪{N}), FL̃ /2
∣∣L ′′a

L̃

∣∣. δF(L +L
′′)/2, the constant depending only on K and the data.

Suppose thus the estimates and the Lemma proved for all list of length less or equal toN.
First, we prove3.2.2for lists of lengthN+1. Let us writeL (∂ρ) = L1ci j andL ′(∂ρ) = L2ckl. Then three cases can

happen:

(1) (i, j) = (k, l);
(2) i 6= k, j 6= l ;
(3) i 6= k and j = l or i = k and j 6= l .
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The first case is a trivial consequence of EB2. For the second, the hypothesis on the length and case (1) imply that there exists
a listL̃ such thatL1ci j ≃ L̃ LkLl ci j andL2ckl ≃ L̃ LiL jckl , in the sense of3.2.2. By 3.2.1and EB2, Ll ci j ≃ L jcil . The result
is obtained using an other time EB2, 3.2.1and the induction hypothesis. The third case is similar.

Now we prove the estimate of the Proposition for lists of length N +1. Suppose that the vector fields are ordered so that
there exists an integern0 ∈ {0, . . . ,n−1} such that, fork ≤ n0, Fk 6= 0, and, forn− 1 ≥ k > n0, Fk = 0. Let L = ∑a jL j ,

a j = ελ jF
1/2
n0 F−1/2

j if j ≤ n0 anda j = λ j if j > n0, with
∣∣λ j
∣∣≤ 1. If we apply the extremality property toF(L), we obtain,

for example, for allk≤ N−1,

sup
|λ j |≤1

∣∣∣LkL
N−k−1

cLL

∣∣∣. δε(N+1)/2F (N+1)/2
n0

with the conventionFn0 = 0 if n0 = 0. Writing LkL
N−k−1

cLL = ∑Cαβ λ α λ̄ β , the equivalence of norms in finite dimensional
spaces gives, whenε → 0,

(3.1)
Cαβ = 0 if there exitsj > n0 such thatα j + β j > 0,∣∣Cαβ

∣∣. δF (α+β )/2 otherwise.

Let Eαβ be the set of listsL such thatl1i (L ) = αi and l2i = βi . ThenCαβ = ∑L∈Eαβ
L (∂ρ). Then,3.2.2and the

induction hypothesis give the expected estimation for eachlist in Eαβ and finishes the proof of the Proposition. �

The statement of the last Proposition is not really a statement on the vector fields of an extremal basis but on the linear
space generated by a extremal basis. In fact the following Proposition is easily proved:

Proposition 3.3. In the conditions of Proposition3.2, there exists a constant C such that, if L′
j , 1≤ j ≤ k are vector fields

belonging to the linear space generated by the extremal basis (Li)i then for everyL ∈ LM(L′
1, . . . ,L′

k), if L′
j or L′

j appear
l ′ times inL , |L (∂ρ)(p)| . δ ∏ j F(L′

j , p,δ )l j /2.

3.3. Adapted coordinates system for points of finite1-type.

3.3.1. Definition of an adapted coordinate system and statement of the main result.Let p0 ∈ ∂Ω andV(p0) a neighborhood
of p0 in Cn.

Definition 3.2. A basisB = (L1, . . . ,Ln−1) of sections of(1,0) complex tangent vector fields toρ in V(p0) and a coordinate
system inCn, z= Φδ

p(Z), are called(M,K,δ )adapted (or simply(K,δ ) adapted) at the point pin V(p0) if Φδ
p and(Φδ

p)
−1

are polynomial maps (of degree less than(2M)n−1) diffeomorphisms ofCn centered atp (i.e. Φδ
p(p) = 0) satisfying (with

the notationFi = Fi(p,δ ) = F(Li , p,δ )):

(1) The coefficients of the polynomials ofΦδ
p and(Φδ

p)
−1 (and the Jacobians ofΦδ

p and(Φδ
p)

−1) are bounded byK;

(2) For all|α| ≤ 2M,
∂ α(ρ◦(Φδ

p)−1)(0)

∂z′α =
∂ α(ρ◦(Φδ

p)−1)(0)

∂z′
α = 0, z′ = (z1, . . . ,zn−1);

(3) If Li = ∑a j
i

∂
∂zi

, thena j
i (0) = δi j and for allL ∈ LM(B∪{N}),
∣∣∣L a j

i

∣∣∣≤ K in Φp(V(p0)) andF1/2
j

∣∣∣L a j
i (0)

∣∣∣≤ KF1/2
i FL /2;

(4) For all(α,β ), |α + β | ≤ M,

∣∣∣∣
∂ αβ (ρ◦(Φδ

p)−1)(0)

∂zα ∂ z̄β

∣∣∣∣≤ K min
{

δF (α+β )/2,1
}

;

One of our main goals is to prove the following existence Theorem:

Theorem 3.1. Suppose p0 is of finite1-typeτ, and choose an integer M larger than2

(
2( τ

2)
n−1

+1
2

)n−1

. For any positive

constant K, there exists a constantδ0 > 0, a neighborhood V(p0), both depending on the data, and a constant K′ depending
on K and the data such that ifB = {Li, 1≤ i ≤ n−1} is a C ∞ basis of(1,0) complex vector fields tangent toρ in V(p0)
which is(M,K, p,δ ) extremal at a point p∈V(p0)∩∂Ω, then there exists a coordinate system(zi)1≤i≤n centered at p which
is (K′,δ )-adapted toB.

To proof is divided in two steps: in the next Section we work without the assumption of finite type and construct an adapted
coordinate system using modified weights; then in Section3.3.3we use the finite type hypothesis to deduce the Theorem.

3.3.2. Construction of an adapted coordinate system.In this Section we suppose that the integerM is fixed. Letp∈V(p0)
andδ > 0. SupposeB = (L1, ,Ln−1) is a basis of(1,0) vector fields tangent toρ in V(p0), satisfying the following properties:

(A) TheC 2M(V(p0)) norms of theLi are bounded byK andB is ordered so thatF(Li+1, p,δ ) ≤ F(Li , p,δ ).
(B) Let p∈W(p0) ⋐ V(p0) andδ > 0. DenotingF̃i = Fi +1 = F(Li , p,δ )+1:

(B1) For all list L ∈ LM(B∪{N}), |L (∂ρ)(p)| ≤ Kδ F̃(p,δ )L /2;
(B2) B satisfies condition EB2 of Definition3.1with theF(Ls, p,δ ) replaced by thẽFs.

Then under these hypothesis, we have:
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Proposition 3.4. There exists a constant K′ depending on K, M and the data (but neither on p nor onδ ) such that there exists
a (M,K′,δ )-adapted coordinate system toB at p in the sense of Definition3.2, the weights F(Li , p,δ ) being replaced bỹFi.

Proof. In [CD06b] (Prop 3.2, p. 85) we proved that hypothesis (A) implies the existence of a coordinate systemΦp,δ
satisfying conditions (1) and (2) of Definition3.2and

(3.2)

{
For j < i < n, andα = (α1, . . . ,αn−1) ∈ Nn−1 such that|α| ≤ M, αp = 0 if p > i or p≤ j,

∂ α a j
i (0)

∂z′α = 0.

We now prove that under condition (B) the two last propertiesof Definition 3.2 (with the F̃i) are satisfied. This follows
quite closely the ideas of p. 87-90 of [CD06b], but, as the context here is more general and as it is a fundamental tool, we
write it completely.

Let L ∈ L (B∪{N}) considered as a differential operator. DenotingDαβ the derivative ∂ α+β

∂zα ∂ z̄β in the coordinate system

z= Φδ
p, it is easy to see that, if|L | = S,

L = ∑
m∈N

n

1≤|m|≤S

∑
αi+βi=mi

cL

αβ Dαβ

where

cL

αβ = cαβ =
S

∑
p=1

∑∗
( )

ai1
j1
· · ·

( )

a
ip
jp

S

∏
k=p+1

Dsk

(
( )

aik
jk

)

where the summation in the second formula is taken over the derivatives associated to the multiindexsk satisfying∑S
k=p+1sk+

(m1, · · · ,mn) = ∑S
k=1 χ(ik), ∑S

k=1 χ( jk) = (l1, · · · , ln−1, ln) and the coefficients∗ are absolute constants. The following Lemma
is then easily established:

Lemma 1. If for all s ∈ Nn, |s| ≤ S, we have
∣∣∣Dsai

j(0)
∣∣∣.K1 F̃s/2F̃j

1/2
F̃i

−1/2
, then we have

(3.3)
∣∣cαβ (0)

∣∣. F̃L /2F̃− α+β
2 .

To fix notations, recall that iff is aC
2 function andL andL′ two vector fields, then

〈
∂ ∂̄ f ;L, L̄

〉
= L′L f +

[
L,L′](∂ f ),

and, in particular, ifLρ = 0,
〈
∂ ∂̄ρ ;L,L

〉
=
[
L,L
]
(∂ρ) = cLL, wherecLL is the coefficient of the Levi form in the directionL.

In all the proof that follows, we denote
[
Li ,L j

]
(∂ρ) = ci j .

To state the second Lemma let us introduce the notationρ̃ = ρ ◦ (Φδ
p)

−1):

Lemma 2. (1) For every multiindex l,|l | ≤ 2M, we have
∣∣Dl ρ̃(0)

∣∣ . δ F̃ l/2, where Dl is any derivative ∂ |l |

∂zα ∂ z̄β with

|α + β |= l.

(2) For every multiindex m6= (0, · · · ,0), |m| < M, and every i, j,

∣∣∣∣Dm
( )

a j
i (0)

∣∣∣∣. F̃m/2F̃1/2
i F̃−1/2

j .

Proof. Note first that, for (2), it suffices to get the estimate forDma j
i (0) and that the estimate (1) (resp. (2)) is trivial ifln > 0

(resp.mn > 0) (recallFn = δ−2 and the fact that the fieldsLi are ofC 2M norms controlled). We then supposeln = mn = 0. The
proof is done by induction: The induction hypothesisPk0 is the two conclusions of the proposition for|l | ≤ k0 and|m| < k0.

Remark first thatPk0 and the first property ofPk0+1 imply the second property ofPk0+1 for j = n: this is evident if
i = j = n and, if i < j = n, Lir ≡ 0 implies

an
i =

(
∂ ρ̃
∂zn

)−1 n−1

∑
k=1

ak
i

∂ ρ̃
∂zk

,

and the result is clear because∂ ρ̃
∂zk

(0) = 0 for k < n.

Moreover, note also that, the weightsF̃i , i ≤ n−1, being “decreasing”, the second inequality ofPk0 is trivial if i ≤ j < n
and if i = n. Thus it suffices to prove this inequality whenj < i < n.

Let us now provePk0 by induction. The casek0 = 1 is trivial. Let us study first the casek0 = 2. By definition of the

coordinate system,∂
2ρ̃

∂zi∂zj
(0) = 0, and, using the notations and remarks stated before the statement of the Lemma, we have

(3.4) ai
ia

j
j

∂ 2ρ̃
∂zi∂ z̄j

= ci j̄ − ∑
(k,p) 6=(i, j)

ak
i a

p
j

∂ 2ρ̃
∂zk∂ z̄p

which implies ∂ 2ρ̃
∂zi∂ z̄j

(0) = ci j̄(0) and gives the first inequality by definition ofF . To prove the second inequality, let us look

at the definition of the functionsa
( )

k
( )

i
( )

j
. Writing the bracket[Li ,Lp] with the coordinate system and taking the component of∂

∂zj
,
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we get

(3.5)
n−1

∑
k′=1

ak′
i p̄a j

k′ = −
n

∑
k=1

ak
p

∂
∂ z̄k

(
a j

i

)
−ci p̄a j

n.

Extracting the term∂
∂ z̄p

(
a j

i

)
and taking all at zero we obtain∂∂ z̄p

(
a j

i

)
(0) = a j

i p̄(0) and the inequality follows (B2) hypothesis.

We have now to consider
∂a j

i
∂zq

. If q≤ j, the inequality comes from the decreasing property of theF̃k, and if j < q≤ i, this
derivative is zero at the origin by the properties of the coordinate system. Suppose thenj < i < q. Looking at the Lie bracket
[Li ,Lq] and taking the component of∂∂zj

, we obtain

(3.6) ai
i

∂
∂zi

(
a j

q

)
−aq

q
∂

∂zq

(
a j

i

)
= ∑

k6=q

ak
q

∂
∂zk

(
a j

i

)
−∑

k6=i

ak
i

∂
∂zk

(
a j

q

)
+

n−1

∑
p=1

ap
iqa j

p,

and then, at the origin,∂∂zq

(
a j

i

)
(0) = ∂

∂zi

(
a j

q

)
(0)−a j

iq(0) = −a j
iq(0), by the properties of the coordinate system, and the

conclusion comes again from (B2). This provesP2.
Let us now supposePk0 verified (k0 < 2M). Let Dl̃ be a derivative of orderk0 + 1. If Dl̃ is purely holomorphic or anti-

holomorphic,Dl̃ ρ̃(0) = 0. Then we supposeDl̃ = Dl ∂
∂zi

∂
∂ z̄j

, and we denote bỹL = L LiL j a list of vectors fields associated

to Dl̃ (in the obvious sense that, if∂/∂zi (resp. ∂/∂ z̄i) appearsl i (respl̄ i) times inDl thenLi (resp. Li) appearsl i (respl̄ i )
times inL ). Applying (3.4), we get

Dl
(

∂ 2ρ̃
∂zi∂ z̄j

)
(0) = L ci j̄(0)− ∑

l1 6=0
l1+l2=l

∗Dl1
(

ai
īa

j
j

)
Dl2

(
∂ 2ρ̃

∂zi∂zj

)
(0)

− ∑
(k,p) 6=(i, j)

Dl
(

ak
i a

p
j

∂ 2ρ̃
∂zk∂zp

)
(0)(3.7)

− ∑
|α ′|+|β ′|<k0−1

cα ′β ′Dα ′β ′
(ci j̄)(0),

with ∗= 0 or 1. The first term of the second member of (3.7) satisfies the wright inequality (i.e.. δ F̃ l/2F̃1/2
i F̃1/2

j in modulus)

by (B1). For the second,l1 being non 0, we can apply the induction hypothesis toDl2
(

∂ 2ρ̃
∂zi∂zj

)
(0) to get the wright estimate.

The third term is of the same nature because, for(k, p) 6= (i, j), ak
i a

p
j (0) = 0. If we replaceci j̄ by its expression in (3.4), the

induction hypothesisPk0 implies directly (fors< k0−1):
∣∣Dsci j̄(0)

∣∣. δFs/2F1/2
i F1/2

j ,

and then, using1 for S= k0 (whose hypothesis are also verified by the induction hypothesisPk), we prove that the last term
in (3.7) satisfies also the wright estimate.

We finish now proving the second inequality ofPk0+1. It suffices to consider the casej < i < n. Let us first look at a
derivativeDm of the formDm = Ds ∂

∂ z̄p
, |s| = k0−1. Using formula (3.5), we can write

Dma j
i = Ds

(
n−1

∑
t=1

>at
i p̄a

j
t − ∑

t 6=p

>at
p

∂
∂ z̄t

(a j
i )+>ci p̄a

j
n

)
= Ds(A)−Ds(B)+Ds(C),

where> is equal to 1
ap

p
. In Ds(B), to get a non zero term at 0,at

p must be derivated becausep 6= t; this gives derivatives of

∂
∂ z̄k

(a j
i ) of order< k0−1 which are well controlled by the induction hypothesis and then|Ds(B)(0)| . F̃m/2F̃1/2

i F̃1/2
j .

Consider now the termsDs
(
>at

i p̄a j
k

)
.

Claim. For |l | ≤ k, Dl
(

at
i

( )

p

)
. F1/2

i F1/2
p F−1/2

t F l/2.

Proof of the Claim.We do it by induction on|l |. (B2) proves the result for|l | = 0. Suppose the claim proved for|l | < k′ ≤
k0−1 and suppose|l | = k′. Then,

Dl at
i

( )

p
(0) = L

l at
i

( )

p
(0)+ ∑

|s′|<l

cs′(0)Ds′at
i

( )

p
(0).

But, by (B2), ∣∣∣L l at
i p̄(0)

∣∣∣. F l/2F1/2
i F1/2

p F−1/2
t ,

and for the second term of the previous identity, we have|s′| < l and we can apply the induction hypothesis and1 whose
hypothesis are satisfied, usingPk0, because|l | ≤ k0. �
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Then the estimate ofDs
(

>ak
i p̄a

j
k

)
follows the induction hypothesisPk0 because|s| < k0. Thus

|Ds(A)(0)| . F̃m/2F̃1/2
i F̃1/2

j .

Finally, the termsDs
(

>ci p̄a j
n

)
satisfies also the good estimates becausea j

n(0) = 0 and, for|s′|< k0−1, we have seen that∣∣∣Ds′(ci p̄)(0)
∣∣∣. δ F̃s′/2F̃1/2

i F̃1/2
p , and, the derivatives ofa j

n are controlled by the induction hypothesisPk0.

To finish, we have to consider the case whereDm is a holomorphic derivative. Note that the inequality is trivial if i ≤ j or
if there existsk ≤ j such thatmk 6= 0. Suppose then, for allk ≤ j, mk = 0 and j < i < n. Let q the largest index such that
mq > 0. If q≤ i, we haveDma j

i (0) = 0 by the properties of the coordinate system. Ifq > i, write Dm = Ds ∂
∂zq

. To conclude it

suffices then to use (3.6), the first Claim and the fact thatDs ∂
∂zi

(
a j

q

)
(0) = 0 also by the properties of the coordinates system.

This completes the proof of the Lemma. �

To finish the proof of Proposition3.4, it suffices to note that, in addition to the estimates of the coefficientscL

αβ given by
1, we also have, for|α + β | ≤ 2M,

(3.8) Dαβ = ∑
1≤|L |≤|α+β |

dαβ
L

L ,

with
∣∣∣dαβ

L
(0)
∣∣∣. F̃(α+β )/2(p,δ )F̃−L /2. �

For the case of extremal basis we have thus proved (using Proposition3.2):

Corollary. If B is (M,K, p,δ )-extremal, forδ small enough, there exists a coordinate system(M,K′(K),δ )-adapted toB
in the sense of Definition3.2with the weights Fi replaced bỹFi = Fi +1.

3.3.3. Proof of3.1. If p0 is a point of finite 1-typeτ, then, by a Theorem of D’Angelo (see [D’A82, Cat87]) there exists a
neighborhoodU(p0) such that, ifp ∈ ∂Ω∩U(p0), thenp is of finite 1-type less thanτ ′ = 2

( τ
2

)n−1
. We supposeV(p0) ⊂

U(p0). Then, ifB is a (M,K, p,δ )-extremal basis, by the Corollary of Proposition3.4 we have a coordinate systemΦp,δ

adapted toB in terms of thẽFi . SupposeM larger than 2
(

τ ′
2

)n−1
. Then, considering the manifoldζ 7→ (0, . . .0,ζ ,0, . . . ,0),

|ζ | ≤ σ , Theorem 3.4 of [Cat87] (applied with a suitable constantσ ) gives us a derivative of̃ρ = ρ ◦Φp,δ which is bounded

from below by a constant depending only on the data. The last property of Definition3.2shows thus that̃Fi(p,δ ) & δ−2/M

with a constant depending only on the data, and, of course, the same is true forFi(p,δ ).
This proves the following essential Proposition:

Proposition 3.5. Let p0 ∈ ∂Ω be a point of finite1-typeτ. Let M = M(τ) =
[
2
( τ

2

)n−1
]
+ 1. Then for all integer K there

exists a real numberδ0 > 0 and a constant C, depending on K and the data, such that, if there exists a coordinate system
(M,K,δ )-adapted to a basisB = (L1, . . . ,Ln−1) at p0, then FM(Li , p0,δ ) ≥ Cδ−2/M. In particular, if τ ′ = 2

( τ
2

)n−1
and

M′ = M′(τ) =

[
2
(

τ ′
2

)n−1
]

+ 1, for all integer K there exists a neighborhood V(p0) a real numberδ0 > 0 and a constant

C (depending onτ, Ω and K) such that, for p∈V(p0)∩∂Ω and0 < δ ≤ δ0, if there exists a coordinate system(M′,K,δ )-
adapted to a basisB = (L1, . . . ,Ln−1) at p, then F(Li , p,δ ) ≥Cδ−2/M′

.

This proves completely3.1.

Remark3.2. Note that the proofs show that if a basisB satisfies only properties (A) and (B) of the beginning of Section
3.3.2, then, under the assumption of finite 1-type, the conclusions of Proposition3.5and3.1are still valid.

A simple consequence (which will be used in Section3.5) of the minoration of the weightsFi is the following:

Lemma 3.1. Suppose the point p0 of finite1-typeτ. For any K, there exists two constants C andδ0, depending only on K,τ
and the data, such that ifB = {Lp,δ

i , i < n} is (K, p,δ )-extremal, p∈WV(p0)∩ ∂Ω, and(αi) is a family ofC ∞ functions,

of C 2M norm≤ K and1/K ≤ |αi | ≤ K, then the basisB1 = {Li}, where Li = 1
αi

Lp,δ
i , is (C, p,δ )-extremal, and, moreover,

F (∑aiLi , p,δ ) ≃C F
(

∑aiL
p,δ
i , p,δ )

)
, ai ∈ C.

3.3.4. Associated polydiscs and pseudo-balls for finite type points. In this Section we supposep0 of finite 1-typeτ and we
chooseM = M′(τ). Now we will associate to an adapted coordinate system some special “polydiscs” and give some related
properties.

