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EXTREMAL BASIS, GEOMETRICALLY SEPARATED DOMAINS AND APPLI  CATIONS

PHILIPPE CHARPENTIER & YVES DUPAIN

ABSTRACT. In this paper we introduce the notion of extremal basis n§éat vector fields at a boundary point of finite type of
a pseudo-convex domain ifi", n > 3. Using this notion we define the class of geometrically s#pd domains at a boundary
point and we give a description of their complex geometryarBgles of such domains are given, for instance, by locatigalily
convex domains, domains with locally diagonalizable Leini at a point or domains for which the Levi form have compkrab
eigenvalues near a point and moreover we show that geoalbtreeparated domains can be localized. We also give anmggam
of a non geometrically separated domains. Next we define whatall “adapted pluri-subharmonic function” and give sudint
conditions, related to extremal basis, for their existeriEen, for these domains, when such functions exist, weepghebal and
local sharp estimate for the Bergman and Szeg0 projecti@san application, we strengthen a result by C. Feffermah,Klohn and
M. Machedon (FKM9Q]) for the local Holder estimate of the Szegd projectiomo®ing the arbitrary small loss in the Holder index
and giving a stronger non-isotropic estimate.

1. INTRODUCTION

The study of the regularity with sharp estimates for the Bexrg and Szego projections for pseudo-convex domaii§ in
became very active for domains of finite type when D. Catliovpd his fundamental characterization of subellipticreates
([Cat87).

Quite quickly, the case of domains @ was completely solved by D. Catlin iCht8g, A. Nagel, J.-P. Rosay, E. M.
Stein and S. Wainger ilNRSW89, M. Christ in [Chr88 and by C. Fefferman and J. J. Kohn iR{88] and J. Mc Neal in
[McN8g9].

In higher dimensions, the situation is more complicated amdil now, there are only partial results. One of the main
difficulties is the description of the geometry of the domaimere are some special basis of the complex tangent space at
the boundary playing an important role in this descriptiod also in the Lipschitz estimates of the projectors. Theditist
results concern domains for which these basis are moreoelédent. For example, the class of domains for which the Lev
form have rank larger tham— 2 was studied by M. Machedon iiVpc8g (see also S. Chadho94 Cho9q, [AC99]) and,
even in that case, the situation is not so simple. An othem@iais given by decoupled domains, treated by several esitho
(see for exampleNIcN91], [CG99).

A typical example where the choice of the special basis isre&d, and not evident, is the case of convex domairi3'in
In [McN94, MNO2] J. Mc Neal introduced some special basis (callezktremal in BCD99)) and gave a description of the
complex geometry with the construction of a pseudo-digtaregar the boundary related to these basis. With that gepmetr
and a construction of a “good” pluri-subharmonic functiba,proved sharp point-wise estimates for the Bergman kantel
its derivatives. Always using the geometry related to theesis J. Mc Neal and E. M. SteirMB594 and MS97]) proved all
sharp estimates for the Bergman and Szego projections.

More recently similar results were obtained, when the Leuirf have comparable eigenvalues, by K. Koenigkndg02
and S. Cho inCho03, [Cho028.

In [FKM9Q] C. L. Fefferman, J. J. Kohn and M. Machedon studied the cdsethe Levi form is locally diagonalizable
near a poinfy of the boundary. They solved tl#-Neuman problem and deduced thaf ifs aL?(dQ) function which is
locally in the classical Lipschitz spade, (nearpp) then, for alle > 0 it's Szeg0 projectiois f is locally (nearpg) in Ag_¢
(an application of our theory will remove the lossaih this estimate and get, in fact, a better non-isotropicrese).

The main idea of the present paper is to introduce a genetialnaf “extremal basis” of the complex tangent space at a
boundary point of a pseudo-convex domairtih n > 3, generalizing the-extremal basis of the convex case. With this notion
we define a class of pseudo-convex domains, containingaliquisly studied classes, called “geometrically sepdrater
which a good family of extremal basis exist near a point oftbendary. The fundamental properties of extremal basisvall
one to prove that, for these domains, there exists an assda@#ucture of homogeneous space on the boundary (and an
extension of that structure inside the domain) which dessrthe complex geometry of the domain. An important prgpert
of domains which are geometrically separated at a boundany i3 that this structure can be nicely localized (see titead
Section2 for more details).

Moreover, when special pluri-subharmonic functions @mlladapted pluri-subharmonic functions” in this papelisgx
this structure is used to obtain sharp global and local esémfor classical analytic objects as Bergman kernel, Barg
and Szeg0 projection and invariant metrics. The existaiceich adapted pluri-subharmonic functions for geomaitsic
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2 PHILIPPE CHARPENTIER & YVES DUPAIN

separated domains is not evident in general. For examplee lomain is locally convex, this is done using special supp
functions (seelDF99 MNO2]) which cannot exist, in general, without convexity. Here prove their existence, under an
additional condition (which is satisfied, for example, witle@ Levi form is locally diagonalizable) on the extremalibafor
the domain and also for the localized one (see the end ofdderfor more details).

2. NOTATIONS AND ORGANIZATION OF THE PAPER

In all the paperQ = {p < 0} denotes a bounded domain@f, n > 3, with a¢* boundary, angp € ¥"*(C") is a defining
function of Q such thaiOp| = 1 ondQ. We denote bN = ﬁ S 3—%% the unitary complex normal vector field p(i.e.
Np =1 and||N| =1).

For each poinfp of the boundary let us deno@l’o(aQ) the subbundle of,(9Q) of tangential complex vectors and
T,?’l(dQ) its conjugate. As usual, we will say that a famfly )1<j<n—1 of € vector fields is a basis of the complex tangent
space aPQ in a open neighborhood c dQ of a pointpg in dQ if it is a basis of sections oF°(dQ) inV (i.e. Li(p) =0
in V, a condition which is independent of the defining function).