Definition 3.3. Let W(p0) ⋐ V(p0) small enough. Suppose that for some pointp ∈ W(p0)∩ ∂Ω and 0< δ there exists a

basisB(p,δ ) =
{

Lp,δ
i

}
of (1,0) vector fields tangent toρ in V(p0) satisfying conditions (A) and (B) (of Section3.3.2) and
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let Φδ
p = Φp the coordinate system which is(K,δ )-adapted toB(p,δ ). Then the functionsF(Li , p,δ ) = Fi(p,δ ) does not

vanish and, for 0< c < 1, we denote

∆c(p,δ ) = {z∈ C
n such that|zi | < cF−1/2

i , 1≤ i ≤ n},

and

Bc(p,δ ) = Φ−1
p (∆c(p,δ ))∩V(p0).

Taylor’s formula, Proposition3.2and3.1lead easily to the following properties (denotingLi = Lp,δ
i ):

Proposition 3.6. There exists three constants c0, K0 and δ0, depending only on K and the data, such that the following
properties hold:

(1) If L i = ∑a j
i

∂
∂zj

and ∂
∂zj

= ∑bi
jLi , |α + β | ≤ M, for z∈ ∆c0(p,δ ),

∣∣∣Dαβ a j
i (z)
∣∣∣ ≤ K0F(α+β )/2(p,δ )F1/2

i (p,δ )F−1/2
j (p,δ ),

∣∣∣Dαβ b j
i (z)
∣∣∣ ≤ K0F(α+β )/2(p,δ )F1/2

i (p,δ )F−1/2
j (p,δ ).

(2) If L ∈ LM (B(p,δ )∪{N}), |L | = S, and DT is a derivative in the coordinate system(z) with |T| ≤ M, then
L = ∑|s|≤ScsDs, DT = ∑|L ′|≤|T|dL ′L ′, and, for z∈ ∆c0(p,δ ) and q= Φp(z) we have

cs(z) ≤ K0F(L−s)/2(p,δ ),

dL ′(q) ≤ K0F(L−L
′)/2(p,δ ).

(3) For L = ∑aiLi , ai ∈ C, for all q∈ Bc0(p,δ ), 1
2F(L, p,δ ) ≤ F(L,q,δ ) ≤ 2F(L, p,δ ).

(4) For all list L , |L | ≤ M belonging toLM(B) and all point q∈ Bc(p,δ ),
(a) |L (∂ρ)(q)| ≤ K0δF(p,δ )L /2,
(b) with the notation introduced in EB2 in Definition3.1,

∣∣∣∣L a
( )

k
( )

i
( )

j
(q)

∣∣∣∣≤ K0FL /2(p,δ )F1/2
i (p,δ )F1/2

j (p,δ )F−1/2
k (p,δ ).

(5) ρ(Bc(p,δ )) ⊂ [− 1
2δ , 1

2δ ].

The proofs are almost straightforward calculus.

In Section4 we will need to use two other kind of “pseudo-balls” and we will prove that they are closely related to the
“polydisc” Bc:

Definition 3.4. Suppose thatB = (L1, . . . ,Ln−1) is a basis satisfying conditions (A) and (B) (at a point of finite 1-type).

(1) DenoteYi = ℜeLi andYi+n = ℑmLi , 1≤ i ≤ n (recallLn = N). Then we denote byBc
C

(B, p,δ ) the set of points
q ∈ V(p0) for which there exists a piecewiseC 1 curveϕ : [0,1] → V such thatϕ(0) = p, ϕ(1) = q andϕ ′(t) =

∑aiYi(ϕ(t)), with |ai | and |ai+n| ≤ cF−1/2(Li , p,δ ), 0< c < 1.
(2) expp denoting the exponential map based atp associated to the vector fieldsYi (defined in (1)), we put

Bc
exp(p,δ ) =

{
q = expp(u1, . . . ,u2n), such that max(|ui| , |ui+n|) ≤ cFi(p,δ )−1/2

}
∩V(p0).

The terminology used in Definition3.1 is justified by the following property:

Proposition 3.7. LetB = {L1, . . . ,Ln−1} be a basis (of(1,0) complex vector fields, tangent toρ in V(p0)) satisfying condi-
tions (A) and (B) (for example if it is K-extremal) at p∈W(p0)∩ ∂Ω. LetB1 = {L1

1, . . . ,L
1
n−1} be an other basis in V(p0)

such that, for all i, L1i = ∑a j
i L j , aj

i ∈ C, ∑ |ai |2 = 1. Then there exists a constant A depending only on K,τ and the dimension
n such that Bc

C
(B1, p,δ ) ⊂ BAc

C
(p,δ ).

The proof of this Proposition is immediate following property (B).

3.4. Sufficient conditions of extremality. In this Section we always suppose thatp0 is a point of finite 1-typeτ and choose
M = M(τ).

Here and in Section5.2 we will need a stronger control on certain derivatives of thecoefficients of the Levi form. Thus
we introduce the following condition: supposeB is a basis of(1,0) vector fields tangent toρ in V(p0). We say that it satisfy
to condition B(α), α > 0, if for all list L ∈ LM−2 (B) we have

B(α) for i 6= j, 1≤ i, j ≤ n−1,
∣∣L ci j (p)

∣∣≤ αδF(p,δ )L /2F(Li , p,δ )1/2F(L j , p,δ )1/2.

Note that B(α) together with conditions (A) and (B) implies a new condition on the brackets of the vector fields:
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Lemma 3.2. SupposeB satisfies conditions (A) and (B). Then there exists two constants K1 = K1(K,M,n) andδ0depending
on K,α and the data such that, for all i6= k, i, k< n, j ≤ n and allL ∈LM(B∪{N}), if B satisfy B(α) at p,δ ), p∈W(p0),
0 < δ ≤ δ0, ∣∣∣∣L a

( )

j
( )

i
( )

k
(p)

∣∣∣∣≤ K1αF(p,δ )L /2Fi(p,δ )1/2Fk(p,δ )1/2Fj(p,δ )−1/2.

Proof. To simplify the notations we write the proof fora j̄
j k̄

. Chooseδ0so thatCδ−2/M
0 > α−1, whereC is the constant of

Proposition3.5. Note that the property is trivial ifln 6= 0 or if ln = 0 and j = n (an̄
ik̄

= 1
2cik andan̄

ik = 0), thus we suppose
ln = 0 and j < n. As the property is also trivial ifj or k is ≥ i, we have to study only the case whenj < min(i,k).

To simplify the notations, we introduce the following spaces of functions:

*0
= {ε, εa

( )

k
( )

i
( )

j
, εc( )

i
( )

j
, whereε ∈ {−1,0,1,−

√
−1,

√
−1}},

and

˜*k+1
=
⋃

i

( )

Li(*k
)∪*k

and*k+1
=

{
3

∑
i=1

fi , fi ∈ ˜*k+1

}
.

The elements of*k
will be generically denoted by∗k.

The Jacobi identity applied to the bracket
[
L j ,
[
Li ,Lk

]]
imply

a j̄
ik̄

c j j +L jcik + ∑
p6= j

ap̄
j k̄

c jp−aī
j k̄cii −Lic jk − ∑

p6=i

ap̄
j k̄

cip −ak
i j ckk− ∑

p6=k

ap
ji cpk = 0

which we writea j̄
ik̄

c j j = ∗0cii +∗0ckk+h. Then, by induction on the lengthl of a listL ∈ LM(L j ), it is easy to show that

a j̄
ik̄
L c j j = L h+ ∑

L ′∈L|L |(L j )

(
∗lL

′cii +∗lL
′ckk
)
+ ∑

L ′∈L|L |−1(L j )

∗lL
′c j j ,

and choosingL so that
∣∣L c j j (p)

∣∣ & δF(p,δ )(|L |+2)/2, the Lemma is easily proved using the control on the lists andthe
hypothesis. �

Now we first prove that conditions B(α), (A) and (B) imply the extremality of the basis and then that3.2implies a better
control on mixed lists, result that will be important in Section 5.

Lemma 3.3. Suppose thatB = (L1, . . . ,Ln−1) is a basis of(1,0) vector fields in V(p0) satisfying conditions (A) and (B) at
a point p∈V(p0)∩∂Ω for a fixedδ . Then there exists a functionα(K), depending on K and the data, such that, ifB satisfy
B(α) for α ≤ α(K), there exists a constant K1, depending on K, M and n, such that, ifL 0 ∈ LM(B)satisfies

∣∣L 0cii (p)
∣∣≥

1
K δFi(p,δ )F(p,δ )L /2 then there exists k0, 2k0 +2≤ |L |, such thatℜe

((
LiLi

)k0 cii

)
(p) > 1

K1
δFi(p,δ )(2k0+2)/2. In partic-

ular,

Fi(p,δ ) ≥ 1
K′ ∑

ℜe
(
(LiLi)

k
cii

)
(p)>0

2k+1≤M




ℜe
((

LiLi
)k

cii

)
(p)

δ




2
2k+2

,

where K′ is a constant depending only on K and the data.

Proof. We know that there exists a coordinate systemΦδ
p adapted toB. These new coordinates are denoted(zi). The

derivativesDαβ are the derivatives with respect to(zi), and ifL is a list of vector fields thenDL is the derivative∂ |α+β |

∂zα ∂ z̄β with

αi = l1i (L ) andβi = l2i (L ) (notation of3.2.2). In the proof we will use a general result on derivatives of positives function
proved in Section8.

SupposeL ∈ LM(B) is such thatL (∂ρ) = L 0cii and|L (∂ρ)(p)| &K δFi(p,δ )F(p,δ )L /2. Then we can write

L (∂ρ) = DL
0
cii + ∑

|α+β |<|L 0|
cαβ Dαβ cii

with
∣∣cαβ

∣∣.K FL
0/2F−(α+β )/2.

Thus there exists a derivativeDαβ satisfying
∣∣Dαβ cii (0)

∣∣ &K δFiF(α+β )/2 and |α + β | ≤
∣∣L 0

∣∣ and αn + βn = 0 (in-

deed, ifαn + βn ≥ 1,
∣∣cαβ (0)

∣∣ .K FL
0/2F−(α+β )/2 ≤ δFL

0/2, and as
∣∣Dαβ cii

∣∣ .K 1,
∣∣cαβ Dαβ cii

∣∣≪ δFL /2). Then ap-

plying 8.1 to the functiong(z) = δF−1
i (p,δ )cii ◦Φ−1

p,δ (z′), wherez′ =
(

cF−1/2
1 z1, . . . ,cF−1/2

n−1 (p,δ )zn−1,0
)

with c ≤ c0, c0

given by Proposition3.6, we conclude that there exists a derivativeDα1β 1
, satisfyingα1

j = β 1
j , ∀ j, α1

n = β 1
n = 0, such that

Dα1β 1
cii (0)≥K FiF (α1+β 1)/2.



EXTREMAL BASIS, GEOMETRICALLY SEPARATED DOMAINS 11

Writing L ′ =
(
LiLi

)α1
i ∏ j 6=i, j<n

(
L j L j

)α1
j andL ′cii = Dα1β 1

cii + ∑|α+β |<|L ′| cαβ Dαβ cii , by induction we conclude that

there exists a differential operatorL 1 of the formL 1 =
(
LiLi

)αi ∏ j 6=i, j<n

(
L jL j

)α j such thatℜe
(
L 1cii

)
(p) &K δFL

1/2Fi.
Suppose there existsj 6= i such thatα j 6= 0. Then

L
1cii = L

′L j L jcii = L
′L j

(
−γ j

i c j j +Lkc jk +
(

ai
jk −aī

ī j

)
cii − ∑

p6=i

(
ap̄

ī j
cip −ap

jicpi

)
+ ∑

p6= j

γ p̄
i cip

)
.

The controls of the coefficientsap
i j and of the listsL ckp, k 6= p (by condition (B)), implies, forα sufficiently small (depending

only onK), that ∣∣L ′L jc j j
∣∣&K δFL

′/2F3/2
j and

∣∣∣γ j
i

∣∣∣&K FiF
−1/2
j .

Repeating the initial procedure, we conclude that there exists a listL ′′ ∈ L (B), “completely even”,|L ′′| ≤ |L ′| such
that

∣∣L ′′c j j
∣∣&K δFL

′′/2Fj . Consider then

L
′′L jcii = L

′′
(
−γ j

i c j j +Lkc jk +
(

ai
jk −aī

ī j

)
cii − ∑

p6=i

(
ap̄

ī j
cip −ap

jicpi

)
+ ∑

p6= j

γ p̄
i cip

)
.

Then
∣∣∣L ′′c j j γ j

i

∣∣∣& δFL
′′/2F1/2

j Fi , and, by similar arguments, forα sufficiently small, we conclude that there exists a listL 2,
∣∣L 2

∣∣<
∣∣L 0

∣∣such thatL 2cii &K δFL
2/2Fi , and we can repeat the procedure. The Lemma is thus proved by induction. �

Proposition 3.8. There exists constantsα0 and K′ depending on K and the data such that if the basisB satisfies (A), (B) and
B(α) for α ≤ α0 at (p,δ ), p∈V(p0), thenB is (K′, p,δ )-extremal.

Proof. We may suppose the basis ordered so that the weightsFi = F(Li , p,δ ) are ordered decreasingly. LetL = ∑n−1
i=1 aiLi ,

ai ∈ C, ∑ |ai|2 = 1 so thatcLL = ∑n−1
i=1

∣∣a2
i

∣∣cii . DenoteF(L) = F(L, p,δ ). By hypothesis (B) it is clear thatF(L) .K ∑ |ai |2Fi.
To show the converse inequality, we prove the following assertion:

Claim. For every constantK > 0, there exists a constantK1, depending onK and the data, such that:

if i0 ∈ {1, . . . ,n− 1} andk0 ∈ {1, . . . ,M} are such that
∣∣ai0

∣∣2Fi0(p) ≥ ∑|ai |2Fi(p)
K andℜe

(
Li0Li0

)k0 ci0i0(p) > δ
F

k0+1
i0

(p)

K ,
then:

• eitherℜe(LL̄)
k0 cLL̄ > δ (∑|ai |2Fi(p))

k0+1

K1
,

• or there existi1 andk1 < k0 such that|ai1|2Fi1(p) ≥ ∑|ai |2Fi(p)
K1

andℜe
(
Li1Li1

)k1 ci1i1(p) > δ
F

k1+1
i1

(p)

K1
.

Proof of the Claim.We have

(3.9) (LL̄)
k0 cLL̄ = ∑ |ai|2k0+2(LiLi

)k0 cii +∑αL L (∂ρ),

where the second sum contains lists of length 2k0 +2 containingLi or Li for, at least, two different values ofi. As

∣∣ai0

∣∣2k0+2 ℜe
(
Li0Li0

)k0 ci0i0(p) > δ

(
∑ |ai|2Fi(p)

)k0+1

Kk0+2 ,

the conclusion is clear except in the two following cases: inthe second member of (3.9), there is a term in the first sum which

is < −A = −δ (∑|ai |2Fi(p))
k0+1

CKk0+2 , or a term in the second sum which is, in modulus, bigger thanA, with a constantC depending
only onM and the coefficientsai .

Suppose first that there exists an indexi 6= i0 such that|ai |2k0+2 ℜe
(
LiLi

)k0 cii (p) < −A. This implies first|ai |2Fi(p) ≥
∑|ai |2Fi(p)

K′
1

and secondlyℜe
(
LiLi

)k0 cii (p) <−δ 1
K′′

1
Fk0+1

i . By 3.3there existsk1 < k0 such thatℜe
(
LiLi

)k1 cii (p) > δ 1
K′′′

1
Fk1+1

i .

Thus the second assertion of the Claim is verified.
Suppose now that there is a termαL L (∂ρ) in the second sum of (3.9) satisfying|αL L (∂ρ)| > A. Denote byl i the

number of times the vector fieldsLi andLi appear inL . If lk 6= 0, hypothesis (B) implies immediately|ak|2Fk & ∑ |ai|2 Fi

and|L | (∂ρ) & δ ∏F l i/2
i . �

�

Corollary. Suppose that p0 ∈ ∂Ω is a point of finite typeτ where the Levi form is locally diagonalizable. Then there exists
a neighborhood V(p0) of p0 and constants K andδ0 > 0 such that at every point p of V(p0)∩∂Ω and for every0 < δ ≤ δ0,
the basis diagonalizing the Levi form is(M, p,δ )-extremal (with M= M′(τ)).

Proof. Properties (A) and (B) where proved in [CD06b], and, by definition the basis diagonalizing the Levi form satisfy B(α)
for all α > 0. �
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Definition 3.5. B is called(K,α, p,δ )-strongly-extremalif it is (K, p,δ )-extremal and, if, it satisfies B(α) at (p,δ ).

Note that the first part of Proposition3.2say that every(K, p,δ )-extremal basis is(K,α, p,δ )-strongly-extremal for some
large positive numberα depending onK andΩ. Thus this is an extra hypothesis only for smallα.

The next Proposition shows that for a strongly extremal basis some derivatives of the diagonal terms of the Levi matrix
satisfy a better control:

Proposition 3.9. Suppose p0 of finite 1-typeτ and let M= M′(τ). There exists a neighborhood V(p0) of p0 such that,
for α > 0, there exists constantsδ0 = δ0(α,data) and K′ = K′(K,data) such that ifB is a (K,α, p,δ )-strongly-extremal
basis then for all listsL ∈ L2M(B) such that there exists j> i with l j 6= 0 (here we supposeB ordered so that the Fi are
decreasing) we have|L cii (p)| ≤ K′αF(p,δ )L /2Fi(p,δ ).

Proof. Let L = L ′ ( )

L j
( )

LpL
′′ with j ≤ i and write

L cii = L
′ ( )

Lp
( )

L jL
′′cii +∑L

′
(

ak
( )

j
( )

p
Lk +ak̄

( )

j
( )

p
Lk

)
L

′′cii .

Then successive application of the3.2show that there exists a list̃L = L̃ ′L j such that, for allk, l̃k = lk and
∣∣∣L̃ cii −L cii

∣∣∣≤
K2αFL /2Fi .

Now the result is trivial applying once again3.2, 3.2.1and the hypothesis B(α). �

Proposition 3.10. If the basisB is (K,α, p,δ )-strongly extremal, the conclusion of Proposition3.9 is still valid at each
points q∈ Bc0(p,δ ) with α replaced by2α for δ ≤ δ (α) (δ (α) depending onα, K and the data).

3.5. Localization of extremal basis.

3.5.1. Definition of the local domain.

Definition 3.6. Let Ω be a bounded pseudo-convex domain inCn. Suppose thatP0 is a boundary point ofΩ andW(P0) ⋐
V(P0) are neighborhood ofP0. Let O be a point of the real normal to∂Ω atP0 and denote byd the distance fromO to P0. Let
us denote by(zi)1≤i≤n the coordinate system obtained translating the origin atO.

Let µ > 0 andψ(z) = ϕ
(
|z|2
)

where

ϕ(x) =

{
0 if x≤ µ2,

K0e−1/(x−µ2) if x≥ µ2,

with 4
3d ≤ µ ≤ 2d.

Let us denoter(z) = ρ(z)+ ψ(z). Thend is chosen small enough andK0 large enough such that, in particular:

• D = {r(z) < 0} ⊂W(P0) andr is a defining function ofD;
• D have aC ∞ boundary and is pseudo-convex;
• At each point of∂Ω\ ∂D, the boundary ofD is strictly pseudo-convex;
• In the closure ofB(0,2µ) the vectorz (in the coordinate system centered at 0) is not tangent toρ (i.e. ∑n

i=1
∂ρ
∂zi

zi 6= 0
everywhere inB(0,2µ)).

The fact that such a domain always exits for anyd > 0 small andK0 > 0 large is based on the construction of R. Gay and
A. Sebbar in [GS85] (Théorème 2.1). Simply, note that, on∂D\∂Ω, the functionr is strictly pluri-subharmonic ifK0 is large

enough andµ small enough (the hessian ofρ is O
(

ϕ
(
|z|2
))

). Moreover, ifP0 is of finite type, then all the boundary points

of D are of finite type because the order of contact of∂Ω with ∂D is infinite at the points of∂ (∂Ω∩∂D).
The goal of this Section is to prove the following:

Theorem 3.3. Suppose that P0 is a point of finite1-typeτ of ∂Ω and choose M′(τ) (c. f. Proposition3.5). Let δ > 0 and
K > 0. If at every point of∂Ω∩V(P0) there exists a(K, p,δ )-extremal basis then one can construct the domain D contained
in V(P0) so that, at every point p′ of its boundary there exists a(K′, p′,δ )-extremal basis with K′ depending only on K and
the data.

3.5.2. Preliminary remarks.We fix now some general notations.
Let π be theC ∞ projection ofV(P0)∩ Ω̄ onto∂Ω defined with the integral curves of the real normal toρ . We can suppose

V(P0) small enough such thatπ can be considered as aC ∞ diffeomorphism of∂D∩V(P0) onto∂Ω∩V(P0).
If L is a C ∞ vector field, defined on an open setU of ∂D∩V(p0), tangent to∂D, we associate to it a vector fieldLρ ,

defined in the open setπ(U) ⊂ ∂Ω, tangent to∂Ω usingπ as follows: ifL = ∑ai
∂

∂zi
, considering it as an application ofU

into Cn, we denote byL◦π−1 the vector field inπ(U) defined byL◦π−1 = ∑ai ◦π−1 ∂
∂zi

, and

(3.10) Lρ = L◦π−1−βN,

whereN is the complex unitary normal toρ andβ = L◦π−1(ρ).
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Clearly,L 7→ Lρ is an isomorphism fromT1,0
∂D∩U ontoT1,0

∂Ω∩π(U) (V(P0) sufficiently small), and thus, we also considerL

associated toLρ by L = Lρ ◦π +(β ◦π)N◦π and, asL is tangent to∂D and(Lρ ◦π)(ρ) is identically zero on∂Ω, we have

(3.11) β ◦π(z) =
−〈Lρ ◦π ,z〉ϕ ′(|z|2)

(N◦π)(ρ)+ 〈N◦π ,z〉ϕ ′(|z|2)
+k,

wherek is aC ∞ function whose derivatives of order less thanM areO(ϕ(|z|2)), with constant controlled by theC 2M norm
of L, and, if L = ∑ai

∂
∂zi

(in the coordinate system of Definition3.6), 〈L,z〉 denotes the usual scalar product∑aizi , and
〈L,L′〉 = ∑aia′i .