Clearly, all'¢™ vector fieldL in a open neighborhodd C dQ can be extend in a open neighborhatighy) C C" so that
L(p) =0 onV(po). Of course this extension depends on the defining fungiobut all the results we will state will be
independent of such a choice. Thus, in all the paper, theeteingector fields considered Wi(pp) are always supposed to
annihilatep in V(po), and we will use the terminology of “vector fields tangenptdor this property.

LetL andL’ be two(1,0) vector fields tangent tp. The brackeiL, L] being tangent t@, it can be written
L, U] =2v—1c /T +L"

whereT is the imaginary part ol andL” € Tp%(9Q) & T51(9Q). Thuscys = [L,L'](dp) = (dp;[L,L']). The Levi form

of Q at pis defined as the hermitian form whose valuélat’) is the numbec, .. The pseudo-convexity @ means that
this hermitian form is non-negative. (£;)1<i<n_1 is a local basis of1,0) vector fields tangent tp, (CLiLj)i’j is then the
matrix of the Levi form in the given basis. This basis will bengrally denotedc; )i’j.

Let pp € Q andV (po) be a neighborhood gfp in C". If W is a set of6™ (V (po)) (1,0) complex vector fields,Z (W)
denotes the set of all listg” = (L1,...,L¥) such thall e WUW, and, forl € N, .% (W) denotes the set of such list of
length|.Z| =k e {0,1,...,1}. Moreover, if| .| = k> 2, we denote

Z(0p) =LL...Lk2 (<ap, [LH,LK] >) .

LetL be az™(V(po)) (1,0) complex vector field tangent mandM > 2 be an integer. We define the weid (L, p,5) =
FO(L,p,d8) = F¢(L) associated tb at the pointp € V(po) and tod > 0 by

Z(0p)(p)
5

2/|2|
F(L,p,d) =
EAXZVIN)

Moreover, for the complex normal directidt we defineL, = N and F?(N, p,5) = 2. When there is no ambiguity
(typically when there is only one domain) we will omit the sugcriptQ.

Note that, with the conditions op, the functions¥(dp) restricted ta?Q does not depend on the choice of the defining
functionp. Thus, as the weights will be large, by the finite type hypsihend considered (except in some technical details
of proofs) ind-strips near the boundary, they are intrinsically attadiogtie boundary of the domain and does not depend of
the defining functiomp.

Thus the defining functiop of Q is suppose to be fixed and the numbealso. When we say that some number depend
on “9” and on “the data”, we mean that it depends &,"n, M, andp but neither on the point in V(pg) nor ond < &.

If #={Li,...,Ln_1} is @€ basis of(1.0) vector fields tangent tp in V(po), and.¥ € £ (% U {N}), we denote

n
F(p.8)%/%= |‘|F<Li, p,d)"/2,
i=

wherel; = [;(.#) is the number of timek; or L; appears inZ, i < n—1, andl, = I(.#) the number of timesl or N appears
in .Z (and thug.Z| =k =S, 1i).

The organization of the paper is as follows:

In Section3 we define the notion of extremal basis and give some examplesn we give their basic properties and, in
Section3.3we prove the following fundamental property of a extremaibat a point of finite type: under this hypothesis
there exists a coordinate system which is adapted to that ivathe sense that all the derivatives of the matrix of theiLe
form in that basis are controlled by the weights attachedh¢oeixtremal basis. We give also some sufficient conditions of
extremality for a given basis, useful for some examplesaliinin Section3.5we show how the existence of extremal basis
can be localized in the sense that, near a boundary pgewitQ of finite type, if there exists extremal basis at every bouypda
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points nearpg, then one can construct a small pseudo-convex doDaififinite type inside the original domain, containing
a piece of the boundary @1 in its boundary such that there exists extremal basis a g@any of the boundary ob.

In Section4 we define the notion of geometrically separated domains afirg pp of its boundary and give examples.
Then we show that a geometrically separated domain is aditwattg equipped with a local structure of homogeneous spac
on its boundary. In Sectiof.3we prove that the structure of geometrically separated dtoozm always be localized (in the
sense described above).

In Section5 we study the existence of a pluri-subharmonic functionptathto a given geometrically separated domain.
In particular, we prove their existence when the domain iofgly” geometrically separated at a pojm of its boundary,
and we prove that, in this case, such function exists fordbalized domain at every point of its boundary.

In the last Sectiong) we show that all the sharp global and local results for Bengiernel, Bergman and Szegd pro-
jections and invariant metrics can be established for géiraly separated domains when there exists adapted- pluri
subharmonic functions. The local sharp estimate of the &pegjection when the Levi form is locally diagonalizabe i
an example of these results.

3. EXTREMAL BASIS

3.1. Definition and examples.

Definition 3.1. Let Q andV (pg) defined on Sectiof. Let & = {L1,...,Ln_1} be a% basis of(1,0) vector fields tangent
topinV(pg) andM an integer. Lep € V(pp) and 0< 8. We say that? = {L,...,Ln_1} is (M,K, p, d)-extremal (or simply
(K, p, 8)-extremal orK-extremal) if thez® norms, inV (po), of theL; are bounded b, the Jacobian of2 is bounded
from below by K onV(pp), and the two following conditions are satisfied:

EB; For any vector field of the formL = 3 !aiL;, & € C, we have

1 n-1 ) n-1 )
PR &
EB, For allindexi, j,k such that, j < n, k< nand all list.Z of % (ZU{N}),

F (Lkv p, 6)1/2

za‘lkl..«p)\ < KF(p,8)7/%F (Li, p.8)2F (L;. p.5)Y,
1)

wherea,';‘, . is the coefficient of the brackt%ﬂ, I(__]} in the directiori(__f( (with Ly = N), andL; meand.; orL;.
1]

Remark.In general this Definition depends of the choice of the defiriimctionp. But note that, fop € 0Q, it does not

and depends only on the restriction&fto 0Q NV (po).

Example 3.1.

(1) Locally lineally convex domainsA first example of extremal basis concerns the case of a jocalivex domain
near a point of finite type: it can be easily shown, using thekvad Mc Neal [McN94], that if Q is convex near a
point of finite typepg € dQ, if the canonical coordinate system is chosen so that thedasdinate is the complex
normal atpy, and, if P is the projection onto the complex tangent space of the aefifuinction ofQ parallel to the
last coordinate, then for each poimin a small neighborhood dgfy, and eachd < &, the P-projection of the first
n— 1 vectors of the Mc Nead-extremal basis agp (c.f. [BCD98 McN94)) is (K, p, d)-extremal in our sense for a
constanK depending only on the data.

More generally, the same thing can be donddoally lineally convex domainssing the work of Conrad, MGon03
(see Sectior.1for some details).

(2) Levi form with comparable eigenvalue&.second example is given by a pseudo-convex domain havirggré of
finite type pg € 0Q where the eigenvalues of the Levi form are comparable (see(2 Cho02h Cho03 Cho023).
Indeed, in £ho03 it is proved that any (normalized) basis of the complex &rigpace iK-extremal for a well
controlled constari.

(3) Locally diagonalizable Levi fornmin Section3.4we will show that if at a point of finite typgo € dQ the Levi form
is locally diagonalizable then the basis diagonalizingltbei form is K-extremal for a constari{ depending only
on the data (in fact, this basis k&strongly-extremal (see DefinitioB.5) for every constantr > 0 with & < &, &
small depending onr).

(4) Localization.An other important example will be given in Sectidrb: for anyt > 0 there existd/(7) such that if a
family of (M(7),K, p,d)-extremal basis exists in a neighborhood of a boundary gmindf finite typet, of Q then
one can construct a small smooth pseudo-convex doBaiontaining a neighborhood @ in Q in its boundary
and for which there exist@Vi(1),K’, g, d)-extremal basis at every poingse dD.
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3.2. Basic properties of extremal basis.The first property states that an extremal basip ean be orthogonalized at the
point p:

Proposition 3.1. For any K there exists a constant Hepending only on K and the data such thatZifs a basis of complex
(1,0) vector fields tangent tp in an open set Ypo) which is(K, p, d)-extremal, there exists a basig', orthonormal at p
which is(K’, p, d)-extremal.

Proof. We can suppose that the vector fieldof % are ordered such th&t(Li1,p,d) < F(Li,p,d), fori <n—1. Then,

. . L2
using the Graam-Schmidt process, we first define a @gisy decreasing inductioh! = z’j‘;il a/Lj, a) € C, andy ‘ai‘ ‘ =
1. The determinant condition implies that there existsO such thata!| > c. Then

_KZ

]2l

‘ Ljapa )—KF(Li7p76)'

Now, letL = 5;aL! be a linear combination, with constant coefficients, ofltheThen

F(L,p,o —KZ Eka@

using|zi§ka;a1!‘| > clak| — i<k |a| and the fact that thE (L, p, &) are decreasing. This proves EBr %;.

Note now that property EBfor % trivially implies the same property fo#; becausé.! involves only ﬁeldsl_j1 for j >
(and the decreasing property).

Finally, define%’ by L/ = L/ |L}||. The condition on the&?™ norm of the vectors; immediately implies the result.(]

Lka P, 6) =K z |ak|2F(Lk7 P, 6)5

Let us now prove that the mixed derivatives of the Levi forntha directions of an extremal basis are controlled by the
pure ones, that is by the weights associated to the vectdsfiglthe basis:

Proposition 3.2. Let# = {Li, 1 <i < n—1} be a%™ basis of complexl,0) vector fields tangent tp in V(po) which is
(K, p,0)-extremal for a fixed > 0. Let.Z be a list of vector fields belonging 1#i (% U {N}). Then there exits a constant
C > 0 depending only o® and K such that.# (dp)(p)| < CSF</2(p, ).

Proof. Recall the notation notatiores = (dp, [Li,Lj] ).
Lemma 3.2.1. With the previous notations (and the definition of the cdefits Efj given in Definition3.1):
Ljcik = LiCjk + Zai_ifjs* > & Cok— Za?_gcis,
Ljcik = LiCij + ) aCsj+ ) ajiCsk— » &iCis.
Proof. The first formula is simply obtained considering the cosdfitiof ImN in Jacobi’s identity applied to the bracket
[Lj, [Li,Lk]], and the second using;, [Li,Lx]]. a

The proof ofProposition3.2is done by induction on the length of the lists. Supposel|firdt= 2. Hypothesis EBimply

that, for all numbera andb and all index andj,
— 2
[l i + b/ + aba; +aba | < 6 (Jal* R+ b F ).

Suppose botlf; andFj non zero. Takingr = F; 1/2 F “Y2) andb = M, |A| and|u| less than 1, the equivalence of norms in
finite dimensional spaces gives the resulf I& 0 orFj = 0 a similar argument givesj = cji = 0.

Now we use the following notation: i € .2 (%2 U {N}), we denote by (resp.1?) the number of timeg; (resp. L)
appears inZ (thusli = It 412).

For lists of greater length, we prove, at the same time, byétidn the estimate and the following Lemma:

Lemma 3.2.2. Let . and.#’ be two lists of Zu(Z U {N}), Z(dp) = Zcij and £ (dp) = Zc, such that} = I},
12=1"2,. ThenZ(dp) ~ ' (dp) in the sense that

Z0p)-L(0p)= 5 azZ(9p),
|Z]<l2]

where a satisfy,v.2" € Zu(#ZU{N}), ), FZ12| ¢"a, S < 5F(£+2")/2 the constant depending only on K and the data.