With the previous notations, letP be a point of∂D such thatψ(P) = 0 (thusP∈ ∂D∩∂Ω) andV(P) a neighborhood of
P such thatπ is a diffemorphism ofV(P)∩∂D ontoV(P)∩∂Ω.

Let p∈ ∂D∩V(P). Essentially, the construction of the extremal basisB at p for D is done using a suitable basisBρ of
the tangent space of∂Ω near the pointπ(p) translated atp (usingπ) then projected onto the tangent space of∂D, to get a
basisB̃ from which the basisB is defined. Now, we only look at the relation between the weights of the basisB̃ andBρ .

Thus, ifB̃ = {L̃1, . . . , L̃n−1} is a basis ofT1,0
∂D in V(P)∩∂D, with our notations, the basisBρ = {Lρ

1 , . . . ,Lρ
n−1} of T1,0

∂Ω , in
V(P)∩∂Ω, is given by

(3.12) Lρ
i = L̃i ◦π−1−βiN,

with βi = L̃i ◦π−1(ρ), and

(3.13) L̃i = Lρ
i ◦π +(βi ◦π)N◦π .

with

(3.14) βi ◦π =
−
〈
Lρ

i ◦π ,z
〉

ϕ ′(|z|2)
(N◦π)(ρ)+ 〈N◦π ,z〉ϕ ′(|z|2)

+k.

Let us calculate the weightsF(L̃i , p,δ ) in terms of the weightsF(Lρ
i ,π(z),δ ) and the derivatives ofϕ . We suppose that

theLρ
i are normalized. Writing̃ci j =

[
L̃i , L̃ j

]
(∂ r) andcρ

i j =
[
Lρ

i ,Lρ
j

]
(∂ρ), using thatN◦π is identically 1 on∂Ω, a simple

calculus shows

(3.15)

c̃i j = cρ
i j ◦π +

〈
Lρ

i ◦π ,Lρ
j ◦π

〉
ϕ ′(|z|2)+

〈
Lρ

i ◦π ,z
〉〈

Lρ
j ◦π ,z

〉
ϕ ′′(|z|2)+

+ϕ ′(|z|2)∑n−1
k=1

(
∗
〈
Lρ

k ◦π ,z
〉
+∗
〈

Lρ
k ◦π ,z

〉)
+k,

= cρ
i j ◦π + ϕ ′(|z|2)

(〈
Lρ

i ◦π ,Lρ
j ◦π

〉
+h
)

+
〈
Lρ

i ◦π ,z
〉〈

Lρ
j ◦π ,z

〉
ϕ ′′(|z|2)+k,

where all the derivatives ofk areO(ϕ(|z|2) and the functions∗ have a boundedC M norm the constants depending only onΩ
and theC 2M norms of theL̃i .

As theLρ
i are normalized, we also have

(3.16)
c̃ii = cρ

ii ◦π + ϕ ′(|z|2)+
∣∣〈Lρ

i ◦π ,z
〉∣∣2 ϕ ′′(|z|2)+ ϕ ′(|z|2)∑n−1

k=1

(
∗
〈
Lρ

k ◦π ,z
〉
+∗
〈

Lρ
k ◦π ,z

〉)
+k

= cii ◦π + ϕ ′(|z|2)(1+h)+
∣∣〈Lρ

i ◦π ,z
〉∣∣2 ϕ ′′(|z|2)+k

andd is chosen small enough such that theC
M norm ofh is small.

Now we need to introduce a new notation. LetL be aC ∞(∂D∩V(P)) vector field tangent to∂D. Forz∈ ∂D∩V(P) let
us define

F̃ϕ(L,z,δ ) =
M/2

∑
k=1

(
ϕ(k)(|z|2)

δ

)1/k

+ |〈Lρ ◦π(z),z〉|2
M

∑
2

∣∣∣∣∣
ϕ(k)(|z|2)

δ

∣∣∣∣∣

2/k

+ δ−1/M.

Lemma 3.4. We have, forδ and V(P) small enough, for z∈ ∂D∩V(P),

F̃ϕ(L,z,δ ) ≃ ϕ ′(|z|2)
δ

+ |〈Lρ ◦π ,z〉|2 ϕ ′′(|z|2)
δ

+ δ−1/M.

Proof. It suffices to consider the case when|z|2 = µ2 + x > µ2. Note that, forV(P) small,ϕ(k)(µ2 + x) ≃ Ke−1/xx−2k and(
1
x

)2k ≤ e1/Mx, for k≤ M.

Suppose
(

ϕ(k)(µ2+x)
δ

)1/k
> δ−1/M ande−1/x < δ . Then

(
ϕ(k)(µ2 +x)

δ

)1/k

≃
(

K0e−1/x

δ

)1/k
1
x2 . K1/2

0 δ−1/kM ≤ δ−1/M,

for δ small. Thus, forδ ≤ δ0(K0),
(

ϕ(k)(µ2+x)
δ

)1/k
> δ−1/M impliese−1/x > δ and∑M/2

1

(
ϕ(k)(µ2+x)

δ

)1/k
≃ ϕ ′(µ2+x)

δ .
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Similarly,
(

ϕ(k)(µ2+x)
δ

)2/k
> δ−1/M impliese−1/x > δ and∑M

2

(
ϕ(k)(µ2+x)

δ

)2/k
≃ ϕ ′′(µ2+x)

δ . �

Thus, we denote

Fϕ (L,z,δ ) =
ϕ ′(|z|2)

δ
+ |〈Lρ ◦π ,z〉|2 ϕ ′′(|z|2)

δ
+ δ−1/M,

andFϕ
i = Fϕ

i (z,δ ) = Fϕ(L̃i ,z,δ ), 1≤ i ≤ n−1. Define againFϕ
n = δ−2. Let L̃n denotes the unitary complex normal tor,

the defining function ofD, andLρ
n the unitary complex normal toρ .

Proposition 3.11. LetL̃ be a list ofLM

(
B̃∪

{
L̃n

})
andL

ρ be the list obtained replacing
( )

L̃i in L by
( )

Lρ
i . Then, reducing

V(P) if necessary, on∂D∩V(P) we have (̃l i denoting the number of times the vector fieldsL̃i or L̃i appears inL̃ ):

(1)
∣∣∣L̃ (cρ

i j ◦π)− (L ρcρ
i j )◦π

∣∣∣. δ ∏n
k=1

(
Fϕ

k

)l̃k/2
, for

∣∣∣L̃
∣∣∣≥ 2,

(2)
∣∣∣L̃ ϕ(|z|2)

∣∣∣. δ ∏n
i=1

(
Fϕ

i

)l̃ i/2
,
∣∣∣L̃
∣∣∣≥ 2,

the constants depending only onΩ and theC M+2 norms of thẽLi .

Proof. These properties are trivially satisfied if˜ln 6= 0, thus we supposẽln = 0. Using (3.15) and the fact that iff is aC
∞

function on∂Ω∩V(P) andLρ ρ ≡ 0 then(Lρ ◦π)( f ◦π)− (Lρ f ) ◦ π = Of (ϕ) on ∂D∩V(P), the Proposition is an easy
consequence of (3.14) and the the following Lemma:

Lemma 3.5. LetL ρ ,π be a list ofLM
{

Lρ
i ◦π , i ≤ n−1

}
of length≥ 1, then|L ρ ,π ψ | . δ ∏n−1

i=1

(
Fϕ

i

)l i/2
.

Proof of3.5. By induction, we have

L
ρ ,πψ = L

ρ ,π
(

ϕ
(
|z|2
))

=
[m−1

2 ]

∑
l=1

∗ϕ(l)
(
|z|2
)

+
m

∑
l=[m+1

2 ]

αl ϕ(l)
(
|z|2
)

,

where

αm−k = ∑
L

∗={W∗
1 ,...,W∗

m∗}⊂L
ρ,π

m∗≤m−2k

∗ ∏
W∗

i ∈L ∗

〈
W∗

i ,
( )

z
〉

,

where
〈

W∗
i ,

( )

z
〉

denotes〈W∗
i ,z〉 if W∗

i is of type(0,1) and〈W∗
i , z̄〉 if not, and the functions∗ have aC Mnorm controlled by

theC 2M norms of the vector fields̃Li . Now, the proof of3.4shows

[m−1
2 ]

∑
l=1

∗ϕ(l)
(
|z|2
)

δ
.


δ−1/M +

ϕ ′
(
|z|2
)

δ




m/2

,

and it is enough to see that
∣∣∣αl ϕ(l)

(
|z|2
)∣∣∣. δ (Fϕ)L /2, for l ∈

{[
m+1

2

]
, . . . ,m

}
. If l = m, this follows3.4; supposel = m−k,

k≥ 1.

Suppose

∣∣∣∣
ϕ(m−k)(|z|2)

δ

∣∣∣∣
2/(m−k)

≥ δ−1/M. By 3.4

∣∣∣∣
ϕ(m−k)(|z|2)

δ

∣∣∣∣
2/(m−k)

≤ ϕ ′′(|z|2)
δ . Let L ∗ ⊂ L of lengthm∗ = m− 2k =

∑n−1
i=1 l∗i . The corresponding term inαm−k is bounded by

∗




ϕ ′′
(
|z|2
)

δ




(m−k)/2

∏
i

∣∣〈Lρ
i ◦π ,z

〉∣∣l∗i = ∗




ϕ ′′
(
|z|2
)

δ




k/2
n−1

∏
i=1




ϕ ′′
(
|z|2
)

δ
∣∣〈Lρ

i ◦π ,z
〉∣∣2



l∗i /2

. ∗




ϕ ′
(
|z|2
)

δ




k
n−1

∏
i=1

(
Fϕ

i

)l∗i /2
,

because the hypothesis implies

(
ϕ ′′(|z|2)

δ

)1/2

.
ϕ ′(|z|2)

δ . �

To finish the proof of Proposition3.11note that, for
∣∣∣L̃
∣∣∣≥ 1,

∣∣∣L̃ (βi ◦π)(z)
∣∣∣≤ Fϕ(z,δ )L̃ /2Fϕ

i (z,δ )1/2,

and use (3.14). �



EXTREMAL BASIS, GEOMETRICALLY SEPARATED DOMAINS 15

Finally the relations between the weights associated toB̃ and toB
ρ are as follows.

Let L̃ a holomorphic vector field on∂D tangent to∂D nearp andLρ the associated vector field tangent to∂Ω. Then

Proposition 3.12. For V sufficiently small, we have, if1K ≤
∥∥∥L̃
∥∥∥≤ K,

F(L̃,z,δ ) ≃ F(Lρ ,π(z),δ )+Fϕ(L̃,z,δ ),

with constants depending on theC
2M norm ofL̃, K and the data.

Proof. From Proposition3.11 it easily follows thatF(L̃,z,δ ) . F(Lρ ◦ π ,z,δ ) + Fϕ(L̃,z,δ ). Let us then see that there

exists a listL̃ composed of̃L and L̃ such thatL̃ c̃L̃L̃ ≃ δ
(

F(Lρ ◦π ,z,δ )+Fϕ (L̃,z,δ )
)(|L̃ |+2)/2 def

= δF (|L̃ |+2)/2. If ϕ ′
δ +

|〈Lρ ◦π(z),z〉|2 ϕ ′′
δ ≃ F, cL̃L̃ do it. Supposeϕ

′
δ + |〈Lρ ◦π(z),z〉|2 ϕ ′′

δ ≪ F , there exists a listL ρsuch that|L ρcLρ Lρ (π(z))| ≃
δF (|L̃ |+2)/2. Then calculatingL̃ c̃L̃L̃ in term ofL ρ(cLρ Lρ )◦π , the result follows Proposition3.11, (3.16) and the properties
of the functionsh andk.

�

3.5.3. Extremal basis on D.In this Section, we suppose always thatp0 is of finite typeτ, M = M′(τ) and that at all pointsq
of V(P0)∩∂Ω and for allδ > 0, 0< δ ≤ δ0, there exists a(K,q,δ )-extremal basis, and we show that at all pointsp of ∂D
and for allδ > 0 there exists a(K′, p,δ )-extremal basis (forD) with a constantK′ controlled byK and the data.

If P is a point of∂D such that|P| > µ then∂D is strictly pseudo-convex nearP and the construction of extremal basis
in V(P)∩ ∂D is trivial (for V(P) small). If |P| < τ thenV(P)∩ ∂D is contained in∂Ω and the existence of extremal basis
is the hypothesis. Thus, we have only to consider neighborhood of pointsP∈ ∂D such that|P| = µ (that is pointsP in the
boundary of∂Ω∩∂D).

As we said before, the final extremal basis forD, at p ∈ V(P)∩ ∂D, will be obtained extending a basis̃B defined on
V(P)∩∂D which is a projection onto the tangent space tor of a translation of a basisBρ , atπ(p), tangent toρ .

Formula (3.16) shows that the expressions
〈
Lρ

i ◦π ,z
〉

plays an important role: we have to take into account the vector fields
which are orthogonal toz. In particular, to construct a extremal basis on∂D, we cannot simply translate an extremal basis on
∂Ω and project it onto the tangent space to∂D, because, even if the basis(Lρ

i ) is extremal, we can have
〈
Lρ

i ◦π ,z
〉
6= 0, for

all i, and there are linear combinations of theLρ
i ◦π which are orthogonal toz.

Now the pointp and the positive numberδ are fixed. We suppose we have a(K,π(p),δ )-extremal (forρ) basisBΩ =
{LΩ

1 , . . . ,LΩ
n−1} at the pointπ(p) (theLΩ

i beingC ∞ in V(P)), such that the vectorsLΩ
i (π(p)) are orthogonal (c.f. Proposition

3.1) and we construct the basisB
ρ = {Lρ

1 , . . . ,Lρ
n−1} using it. The weight associated toB

Ω are denotedFΩ
i = FΩ

i (π(p),δ ) =

FΩ(LΩ
i ,π(p),δ ), and we supposeFΩ

i+1 ≤ FΩ
i , for i ≤ n−2, changing the order of theLΩ

i if necessary.
Recall that the canonical coordinate system is centered at the pointO of Definition3.6, thus|z(P)| = µ .
For simplicity of notations, we denoteq = π(p) (thusp = π−1(q), π being considered as a diffeomorphism between open

sets of the boundaries ofΩ andD).
Let

Hn−1 =
{

W = ∑aiL
Ω
i , ai ∈ C, ∑ |ai |2 = 1, such that〈W(q), p〉 = 0

}
.

Let Wn−1 = ∑an−1
i LΩ

i ∈ Hn−1 such that∑n−2
i=1

∣∣an−1
i

∣∣2F(LΩ
i ,q,δ ) = infW=∑aiLΩ

i ∈Hn−1
∑n−2

i=1 |ai |2F(LΩ
i ,q,δ ), and define

(3.17) Lρ
n−1 =

{
LΩ

n−1 if ∑n−2
i=1

∣∣an−1
i

∣∣2F(LΩ
i ,q,δ ) ≥ ϕ ′′(|p|2)

δ
∣∣〈LΩ

n−1(q), p
〉∣∣2 ,

Wn−1 otherwise.

SupposeLρ
n−l defined for 1≤ l ≤ k− 1 < n. Let Hn−k = Hn−1 ∩

[
E (Lρ

n−1, . . . ,L
ρ
n−k+1)

]⊥
, E (Lρ

n−1, . . . ,L
ρ
n−k+1) be-

ing the linear space span byLρ
n−1, ..., Lρ

n−k+1, the orthogonality being taken atq. Let Wn−k = ∑n−1
i=1 an−k

i LΩ
i a vector

in Hn−k minimizing ∑n−k−1
i=1 |ai|2F(LΩ

i ,q,δ ) for vectors∑n−1
i=1 aiLΩ

i ∈ Hn−k. Let Tn−k a vector field, of norm 1 atq, in

Gn−k = E (LΩ
n−1, . . . ,L

Ω
n−k)∩

[
E (Lρ

n−1, . . . ,L
ρ
n−k+1)

]⊥
. ThenLρ

n−kis defined by

Lρ
n−k =

{
Tn−k if ∑n−k−1

i=1

∣∣an−k
i

∣∣2F(LΩ
i ,q,δ ) ≥ ϕ ′′(|p|2)

δ |〈Tn−k(q), p〉|2 ,
Wn−k otherwise.

Note that{Lρ
i (q), 1≤ i ≤ n−1} is orthonormal. We will note later that if the dimension ofGn−k is strictly greater than 1

thenFρϕ(Lρ
n−k) (see below) is, up to a multiplicative constant, independent of the choice ofTn−k.

The two next Lemma prove some important properties of the vector fieldsLρ
i . Let us denoteBρ =

{
Lρ

i , i < n
}

andLρ
n the

unitary complex normal toρ .
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If L = ∑n−1
i=1 aiL

ρ
i , ai ∈ C, let us denote

Fρϕ(L) = F(L,q,δ )+
ϕ ′
(
|p|2
)

δ
+ |〈L(q), p〉|2

ϕ ′′
(
|p|2
)

δ
,

andFρϕ
i = Fρϕ(Lρ

i ), 1≤ i ≤ n− 1, Fρϕ
n = 1

δ 2 and(Fρϕ )L /2 = ∏i

(
Fρϕ

i

)l i/2
, if L is a list ofLM(Bρ ∪

{
Lρ

n
}
), with the

usual notation forl i .
We will show that, up to constants, the vector fieldsLρ

i give the successive minima of the functionsFρϕ(L) for L = ∑aiLΩ
i ,

∑
∣∣a2

i

∣∣= 1.

Lemma 3.6. There exits a constant K′ depending only on K such that:

(1) If L = ∑aiLΩ
i , ∑ |ai |2 = 1, is orthogonal, at q, to the space generated by Lρ

j , i + 1 ≤ j ≤ n− 1, i ≤ n− 1, then

Fρϕ(L) ≥ 1
K′ Fρϕ(Lρ

i );
(2) Fρϕ(Lρ

i ) ≥ 1
K′ Fρϕ(Li+1), i < n−1;

(3) Fρϕ(Lρ
i ) ≥ 1

K′ F(LΩ
i ,q,δ ), i < n.

Proof. Note first that if property 2. is satisfied fori ≥ k then property 3. is also satisfied fori ≥ k. Indeed, more generally, if
L is orthogonal to the vectorsLρ

j , i +1≤ j ≤ n−1, and if property 2. is satisfied fori +1, . . . ,n−1, then

(3.18) Fρϕ(L) & max
{

FΩ(L),FΩ(Lρ
i+1) . . . ,F

Ω(Lρ
n−1)

}
& FΩ(LΩ

i ,q,δ ) = F(LΩ
i ,q,δ ) = FΩ

i ,

because theLρ
j andL are orthogonal and the basis

(
LΩ

i

)
i is extremal.

Now we show that ifL = ∑aiLΩ
i , ∑ |ai |2 = 1, thenFρϕ(L) & Fρϕ

n−1.

If LΩ
n−1 ∈ Hn−1, thenLρ

n−1 = LΩ
n−1 andFρϕ

n−1 = F(LΩ
n−1,q,δ )+

ϕ ′(|p|2)
δ which gives the result. Suppose thusLΩ

n−1 /∈ Hn−1.
We separate the two cases of (3.17):

Suppose we are in the first case (Lρ
n−1 = LΩ

n−1). If L∈Hn−1, the inequality is an immediate consequence of the extremality
(EB1) of BΩ. SupposeL /∈ Hn−1. Then we can writeL = α

(
Lρ

n−1 + γH
)

with H ∈ Hn−1. Writing H = ∑a′iL
Ω
i , we have

Fρϕ(L) ≃ |α|2
[

n−2

∑
i=1

∣∣γa′i
∣∣2F(LΩ

i ,q,δ )+
∣∣1+ γa′n−1

∣∣2F(LΩ
n−1,q,δ )

]
+

ϕ ′
(
|p|2
)

δ
+ |α|2

ϕ ′′
(
|p|2
)

δ

∣∣∣
〈

LΩ
n−1(q), p

〉∣∣∣
2
,

and as∑n−2
i=1 |a′i|

2 F(LΩ
i ,q,δ ) ≥ ∑n−2

i=1

∣∣an−1
i

∣∣2F(LΩ
i ,q,δ ) ≥ ϕ ′′(|p|2)

δ
∣∣〈LΩ

n−1(q), p
〉∣∣2, we obtain

Fρϕ(L) & |α|2
(

1+ |γ|2
) ϕ ′′

(
|p|2
)

δ

∣∣∣
〈

LΩ
n−1(q), p

〉∣∣∣
2
&K

ϕ ′′
(
|p|2
)

δ

∣∣∣
〈

LΩ
n−1(q), p

〉∣∣∣
2
,

because, by equivalence of norms in finite dimensional spaces, |α|2
(

1+ |γ|2
)

&K 1. The extremality ofBΩ implies

F(L,q,δ ) & F(LΩ
n−1,q,δ ), and the inequality is proved.

Let us now look to the caseLρ
n−1 = Wn−1. If L ∈ Hn−1 the result is trivial, thus we supposeL /∈ Hn−1. Using the same

decomposition as before, we get

Fρϕ(L) & |α|2
(

1+ |γ|2
)n−2

∑
i=1

∣∣an−1
i

∣∣2F(LΩ
i ,q,δ ) &

n−2

∑
i=1

∣∣an−1
i

∣∣2F(LΩ
i ,q,δ ),

and, asFρϕ (L) & F(L,q,δ ) & F(LΩ
n−1,q,δ ), we haveFρϕ(L) & F(Wn−1,q,δ ).