Suppose thus the estimates and the Lemma proved for alf lshgth less or equal tl.
First, we prove3.2.2for lists of lengthN + 1. Let us write.Z(dp) = Z1¢ij and.£'(dp) = £»¢q. Then three cases can
happen:
D) (0,) = (k1);
(@) i#k j#l
(3) i#kandj=lori=kandj#1.
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The flrst case is a trivial consequence ofEBor the second, the hypothesis on the length and case (l) ilhat there exists
a list.Zsuch that,iﬂlcIJ o~ .ZLKL| Cij and-Z5cy ~ .ZL Ljcu, in the sense d3.2.2 By 3.2.1and EB, L,cjj ~ Ljcj. The result
is obtained using an other time EB8.2.1and the mductlon hypothesis. The third case is similar.
Now we prove the estimate of the Proposition for lists of kbrlg+ 1. Suppose that the vector fields are ordered so that
there exists an integetp € {0,...,n—1} such that, fork < ng, ¢ # 0, and, forn—1> k> ng, i =0. LetL =y ajL;,
aj = €A] Fl/2 “M2 g j <ngandaj = Aj if j > ng, with ‘)\j| < 1. If we apply the extremality property ©(L), we obtain,
for example for alk <N-1,

sup
e

LkEkafchL‘ < 5€(N+l)/2|:n((:\|+1)/2

with the conventiorFn, = 0 if ngp = 0. Writing L"EN*kfchL = ZCO,BA")TB, the equivalence of norms in finite dimensional
spaces gives, when— 0,

Cap=0 if there exitsj > np such thatrj + B > 0,
|Cap| S OF@FR)/2 otherwise.

Let &4 be the set of listsZ such thal(£) = a; andl? = B,. ThenCupg = Y e BZ(ap). Then,3.2.2and the
induction hypothesis give the expected estimation for diathn &,z and finishes the proof of the Proposition. O

(3.1)

The statement of the last Proposition is not really a stat¢me the vector fields of an extremal basis but on the linear
space generated by a extremal basis. In fact the followingdition is easily proved:

Proposition 3.3. In the conditions of Propositioi.2, there exists a constant C such that, if L1 < j < k are vector fields
belonging to the linear space generated by the extremaslasi; then for every? € #u(L'1,...,Lx), if L'j or L’j appear
I" times in., |.Z(dp)(p)| < 6 F(L'j.p,8)"i/2

3.3. Adapted coordinates system for points of finitel-type.

3.3.1. Definition of an adapted coordinate system and statemehteaiain result.Let py € dQ andV (pg) a neighborhood
of pgin C".
Definition 3.2. A basis#® = (L1,...,Ly_1) of sections of 1,0) complex tangent vector fields min V(po) and a coordinate
system inC", z= ®3(Z), are called M, K, &)adapted (or simplyK, &) adapted) at the point | V (po) if @3 and(®g)~*
are polynomial maps (of degree less th{am)"~1) diffeomorphisms ofC" centered ap (i.e. qu(p) = 0) satisfying (with
the notatior = F(p,d) = F(Li, p,d)):

(1) The coefficients of the polynomials ¢ and(®3)~* (and the Jacobians @i and(®3) 1) are bounded bi;

a(po(pd)-1 a(po(pd)—1
(2) For all|a| < 2m, 2% O _ (e o JO _ 0.7 = (z1,...,20.1);
(3) If Li = ya! %, thena/ (0) = &; and for all.Z € Lu(ZU{N}),

’gaii’ <K in ®p(V(po)) andFjl/2

24)(0)] < KFYR21
99 (po(@8)~1)(0)

(4) Forall(a,B), |a+B| <M, 07%97F

< Kmin{éF(‘”ﬁ)/Z,l};

One of our main goals is to prove the following existence Taeo

r\n-1 n-1
Theorem 3.1. Suppose @is of finite 1-type r, and choose an integer M larger th 2(7%“ . For any positive
constant K, there exists a consta}t> 0, a neighborhood ¥py), both depending on the data, and a constaht&pending
on K and the data such thati® = {Li, 1 <i < n—1} is a%* basis of(1,0) complex vector fields tangent pin V (po)
which is(M, K, p,d) extremal at a point & V (po) N dQ, then there exists a coordinate systémi <i<n centered at p which
is (K, d)-adapted toZ.

To proofis divided in two steps: in the next Section we workhout the assumption of finite type and construct an adapted
coordinate system using modified weights; then in Se@&i8rBwe use the finite type hypothesis to deduce the Theorem.

3.3.2. Construction of an adapted coordinate systdmthis Section we suppose that the intelyeis fixed. Letp € V(po)
andd > 0. Suppose? = (L1,,Ln-1) is a basis of1,0) vector fields tangent to in V (pp), satisfying the following properties:
(A) The € (V(po)) norms of thelj are bounded bk and% is ordered so thek (L. 1, p,5) < F(Li, p, ).
(B) LetpeW(pg) €V (po)andd > 0. Denotings = K +1=F(L;,p,3) +1

(B1) Foralllist.Z € Zu(#U{N}),|Z(dp)(p)| < KSF(p,d)%/?

(B2) % satisfies condition EBof Definition 3.1 with theF (Ls, p, d) replaced by thés.

Then under these hypothesis, we have:
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Proposition 3.4. There exists a constant lepending on K, M and the data (but neither on p noddisuch that there exists
a (M,K’ d)-adapted coordinate system.# at p in the sense of Definitidh2, the weights FL;, p,d) being replaced b¥.

Proof. In [CDO6Y (Prop 3.2, p. 85) we proved that hypothesis (A) implies thistence of a coordinate syste, 5
satisfying conditions (1) and (2) of Definitidh2and

3.2) { Forj<i<n, anda:(al,...,an,l)eN”*lsuchthat|a|gM,ap:Oif p>iorp<ij,

2%l (0) _ —o.

07°

We now prove that under condition (B) the two last propertieBefinition 3.2 (with the F) are satisfied. This follows
quite closely the ideas of p. 87-90 d€[D064, but, as the context here is more general and as it is a fued&aitool, we
write it completely.

Let.Z € .2 (% U{N}) considered as a differential operator. Deno®ff the derivanve(w in the coordinate system
z= 08, itis easy to see that, [fZ'| =

7= 3 3 e

meN"  qgj+Bi=m
1S‘m‘SS i BI

where
© S ©
cfa=cop= 3 5eaa, [] 0° (o)

where the summation in the second formula is taken over theatiees associated to the multindgsatisfyingy g pr1St
(M, ,mn) =S X(ik), i1 X (ik) = (I1,--- ,In_1,1n) and the coefficients are absolute constants. The following Lemma
is then easily established:

1/2ﬁ|71/2

Lemma 1. Ifforalls € N", |s < S, we havéfDSa‘j (0)‘ <k, F¥?F; , then we have

(3.3) Icap(0)] S FZ/2E-55"

To fix notations, recall that if is a¢ function andL andL’ two vector fields, ther@d_f; L,L)y =LULf+[L,U](0f),
and, in particular, itp =0, (ddp;L,L) = [L,L] (dp) = cLL, wherecy, is the coefficient of the Levi form in the directidn
In all the proof that follows, we denoté;,Lj] (dp) = cjj.

To state the second Lemma let us introduce the notdgtiernp o (Cbg)*l):

Lemma2. (1) For every multindex I]I| < 2M, we have|D'5(0)| < 8F'/2, where D is any derlvatlve% with
la+Bl=1.

(2) For every multindex g (0,---,0), |m| < M, and every.ij,

Dma1’ (0)' S l’:vm/zl’:vil/Z[:vjfl/Z.

Proof. Note first that, for (2), it suffices to get the estimatel]‘?(‘i‘?aiJ (0) and that the estimate (1) (resp. (2)) is trivialif> 0

(resp.m, > 0) (recallF, = 62 and the fact that the fields are of6? norms controlled). We then suppdge= m, =0. The

proof is done by induction: The induction hypothes#, is the two conclusions of the proposition fiof < ko and|m| < ko.
Remark first that?, and the first property of?, 1 imply the second property a#, 1 for j = n: this is evident if

i =j=nand,ifi < j=n,Lr =0implies
op l"lkap
n_ (2K
(o) &

and the result is clear becau%(O) =0fork<n.

Moreover, note also that, the weiglisi < n— 1, being “decreasing”, the second inequalityf, is trivial if i < j <n
and ifi = n. Thus it suffices to prove this inequality wh¢rc i < n.
Let us now prove@kO by induction. The casky = 1 is trivial. Let us study first the cadg = 2. By definition of the

coordinate systemy—— 0452 (0) =0, and, using the notations and remarks stated before tieerstat of the Lemma, we have

9°p «op_ 0°P
(3.4) al } =cji— > afal———=
9202 wof7in  9%O%

which |mpI|esﬁ‘;£ (0) = ¢;j(0) and gives the first inequality by definition Bf To prove the second inequality, let us look

at the definition of the functior&%__,. Writing the brackefL;, L] with the coordinate system and taking the componeg%qf
i
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we get
'S K = j |
Kal — — k ) —cral
(3.5) 250 ) g (&) —ooah
Extracting the terrrar ( ) and taking all at zero we obtall;% ( ) 0)= aijﬁ(O) and the inequality follows (B hypothesis.

We have now to cons@e;a. If g < j, the inequality comes from the decreasing property offhand ifj <q<i, this
derivative is zero at the origin by the properties of the dauate system. Suppose thgr i < g. Looking at the Lie bracket
[Li,Lg] and taking the component 9% we obtain

0, 0 /i 0 /i 0 i o
i 2 (al) —ad— (a)) = k= (al) — kK~ (al Pal
(36) a5y (@) —ad5 () 3 o (a)) 3 d 55 @)+ 3 b
and then, at the originl% (aij) (0) = 0% (aé) (0) — aijq(O) = 7aijq(0), by the properties of the coordinate system, and the

conclusion comes again from £B This proves#,.
Let us now suppos@kO verified [ < 2M) LetD! be a derivative of Ordd{0+ 1. 1fD'is purely holomorphic or anti-

holomorphic D'p(O) 0. Thenwe suppos@' D'-Z 27 ﬁz , and we denote b;@” ZLiL; alist of vectors fields associated

to DI (in the obvious sense that,df/dz (resp.d/dz) appears; (respli) times inD' thenL; (resp.L;) appears; (respli)
times in.%). Applying (3.4), we get

D'< di;ﬁz_) 0 = £6i0)- |1Zo +D"t (al'—a_j) D'%%) (0)

l1+lo=I
_ 52[)
(3.7) - 5y 0 (a}‘a}’ _) (0)
(k pfZ(0.) 07407,
- carpD¥ P (61)(0),
o' |+|BT<ko—1

with « = 0 or 1. The first term of the second memberaf/] satisfies the wright inequality (i.€5 5|:|/2|:1/2 1/2

in modulus)
by (B;). For the second; being non 0, we can apply the induction hypothes@m(‘?—p_) 0) to get the Wright estimate.

The third term is of the same nature because(Kop) # (i, j), a}‘a_}’( ) = 0. If we replaceg; by its expression in3.4), the
induction hypothesig? implies directly (fors < kg —1):

|Dci(0)| < 8F /2R Y22,

and then, using for S= kg (whose hypothesis are also verified by the induction hysishi#,), we prove that the last term
in (3.7) satisfies also the wright estimate.
We finish now proving the second inequality &4, 1. It suffices to consider the cage< i < n. Let us first look at a

derivativeD™ of the formD™ = DS%, |s| = ko — 1. Using formula 8.5), we can write

_ - : Y :
D"Ma! = DS xazal — Y xa—=(a)) + xciza), | = DS(A) — DS(B) + D(C),
& <tZ ap t;p ¥ (@) DJdn> (A) (B) ©)

wherex is equal to—lp In D3(B), to get a non zero term at Q_t must be derivated becaupe? t; this gives derivatives of
= (al) of order< ky— 1 which are well controlled by the induction hypothesis amehiDS(B)(0)| < Ifm/zlfil/zlfjl/z.
Consider now the terni3® (eea1 Fyak) .