Then the induction is as follows. SupposeFρϕ(Lρ
i+1) & Fρϕ (Lρ

i+2) & . . . & Fρϕ(Lρ
n−1) and that for allL = ∑aiLΩ

i , ∑ |ai |2 =

1, orthogonal to theLρ
j , i + 2 ≤ j ≤ n−1, thenFρϕ(L) & Fρϕ(Lρ

i+1). Let L = ∑aiLΩ
i , ∑ |ai |2 = 1, orthogonal to theLρ

j ,

i +1≤ j ≤ n−1. SupposeTi is chosen. IfTi ∈ Hi thenLρ
i = Ti , Fρϕ(Ti) . FΩ

i + ϕ ′
δ and, using (3.18), Fρϕ(L) & Fρϕ(Lρ

i ).

Suppose nowTi /∈ Hi . If Lρ
i = Ti , decomposingL = α (Ti + γH) as in the first step, we obtainFρϕ(L) &

ϕ ′′
δ |〈Ti(q), p〉|2 and

we use (3.18). OtherwiseLρ
i = Wi and, an other time, the same decomposition givesFρϕ(L) & ∑n−i−1

j=1 |ai |2F(LΩ
i ,q,δ ) and

we conclude with (3.18).
Finally we obtainFρϕ (L) & Fρϕ(Lρ

i ) (which proves the statement about the choice ofTn−k), and, asLρ
i is orthogonal to

Lρ
i+1, . . . ,L

ρ
n−1, the induction hypothesis implyFρϕ(Lρ

i ) & Fρϕ(Lρ
i+1) and finished the proof. �

We now estimate the brackets of the vector fieldsLρ
i , i < n, at the pointq.

Lemma 3.7. Let

[
( )

Lρ
k ,

( )

Lρ
s

]
= ∑n

t=1 bt
( )

k
( )

s
Lρ

t + ∑n
t=1 bt̄

( )

k
( )

s
Lρ

t . For all list L , of LM
(
Bρ ∪

{
Lρ

n
})

, we have

∣∣∣∣L
(

b
( )

t
( )

k
( )

s

)
(q)

∣∣∣∣< K′ (Fρϕ)L /2(Fρϕ
k

)1/2
(Fρϕ

s )1/2(Fρϕ
t

)−1/2
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with K′ depending only on K and the data.

Proof. Note that the Lemma is trivial ifln(L ) ≥ 1 and ifFρϕ
t .

ϕ ′′(|p|2)
δ (becauseFρϕ

k andFρϕ
s are both≥ to ϕ ′(|p|2)

δ and

ϕ ′′(|p|2)
δ ≥ δ−2/M implies

∣∣∣ϕ ′(|p|2)
δ

∣∣∣
2
≥
∣∣∣ϕ ′′(|p|2)

δ

∣∣∣). Moreover, we also haveFρϕ
t . F(Lρ

t ,q,δ )+ ϕ ′′(|p|2)
δ , and, ifLρ

t = Tt , then,

by definition ofTt and the extremality ofBΩ, F(Lρ
t ,q,δ ) . F(LΩ

t ,q,δ ), and, ifLt = Wt , F(Lρ
t ,q,δ ) . F(LΩ

t ,q,δ )+ ϕ ′′(|q|2)
δ .

Thus, it suffices to prove that ifln = 0
∣∣∣L
(

bt
( )

k
( )

s

)
(q)
∣∣∣. (Fρϕ)L /2(Fρϕ

k

)1/2
(Fρϕ

s )1/2
(

F(LΩ
t ,q,δ )

)−1/2
.

Let us writeLρ
k = ∑α i

kL
Ω
i andLΩ

k = ∑β i
kL

ρ
i . Using the notation

[
( )

LΩ
i ,

( )

LΩ
j

]
= ∑n

i=1am
( )

i
( )

j
LΩ

m + ∑n
i=1am̄

( )

i
( )

j
LΩ

t , a calculus gives, if

t < n,

bt
( )

k
( )

s
= ∑

m

(

∑
i, j

( )

α i
k

( )

α j
sam

( )

i
( )

j

)
β t

m,

with β t
m = 1

det(α) ∑σ εσ ∏i α
σ(i)
i , whereσ describes the set of permutations from{1, . . . ,n−1}\{t} onto{1, . . . ,n−1}\{m},

and

bn
( )

k
( )

s
= ∑

i, j

( )

α i
k

( )

α j
sC( )

i
( )

j

with C( )

i
( )

j
=

[
( )

LΩ
i ,

( )

LΩ
j

]
(∂ρ) (note that this notation givesci j = Ci j̄ ).

First, we prove that, ift < m, |β t
m| .

(
Fρϕ

k

)1/2(
Fρϕ

s
)1/2(

F(LΩ
t ,q,δ )

)−1/2
for anyk ands. In that case, there exists an

indexi > t such thatσ(i) ≤ t; if Lρ
i = Ti thenασ(i)

i = 0, and ifLρ
i = Wi then

∣∣∣ασ(i)
i

∣∣∣≤
[

ϕ ′′(|p|2)
δ

(
F(LΩ

σ(i),q,δ )
)−1

]1/2

≤
(

ϕ ′′(|p|2)
δ

)1/2(
F(LΩ

t ,q,δ )
)−1/2

≤
(
Fρϕ

k

)1/2
(Fρϕ

s )1/2
(

F(LΩ
t ,q,δ )

)−1/2
,

becauseFρϕ
m & δ−1/M + ϕ ′(|p|2)

δ and ϕ ′′(|p|2)
δ ≥ δ−2/M implies

(
ϕ ′(|p|2)

δ

)2
≥ ϕ(|p|2)

δ .

To finish the proof, it suffices to remark that the extremalityof BΩ implies
∣∣α i

k

∣∣. F(Lρ
k ,q,δ )1/2F(LΩ

i ,q,δ )−1/2,

and ∣∣∣∣L
(

am
( )

i
( )

j

)∣∣∣∣ . ∏F(LΩ
k ,q,δ )lk/2F(LΩ

i ,q,δ )1/2F(LΩ
j ,q,δ )1/2F(LΩ

m,q,δ )−1/2

. (Fρϕ)L /2F(LΩ
i ,q,δ )1/2F(LΩ

j ,q,δ )1/2F(LΩ
t ,q,δ )−1/2,

by 3.6, for t ≥ m. �

Then, with the notations introduced before, we consider thebasis atp (for D)

B̃ = {L̃1, . . . , L̃n−1} with L̃i =
1∥∥Lρ

i ◦π
∥∥
(
Lρ

i ◦π +(βi ◦π)Nρ ◦π
)
.

Note that3.6 and3.7 are proved for the vector fieldsLρ
i but it is easy to see that they are also valid for the vector fields

Lρ
i /
∥∥Lρ

i

∥∥.

To simplify the notations, in the remainder of the proof, thevector fields
Lρ

i

‖Lρ
i ‖

will be denoted byLρ
i , and the function

βi

‖Lρ
i ‖

will be denotedβi so thatL̃i =
(
Lρ

i ◦π +(βi ◦π)Nρ ◦π
)
.

Proposition 3.13. The basisB̃ is (K′, p,δ )-extremal for a constant K′ depending only on K and the data.

Proof. We first prove condition EB1, that is, ifαi are complex numbers then

F

(
n−1

∑
i=1

αi L̃i , p,δ

)
≃

n−1

∑
i=1

|αi |2F
(

L̃i , p,δ
)

.

By induction, it suffices to see that, for allk,

F

(
n−k

∑
i=1

αi L̃i , p,δ

)
≃ F

(
n−k−1

∑
i=1

αi L̃i , p,δ

)
+ |αn−k|2F

(
L̃n−k, p,δ

)
.
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To simplify notations we writẽX = ∑n−k−1
i=1 αi L̃i andXρ = ∑n−k−1

i=1 αiL
ρ
i . By Proposition3.12, we have to prove

(3.19) F(Xρ + αn−kL
ρ
n−k,q,δ )+

ϕ ′′(|p|2)
δ

∣∣〈(Xρ + αn−kL
ρ
n−k

)
◦π(p), p

〉∣∣+ ϕ ′(|p|2)
δ

≃ F(Xρ ,q,δ )+ |αn−k|2F(Lρ
n−k,q,δ )+

ϕ ′′(|p|2)
δ

(
|〈(Xρ ◦π)(p), p〉|2 + |αn−k|2

∣∣〈(Lρ
n−k ◦π)(p), p

〉∣∣2
)

+
ϕ ′(|p|2)

δ
.

Indeed, ifβ (q)=
‖∑t

i=1αiL
ρ
i ‖(q)

‖∑t
i=1 αiL

ρ
i ‖(p)

, β−1 have aC M norm controlled byK andF
(

β−1∑t
i=1 αi L̃i , p,δ

)
≃K F

(
∑t

i=1 αi L̃i , p,δ
)

.

Note that if that ifY andZ are two linear combinations (with constant coefficients) ofthe LΩ
i , by extremality,F(Y +

Z,q,δ ) ≤ K2 [F(Y,q,δ )+F(Z,q,δ )], and then

(3.20) F(Y+Z,q,δ ) ≥ 1
K2 F(Y,qδ )−F(Z,q,δ ).

This implies that the first member of (3.19) is . than the second one, and we have only to prove the converse inequality. To
do it, we consider separately the two possibilities forLn−k.

Suppose firstLρ
n−k = Tn−k.

If the second member of (3.19) is equivalent toF(Xρ ,q,δ )+ |αn−k|2F(Lρ
n−k,q,δ ), by (3.20), we have only to consider

the case whenF(Xρ ,q,δ ) ≃ |αn−k|2F(Lρ
n−k,q,δ ). UsingF(Tn−k,q,δ ) . F(LΩ

n−k,q,δ ), 3.6gives the result.
Suppose now that the second member of (3.19) is equivalent to

ϕ ′′(|p|2)
δ

(
|〈(Xρ ◦π)(p), p〉|2 + |αn−k|2

∣∣〈(Lρ
n−k ◦π)(p), p

〉∣∣2
)

.

Then, we only have to consider the case when〈(Xρ ◦π)(p), p〉 = −(1+ ε)αn−k
〈
(Lρ

n−k ◦π)(p), p
〉
, with ε small. Then

if W is the vector fieldXρ + (1+ ε)αn−kL
ρ
n−k normalized atq, W ∈ Hn−k and thusF(W,q,δ ) ≥ ϕ ′′

δ |〈Tn−k(q), p〉|2 =
ϕ ′′
δ
∣∣〈Lρ

n−k(q), p
〉∣∣2. ThenF(Xρ ,q,δ ) & 1

K2

(
ϕ ′′
δ
∣∣〈Lρ

n−k(q), p
〉∣∣2
)
−2F(Lρ

n−k,q,δ ), and the conclusion follows.

To finish suppose thatLρ
n−k = Wn−k.

If the second member of (3.19) is equivalent toϕ ′′(|p|2)
δ

(
|〈(Xρ ◦π)(p), p〉|2 + |αn−k|2

∣∣〈(Lρ
n−k ◦π)(p), p

〉∣∣2
)

, there is noth-

ing to do because
〈
Lρ

n−k ◦π(p), p
〉

= 0.

Suppose then that the second member of (3.19) is equivalent toF(Xρ ,q,δ )+ |αn−k|2F(Lρ
n−k,q,δ ). As before, the conclu-

sion is evident except ifF(Xρ ,q,δ ) ≃ |αn−k|2F(Lρ
n−k,q,δ ). Suppose

F(Xρ + αn−kL
ρ
n−k,q,δ )+

ϕ ′(|p|2)
δ

≪ |αn−k|2F(Wn−k,q,δ ).

Note that〈Tn−k(q), p〉 6= 0, and we can defineW = Xρ + αn−kL
ρ
n−k + µTn−k such that〈W(q), p〉 = 0. Then by3.6,

|αn−k|2F(Wn−k,q,δ ) ≫ F(LΩ
n−k,q,δ ),

and (extremality ofBΩ) |〈Tn−k(q), p〉|2 ϕ ′′(|p|2)
δ > 1

K (F(Wn−k,q,δ )−KF(LΩ
n−k,q,δ ). From this we deduce|µ | ≪ |αn−k| and

W is of norm almost 1 atq. Then

F(W,q,δ ) ≤ K2
(

F(Xρ + αn−kL
ρ
n−k,q,δ )+ |µ |2F(Tn−k,q,δ )

)

≪ |αn−k|2
(

F(Wn−k,q,δ )+F(LΩ
n−k,q,δ )

)
,

becauseTn−k ∈ E
(
LΩ

n−k, . . . ,L
Ω
n−1

)
, and thusF(W,q,δ ) ≪ F(Wn−k,q,δ ) which contradicts the definition ofWn−k.

To see thatB̃ satisfy EB2, a simple calculus shows that it suffices to apply3.7and Proposition3.11. �

Then, by3.1we conclude:

Proposition 3.14. The basisB previously defined byB = {Li , . . . , ln−1}, with Li = Lρ
i ◦ π + (βi ◦π)Nρ ◦ π is (K′, p,δ )-

extremal for a constant K′ depending on the constant K of extremality ofB
Ωand the data.

Now the proof of3.3is complete.

4. GEOMETRICALLY SEPARATED DOMAINS

4.1. Definition and examples.
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Definition 4.1. Let Ω = {ρ < 0} be a bounded pseudo-convex domain withC
∞ boundary (∇ρ 6= 0 in a neighborhood of

∂Ω). We callΩ K-geometrically separatedat p0 ∈ ∂Ω if p0 is a point of finite 1-typeτ and there exists two neighborhood of
p0, W(p0) ⋐ V(p0), a constantδ0 > 0, a constantK, an integerM larger thanτ +1 and a basisB0 = {L0

1, . . . ,L
0
n−1} of (1,0)

vector fields tangent toρ in V(p0), whoseC 2M norm are bounded byK their “determinant” bounded from below by 1/K and
a positive real numberδ0such that:

For each pointp∈W(p0)∩∂Ω and eachδ , 0< δ < δ0, there exits a(M,K, p,δ ) extremal basisB(p,δ ) = {Lp,δ
1 , . . . ,Lp,δ

n−1}
such that, for eachi, the vector fieldLp,δ

i can be written (onV(p0)) Lp,δ
i = ∑ j a

j
i L

0
j with a j

i ∈ C, ∑ |ai |2 = 1. In other words,

theLp,δ
i are normalized vector fields belonging to the vector spaceE0 generated byB0.

A notable property (that will not be used later) of these domains is that the weightsFi satisfy a better estimate than the one
given in Proposition3.5:

Proposition. SupposeΩ is geometrically separated at p0 (of typeτ). Then for V(p0) andδ0 sufficiently small, there exists a

constant C> 0 depending only on K andΩ, such that the extremal basisB(p,δ ) =
{

Lp,δ
i , 1≤ i ≤ n−1

}
, p∈W(p0)∩∂Ω,

0 < δ < δ0, satisfy FM(Lp,δ
i , p,δ ) ≥Cδ−2/τ+1, for all i and all δ ∈ [0,δ0], with M = [τ]+1.

Proof. Suppose there exists a sequence of pointspm converging top0, a sequenceδm in ]0,δ0[ and an integeri ≤ n−1 such
that, denotingB(pm,δm) =

(
Lm

1 , . . . ,Lm
n−1

)
the(M,K, pm,δm)-extremal basis atpm, ∑L∈LM(Lm

i ) |L (∂ρ)(pm)| ≤ 1/m . Then

Lm
i = ∑a j

i (pm)L0
j , ∑

∣∣∣a j
i (pm)

∣∣∣
2

= 1, and we may suppose that the sequencesn 7→ a j
i (pm) converge to complex numbersa j

satisfying∑
∣∣a j
∣∣2 = 1. Then, by uniform convergence, the vector fieldL = ∑a jL0

j satisfiesFM(L, p0,δ ) = 0, for all δ . But,

we haveL = ∑bkL
p0
k , ∑ |bk|2 ≥K 1, and, by extremalityF(L, p0,δ ) ≃K ∑ |bk|2FM(Lp0

k , p0,δ ), thus there existsk such that
FM(Lp0

k , p0,δ ) = 0, i. e. ∑
L∈LM(L

p0
k )

|L (∂ρ)(p0)| = 0. Then, by (4) of Definition3.2 this contradicts the definition of the

1-type. �

Thus, in all the paper, for a geometrically separated domainat a boundary pointp0, the integerM could be changed to
[τ]+1. As this change gives no advantage, we will keepM = M′(τ) and then we can apply directly the results of the preceding
Sections.

Remark4.1. SupposeΩ is geometrically separated atp0 ∈ ∂Ω. Let p be a point ofΩ ∩W(p0). If π is the projection
onto ∂Ω defined in Section3.5.2let q = π(p). Then, reducingW(p0) andδ0 if necessary, if− 1

3ρ(p) < δ < δ0, the basis

B(q,δ ) = (Lq,δ
1 , . . . ,Lq,δ

n−1) is clearly(2K, p,δ )-extremal, andFM(Lq,δ
i , p,δ ) ≥C′δ−2/τ+1 for a constantC′ depending only on

K and the data.Thus we will always consider that a geometrically separateddomain is equipped, by definition, with extremal
basis of the form given in the definition at every point of V(p0)∩Ω for − 1

3ρ(p) < δ < δ0.

This is clear, because ifL ∈ LM(B), then|L (∂ρ)(p)−L (∂ρ)(π(p))| = O(δ ), whereO depends only onK andΩ.
Then EB1 is satisfied becauseFi(p,δ )≥Cδ−2/M withC depending only onΩ and EB2 is also satisfied becauseFk(p,δ )≤ δ−2

(δ0 small enough).

Example 4.1.
(1) The three first examples of extremal basis given in Example3.1 immediately show that, ifp0 is a point of finite type

of ∂Ω thenΩ is geometrically separated atp0, under one of the four following conditions:
(a) ∂Ω is convex nearp0, or, more generally, lineally convex nearp0 (see Section7.1);
(b) The eigenvalues of the Levi form are comparable atp0;
(c) The Levi form is locally diagonalizable atp0.
(d) Nearp0, ∂Ω belongs to the class introduced by M. Derridj in [Der99].

(2) Moreover, we will see in Section4.3 that, if Ω is geometrically separated atp0 then the local domainD defined in
Section3.5.1is geometrically separated at every point of its boundary.

Example 4.2. The domainΩ =
{

z∈ C3 such thatℜez1 + |z2|6 + |z3|6 + |z2z3|2 < 0
}

studied by G. Herbort in [Her83] is not

geometrically separated at(0,0) (see Section7.2for details).

4.2. Structure of homogeneous space.First recall that we define in Section3.3.4the “polydisc”Bc(B, p,δ ) (Definition
3.3) and the “pseudo-balls”Bc

exp(B, p,δ ) andBc
C

(B, p,δ ) (Definition3.4).
In general, we will just denote byBc

exp(p,δ ) andBc
C

(p,δ ) the pseudo-ballsBc
exp(B, p,δ ) andBc

C
(B, p,δ ) omitting B,

but recall that, ifδ1 6= δ2, the ballsBc
exp(p,δ1) andBc

exp(p,δ2) are not necessarily constructed with the same basis.
Then by the methods used in [CD06b] (based on the Campbell-Hausdorf formula and the ideas of [NSW85]), reducing

W(p0) if necessary, one can prove the following properties of the balls:

Proposition 4.1. There exists constants c0, δ0, α, β andγ such that, for p∈W(p0)∩∂Ω, δ ≤ δ0 and c≤ c0, Bαc
exp(p,δ ) ⊂

Bc(p,δ ) ⊂ Bβ c
exp(p,δ ) and Bc

exp(p,δ ) ⊂ Bc
C

(p,δ ) ⊂ Bγc
exp(p,δ ).
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The importance of this Proposition to construct the structure of homogeneous space is the following: to be able to use
Taylor’s formula, we have to work with a coordinates system,which is easy in the setsBc(p,δ ); the hypothesis of geometric
separation and Proposition3.6 imply that the sets associated to curves are associated to a pseudo-distance; and, finally, the
sets associated to the exponential map are used to prove thatall these sets are equivalent.

Ideas of the proof of Proposition4.1. It is similar to the proofs of Proposition 3.4 (p. 96) and Lemma 3.16 (p. 101) of
[CD06b]. Thus we will only give the main articulations.

The first inclusion comes easily from the control of the coefficients of the vector fieldsLi in the coordinate system(zi) in
the polydisc (Proposition3.6). The second one is more complicated.

Let expp be the exponential map based atp relatively to the vector fieldsYi (real an imaginary parts of theLi ). Let

Ψp =
(
Ψp

i

)
i=2,...,2n =

(
expp

)−1. We establish the following estimate on the derivatives of the functionsΨp
i : there exists

constantsβ andK1, depending onK and the data, such that

(4.1) if q = expp(u), max{|ui | , |ui+n|} ≤ βFi(p,δ )−1/2 then
∣∣∣YkΨp

j (q)
∣∣∣≤ K1Fk(p,δ )1/2Fj(p,δ )−1/2,

with the notation of Definition3.4.
To prove this, we estimate the derivatives of the exponential map. Considering, foru∈ Rn, the vector fieldYu = ∑uiYi ,

the derivatives of expp are estimated via the Campbell-Hausdorff formula. Letq = q(u) = expp(u), |u| ≤ u0,
∣∣∣∣∣dexpp

(
∂

∂ui

)
(u)−Yi(q)+

M

∑
k=2

αk [Yu, [. . . [Yu,Yi ] . . .]] (q)

∣∣∣∣∣≤C|u|M+1 ,

whereαk are universal constants corresponding to brackets of length k (see Lemma 1 (p. 97) of [CD06b]). The brackets
are then estimated with Proposition3.6 and (4.1) is easily obtained. The second inclusion of the Proposition is then easily
proved.