Claim. For|l| <k, D' (afﬁ) <FY2RY2R V2RI,
Proof of the Claim.We do it by induction onjl|. (B2) proves the result fofi | = 0. Suppose the claim proved gt < k' <
ko — 1 and supposg| =K. Then,

I9T<I
But, by (B),
1/2-1/2--1/2
| 21ai50)| < PRV
and for the second term of the previous identity, we halje< | and we can apply the induction hypothesis dnathose
hypothesis are satisfied, using,,, because | < ko. O
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Then the estimate s (e:ea%aij() follows the induction hypothesig?, becausgs| < kg. Thus
= =1/2=1/2
IDS(A)(0) < F™2RYZR2
Finally, the term®* (s:eci 5a},) satisfies also the good estimates becaﬁé@) =0 and, for|s| < ko — 1, we have seen that

‘Dg(ci r7)(0)‘ < 8F/2FY?F;/2 and, the derivatives af are controlled by the induction hypothesk, .

To finish, we have to consider the case whigfeis a holomorphic derivative. Note that the inequality isiaiif i < j or
if there existsk < j such thatm, # 0. Suppose then, for dd < j, m¢=0 andj < i < n. Letq the largest index such that
myg > 0. Ifg<i, we haveDmaij (0) = 0 by the properties of the coordinate systeny i i, write D™ = Dsﬁ. To conclude it
suffices then to use3(6), the first Claim and the fact thﬁlsd% (aé) (0) = 0 also by the properties of the coordinates system.
This completes the proof of the Lemma. O

To finish the proof of Propositio8.4, it suffices to note that, in addition to the estimates of ttbit{ﬂ,'i‘ftix:ientscffg given by
1, we also have, fofa + 3| < 2M,

(3.8) DP= 5 d¥z
1<|#1<|a+B|

with

dif (0)] < Fla+P)2(p,5)F /2. 0

For the case of extremal basis we have thus proved (usingBitam3.2):

Corollary. If % is (M,K, p,)-extremal, ford small enough, there exists a coordinate systéK’(K), 6)-adapted to
in the sense of Definitiod.2 with the weights Feplaced byr = F + 1.

3.3.3. Proof of 3.1 If pg is a point of finite 1-typer, then, by a Theorem of D’Angelo (seB’A82, Cat87) there exists a
neighborhoodU (pg) such that, ifp € dQNU(po), thenp is of finite 1-type less than' = 2 (%)n*l. We suppos¥ (po) C
U(po). Then, if Zis a(M,K, p,d)-extremal basis, by the Corollary of Propositida we have a coordinate systed,

. ,\h-1

adapted toZ in terms of thel. SupposéV larger than (%) . Then, considering the manifold— (0,...0,¢,0,...,0),
|| < o, Theorem 3.4 ofCat87 (applied with a suitable constaal) gives us a derivative gb = p o ®, 5 which is bounded
from below by a constant depending only on the data. The tagtguty of Definition3.2 shows thus thaf (p, d) > 6 2/M

with a constant depending only on the data, and, of coursesatme is true fo (p, d).

This proves the following essential Proposition:
Proposition 3.5. Let py € dQ be a point of finitel-typet. Let M= M(1) = [2(%)”71] -+ 1. Then for all integer K there
exists a real numbed, > 0 and a constant C, depending on K and the data, such that, iié teests a coordinate system
(M,K, d)-adapted to a basis# = (Ly,...,Ln 1) at po, then Fy(Li, po,8) > Cd %M. In particular, if T’ = 2(%)”7l and

! n-1 . . .

M =M (1) = [2 (%) } + 1, for all integer K there exists a neighborhood ) a real numberd, > 0 and a constant
C (depending ort, Q and K) such that, for g V(po) N9dQ and0 < & < &, if there exists a coordinate systdi’, K, d)-
adapted to a basi$g = (L1,...,Ln-1) at p, then KLi, p,d) > co 2V,

This proves completel$.1

Remark3.2 Note that the proofs show that if a basi$ satisfies only properties (A) and (B) of the beginning of &ect
3.3.2 then, under the assumption of finite 1-type, the conclssadiPropositior8.5and3.1 are still valid.

A simple consequence (which will be used in Seciob) of the minoration of the weights is the following:

Lemma 3.1. Suppose the pointypf finite 1-typet. For any K, there exists two constants C adygl depending only on Kz,
and the data, such that i¥ = {Lip’5, i <n}is(K,p,d)-extremal, pc WV(po) N 2dQ, and(a;) is a family of ¢~ functions,
of # norm< K and1/K < |a;j| < K, then the basis#; = {L;}, where L. = aiiLip"S, is (C, p, 8)-extremal, and, moreover,

F(3aLi,p.8)~cF (saLP® p.d)).acC.

3.3.4. Associated polydiscs and pseudo-balls for finite type poimntthis Section we suppog® of finite 1-typer and we
chooseM = M’(1). Now we will associate to an adapted coordinate system spe@a “polydiscs” and give some related
properties.

Definition 3.3. LetW(pg) € V(po) small enough. Suppose that for some pgirg W(pg) N dQ and 0< J there exists a
basis#(p,d) = {Lip’5} of (1,0) vector fields tangent tp in V(pp) satisfying conditions (A) and (B) (of Secti¢h3.2 and
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let qag = @, the coordinate system which (&, d)-adapted ta(p,d). Then the function§ (L;, p,d) = F(p,d) does not
vanish and, for 6< ¢ < 1, we denote

1/2

Ac(p,d) = {ze C" suchthatz| <ck 7%, 1<i<n},

and
B%(p,8) = ¥ (Ac(p, 3)) NV (Po).
Taylor’s formula, Propositiod.2and3.1lead easily to the following properties (denoting= Lip"s):

Proposition 3.6. There exists three constants, &g and &, depending only on K and the data, such that the following
properties hold:

(1) IfLi = zaqiaizj andaizj =y biLi, [a+B| <M, for z& Ag(p. ),

KoF(@+P)/2(p, 5)F?(p, 8)F, */*(p,0),

D3 (2)
Dbl(@)| < KoF@P/2(p,6)R"(p.0)F, *¥(p,0).

IN

(2 If £ € % (B(p,d)U{N}), | Z| =S, and D is a derivative in the coordinate systefm with |T| < M, then
£ =¥ 9<sCD5, DT = Y |z|<iT|deZ”, and, for zc A, (p, 6) and g= ®p(2) we have

() < KoF“972(p,3),
de(a) KoF 4=#/2(p, 5).
(3) ForL=7YailLj, & € C, forall g € B®(p,5), 3F (L,p,5) < F(L,q,8) < 2F(L,p,d).
(4) Foralllist .Z, |-Z| < M belonging ta%u (%) and all point ge B¢(p, d),

() |£(9p)(a)| < KodF (p,5)%72,
(b) with the notation introduced in EBn Definition3.1,

<
<

‘Xa‘;],(q)’ < KoF#/2(p, 8)RY2(p. 8)F"*(p. 8)F **(p. ).

(5) p(B%(p,d)) C [-39,39].
The proofs are almost straightforward calculus.
In Section4 we will need to use two other kind of “pseudo-balls” and wel wibve that they are closely related to the
“polydisc” B®:
Definition 3.4. Suppose tha#? = (L4,...,Ln_1) is a basis satisfying conditions (A) and (B) (at a point oftéri-type).
(1) DenoteZf = Oel; and% ., = OmL;, 1 <i < n (recallL, = N). Then we denote b’ (%, p,d) the set of points
g € V(po) for which there exists a piecewisg! curve¢ : [0,1] — V such thatp(0) = p, ¢(1) = g and ¢’(t) =

s a%(¢(t)), with |a| and|ajn| < cFY2(L;,p,5),0<c< 1.
(2) exp, denoting the exponential map basegassociated to the vector fields (defined in (1)), we put

BSp(P. 3) = {0 = expy(us,...,Uzn), such that ma§u ,uisal) < cR(p,8) "2} NV (po).
The terminology used in DefinitioB.1is justified by the following property:

Proposition 3.7. Let# = {L4,...,Ly_1} be a basis (of1,0) complex vector fields, tangentpoin V(o)) satisfying condi-
tions (A) and (B) (for example |f it is K- extremal) atgpW(po) N9Q. Let B! = {L1,...,LL ,} be an other basis in o)
such that, foralli, } = yalLj, & €C, 3 |a|*> = 1. Then there exists a constant A dependlng only on&nd the dimension
n such that B.(#,p,5) C B’fc(p, d).

The proof of this Proposition is immediate following profye(B).

3.4. Sufficient conditions of extremality. In this Section we always suppose tipatis a point of finite 1-typa and choose
M = M(7).

Here and in Sectioh.2we will need a stronger control on certain derivatives of¢befficients of the Levi form. Thus
we introduce the following condition: suppoggis a basis of1,0) vector fields tangent tp in V(po). We say that it satisfy
to condition B@), a > 0, if for all list £ € ‘Au_2 (%) we have
Bla)  fori#j,1<i,j<n-1,|Zcj(p)| < adF(p,8)*/?F(Li,p,8)"?F (L}, p,3)"2.

Note that Br) together with conditions (A) and (B) implies a new conditian the brackets of the vector fields:



10 PHILIPPE CHARPENTIER & YVES DUPAIN

Lemma 3.2. SupposeZ satisfies conditions (A) and (B). Then there exists two emtstg = Ki (K, M, n) and dydepending
on K, a and the data such that, for albt k, i, k< n, j<nand all.Z € “u(BU{N}), if Z satisfy Bfr) at p,d), pe W(po),
0<d< o,

faﬂ,t.,(m‘ < KyaF (p.8)% /2R (p,8)Y?F(p, 8)?Fi(p,5) V2.

2/M 1

Proof. To simplify the notations we write the proof ftzalJ Choosedpso thatCg, “ ™ > a~, whereC is the constant of

Proposition3.5. Note that the property is trivial if, # 0 orifly=0andj=n (aI” = %cik and a{Tk = 0), thus we suppose

In =0 andj < n. As the property is also trivial if or kis > i, we have to study only the case wheg min(i, k).
To simplify the notations, we introduce the following spacé functions:

*o = {e, ea';‘“:,, £ci.“],, wheree € {-1,0,1,—v—-1,v—1}},
i

and

3
= JLi( JU d fiofick .
U k, andsk {.Z i 'e*m}

The elements oﬂ< will be generlcally denoted byk
The Jacobi |dent|ty applied to the bracKe, [Ll,LkH imply

Pe k Pe .
a{:“+LJc.k+§a£Jp aJk —Licj — ;ajEc.p—aijckk— ;ajicpk_o
pi P

which we writealj%cjj = %0Cii + *oCkk+ h. Then, by induction on the lengttof a list.Z € Ay (L), it is easy to show that
aleijj = %h+ Z (*|,,§,”/Cii+*|.,§f/ckk)+ Z *|$/ij,
L'ed (L)) L'l e 1(L))
and choosing? so that|-Zcjj (p)| 2 6F (p,8)72/2, the Lemma is easily proved using the control on the liststhed
hypothesis. O
Now we first prove that conditions B{, (A) and (B) imply the extremality of the basis and then tB&mplies a better
control on mixed lists, result that will be important in Seat5.

Lemma 3.3. Suppose that? = (L1,...,Ly_1) is a basis of(1,0) vector fields in \(pp) satisfying conditions (A) and (B) at
a point pe V(pp) NdQ for a fixedd. Then there exists a functianK), depending on K and the data, such that#fsatisfy
B(a) for a < a(K), there exists a constantKdepending on K, M and n, such that, #° € % (%’)satisfies|.$0qi (p)| >

L8Fi(p,8)F (p,8)%/2 then there existsgk 2ky + 2 < |.Z|, such thaﬂ]e((LiE)kOcii) (p) > K—115F|(p, 5)(20+2)/2 |n partic-

ular, ,
Oe( (LiL; “ i iz
F.(Io,é)zi { e(( (S)C)(p)] ’

/
De(('—i'-_i) Cii)(P)>0
2k+1<M
where K is a constant depending only on K and the data.

Proof. We know that there exists a coordinate sysl@fj’n adapted to#. These new coordinates are deno(ad The
derivativesD?P are the derivatives with respect(i®), and if & is a list of vector fields theB is the derlvatlvem with
ai = 11.2) andB = 12(.Z) (notation 0f3.2.9. In the proof we will use a general result on derivatives aifives function
proved in Sectior3.