The equivalence between the sets defined with the exponential map and the curves is a quite simple consequence of
(4.1). �

Proposition 4.2. Let Ω be a bounded pseudo-convex domain K-geometrically separated at p0 ∈ ∂Ω. Then there exists
a constant c0 > 0, depending on K and the data such that, for all c≤ c0, the sets B(B(p,δ ), p,δ ) are associated to a
pseudo-distance in the following sense: there exists a constant C depending on K and the data (but not on c) such that, if
p∈W(p0)∩∂Ω andδ ≤ δ0, and if q∈ B(B(p,δ ), p,δ )∩∂Ω, then

B(B(q,δ ),q,δ ) ⊂ B(B(p,δ ), p,Cδ ),

B denoting one of the sets Bc
C

, Bc
exp or Bc.

Remark.If we defineγ, onW(p0)∩∂Ω, by

(4.2) γ(p,q) = inf {δ such thatq∈ B(B(p,δ ), p,δ )} .,

thenγ is a real pseudo-distance.

Proof.

Lemma. 1. For all A> 0 there exists B depending on A and K such that

BAc
C (B(q,δ ),qδ ) ⊂ Bc

C (B(q,Bδ ),q,Bδ ).

2. For all B> 0 there exists C depending on B such that

Bc
C (B(q,Bδ ),q,Bδ ) ⊂ BCc

C (B(q,δ ),q,δ ).

Proof. Let us denote byLi(q,δ ) (respLi(q,Bδ )) the vector fields ofB(q,δ ) (resp.B(q,Bδ )). By the hypothesis onΩ, we
haveLi(q,δ ) = ∑k β k

i Lk(q,Bδ ), with β k
i constants. By extremality,

∣∣∣β k
i

∣∣∣ ≤ KF(Li(q,δ ),q,Bδ )1/2F(Lk(q,Bδ ),q,Bδ )−1/2

≤ KB−1/MF(Li(q,δ ),q,δ )1/2F(Lk(q,Bδ ),q,Bδ )−1/2,

which proves the first part of the Lemma withB = (AK(n− 1))M. The second part is proved similarly withC = (BK(n−
1))M. �

To prove the assertion on the pseudo-distance in the Proposition, by Proposition4.1, it is enough to prove that, there
exists a constantK0 such that ifq,q′ ∈ Bc

C
(B(p,δ ), p,δ ) thenq′ ∈ BK0c

C
(B(q,δ ),q,δ ). But there existsϕ , C 1 piecewise

smooth, such thatϕ(0) = q, ϕ(1) = q′ and, almost everywhere,ϕ ′(t) = ∑2n
i=1ai(t)Yi(ϕ(t)), with max{|ai(t)| , |ai+n(t)|} ≤

2cF(Li(p,δ ), p,δ ) ≤ 4cF(Li(p,δ ),q,δ ), if we choosec small enough (Proposition3.6). Now, as in the Lemma, writing

Li(p,δ ) = ∑αk
i Lk(q,δ ) (with αk

i constants), using extremality we easily concludeq′ ∈ BK0c
C

(Bq,δ
1 ,q,δ ). �
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Let us now define “pseudo-balls” centered at points ofΩ∩W(p0), denotedπBc(q,δ ) (resp.πBc
C

(q,δ ) πBc
exp(q,δ )) by

πBc(q,δ ) =
{

q′ ∈V(p0) such thatπ(q′) ∈ Bc(B(π(q),δ ),π(q),δ ) andρ(q′) ∈ [ρ(q)−cδ ,ρ(q)+cδ ]
}
.

Then:

Theorem 4.1. Let Ω be a pseudo-convex domain geometrically separated at p0 ∈ ∂Ω. There exists a constant c0 > 0,
depending on K and the data, such that, for all c≤ c0, the sets Bc(q,δ ) define a structure of “homogeneous space” on
W(p0)∩ Ω̄ in the following sense: there exists a constant C, dependingonly on K and the data (not on c) such that, if
q1 ∈W(p0)∩ Ω̄, δ < δ0, and q2 ∈ B(q1,δ ), we have

B(q2,δ ) ⊂ B(q1,Cδ )

and
Vol (B(q,2δ )) ≤CVol (q,δ )) ,

B denoting one of the sets Bc
C

, Bc
exp or Bc.

Proof. The first assertion follows immediately the Proposition. Toprove the second assertion, we use the fact that both
Bc

C
(B(p,δ ), p,δ ) andBc

exp(B(p,δ ), p,δ ) are equivalent toBc (B(p,δ ), p,δ ), the fact that the coordinate system associated
to the extremal basis have a Jacobian uniformly bounded fromabove and below and the preceding Lemma. �

Remark4.2.

(1) For p∈ ∂Ω, the setsπBc(q,δ )∩ ∂Ω (for each definition) are the pseudo-balls of a structure of homogeneous space
on ∂Ω∩W(p0).

(2) On∂Ω, as in [NRSW89], we could define equivalent pseudo-balls using complex tangent curves.

4.3. Localization. Suppose thatΩ is K-geometrically separated atp0 ∈ ∂Ω, and consider the domainD constructed in
Section3.5.1near that point. ThenD is K-geometrically separated at each point of∂Ω∩∂D, and, by strict pseudo-convexity,
the same is true on∂D\ ∂Ω∩∂D.

Suppose thatP is a point of the boundary of∂Ω∩ ∂D, and letp be a point ofV(P)∩ ∂D andδ small enough (with the

notations of the previous Section). Let us denote byB(p,δ ) =
{

Lp,δ
1 , . . . ,Lp,δ

n−1

}
the extremal basis given by Proposition3.14

and byB0,Ω =
{

L0,Ω
1 , . . . ,L0,Ω

n−1

}
the basis denotedB0 in Definition 4.1. Then, by the construction ofB(p,δ ) made in the

previous Section, we haveLp,δ
i = Lρ

i ◦π−β (Lρ
i )Nρ ◦π with L 7→ β (L) linear. Thus, if we defineB0,D =

{
L0,D

1 , . . . ,L0,D
n−1

}
by

L0,D
i = L0,Ω

i ◦π −β (L0,Ω
i )Nρ ◦π , we see that the vector fields ofB(p,δ ) are linear combinations (with constant coefficients)

of the vector fields ofB0,D. Thus, we have proved the following result:

Theorem 4.2. If Ω is K-geometrically separated at p0 ∈ ∂Ω, then the domain D defined in Definition3.6is K′-geometrically
separated (at every point of its boundary) for a constant K′ depending only on K and the data.

Remark.Recall that every point of∂Ω is of finite 1-type.

5. ADAPTED PLURI-SUBHARMONIC FUNCTION FOR GEOMETRICALLY SEPARATED DOMAINS

5.1. Definition and examples.

Definition 5.1. Let Ω be geometrically separated atp0. Let E be the vector space generated byB0 ∪ {N}, and, if L =

∑n−1
i=1 biL0

i + bnN = Lτ + bnN ∈ E denotes, forδ ≤ δ0, F(L,q,δ ) = F(Lτ ,q,δ )+ |bn|2
δ 2 . A C 3 pluri-subharmonic function in

Ω, Hδ , is said to beβ -adapted toB0 at p0 if there exists a constantβ such that the following properties hold:

(1) |Hδ | ≤ 1 onΩ;
(2) Forq∈W(p0)∩Ω∩{ρ ≥−2δ} and for all vector fieldL ∈ E,

〈
∂ ∂̄Hδ ;L,L

〉
(q) ≥ 1

β
F(L,q,δ );

(3) Forq∈W(p0)∩Ω∩{ρ ≥−2δ} and for all listL ∈ L3(E),

|L Hδ |(q) ≤ β ∏
L∈L

F(L,q,δ )1/2.

Remark5.1. Note that (3) implies in particular that, for allL ∈ L3(B(π(q),δ )∪{N}),
|L Hδ |(q) . F(B(π(q),δ ),q,δ )L /2.

Definition 5.2. A bounded pseudo-convex domainΩ is called “K-completely geometrically separated” atp0 if it is K-
geometrically separated and, there existsδ0 > 0 such that, for all 0< δ ≤ δ0, there exists a pluri-subharmonic function
K-adapted toB0 at p0.
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Example 5.1. (1) If the boundary ofΩ is locally convex nearp0 (a point of finite type), it is proved in [McN94, MN02]
that it is completely geometrically separated atp0. More generally, using the results of [DF03] it can be shown that
if Ω is locally lineally convex nearp0 (see [Kis98]) then it is completely geometrically separated atp0 (see Section
7.1for some details on the construction). Moreover, when the boundary ofΩ is locally convex, resp. locally lineally
convex, nearp0, the local domainD can be chosen convex, resp. lineally convex, (choosingd small enough andK0

large enough) and thus, in both cases, it is completely geometrically separated at every point of its boundary.
(2) In [Cho02b, Cho02a, Cho03], it is proved that, at a point of finite type, if the eigenvalues of the Levi form are

comparable atp0 then it is also completely geometrically separated atp0.
(3) In the next Section, we prove that geometrically separated domains whose extremal basis are strongly extremal with a

sufficiently smallα are completely geometrically separated, and, moreover that, for those domains, the local domain
defined in Section3.5is completely geometrically separated at every point of itsboundary. In particular, this applies
when the Levi form is locally diagonalizable atp0.

(4) It can also be proved that if a domain is of the type considered by M. Derridj in [Der99] near a boundary pointp0

then it is completely geometrically separated atp0.

5.2. The case of geometrically separated domains with strongly extremal basis. In this Section we prove the two follow-
ing Theorems:

Theorem 5.1. SupposeΩ is K-geometrically separated at p0 ∈ ∂Ω. Then there exists a constantα0, depending on K and
the data, such that, if for all p∈W(p0)∩∂Ω andδ ≤ δ0, the basisB(p,δ ) are (K,α, p,δ )-strongly extremal (c.f. Definition
3.5) with α ≤ α0 then it is completely geometrically separated at p0.

The second deals with the local domainD constructed in Section3.5.1, and, in fact contains the first one:

Theorem 5.2. Suppose thatΩ is K-geometrically separated at p0 ∈ ∂Ω. There exists a constantα1, depending on K and the
data such that, if for all p∈W(p0)∩∂Ω andδ ≤ δ0, the basisB(p,δ ) are (K,α, p,δ )-strongly extremal withα ≤ α1, then
the local domain constructed in Section3.5.1is K′-completely geometrically separated at every point of its boundary for a
constant K′ depending only on K andΩ.

We will prove in details the first Theorem and only give the modifications needed to obtain the second one.

5.2.1. Proof of5.1. Here we suppose that the basisB(p,δ ), p∈W(p)∩∂Ω, δ ≤ δ0, are(K,α, p,δ )-strongly extremal for a
constantα not yet fixed. During the proof, we will impose successive conditions onα (depending onK, M andn) to be able
to construct the good pluri-subharmonic function. The existence ofα will be clear at the end of the proof but we will not give
an explicit value. Now, we fixδ > 0.

The ideas of construction are comparable to those developedin [CD06b] (following ideas of [Cat87]) but the technical
proofs are slightly different. On one hand the basis are local instead to be global and we have to construct local “almost
pluri-subharmonic” functions and then add them using the structure of homogeneous space instead to construct directlya
global function. On the other hand, the control of lists following our hypothesis are weaker than those following the local
diagonalizability of the Levi form. Thus, for reader’s convenience, we will write the proof with enough details.

Let us start with a local construction. We need to introduce new notations.
Let us fixδ and denoteQc(p,δ ) the pointsq in W(p0) such thatπ(q) belongs toBc(p,δ ), the polydisc associated to the

extremal basisB(p,δ ) (see Definition3.3). Let L be a vector field inE (the vector space generated byB0 andN). We write

L = Lτ +anN, whereLτ is tangent toρ . BecauseΩ is geometrically separated we can writeLτ = ∑n−1
i=1 ap

i Lp,δ
i (ap

i ∈ C). As

usual,cp
ii will denote the coefficient of the Levi form associated to thevector fieldLp,δ

i ∈ B(p,δ ), andΩε = {−ε < ρ < 0}.
Now we state the local result and show how it leads to5.1. For the proof we need only estimates in the stripΩ3δ =

{−3δ ≤ ρ ≤ 0}, but in Section5.2.3we need corresponding results in a larger domain, and thus westate the local result for
the setsQc(p,δ ):

Proposition 5.1. For all constant C> 1 there exists constantsα0 (depending only on K, c, C and the data),β andγ1 such
that if the basisB(p,δ ) are (K,α, p,δ )-extremal withα ≤ α0, then for allδ ≤ δ (α0) (depending onα0, K and the data)
and all point p∈W(p0)∩∂Ω, there exists a function Hp,δ = H with support in Qc(p,δ ) satisfying, for every vector field L,
the following conditions:

(1) |H| ≤ 1;

(2)
〈
∂ ∂̄ H;L, L̄

〉
(q) ≥ βF(Lτ ,q,δ )− γ1

(
∑n−1

i=1

∣∣ap
i

∣∣2 cii
δ + |an|2

δ 2 +1
)

(q), for q∈ Qc/2(p,δ )∩Ω3δ ,

(3)
〈
∂ ∂̄ H;L, L̄

〉
(q) ≥− β

CF(Lτ ,q,δ )− γ1

(
∑n−1

i=1

∣∣ap
i

∣∣2 cii
δ + |an|2

δ 2 +1
)

(q), for q∈ Qc/2(p,δ )∩Ω3δ ,

(4) For L ∈ L3 (B(p,δ )∪{N}), |L H|(q) ≤ γ2 ∏L∈L F(L,q,δ )1/2, for q∈ Qc/2(p,δ )∩Ω3δ .

We will prove this Proposition in the next Section. Now we show how5.1follows this Proposition:

Proof of5.1. We cover∂Ω∩W(p0) with a minimal system of pseudo-ballsπBc/2(pk,δ )∩∂Ω, pk ∈ ∂Ω. As the pseudo-balls
are associated to a structure of homogeneous space, there exists an integerS, independent ofδ , such that each point ofW(p0)
belongs to at mostSsetsQc(p j ,δ ). We apply Proposition5.1with C = 2SC1 to get the functionHpk,δ .
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For all pointq∈ V(P0)∩Ω3δ there existsj0 such thatq∈ Qc/2(p j0,δ ) and thus (denotingck
ii the coefficient of the Levi

form in the directionLpk
i andak

i = apk
i ), by Proposition5.1,

(5.1)

〈
∂ ∂̄ ∑

k

Hpk,δ ;L, L̄

〉
(q) ≥ β

2
F(Lτ ,q,δ )− γ1 ∑

k s.t. q∈Qc(pk,δ )

(
n−1

∑
i=1

∣∣∣ak
i

∣∣∣
2
∣∣ck

ii (q)
∣∣

δ
+

|an|2
δ 2 +1

)
.

Let us consider the function
H = ∑

k

Hpk,δ +Ae−ρ/δ +B|Z|2 ,

for suitable constantsA andB andα small enough:

Claim. There exists constantsA, B, γ andα ′
0 depending only onK and the data such that ifα ≤ α ′

0,

(1) H is uniformly bounded, independently ofδ ≤ δ0, onΩ3δ ;

(2) For any vector fieldL ∈ E, for q∈ Ω3δ ∩W(p0),
〈
∂ ∂̄ H;L, L̄

〉
(q) ≥ β

2 F(Lτ ,q,δ )+ |an|2
δ 2 ;

(3) Forq∈ Ω3δ ∩W(p0) and all listL ∈ L3(E), |L H|(q) ≤ γ2 ∏L∈L F(L,q,δ )1/2.

Proof of the Claim.For everyk such thatq∈ Qc(pk,δ ),

〈
∂ ∂̄eρ/δ ;L, L̄

〉
(q) = eρ/δ

[
1
δ

(
1
2

n−1

∑
i, j=1

ak
i a

k
jc

k
i j +2ℜe

(
n−1

∑
i=1

ak
i ak

n

〈
∂ ∂̄ρ ;Lpk

i ,N̄
〉
)

+ |an|2
〈
∂ ∂̄ρ ;N,N̄

〉
)

+
|an|2
δ 2

]
.

Then, we use the hypothesis of strong extremality and Taylor’s formula to estimate
∣∣∣ck

i j

∣∣∣, i 6= j, in the setQc(pk,δ )∩Ω3δ .

Using the fact thatcii = |cii |+O(δ ) (recallΩ is pseudo-convex), this gives a constantK0 depending onK and the data such
that 〈

∂ ∂̄eρ/δ ;L, L̄
〉

(q) ≥−K0 +
e−3

2δ 2 |an|2 +
e−3

2δ

n−1

∑
i=1

∣∣∣ak
i

∣∣∣
2 ∣∣∣ck

ii (q)
∣∣∣−4n2KαF(Lq

τ ,q,δ ),

because, by definition ofc, in the setsQc(pk,δ ), F(Lτ ,q) ≤ 3F(Lτ , pk) (see Proposition3.6).
Now we chooseA = 2Se3γ1 +1 andB = K0A+ γ1. The Claim follows easily (5.1). �

To finish the proof of5.1, we cutH to adapt it to good neighborhoodsV(p0) andW(p0) and the required properties in the
strip{δΩ(p) < 2δ}, and we addD |z|2 for a large constantD. More precisely, the cutting functions are defined as follows:

Let ϑ = ϑ1ϑ2 whereϑ1(q) = χ1

(
1
2
|q−p0|

r

)
, with χ1 a C ∞ increasing function equal to 0 on]−∞,0], 1 on [1/4,+∞[

andχ1(t) = t4 on [0,1/8], andϑ2(q) = χδ (ρ(q)) with χδ (t) = χ(t/δ ), χ being even, increasing on]−∞,0[, equal to 0 on

]−∞,−4], to 1 on]−2,0[ and to (t+4)4

16 for t ∈ [−4,−8/3].
Then the final calculus is made as in [CD06b], remarking the following estimate

〈
∂ ∂̄ ϑ ;L, L̄

〉
≥−O(1).

�

5.2.2. Proof of Proposition5.1. The proof uses essentially the ideas developed in Section 4.1 of [CD06b], except that we
have to work locally around the pointp. Thus the technique is more complicated (it needs to use the structure of homogeneous
space) and we will give it with some details.

For p∈W(p0)∩∂Ω andδ ≤ δ0 fixed, letB(p,δ ) = {Lp,δ
i = Li , 1≤ i ≤ n−1} be the(K,α, p,δ )-strongly extremal basis

associated, andΦ = Φδ
p the adapted change of coordinates at(p,δ ).

For i = 1, . . . ,n−1 andl = 3, . . . ,M, let us define

E
i
l = {ℜe(L (∂ρ), ℑm(L (∂ρ), |L | = l −1, L = {L1, . . . ,Ll−1}, Lk ∈ {Li ,Li}},

E
i =

⋃

l

E
i
l .

If ϕ ∈ E i
l , we denotẽl(ϕ) = l .

Note thatFi(.,δ ) = F(Li , .,δ ) ≃ |cii |
δ +∑ϕi∈E i

∣∣∣ Liϕi
δ

∣∣∣
2/l̃(ϕi)

. The functions|cii |
δ and

∣∣∣Li ϕi
δ

∣∣∣
2/l̃(ϕi)

are called thecomponentsof

Fi and are denoted genericallyfi . We also definel(cii ) = 2, and, for the other functionsfi , l( fi) = l̃(ϕi). In the following proof,
these components cannot be considered individually. Thus,we introduce the terminology of “(n−1)-uplet” of components:
f = ( f1, . . . , fn−1), wherefi are component ofFi, is called a(n−1)-uplet of components of the weightsFi. The set of all such
(n−1)-uplet is denoted byH . H is ordered by the lexicographic order.

First we define a cutoff function with support inQc(p,δ ) and in the set where a component is ”dominant”. More precisely,
if B is a positive number andf = ( fi) a (n−1)-uplet of components ofFi , we define, for fixedc≤ c0,

χ f ,B = ∏
i

χB

(
fi ◦π

Fi(p,δ )

)
χ0 = χ ′

f ,Bχ0,
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where χB(t) = χ(Bt), χ : [0,+∞[7→ [0,1], being aC
∞ function equal to 0 on[0,1/2] and 1 on[1,+∞[, and χ0(q) =

χ1

((
Fi(p,δ )1/2

c Φp(π(q))i

)
i

)
, with χ1 aC ∞ function identically 1 onB(0,1/2) and with compact support inB(0,1).

We say thatf is B dominant ifχ ′
f ,B = 1.

Then, to each component ofFi of type fi =
∣∣∣ Lp

i ϕi
δ

∣∣∣
2/l( fi)

, we associate, forλ > 1 the function

Hi( f ,λ ,B) = λ−3/2eλ ψi χ f ,B,

whereψi(q) = ϕi(π(q))
δ Fi(p,δ )

1−l̃ (ϕi )
2 .

Lemma 5.1. For each constant B> 0, there exists a constant K0 depending only on B, c, K and the data such that, for each
i, if q ∈ Qc(p,δ )∩Ω3δ , for each L= ∑n

i=1aiLi , ∑
∣∣a j
∣∣2 = 1, we have the following estimates:

(1) |Lψi(q)| ≤ K0

(
F(Lτ ,q,δ )1/2 + |an|

δ

)
, and|L̄L(ψi)(q)| ≤ K0

(
F(Lτ ,q,δ )+ |an|2

δ 2

)
;

(2)
∣∣Lχ f ,B(q)

∣∣≤ K0

(
F(Lτ ,q,δ )1/2 + |an|

δ

)
, and

∣∣L̄Lχ f ,B
∣∣≤ K0

(
F(Lτ ,q,δ )+ |an|2

δ 2

)
;

(3) |[L, L̄] (∂ (Hi( f ,λ ,B))| ≤ K0λ−1/2eλ ψi

(
F(Lτ ,q,δ )1/2 + |an|

δ

)
.

Proof. If q∈ ∂Ω, the inequality|Lψi(q)| ≤ K0

(
F(Lτ ,q,δ )1/2 + |an|

δ

)
follows immediately Proposition3.6and the extremal-

ity of the basis(Li) at (p,δ ). The general case for (1) follows.

(2) is obtained using the fact that, if(z) is the change of coordinates associated toΦ and Li = ∑a j
i

∂
∂zj

, then
∣∣∣a j

i

∣∣∣ .

F1/2
i (p,δ )F−1/2

j (p,δ ) for q∈ Qc(p,δ )∩∂Ω (Proposition3.6), and similar techniques as for (1).

(3) is proved similarly, using the estimates of the coefficients of the brackets[LiL j ] in Qc(p,δ )∩∂Ω (Proposition3.6). �

For f = ( f1, . . . , fn−1), a (n−1)-uplet of components of the weightsFi, let us denote byI the set of indexesi such that

fi =
∣∣∣L

p
i ϕi
δ

∣∣∣
2/l( fi)

. Then we consider the function

H( f ,λ ,B) = ∑
i∈I

Hi f ,λ ,B).

The next Lemma gives some properties of the functionH( f ,λ ,B). To state it we need to introduce the following set:
For f a (n−1)-uplet of components of the weightsFi andB′ a positive number, we denote

UB′, f =
{

q∈ Qc(p,δ ) for which there existsf ′ < f such thatf ′(q) is B′ dominant
}

.

Lemma 5.2. Let f be a(n−1)-uplet of component, A, B andε three positive fixed real numbers. Then there exists constants
α0, λ , A′, B′, A′ > A, B′ > B, ε ′ and K1, depending only on A, B,ε, K and the data, such that, if the constantα of strong
extremality is≤ α0, then the function H( f ,A,B,ε) = H( f ,λ ,B) = H satisfies, on Qc(p,δ )∩Ω3δ :

(1) |H| ≤ K1;

(2) If L = ∑n
i=1aiL

p
i = Lτ +anN, ai ∈ C, ∑ |ai |2 = 1, then

∣∣〈∂ ∂̄ H;L, L̄
〉∣∣(q) ≤ A′

(
F(Lτ ,q,δ )+ |an|2

δ 2

)
;

(3) if q /∈UB′ , χ ′
f ,B(q) = 1, χ0(q) ≥ ε, for the same L,

〈
∂ ∂̄H;L, L̄

〉
(q) ≥ AF(Lτ ,q,δ )−K2

(
n−1

∑
i=1

|ai|2
|cii (q)|

δ
+

|an|2
δ 2 +1

)
;

(4)
〈
∂ ∂̄ H;L, L̄

〉
(q) ≤−

(
F(Lτ ,q,δ )+ |an|2

δ 2

)
implies q∈UB′ andχ0(q) ≥ ε ′.

(5) For all list L ∈ L3(B(p,δ )∪{N}), |L H(q)| ≤ K2
(
∏L∈L F(L,q,δ )1/2

)
.

Proof. Recall thatH = ∑i∈I Hi , thus the properties are trivially satisfied ifI = /0 and we supposeI 6= /0. The functions|ψi |
being bounded by 2 (see Proposition3.6), (1) is satisfied with a constantK1 depending only onλ andn.

Let i ∈ I . Then
〈
∂ ∂̄Hi ;L, L̄

〉
= L̄LHi +[L, L̄] (∂Hi), and as

L̄LHi = λ−3/2eλ ψi
[(

λ 2 |Lψi |2 + λ L̄Lψi

)
χ f ,B + λ

(
Lψi L̄χ f ,B + L̄ψiLχ f ,B

)
+ L̄Lχ f ,B

]
,

5.1 implies
〈
∂ ∂̄ Hi ;L, L̄

〉
(q) ≥ λ−3/2eλ ψi

(
λ 2 |Lψi |2 χ f ,B−K′

0λF(Lτ ,q,δ )+ |an|2
δ 2 +1

)
and thus the existence of a constant

A′, depending only on the choice ofλ , B, c, K and the data, satisfying (2).
Now, if for all i ∈ I , |λ ψi | ≤ 1, then, forλ large enough, we have

〈
∂ ∂̄H;L, L̄

〉
≥−F(L). Thus we suppose that there exists

an i ∈ I such that|λ ψi(q)| = λ |ϕi(π(q))|
δ Fi(p,δ )(1−l̃(ϕi))/2 ≥ 1. Thus there exists a constantB′ > B, depending onλ , such that

∣∣∣ϕi(π(q))
δ

∣∣∣
2/(l̃(ϕi)−1)

> 4
B′ Fi(p,δ ), and this implies that there exists a(n− 1)-uplet f ′ < f which is B′-dominant at the point

q. In other words, to each choice ofλ we can associateB′ such that the first conclusion in (4) is true. Moreover,λ , B and
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c being fixed,χ1 beingC
∞, there existsε ′, depending onλ , B, c andχ1, such that the hypothesis of (4) implies the second

conclusion.
Let us now show that we can chooseλ (thusA′, B′, K1 andε ′ will be fixed) such that (3) is satisfied ifα is small enough.

Suppose thenχ ′
f ,B(q) = 1andχ0(q) > ε. The hypothesis of strong extremality and the invariance ofthe Fi(q) andak

i j in
Bc(p,δ ) ( Propositions3.6and3.10) gives, ifδ ≤ δ (α),

|Lψi(q)|2 ≥ 1
4

∣∣∣∣∣∑j≤i
a j(L jψi)(q)

∣∣∣∣∣

2

−4nC(K)

(
2α ∑

n−1≥ j>i

∣∣a j
∣∣2Fj(p)+

|an|2
δ 2

)
,

and then, by extremality atp,

|Lψi(q)|2 ≥ 1
4

∣∣∣∣∣∑j≤i
a jL jψi(q)

∣∣∣∣∣

2

−C1(K)

(
α2F(Lτ ,q,δ )+

|an|2
δ 2 +1

)
.

Now we make use of the following Lemma:

Lemma. Let β j
i be complex numbers, i= 1,2, · · · ,n−1, j ≤ i, verifying

∣∣β i
i

∣∣ ≥ cαi and
∣∣∣β j

i

∣∣∣ ≤ Cα j for j < i. Then there

exists a constant W= W(c,C,n) such that∑n−1
i=1

∣∣∣∑i
j=1 β j

i

∣∣∣
2
≥W∑n−1

i=1 (αi)
2.

It implies, using the invariance ofFi(q) andF(L,q) in the ball and the extremality of the basis atp, that there exists
constantsW, K3 andK4, depending onB, M, K and the data, such that:

∑
i∈I

|Lψi(q)|2 +∑
i /∈I

|cii (q)|
δ

≥ W
2K

F(Lτ ,q,δ )−αK3(F(Lτ ,q,δ )+1)−K4
|an|2
δ 2 ,

and thus, forα0 = W/4KK3 (depending only on the dataM, K, B, c andn),

∑
i∈I

|Lψi(q)|2 +∑
i /∈I

|cii (q)|
δ

≥W′F(Lτ ,q,δ )−K4

(
|an|2
δ 2 +1

)
.

This finishes the proof of the Lemma for a choice ofλ depending onA, ε, B, M, K andc, c depending itself only onM, K
and the data, the property (5) being trivial. �

Proof of Proposition5.1. First, note that there exists a constantD, depending onM andn, such that, forp ∈ W(p0) and
δ ≥ 1

3 |ρ(p)|, there exists a componentfi of Fi(p,δ ) verifying fi(q)≥ 1
D Fi(p,δ ) for all pointsq∈Bc(p,δ ), c≤ c0 (Proposition

3.6) .
To define completely our functionH, we have to define, for each(n−1)-uplet of componentf ∈ H (the set of(n−1)-

uplets of components of the weightsFi(p,δ )), the constantsAf , Bf andε f from whichλ ( f ) is constructed. Letf 0 be the
largest element ofH for the lexicographic order. DefineAf0 = C4Mn+1, Bf0 = D andε f0 = 1. Suppose we have constructed
the constantsAf , Bf andε f for f ≥ f 1. Consider the constantsA′

f 1, B′
f 1 andε ′

f 1 obtained applying5.2for the constantsAf 1,

Bf 1 andε f 1, and define, forf 2 precedingf 1, Af 2 = 3C∑ f> f 2 A′
f , Bf 2 = B′

f 1 andε f 2 = ε f 1. ThusH = ∑ f∈H H( f ,Af ,Bf ε f )

is well defined.
Forq∈ Qc(p,δ ) define the following subsets ofH :

E1(q) =
{

f ∈ H such that there existsf ′ < f , such thatf ′(q) is B′
f -dominant andχ0(q) ≥ ε ′f

}
,

E3(q) =
{

f ∈ H such thatχ ′
f ,Bf

(q) = 1 andχ0(q) ≥ ε f

}
,

E2(q) = H \ {E1(q)∪E3(q)} .

Note that ifE1(q) is not empty, and iff is it’s smallest element, then there existsf ′ < f such thatf ′(q) is B′
f dominant,

that isχ ′
f ′,Bf ′

(q) = 1, and, asε f ′ ≤ ε ′f , we also haveχ0(q) ≥ ε f ′ which meansf ′ ∈ E3(q), f being the smallest element of

E1(q).
Now suppose first thatq∈ Qc/2(p,δ ). Then, by definition ofD, E3(q) is not empty, and, ifE1(q)is also not empty there

exists inE3(q) some strict minorant ofE1(q). Then, by5.2

〈
∂ ∂̄ H;L, L̄

〉
(q) ≥

(

∑
f∈E3(q)

Af − ∑
f∈E1(q)

A′
f −#E2(q)

)
F(Lτ ,q,δ )−∑K2(Af ,Bf ,A

′
f )

(
n−1

∑
i=1

|ai |2
cii (q)

δ
+

|an|2
δ 2 +1

)
,

for α small enough, depending only onM, K andn (#E2( f ) denoting the number of elements ofE2( f )). Then, the preceding
remark and the fact that #E2(q) ≤ 4Mn ≤ 1

4CAf 0 imply

〈
∂ ∂̄ H;L, L̄

〉
(q) ≥C4MnF(Lτ ,q,δ )− γ1

(
n−1

∑
i=1

|ai |2
|cii (q)|

δ
+

|an|2
δ 2 +1

)
.
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Finally, if q is any point inBc(p,δ ) thenE3(q) may be empty, but thenE1(q) is also empty, and thus

〈
∂ ∂̄ H;L, L̄

〉
(q) ≥−4MnF(Lτ ,q,δ )− γ1

(
n−1

∑
i=1

|ai |2
|cii (q)|

δ
+

|an|2
δ 2 +1

)
.

This finishes the proof of Proposition5.1, property (4) being trivial. �

5.2.3. Proof of 5.2. If P is a point of the boundary ofD, by the definition ofD and5.1, to prove that there exists a pluri-
subharmonic function adapted to the structure of geometrically separated domain nearP, we have only to consider the case
whereP is in the boundary of∂Ω∩∂D. Thus, with the notations introduced just before, we prove the following reformulation
of 5.2:

Proposition 5.2. Let P be a point of the boundary of∂Ω∩ ∂D, and V(P) the neighborhood considered in the previous
Section. For all K> 0, there exists constantsα1 and δ1 depending on K and the data such that ifΩ is K-geometrically
separated at p0 ∈ ∂Ω and if the extremal basis ofΩ are (K,α, p,δ )-strongly extremal withα ≤ α1, then, for0 < δ ≤ δ1,
there exists a pluri-subharmonic function Hδ on the local domain D which is(δ ,K′)-adapted toB0,D at P.

Proof. The proof is a modification of the proof of5.1 and we will only indicate the differences. Here we have to consider
both weights associated to the domainsΩ andD, that we denoteFΩ andFD, which are constructed respectively with the
defining functionsρ andρ + ϕ .

We fix δ small enough and then will omit the subscriptδ in the notations of the vector fields. Consider, as in Section
5.2.1the covering of∂D∩V(P) by the pseudo-ballsBc/2(qk,δ )∩ ∂Ω (note that hereP plays the role ofp0 in the previous
Sections).

We denotepk = π(qk) and fixk. Let
(
Lk

i

)
i = (Li)i be theδ -extremal basis (forD) at the pointqk. Let Lρ

i be the vector
field tangent toρ associated toLi (i. e. Li = Lρ

i ◦π +(β ◦π)NΩ ◦π). We saw (in Section3.5.3) that the weightsFD(Li , .,δ )
associated to the vector fieldsLi are equivalent to

FΩ(Lρ
i ,π(.),δ )+

ϕ ′ (|.|)
δ

+
ϕ ′′
(
|.|2
)

δ
∣∣〈Lρ

i (π(.)) , .
〉∣∣2 .

Let
(

LΩ,k
i

)
i
=
(
LΩ

i

)
i be theδ -extremal (forΩ) basis atpk so that the vector fieldsLρ

i are linear combinations of theLΩ
i .

Let

Ik =



i such thatFΩ

(
LΩ

i , pk,δ
)

>
ϕ ′
(
|qk|2

)

δ



 .

We supposeIk non empty. As the vector fieldsLΩ
i are ordered so that their weights are decreasing,Ik is a segment ofN,

{1,2, . . . ,nk}. Then, we consider thenk-uplets of components of the weightsFΩ(LΩ
i , pk,δ ), i ≤ nk, f =

(
f1, . . . , fnk

)
and the

function

χ f ,B = ∏
i≤nk

χB

(
fi ◦π

FΩ
(
LΩ

i , pk,δ
)
)

χ0,

whereχ0(q) = χ1

(
FD,i(q,δ )

c Φ̃qk(πD(q)
)

, πD being the projection onto∂D associated to the real normal toD.

To obtain the good estimates of the derivatives ofχ f ,B with respect to the vector fieldsLi , we first estimate the derivatives
of the functionsfi ◦π at the pointqk:

Lemma 5.3. For i ∈ Ik, if | fi(pk)| ≥ 1
2BFΩ(LΩ

i , pk,δ ), for L ∈ LM (L1, . . . ,Ln−1), we have

|L ( fi ◦π)(qk)| .B FΩ(LΩ
i , pk,δ )FD(qk,δ )L /2.

Proof. Let us consider the case|L | = 1. AsL j = Lρ
j ◦π +(β j ◦π)NΩ ◦π , for p = π(q),

∣∣L j ( f ◦π)(q)
∣∣≤
∣∣∣Lρ

j (p)( f j ◦π)(q)
∣∣∣+O

(∣∣β j(p)
∣∣) .

By (3.11),
∣∣β j(p)

∣∣. ϕ ′
(
|p|2
)

. ϕ ′
(
|q|2
)

+O
(

ϕ
(
|q|2
))

= O
(

ϕ ′
(
|q|2
))

, thus

∣∣β j(pk)
∣∣. FΩ1/2

(LΩ
i , pk,δ )FD1/2

(L j ,qk,δ )

becausei ∈ Ik. As theLρ
j are tangent toρ , Lρ

j (p)( fi ◦π)(q) = Lρ
j (p)( fi)(p), and, as theLρ

j are in the space spanned by the

LΩ
i , by Proposition3.3, ∣∣∣

(
Lρ

j (pk)( fi)
)

(pk)
∣∣∣. FΩ

(
LΩ

i , pk,δ
)

FΩ
(

Lρ
j , pk,δ

)1/2
,

and thus
∣∣∣
(

Lρ
j (pk)( fi)

)
(qk)

∣∣∣. FΩ
(

LΩ
i , pk,δ

)
FΩ
(

Lρ
j , pk,δ

)1/2
+

ϕ
(
|qk|2

)

δ
.
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Derivatives of higer order are treated similarly. �

Corollary. Under the same hypothesis, for q∈ Qc
D(qk,δ )∩D3δ andL ∈ LM (L1, . . . ,Ln−1), we have

|L ( fi ◦π)(q)| .B FΩ(LΩ
i , pk,δ )FD(qk,δ )L /2.

The derivatives ofχ0 being trivial, we deduce from (3.8) and Taylor’s formula:

Lemma 5.4. For i ∈ Ik and q∈ Qc
D(qk,δ )∩D3δ , for L ∈ LM (L1, . . . ,Ln−1), we have

∣∣L χ f ,B(q)
∣∣.B FD(qk,δ )L /2.

We now define the basic functionsH( f ,λ ,B) used here. LetI =
{

i ≤ nk such thatfi 6= |cii |
δ

}
, and, for i ∈ I , if fi =

∣∣∣ Liϕi
δ

∣∣∣
2/l( fi)

,

Hi( f ,λ ,B) = λ−3/2eλ ψi χ f ,B whereψi =
ϕi

δ

∣∣∣∣
Liϕi

δ

∣∣∣∣
1

l̃(ϕi )−1
andH = H( f ,λ ,B) = ∑

i∈I

Hi( f ,λ ,B).

If L = ∑n
i=1aiLi = Lτ +anLn (∑ |ai|2 = 1), as in the proof of5.2, using the last Lemma we get

〈
∂ ∂̄Hi ;L, L̄

〉
(q) ≥ λ−3/2eλ ψi

(
λ 2 |Lψi |2 χ f ,B−K0

(
λFD(Lτ ,qk,δ )+

|an|2
δ

+1

))
,

for q∈ Qc
D(qk,δ )∩D3δ . The estimate of|Lψi |2 has now to be done more carefully.

Lτ(q) = Lρ
τ (p)+ β (p)NΩ gives

|Lτ ψi |2 (q) ≥ 1
4

∣∣Lρ
τ (p)ψi

∣∣2 (q)−C




ϕ ′
(
|q|2
)

δ
+

ϕ
(
|q|2
)

+ δ

δ


 .

Then, decomposingLρ
τ on theδ -extremal basis atpk

(
LΩ

i

)
i , Lρ

τ = ∑n−1
j=1 b jLΩ

j , we obtain, using the strong extremality hypoth-
esis,

∣∣Lρ
τ (p)ψi

∣∣2 (q) ≥ 1
4

∣∣∣∣∣∑j≤i
b jL

Ω
j ψi

∣∣∣∣∣

2

(q)−C


α2FΩ(Lρ

τ , pk,δ )+
ϕ
(
|q|2
)

+ δ

δ


 .

Using the same method, we sum all these inequality to get (writing cΩ
ii =

[
LΩ

i ,LΩ
i

]
(∂ρ))

∑
i∈I

∣∣Lρ
τ ψi
∣∣2 (q) ≥ βFΩ

(
nk

∑
j=1

b jL
Ω
j , pk,δ

)
−C


 ∑

i /∈I , i≤nk

|bi|2
∣∣cΩ

ii

∣∣
δ

(q)+ α2FΩ(Lρ
τ , pk,δ )+

ϕ
(
|q|2
)

δ
+1




≥ βFΩ(Lρ
τ , pk,δ )−C


 ∑

i /∈I , i≤nk

|bi |2
∣∣cΩ

ii

∣∣
δ

(q)+ α2FΩ(Lρ
τ , pk,δ )+

ϕ ′
(
|q|2
)

δ
+1


 ,

and, as|Lψi |2 ≥ 1
4 |Lτ ϕi |2−C |an|2

δ 2 , we finally obtain

∑
i∈I

|Lψi |2 ≥ βFΩ(Lρ
τ , pk,δ )−C


 ∑

i /∈I , i≤nk

|bi |2
∣∣cΩ

ii

∣∣
δ

(q)+
|an|2

δ
+ α2FΩ(Lρ

τ , pk,δ )+
ϕ ′
(
|q|2
)

δ
+1


 .

Then the proof is finished as in the previous Section using that, in Qc
D(qk,δ )∩D3δ , we have

〈
∂ ∂̄ er/δ ;L, L̄

〉
(q) ≥ β




n−1

∑
i=1

|bi |2
∣∣cΩ

ii

∣∣
δ

(q)+
|an|2
δ 2 +

ϕ ′
(
|q|2
)

+ ϕ ′′
(
|q|2
)∣∣〈Lρ

τ (p),q
〉∣∣2

δ


−K

(
αFΩ(Lρ

τ , pk,δ )+1
)

.

Indeed,

(5.2)
〈

∂ ∂̄er/δ ;L,L
〉

= er/δ

(
2ℜe

(
an
〈
∂ ∂̄ r;Lτ ,N̄

〉)

δ
+

|an|2
δ 2

)
(q)+

〈
∂ ∂̄ er/δ ;Lτ ,Lτ

〉
(q).

Forq∈ {r ≥−3δ}, the first term of (5.2) is≥ 1
2e3

|an|2
δ 2 −K0. Let us look at the second term of (5.2).

〈
∂ ∂̄ er/δ ;Lτ ,Lτ

〉
=

er/δ

δ

(〈
∂ ∂̄ρ ;Lτ ,Lτ

〉
+‖Lτ‖2 ϕ ′

(
|q|2
)

+
∣∣〈Lρ

τ (p),q
〉∣∣2 ϕ ′′

(
|q|2
))

.
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But 〈
∂ ∂̄ ρ ;Lτ ,Lτ

〉
(q) =

〈
∂ ∂̄ ρ ;Lρ

τ (p),Lρ
τ (p)

〉
(q)+O

(
ϕ ′
(
|q|2
)∣∣〈Lρ

τ (p),q
〉∣∣2
)

and, first we can chooseV small enough so thatϕ ′
(
|q|2
)∣∣〈Lρ

τ (p),q
〉∣∣2 ≪ ϕ ′

(
|q|2
)

+ ϕ ′′
(
|q|2
∣∣〈Lρ

τ (p),q
〉∣∣2
)

, and secondly
〈

∂ ∂̄ρ ;Lρ
τ (p),Lρ

τ (p)
〉

(q) = ∑bib jc
Ω
i j (q)

≥ ∑ |bi |2
∣∣∣cΩ

ii

∣∣∣(p)+O
[
αδFΩ(Lρ

τ (p))+ ϕ
(
|q|2
)

+ δ
]
.

�

6. APPLICATIONS TO COMPLEX ANALYSIS

6.1. Statements of the results for geometrically separated domains. In [CD06b] and [CD06a] we proved that the methods
introduced, for the study of the Bergman and Szegö projection, by A. Nagel, J. P. Rosay, E. M. Stein and S. Wainger inC2

([NRSW89]) and by J. McNeal and E. M. Stein for convex domains ([MS94, MS97]) can be adapted to pseudo-convex
domains having an “adapted geometry”. The study made in the previous Sections show that it is the case for completely
geometrically separated domains and thus we have the following sharp estimates:

Theorem 6.1. SupposeΩ is completely geometrically separated at p0 ∈ ∂Ω. Let KB(z,w) be the Bergman kernel ofΩ. There
exists a neighborhood W(p0) of p0 such that:

(1) For p∈W(p0)∩Ω, KB(p, p) ≃ Πn
i=1F(Lp,δ (p)

i , p,δΩ(p)), whereδΩ(p) is the distance from p to∂Ω.
(2) For p1, p2 ∈ W(p0)∩Ω, for all integer N, there exists a constant CN depending onΩ and N, such that for all list

LZ1 = {L1
1, . . . ,L

k
1} (respLZ2 = {L1

2, . . .L
k′
2 }) of length k≤ N (resp. k′ ≤ N) with Lj

1 ∈ B(π(p1),τ)∪{N} (resp.

L j
2 ∈ B(π(p1),τ)∪{N}), we have

∣∣LZ1LZ2KB(Z1,Z2)(p1, p2)
∣∣≤CN

n

∏
i=1

F(Lπ(p1),τ
i ,π(p1),τ)1+l i/2,

whereτ = δ∂Ω(p1)+δ∂Ω(p2)+ γ(π(p1),π(p2)), γ(π(p1),π(p2)) is the pseudo-distance fromπ(p1) to π(p2) asso-

ciated to the structure of homogeneous space and li is the number of times the vector fields Lπ(p1),τ
i or Lπ(p1),τ

i appear
in the union of the listsLZ1 andLZ2.

Corollary. SupposeΩ satisfies the hypothesis of5.2. Let D be the local domain considered in5.2. Then the Bergman kernel
KD(z,w) of D satisfy all the estimates stated in the Theorem at any point of its boundary.

Using the methods of Section 5 of [CD92] the following result on invariant metrics is easily proved:

Theorem 6.2. SupposeΩ is completely geometrically separated at p0 ∈ ∂Ω. Let us denote by BΩ(z,L) (resp. CΩ(z,L),
resp. KΩ(z,L)) the Bergman (resp. Caratheodory, resp. Kobayashi) metricof Ω at the point z∈ Ω. Then there exists a
neighborhood V(p0) such that, for all vector field L∈ E, L= Lτ +anN, we have, for q∈V(p0)∩Ω,

BΩ(q,L) ≃CΩ(q,L) ≃ KΩ(q,L) ≃ F(Lτ ,q,δ (q))+
|an|
δ (q)

,

whereδ (q) is the distance of q to the boundary ofΩ and the constants in the equivalences depend only on the constant of
geometric separation and the data.

Theorem 6.3. SupposeΩ is completely geometrically separated at every point of itsboundary. Then the following results
hold:

(1) Let PB be the Bergman projection ofΩ. Then:
(a) for 1 < p < +∞ and s≥ 0, PB maps continuously the Sobolev space Lp

s(Ω)into itself;
(b) for 0 < α < +∞, PB maps continuously the Lipschitz spaceΛα(Ω) into itself;
(c) for 0 < α < 1/M, PB maps continuously the Lipschitz spaceΛα(Ω) into the non-isotropic Lipschitz space

Γα(Ω).
(2) Let PS be the Szeg̈o projection ofΩ. Then:

(a) for 1 < p < +∞ and s∈ N, PS maps continuously the Sobolev space Lp
s(∂Ω)into itself;

(b) for 0 < α < +∞, PS maps continuously the Lipschitz spaceΛα(∂Ω) into itself;
(c) for 0 < α < 1/M, PS maps continuously the Lipschitz spaceΛα(∂Ω) into the non-isotropic Lipschitz space

Γα(∂Ω).

Note. (1) Statements (1) (c) and (2) (c) can be extended to allα > 0 with convenient definitions of the spacesΓα (Ω) and
Γα (∂Ω).

(2) In view of Example5.1, the previous theorem applies in particular for all lineally convex domains.
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Corollary. SupposeΩ satisfy the hypothesis of5.2. Let D be the local domain considered in5.2. Then all the results stated
for Ω in the previous Theorem are valid for D.

Using an idea of M. Machedon [Mac88] we deduce local estimates for the Szegö projection:

Theorem 6.4. SupposeΩ satisfies the hypothesis of5.2. Let PS be the Szeg̈o projection ofΩ. Then if f is a L2(∂Ω) function
which is locally near p0in the Sobolev space Lp

s , 1< p< +∞ and s∈ N, (resp. in the Lipschitz spaceΛα , 0< α < 1/M) then
its projection PS( f ) is locally near p0 in Lp

s (resp. in the non-isotropic Lipschitz spaceΓα ). In particular this applies if the
Levi form ofΩ is locally diagonalizable at p0.

Proof. if f ∈ L2(Ω) and if χ ∈ C ∞(∂Ω) has compact support in a sufficiently small neighborhood ofp0 andχ = 1 in a
neighborhood ofp0, then the subelliptic estimates for�b and Kohn’s theory ([Koh85, KN65]) implies PS((1− χ) f ) is C ∞

nearp0, and, denotingPD
S the Szegö projection ofD, (PS−PD

S )(χ f ) is C ∞ in a neighborhood ofp0 (see also [Kan90]); the
result follows thus the previous Corollary. �

6.2. A guide of the proofs of the results of Section6.1. Let U be a neighborhood of∂Ω where we can define a projection
π onto∂Ω using the integral curve of the real normal toρ . We will always suppose thatV(p0) ⊂U .

The two notions of “weak homogeneous space” and “adapted pluri-subharmonic function” plays a crucial role in [CD06b,
CD06a]:

Definition 6.1. We say that the domainΩ satisfy the hypothesis of “weak homogeneous space” at a boundary pointp0 of
finite typeτ if there exists two neighborhoodsV(p0) andW(p0) ⋐ V(p0) and a constantK such that:

(1) There existsδ0 > 0 such that, for everyp∈W(p0), ∀δ ∈ [− 1
3ρ(p),δ0], there exists a basis of vector fields tangent to

ρ in V(p0), B(p,δ ), for which there exists aK-adapted coordinate system
(2) There exists two constantsC andc0, depending onK andτ, such that, forc≤ c0, the setsBc(B(p,δ ), p,δ ) (asso-

ciated to the coordinate system),Bc
C

(B(p,δ ), p,δ ) andBc
exp(B(p,δ ), p,δ ) satisfy the following conditions, for all

p∈W(p0)∩ Ω̄ and allδ ∈ [− 1
3ρ(p),δ0]:

(a) for q ∈ Bc
0(p,δ ), Bc

0(B(q,δ ),q,δ ) ⊂ Bc
1(B(p,δ ), p,Cδ ), whereBc

0 andBc
1 denotes one of the setsBc, Bc

C
or

Bc
exp.

(b) Vol
(
Bc

0(B(p,2δ ), p,2δ )
)
≤CVol

(
Bc

0(B(p,δ ), p,δ )
)
.

Note that, in this Definition the weightsFi are defined withM = M′(τ).

Definition 6.2. Let B = {L1, . . . ,Ln−1} be a basis of vector fields tangent toρ in a neighborhoodV(p0) of a boundary point
p0 and 0< δ ≤ δ0. We say that a pluri-subharmonic functionH ∈ PSH(Ω) is (p0,K,c,δ )-adapted to this basisB if the
following properties are satisfied:

|H| ≤ 1 in Ω, and, for all pointp ∈ W(p0)∩ Ω̄, ρ(p) ≥ −3δ , the two following inequalities are verified for points
q∈ Bc

C
(B, p,δ )∩Ω:

(1) For allL = ∑n
i=1aiLi , ai ∈ C,

〈
∂ ∂̄ H,L,L

〉
≥ 1

K

n

∑
i=1

|ai |2F(Li , p,δ ).

(2) ForL ∈ L3(B∪{N}),
|L H| ≤ K ∏

L∈L

F(L, p,δ )1/2.

Note that this Definition depends on the values of the vector fields Lp
i at pointsq in Ω. But, in the situation of the

applications below (i.e. with a finite type hypothesis) it can be shown that it depends only (up to uniform constants) on the
restriction of the basis on∂Ω.

The following Proposition follows the work in [CD06b, CD06a]:

Proposition. LetΩ be a bounded pseudo-convex domain and p0 be a boundary point of finite type (resp. a bounded pseudo-
convex domain of finite type). Then, ifΩ satisfies the hypothesis of “weak homogeneous space” at p0 (resp. at every point
of its boundary) and if there exists a pluri-subharmonic function Hδ adapted toB(p,δ ) for all p ∈ W(p0)∩ Ω̄ and all
δ ∈ [− 1

3,δ0] (resp. if this property holds at every point p0 of ∂Ω) then the conclusions of6.1(resp.6.3) are satisfied.

To prove Theorems6.1and6.3it suffices then to use the properties of extremal basis and tonote the two following facts:

(1) The existence of extremal basis and adapted coordinate systems for points of∂Ω∩W(p0) allows us to define basis
and coordinate systems for points insideΩ (see Remark4.1) and,

(2) if p1 ∈W(p0)∩Ω, p = π(p1), the sets̃Bc
0(B(p,δ ), p1,δ ), − 1

3ρ(p1) < δ ≤ δ0, defined byq∈ B̃c
0(B(p,δ ), p1,δ ) if

π(q) ∈ Bc
0(B(p,δ ), p,δ ) and|ρ(q)−ρ(p1)| < cδ induce a structure of “weak homogeneous space”.
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6.3. Main articulations of the proof of the Proposition. In the Section 2 of [CD06b] we showed that if the Levi form is
locally diagonalizable then the local hypothesis of the Proposition is satisfied, and in [CD06a, CD06b], even if the statements
are given in the case of a locally diagonalizable Levi form, the proofs of the estimates on the Bergman and Szegö projections
are made only using the hypothesis of the Proposition. We just give here the main articulations of the proofs:

• The Bergman kernel estimates on the diagonal is done using Theorem 6.1 of [Cat89] and the change of coordinates
Φp adapted to the basisB(p,δ (p)).

• The estimates on the derivatives of the Bergman kernel outside the diagonal follow the methods developed by A.
Nagel, J. P. Rosay, E. M. Stein and S. Wainger [NRSW89] and J. Mc Neal [McN89] for the pseudo-convex domains
of finite type inC2, and used for some generalizations (see the introduction) in particular by J. Mc Neal [McN94] in
the case of convex domains. It consists to obtain uniform local estimates for the Neumann operatorN and then to
apply the ideas developed by N. Kerzman [Ker72] in the study of strictly pseudo-convex case. This requiresscaling.
The starting point is to write the Bergman kernelKΩ

B using the Bergman projection. More precisely, ifψζ is a
radial function centered atζ with compact support inΩ and of integral 1, andPΩ

B is the Bergman projection of
Ω, thenDµD̄νKΩ

B (w,ζ ) = Dµ
wPΩ

B (D̄ν
ζ ψζ )(w). Then,PΩ

B being related to thē∂ -Neumann problem by the formula

PΩ
B = Id−ϑN ∂̄ , whereϑ is the formal adjoint tō∂ andN the inverse operator of̄∂ ∂̄ ∗ + ∂̄ ∗∂̄ , the estimates on

PΩ
B are obtained via estimates onN . To obtain these estimates, we use the theory developed by J.J. Kohn and L.

Nirenberg [KN65] which gives local Sobolev estimates forN if there exists a local sub-elliptic estimates for the
∂̄ -Neumann problem and the famous work of D. Catlin ([Cat87]), where it is proved that the existence of an adapted
pluri-subharmonic function implies the existence of sub-elliptic estimates for thē∂ -Neumann operator.
The study of the Bergman kernel is not directly done inΩ but in Φp(Ω), whereΦp is a coordinate system adapted
to the basisB(p,δ∂Ω(p) + δ∂Ω(q) + γ(π(p),π(q))), whereγ is the pseudo-distance on∂Ω. One difficulty is to
see that all the constants appearing in the estimates and allthe domains where the estimates are done are uniformly
controlled.

• The estimates for the Bergman and Szegö projectors are obtained adapting the methods developed by J. Mc Neal and
E. M. Stein in [MS94, MS97] (and also [NRSW89]), related, in particular, to the theory of non isotropic smoothing
operators, to non convex domains.

Remark.The results on the Szegö projection are thus obtained adapting the theory of NIS operators to our settings. TheΛα
estimates, for example, for the domains considered by M. Derridj in [Der99] can also be obtained using the estimate for�b of
Derridj’s paper, the estimate on the Bergman projection derived from the fact that these domains are completely geometrically
separated and the results on the comparison of the Bergman and Szegö projection obtained by K. D. Koenig in [Koe07].

7. EXAMPLES AND ADDITIONAL REMARKS

7.1. The lineally convex case.In this Section we show, with some details the statements made on lineally convex domains
in Example3.1, Example4.1and Example5.1.

SupposeΩ = {ρ < 0} is lineally convex nearp0 ∈ ∂Ω, a point of finite type, andW is a small neighborhood ofp0. (Zi)i

is a coordinate system centered atp0 such thatZn is the complex normal to∂Ω at p0, and ∂ρ
∂Zn

≃ 1 in W.
We begin with the statement in Example3.1(1). Let p∈ ∂Ω∩W andδ > 0. Let(zi)i be theδ -extremal basis (considered

as a coordinate system) atp defined by M. Conrad in [Con02] (the main results concerning this basis are summarized in
[DF06]), which is centered atp. To be coherent with our previous notations, we suppose thatthe complex normal to∂Ω at p
is zn (in M. Conrad paper this normal isz1).

To each vectorv = (a1, . . . ,an−1,0) ∈ C
n we associate the(1,0)-vector field, tangent toρ ,

(7.1) Lv =
n−1

∑
i=1

ai
∂

∂zi
+ βv

∂
∂Zn

:= V + βv
∂

∂Zn

(thusβv = −V(ρ)
(

∂ρ
∂Zn

)−1
).

If vi =
(
δ i

k

)
1≤k≤n, 1≤ i ≤ n− 1, we denoteLi = Lvi = ∂

∂zi
+ βi

∂
∂Zn

. Note that the vector fieldsLi depend onp andδ
(Li = Li(p,δ )) and are a basis of the complex tangent space toρ in W.

Proposition 7.1. There exists a constant K such that, for all p∈ ∂Ω∩W and allδ ≤ δ0, δ0 small enough, the basis(Li(p,δ ))i
is (K,δ )-extremal at p.

Proof. pandδ being fixed, we drop them in the notations. First we express the weightsF(Lv, p,δ ) in terms of the vector
field V of (7.1).

Lemma. LetL be a list composed ofα Lv andβ Lv, ‖v‖ ≤ 1. Then

L (∂ρ) = 2VαV̄β (ρ)+ ∑
α ′+β ′<α+β

∗Vα ′
V̄β ′

(ρ)

where are functions ofC 2m−(α+β ) norm uniformly bounded in p andδ .
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Proof. Look first atcvv̄ = 2
[
Lv,Lv

]
(∂ρ): cvv =−2Lv(βv)

∂ρ
∂Zn

= 2LvV(ρ)+∗V(ρ) = 2V̄V(ρ)+∗V(ρ). The Lemma is proved
by induction. �

Corollary. F (Lv, p,δ ) ≃ ∑ |ai |2F(Li , p,δ ) uniformly in p andδ .

Proof. It suffices to prove this formula when‖v‖ = 1. By the Lemma

F (Lv, p,δ ) ≃ ∑
2≤α+β≤m

∣∣∣∣∣
VαV̄β (ρ)

δ

∣∣∣∣∣

2
α+β

= ∑
2≤α+β≤m

∣∣∣∣∣∣

∂ α+β

∂λ α ∂ λ̄ β (ρ)(p+ λv)|λ=0

δ

∣∣∣∣∣∣

2
α+β

≃
(

2
τ(p,v,δ )

)2

,

(whereτ(p,v,δ ) is Conrad’s notation).
Using properties (iii) and (iv) of Proposition 3.1 of [DF06] we get

F (Lv, p,δ ) ≃
m

∑
2

|ai |2
τ(p,vi ,δ )

.

As all constants are uniform inp andδ the Corollary is proved. �

To finish the proof of Proposition7.1 we have to prove property EB2 of Definition 3.1. For example, let us look at the
bracket[Li ,L j ]:

[Li ,L j ] =

(
− ∂

∂ z̄j
+ β̄ j

∂
∂Zn

)
(βi)

∂
∂Zn

+

(
∂

∂zi
+ βi

∂
∂Zn

)(
βi

) ∂
∂Zn

= a
∂

∂Zn
+b

∂
∂Zn

.

Let L ∈ LM (L1, . . . ,Ln−1). As, for allk, F−1/2
k ≥ δ and ∂

∂Zn
= ∑αi

∂
∂zi

with αi uniformly bounded inC M norm, it is enough
to show that

(|L a|+ |L b|) (p) . δFα/2(p,δ )F1/2
i (p,δ )F1/2

j (p,δ ).

If |L | = 0, a(p) = ∂ 2ρ
∂zi∂zj

(0)
(

∂ρ
∂Zn

)−1
(p) and, if |L |= 1,

( )

Lka(p) = ∂ 3ρ
∂

( )

zk∂zi∂zj
(0)
(

∂ρ
∂Zn

)−1
(p)+∗ ∂ 2ρ

∂
( )

zk∂zj
. Thus, in those cases,

the result follows Lemma 3.2 of M. Conrad’s paper [Con02] which states

(7.2)

∣∣∣∣∣
∂ α+β ρ
∂zα ∂zβ (p)

∣∣∣∣∣. δ ∏
(

1
τ(p,vi ,δ )

)αi+βi

≃ δF(p,δ )(α+β )/2,

the last equivalence resulting of the proof of the previous Corollary. The case of a generalL is easily done similarly. �

Now let us prove the statement made in Example5.1 (1). The construction of the adapted plurisubharmonic function is
inspired by the McNeal’s construction for convex domains, using support function, written in [MN02]. We use the support
function for lineally convex domains constructed by J. E. Fornaess and K. Diederich in [DF03]. The right behavior in the
normal direction is obtained, as in Section5.2, adding the functionsKeρ/δ andK |z|2.

Consider the support function constructed by K. Diederich and J. E. Fornaess in [DF03] at the pointp:

Sp(z1, . . . ,zn) = −ε
2m

∑
j=2

M2 j
σ j ∑

|α |= j ,αn=0

1
α!

∂ jρ(0)

∂zα zα

+zn

(
1

1−Ap(z)

)
+K0

(
zn

1−Ap(z)

)2

,

whereAp is aC ∞ function, uniformly bounded (inp), such thatAp(0) = 0. ShrinkingW(p0) if necessary,Sp is uniformly
bounded onW(p0).

Then there exists a constantM0 (> 8n and independent ofp andδ ) such that, ifS=
M0ℜe(Sp)

δ , we have:

(1) ℜe(S) ≤ 0;
(2) ℜe(S(z)) ≤−n, if there existsi < n such that|zi | ≥ Fi(p,δ )−1/2;
(3) −1/4≤ ℜe(S(z)) if z∈ cP(p,δ ) =

{
zsuch that|zi | ≤ cFi(p,δ )−1/2, i = 1, . . . ,n

}
.
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Let F be the function defined byF(z) = ∑n−1
i=1 Fi(p,δ ) |zi |2, andχ be the convex function such thatχ ≡ 0 on ]−∞,−1[

andχ(x) = ex−1−1 on]−1,+∞[. Define then

H1 = χ
(

F +S− n
δ 2 |zn|2

)
.

ClearlyH1 ≡ 0 on a neighborhood of the boundary ofP(p,δ ). Then we denote byH the function equal toH1 in P(p,δ ) and
0 outside. Then:

(1) Supp(H) ⊂ P(p,δ );
(2) |H| ≤C0;
(3) OnP(p,δ ) we have

〈
∂ ∂̄ H;

n−1

∑
i=1

ai
∂

∂zi
,
n−1

∑
i=1

ai
∂

∂zi

〉
≥ χ ′

(
F +S− n

δ 2 |zn|2
)n−1

∑
i=1

|ai|2Fi(p,δ ).

We now estimate
〈
∂ ∂̄ H;L, L̄

〉
in P(p,δ ) for a vector fieldL =n

i=1 biL0
i whereL0

i = ∂
∂Zi

−β 0
i

∂
∂Zn

, for i < n, andL0
n = N the

complex normal vector (recall that the extremal basis are linear combinations of theseL0
i ). DenoteL = Lτ +bnN, so thatLτ

is tangent toρ . Then

(7.3)
〈
∂ ∂̄ H;L, L̄

〉
=
〈
∂ ∂̄H;Lτ ,Lτ

〉
+2ℜe

(
bn
〈
∂ ∂̄H;Lτ ,N̄

〉)
+ |bn|2

〈
∂ ∂̄H;N,N̄

〉
.

The last term of the second member of this equality is≥−O
(
|bn|2 χ ′

(
F +S− n

δ 2 |zn|2
)

1
δ 2

)
, and, if(Li) is theδ -extremal

basis atp andLτ = ∑n−1
i=1 aiLi , we have

〈
∂ ∂̄ H;Lτ ,N̄

〉
=

〈
∂ ∂̄H;

n−1

∑
i=1

ai
∂

∂zi
,N̄

〉
+

〈
∂ ∂̄ H;

(
∑aiβi

) ∂
∂Zn

,N̄

〉
.

Using (7.2) the first term of the second member of this equality is O
(

1
δ χ ′

(
F +S− n

δ 2 |zn|2
))

, and the second term is

O
(

1
δ χ ′

(
F +S− n

δ 2 |zn|2
)

∑ |ai|Fi(p,δ )1/2
)

because (7.2) and the fact thatβi(p) = 0 impliesβi = O
(
δFi(p,δ )1/2

)
. Notice

that, by extremality,∑ |ai|Fi(p,δ )1/2 ≃ F(Lτ , p,δ )1/2, thus, there exists a constantK1 such that

2ℜe
(
bn
〈
∂ ∂̄ H;Lτ ,N̄

〉)
+ |bn|2

〈
∂ ∂̄ H;N,N̄

〉
≥−K1χ ′

(
F +S− n

δ 2 |zn|2
)( |bn|2

δ 2 +
|bn|
δ

F(Lτ , p,δ )1/2

)
.

Let us now look at the first term of the second member of (7.3):

〈
∂ ∂̄H;Lτ ,Lτ

〉
= χ ′

(
F +S− n

δ 2 |zn|2
)〈

∂ ∂̄

(
F +S−n

|zn|2
δ 2

)
;Lτ ,Lτ

〉
+

+χ ′′
(

F +S− n
δ 2 |zn|2

)∣∣∣∣∣Lτ

(
F +S−n

|zn|2
δ 2

)∣∣∣∣∣

2

= A+B.

ShrinkingW(p0) if necessary, we have

A ≥ χ ′
(

F +S− n
δ 2 |zn|2

)[1
2

n−1

∑
i=1

|ai|2Fi(p,δ )− n
δ 2

∣∣∣
〈

∂ ∂̄ |zn|2 ;Lτ ,Lτ

〉∣∣∣
]

≥ χ ′
(

F +S− n
δ 2 |zn|2

)

1

2

n−1

∑
i=1

|ai|2Fi(p,δ )− 2n
δ 2

∣∣∣∣∣
n−1

∑
i=1

aiβi

∣∣∣∣∣

2

 .

To estimateB, write

Lτ

(
F +S−n

|zn|2
δ 2

)
=

n−1

∑
i=1

ai
∂

∂zi

(
F +S−n

|zn|2
δ 2

)
+

(
n−1

∑
i=1

aiβi

)
∂

∂Zn

(
F +S−n

|zn|2
δ 2

)
.

Then the first term of the second member of this equality is O
(
F(Lτ , p,δ )1/2

)
by extremality (use (7.2)), and

∂
∂Zn

(
F +S−n

|zn|2
δ 2

)
= O

(
F(Lτ , p,δ )1/2

)
+

M0

δ
∂

∂Zn

(
zn

1−Ap(z)

)
+O(1)− n

δ 2

∂
∂Zn

(znzn) .

But, if W(p0) is small enough,
∣∣∣ ∂

∂Zn

(
zn

1−A(z)

)∣∣∣ ∈ [1/2,3/2], and, inP(p,δ ), 1
δ 2

∣∣∣ ∂
∂Zn

(znzn)
∣∣∣≤ 2n

δ .
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Thus, asχ ′′ = χ ′, for δ small enough, we have, by the choose ofM0,

〈
∂ ∂̄ H;Lτ ,Lτ

〉
≥ χ ′

(
F +S− n

δ 2 |zn|2
)n−1

∑
i=1

|ai |2Fi(p,δ ).

Using again the extremality of the basis(Li), we conclude that

〈
∂ ∂̄ H;L, L̄

〉
≥ αχ ′

(
F +S− n

δ 2 |zn|2
)[

F(Lτ , p,δ )−K2
|bn|2
δ 2 +K2

|bn|
δ

F(Lτ , p,δ )1/2

]
,

and, using Cauchy-Schwarz inequality,

〈
∂ ∂̄ H;L, L̄

〉
≥ β χ ′

(
F +S− n

δ 2 |zn|2
)[

F(Lτ , p,δ )−K3
|bn|2
δ 2

]
.

In particular, oncP(p,δ )

〈
∂ ∂̄ H;L, L̄

〉
≥ γF(Lτ , p,δ )−K

|bn|2
δ 2 ,

and
〈
∂ ∂̄ H;L, L̄

〉
≥−K |bn|2

δ 2 onP(p,δ ).
If we note that choosingc sufficiently small we haveF(Lτ , p,δ ) ≃ F(Lτ ,q,δ ), we get:

Proposition 7.2. There exists two constantsγ and K depending only on the data such that, if L= Lτ +bnN = ∑n−1
i=1 biL0

i +bnN,

we have
〈

∂ ¯∂H;L, L̄
〉
≥−K |bn|2

δ 2 , and, if q∈ cP(p,δ ),
〈

∂ ¯∂H;L, L̄
〉

(q) ≥ γF(Lτ ,q,δ )−K |bn|2
δ 2 .

To finish the construction of the plurisubharmonic functionadapted to the structure ofΩ at p, as in the proof of5.1, we
have to add functions of the precedent type to get a local function. Thus, we cover∂Ω∩W(p0) with a minimal system of
polydiscsc

2P(pkδ ), pk ∈ ∂Ω∩W(p0) and, then, there exists an integerJ, independent ofδ such that every point ofΩ belongs
to at mostJ polydiscsP(pk,δ ). Indeed, there exists a constantC such that

P
(

p,
c
C

δ
)
⊂ c

2
P(p,δ ) ⊂ P(p,cCδ )

and the polydiscsP(p,δ ) are associated to a structure of homogeneous space.
ConsiderH = ∑Hpk where the functionHpk is the one considered in the previous Proposition relatively to the pointp= pk

(notice that‖H‖ ≤ JC0). Then, shrinking eventuallyW(p0) and choosingρ equivalent to the distance to the boundary with
a constant close to 1, for all pointq ∈ W(p0)∩

{
0 > ρ > − c

2δ
}

there existsk0 such thatq ∈ P(pk0,δ ) and the setE(q) of
indexk so thatq∈ cP(pk,δ ) has at mostJ elements and we have

〈
∂ ∂̄H;LL̄

〉
(q) ≥ γF(Lτ ,q,δ )−KJ

|bn|2
δ 2 .

Moreover, without conditions onq, we have

〈
∂ ∂̄H;LL̄

〉
(q) ≥−KJ

|bn|2
δ 2 ,

and∂ ∂̄ H(q) = 0 if ρ(q) < −2δ .
We now evaluate

〈
∂ ∂̄ eρ/δ ;L, L̄

〉
in W(p0):

〈
∂ ∂̄eρ/δ ;L, L̄

〉
≥ eρ/δ

[
1
δ

(
1
2

n−1

∑
i, j=1

bib jc
0
i j + ℜe

n−1

∑
i=1

bibn
〈
∂ ∂̄ ρ ;L0

i ,N̄
〉
)

+
|bn|2
δ 2

]

c0
i j being the coefficient of the Levi form in the direction

(
L0

i ,L
0
j

)
. As the level set ofρ are pseudo-convex (inW(p0)), we

get
〈

∂ ∂̄eρ/δ ;L, L̄
〉
≥ eρ/δ

(
1
2
|bn|2
δ 2 −K1

)
.

Consider nowH̃ = H +K1eρ/δ +K2 |z|2, for K1 andK2 large enough (independent ofδ ). ThenH̃ is plurisubharmonic on
Ω∩W(p0), uniformly bounded (with respect toδ ) and satisfies, onW(p0)∩

{
0 > ρ > − c

2δ
}

〈
∂ ∂̄ H̃;L, L̄

〉
≥ γF(Lτ , .,δ )+

|bn|2
2δ 2 .

To changec
2δ in 2δ it suffices to apply the relations betweenF(., .,αδ ) andF(., .,δ ).

Finally, we extendH̃ to a bounded plurisubharmonic function inΩ using the functionϑ1 of the end of the proof of5.1.
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7.2. Example of non geometrically separated domain.The example presented here is the domain ofC
3 introduced by G.

Herbort in [Her83]:

Ω =
{

z∈ C
3 such thatℜez1 + |z2|6 + |z3|6 + |z2|2 |z3|2 < 0

}
.

Let L0
i = ∂

∂zi
+ βi

∂
∂z1

, i = 2,3, β2 = −
(

6|z2|4z2 +2|z3|2z2

)
andβ3 = −

(
6|z3|4z3 +2|z2|2z3

)
so that

(
L0

2,L
0
3

)
is a basis

of (1,0) tangent vector fields in a neighborhood of the origin.
The fact that this domain is not geometrically separated at the origin is a consequence of the stronger following result:

Proposition 7.3. For all real constants K and C, there existsδ0 > 0 such that for allδ , 0 < δ ≤ δ0, there does not exist basis(
Lδ

1 ,Lδ
2

)
of (1,0) tangent vector fields in a neighborhood of the origin ofC 6 norm bounded by C satisfying property EB1 of

Definition3.1, for the constant K, at the origin.

Proof. Let L be a(1,0) tangent vector field in a neighborhood of the origin, and, with our usual notations,F(L,0,δ ) =

∑L∈L6(L)

∣∣∣L (∂ρ)
δ

∣∣∣
2/|L |

(0). We writeL = aL0
2 +bL0

3.

Lemma. F(L,0,δ ) ≃ |a(0)b(0)|
δ 1/2 +

(
1
δ
)1/3

.

Proof. BecausecLL̄ = 2[L, L̄] (∂ρ), it is easy to see that:

• cLL̄(0) = LcLL̄(0) = L̄cLL̄(0) = 0:
• LLcLL̄(0) = L̄L̄cLL̄(0) = 0 andLL̄cLL̄(0) = L̄LcLL̄(0) = 4|a(0)b(0)|2;
• There exists a constantC0 depending only of theC 6 norm ofa andb (i.e. of L) such that, if|L | = 3, |L cLL̄(0)| ≤

C0 |a(0)b(0)|;
• There exists a constantα0 depending only of theC 6 norm ofL, such thatF(L,0,δ ) ≥ α0δ−1/3. Indeed, the origin

being of type 6, this follows a result of T. Bloom [Blo81] and a compacity argument.

Then, the Lemma follows the fact that, for allx≥ 0,
(

x
δ
)2/5 ≤ x

δ 1/2 +
( 1

δ
)1/3

. �

We now finish the proof of the Proposition. Letδ be small enough. Suppose that there exists a basis(K,δ )- extremal
basis at the origin,

(
Lδ

1 , lδ
2

)
, theC 6 norms of the vector fields bounded byC. Let L = αLδ

1 +βLδ
2 andL′ = α ′Lδ

1 +β ′Lδ
2 with

α,β ,α ′,β ′ ∈ C chosen so thatL(0) = L0
2(0) andL′(0) = L0

3(0). Then, by extremality of
(
Lδ

1 , lδ
2

)
and the Lemma, we get

|α|2F(Lδ
1 ,0,δ )+ |β |2F(Lδ

2 ,0,δ ) ≃K F(L,0,δ ) ≃C,K

(
1
δ

)1/3

and
∣∣α ′∣∣2F(Lδ

1 ,0,δ )+
∣∣β ′∣∣2F(Lδ

2 ,0,δ ) ≃K F(L′,0,δ ) ≃C,K

(
1
δ

)1/3

.

Similarly, the extremality would imply

F(L+L′,0,δ ) ≃K
∣∣α + α ′∣∣2 F(Lδ

1 ,0,δ )+
∣∣β + β ′∣∣2F(Lδ

2 ,0,δ ) .C,K

(
1
δ

)1/3

.

But the Lemma givesF(L+L′,0,δ ) ≃C
1

δ 1/2 which is a contradiction forδ small. �

7.3. Additional remarks. Let Ω be geometrically separated atp∈ ∂Ω. In Definitions3.3 and3.4 we defined the pseudo-
balls Bc(p,δ ), Bc

C
(p,δ ) andBc

exp(p,δ ), which are equivalent by Proposition4.1, and we expressed the Bergman kernel at
(p, p) with their volumes.

Let (zi) be the coordinate system adapted to the extremal basis(Li)1≤i≤n−1 =
(

Lp,δ
i

)
at p. B(p,δ ) is defined (in the

coordinate system) using only the directions of the extremal basis. Let us now define a new pseudo-ball using all the directions
of the linear space generated by the vector fieldsLi (i.e. the spaceE0):

For |Z| = 1, Z ∈ Cn, defineLZ = ∑n−1
i=1 ZiLi +ZnN and (in the coordinate system(zi))

DZ(p,δ ) =
{

αZ such that|α| < cF(LZ, p,δ )−1/2
}

and
D(p,δ ) =

⋃

|Z|=1

DZ(p,δ ).

Then, property EB1 of extremality for(Li), implies that these pseudo-balls are equivalent (in the sense that they define the
same structure of homogeneous space) to the previous ones. Indeed, ifz∈ DZ(p,δ ),

|zi | = |αzi | .
∣∣∣∣Zi

(
∑ |Zi |2F(Li p,δ )

)−1/2
∣∣∣∣≤ F(Li , p,δ ),
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and use Propositions4.1and4.2. Conversely, ifz∈ Bc(p,δ ), z 6= 0, andZ = z/‖z‖, thenF(LZ, p,δ ) ≃ ∑ |zi |2
‖z‖2 F(Li , p,δ ) ≤

nc2

‖z‖2 , thus‖z‖2 . nc2F(LZ, p,δ ) and we conclude as before.

Note that this shows that, ifΩ is completely geometrically separated atp0 ∈ ∂Ω then the Bergman kernelK(p, p) at a
point p nearp0 is equivalent to the inverse of the volume ofD(p,δ ).

If Ω is not geometrically separated atp0 choosing a coordinate system and a basis of tangent(1,0) vector fields conve-
niently associated (in a sense to be defined), one can always define a “pseudo-ball”D(p,δ ).

Let us do this, for example, for the domains considered in theprevious Section, at the origin with the canonical coordinate
system(zi)and the vector fieldsL0

i (note that(zi) is not adapted to the basis
(
L0

i

)
in the sense of Definition3.2because, even

if condition (3) is satisfied, the conditions on the derivatives ofρ are not).

A direct calculus shows that, at the pointpδ = (−δ ,0,0), the volume ofD(pδ ,δ ) is Vol(D(pδ ,δ )) ≃
(
δ 3 log

( 1
δ
))−1

(uniformly in δ ), thus B(pδ ,δ ) and D(pδ ,δ ) are not equivalent, and the result of G. Herbort ([Her83]) shows that the
Bergman kernelK of the domain satisfiesK(pδ , pδ ) ≃ Vol (D(pδ ,δ ))−1.

Then it is natural to ask if, for that example, the “pseudo-balls” D(p,δ ) define a structure of homogeneous space. Unfor-
tunately this is absolutely not the case. Indeed, inD(0,δ ) consider the two pointsp =

(
0,−αδ 1/4,0

)
andq =

(
0,0,αδ 1/4

)

(for α small enough, these points are inD(0,δ ) for all δ , 0 < δ ≤ δ0) and estimate a constantK so thatq ∈ D(p,Kδ ). In

the coordinate system centered atp, we haveq =
(
0,αδ 1/6,αδ 1/6

)
=

√
2αδ 1/6

(
0,1/

√
2,1/

√
2
)

; then calculatingcLL̄ for

L = 1√
2
L0

1 + 1√
2
L0

2 we see that

F(L, p,Kδ ) &
α2δ−2/3

K
i.e. F(L, p,Kδ )−1/2 .

√
Kδ 1/3.

Thenq belongs toD(p,Kδ ) impliesK & δ−1/3.

8. APPENDIX

The following Lemma is an improvement of Lemma 3.9 of [CD06b]:

Lemma 8.1. Let Bj be the unit ball inC j . Let K1be a positive real number, M and n two positive integers. There exists a
constant C(K1) depending on K1, M and n such that, for j= 1, . . . ,n−1, if g is a non negative function of classC Mon Bj

satisfyingsupB j
{
∣∣Dαβ g(w)

∣∣ , |α + β | ≤M} ≤K1, where Dαβ = ∂ |α+β |

∂wα ∂ w̄β , then, for all(α0,β 0)∈
(
N

j
)2

,
∣∣α0 + β 0

∣∣< M, there

exists a∈ N j , 2|a| ≤
∣∣α0 + β 0

∣∣ such that
(

j

∏
i=1

∆ai
i

)
g(0) ≥ 1

C(K1)

∣∣∣Dα0β 0
g(0)

∣∣∣
2|α0+β0|

,

where∆i = ∂ 2

∂zi∂ z̄i
denotes the Laplacian in the zi coordinate.

Note that there is no absolute value in the left hand side of the inequality.

Proof. We only indicate how the proof of Lemma 3.9 of [CD06b] has to be modified.
Without loss of generality, we can suppose

∣∣Dα0β0g(0)
∣∣ = max|α+β |=|α0+β 0|

∣∣Dαβ g(0)
∣∣. By induction, it is enough to

prove that there exists two constantsc andC, depending onM andn, such that one of the following two cases holds:

First case there existsa∈ N j , 2|a| =
∣∣α0 + β 0

∣∣ such that
(

∏ j
i=1 ∆ai

i

)
g(0) ≥ c

∣∣∣Dα0β 0
g(0)

∣∣∣;

Second case there exists(α̃, β̃ ) ∈∈
(
N j
)2

,
∣∣∣α̃ + β̃

∣∣∣<
∣∣α0 + β 0

∣∣ such that

∣∣∣Dα̃β̃ g(0)
∣∣∣≥ 1

C

∣∣∣Dα0β 0
g(0)

∣∣∣
−|α̃+β̃ |+|α0+β 0|+1

.

Let p =
∣∣α0 + β 0

∣∣, ξ = µε, µ ∈]0,1[, ε = (εi), |εi | ≤ 1, and, as in the proof of Lemma 3.9 of [CD06b] let us write Taylor
formula:

g(ξ ) =
p−1

∑
k=0

µk ∑
|α+β |=k

∗Dαβ g(0)εα ε̄β + µ p ∑
|α+β |=p

∗Dανg(0)εα ε̄β + µ p+1R(ε,µ)

= A1(ξ )+ µ pA2(ξ )+ µ p+1R(ε,µ),

where∗ are multinomial coefficients and|R| ≤ K1K2, K2 depending only onM andn.
Remark now that,g being non negative,

(*)





If there existsµ ≃
∣∣∣Dα0β 0

g(0)
∣∣∣ such thatA2(ξ )+ µR(ε,µ) < −c1

∣∣∣Dα0β 0
g(0)

∣∣∣, c1 > 0, then theSecond

casehold.
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In the proof of Lemma 3.9 of [CD06b] we introduced a multi-indexc (|c| = p), depending ong, and complex numbersεi

(∀i, |εi | ≥ c(M,n)), depending ong andK(M,n), such that

(8.1) ∑
|α+β |=p
α+β 6=c

∣∣∣∗Dαβ g(0)εα ε̄β
∣∣∣≤

∣∣∣Dα0β 0
g(0)

∣∣∣
K

and

(8.2)

∣∣∣∣∣ ∑
α+β=c

∗Dαβ g(0)εα ε̄β

∣∣∣∣∣≥ 4

∣∣∣Dα0β 0
g(0)

∣∣∣
K

.

To finish the proof, we show now that, either we can findε andµ satisfying the hypothesis of (*), or we are in theFirst
case.

We takeµ =

∣∣∣Dα0β0
g(0)

∣∣∣
KK1K2

. Then|A2(ξ )+ µR(ξ )| ≥
∣∣∣Dα0β0

g(0)
∣∣∣

K andA2(ξ )+ µR(ξ ) has the sign of∑α+β=c∗Dαβ g(0)εα ε̄β .

If ∑α+β=c∗Dαβ g(0)εα ε̄β < 0, (*) is then satisfied, thus consider the case where∑α+β=c∗Dαβ g(0)εα ε̄β > 0.
If there exists an indexi such thatci is odd, takingε ′ defined byε ′j = ε j if j 6= i andε ′i = −εi , then

∑
α+β=c

∗Dαβ g(0)ε ′α ε ′β ≤− 4
K

∣∣∣Dα0β 0
g(0)

∣∣∣ ,

and, by (8.1), (*) is verified.
So we suppose that for alli, ci = 2c′i , and we write

∑
α+β=c

∗Dαβ g(0)ε ′α ε ′β =
c1

∑
k=0

ε ′k1ε ′c1−k
1 A1

k(ε
′
2, . . . ,ε

′
n),

with |ε ′i | = |εi |, and we choosec≪ 4/K. We separate two cases.

First suppose thatA1
c′1

(ε2, . . . ,εn) ≤ c
∣∣∣Dα0β 0

g(0)
∣∣∣. If c1 = 0 then (8.2) implies

∑
α+β=c

∗Dαβ g(0)εα εβ ≤−c′
∣∣∣Dα0β 0

g(0)
∣∣∣

which gives (*). Thus supposec1 6= 0. Let

E0 = {ε ′, such thatε ′i = εi , i > 1, ε ′1 = ϑε1, with ϑ c1 = 1}.

Thus

∑
ε ′∈E0

∑
α+β=c

∗Dαβ g(0)ε ′α ε ′β = c1A1
c′1
|ε1|c1 .

Then, by (8.2), there existsε ′ ∈ E0 such that

∑
α+β=c

∗Dαβ g(0)ε ′α ε ′β ≤−c′′
∣∣∣Dα0β 0

g(0)
∣∣∣ ,

(recall|ε1| > c(M,n)) and (*) is verified as before.

Suppose nowA1
c′1

(ε2, . . . ,εn) > c′
∣∣∣Dα0β 0

g(0)
∣∣∣. Write

A1
c′1

=
c2

∑
k=0

εk
2ε2

c2−kA2
k(ε3, . . .εn).

As before, ifc2 = 0 or if A2
c′2

(ε3, . . .εn) ≤ c′′′
∣∣∣Dα0β 0

g(0)
∣∣∣ we can changeε2 such that we obtain

A1
c′1

(ε ′2, . . .ε
′
n) ≤−c′′′′

∣∣∣Dα0β 0
g(0)

∣∣∣ ,

and we conclude that (*) is satisfied. IfA2
c′2(ε3, . . .εn) ≥ c′′′

∣∣∣Dα0β 0
g(0)

∣∣∣, we do an other time the same thing, on the third

variable. Then, by induction, if the process does not stop, the last step shows that if (*) is not satisfied, then the inequality on
Dc′c′g(0) implies that we are in theFirst case. �
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