Suppose? € % () is such that? (dp) = #°c;i and| L (dp)(p)| >k OFi(p, 8)F (p,d)</2. Then we can write

Z(0p) = DG + Z CaBDaBCii
la+B|<|£9|
with |cqp| Sk F2°/2F~(@+h)/2,

Thus there exists a derivati®? satisfying |[D*Fc; (0)| 2k 6RF@F)/2 and |a + B| < |-£°| and an + B = 0 (in-
deed, ifan+ B > 1, [cap(0)] Sk FZ7/2F ~(@4B)/2 < 5F2°/2, and as|DP ;| <k 1, |capDPci| < F4/?). Then ap-
plying 8.1to the functiong(z) = 3F*(p, )cii o @ (Z), whereZ = ( F %2, cF Y205 )zn,l,O) with ¢ < ¢, Co
given by Propositior8.6, we conclude that there exists a derivativé Bt sat|sfy|ngal BJ , V], at = B} =0, such that
DB (0)>k RF(@+BY/2,
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Writing &' = (LiLi)a' M4 j<n (LJ-LJ-)O'J and.Z'c; = DB g + Y la+Bl<|Z| caBD"Bcn, by induction we conclude that
there exists a differential operataf® of the form.#* = (GiLy)” Mii.j<n (LjLj)™ such thatle(ci) (p) =k SFEZ/2F,
Suppose there exisfs# i such thairj # 0. Then

Lo = L'TiLjci = L' (yijc“— +LiCjk + (aijk — a{—l) Gi — ; (a%cip — ajpicpi) + Z yiﬁcip> .
p#i P#]

The controls of the coefficieneé} and of the listsZcyp, k # p (by condition (B)), implies, for sufficiently small (depending
only onK), that
2Ty | 2k 6F2'/2F)% and || 2« R
Repeating the initial procedure, we conclude that therstex list?” € £ (%), “completely even”|.Z"| < |.£”"| such
that|.2"'cj;| 2k 8F<"/2F;. Consider then
Z"Lici = 2" <Vij €jj +LiCik + (aijk - f%";) G- ; (agcip - aJPiCpi) + ; yFCip) :

pi o=
Then}g”c“ y } 2 6F3"/2Fj1/2F., and, by similar arguments, for sufficiently small, we conclude that there exists alit,
|-22| < |-£°|such that?c; > SFZ?/2F; and we can repeat the procedure. The Lemma is thus provedibgtion. [

Proposition 3.8. There exists constantg and K depending on K and the data such that if the bagisatisfies (A), (B) and
B(a) for a < ap at(p,d), p€ V(po), thenZ is (K', p,d)-extremal.

Proof. We may suppose the basis ordered so that the wekghktsF (L;, p,d) are ordered decreasingly. Liet= zi“;lla;Li,
a €C,y|al®=1sothaty = 3"} |a?|ci. DenoteF (L) = F(L,p,d). By hypothesis (B) it is clear tha(L) <k ¥ |ai|*F.
To show the converse inequality, we prove the following ei&s®

Claim. For every constark > 0, there exists a constald, depending oK and the data, such that:
. . photl
if i € {1,...,n— 1} andky € {1,...,M} are such thata,|*F(p) > ‘a“iﬁ(p) and 0e (LigLi ) Gigio (D) > 6'°T<p),
then:

= 12 ko+1
e eitherfe(LL) ¢ > 5W’
; _ F.k1+1
o or there exist; andk; < ko such thata;, |*F, (p) > \aﬁf(p) andDe(LilLil)kl Guis(P) > 6|1K—1(p).

Proof of the Claim.We have
Koo —— (2o +2 (1 TV KO
(3.9) (L) cr= > lai (Liki) ™ ci + > axZ(0p),
where the second sum contains lists of lend-22 containing_; or L for, at least, two different values afAs

ko+1
2
(z1alF(p)
Kko+2 ’
the conclusion is clear except in the two following caseshesecond member 03 ), there is a term in the first sum which

2 ko+1
is<—-A= 76%, or a term in the second sum which is, in modulus, bigger amith a constan€ depending

only onM and the coefficients;.
Suppose first that there exists an index ip such thaﬂa|2k0+2De(LiE)k°cii (p) < —A. This implies first|ai|2F|(p) >

Zﬁ\é/@ and secondliﬂe(LiE)ko Gi(p) < 76%1, Fik"“. By 3.3there exist; < ko such thatle (LiL;) kg (p) > éKii,, Fik1+l.
Thus the second assertion of the Claim is verified.

Suppose now that there is a tem..#(dp) in the second sum of3(9) satisfying|a«.Z(dp)| > A. Denote byl; the
number of times the vector fields andL; appear inZ. If I # 0, hypothesis (B) implies immediatelyk|2Fk zy |ai|2F|
and|.Z| (dp) > F"/2 O

O

0" e (LigLiy) " Gigo(p) > &

@i

Corollary. Suppose thatqe< 0Q is a point of finite typa where the Levi form is locally diagonalizable. Then theristex
a neighborhood Vpg) of pp and constants K and, > 0 such that at every point p of({yp) N dQ and for every0 < 4 < dy,
the basis diagonalizing the Levi form(®1, p, d)-extremal (with M= M'(1)).

Proof. Properties (A) and (B) where proved i@[D06H, and, by definition the basis diagonalizing the Levi forrtisfg B(a)
foralla > 0. O
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Definition 3.5. Z is called(K, a, p, d)-strongly-extremaif it is (K, p, d)-extremal and, if, it satisfies B( at(p, d).

Note that the first part of Propositiéh2 say that everyK, p, d)-extremal basis i$K, a, p, d)-strongly-extremal for some
large positive numberr depending oK andQ. Thus this is an extra hypothesis only for snall

The next Proposition shows that for a strongly extremaldasine derivatives of the diagonal terms of the Levi matrix
satisfy a better control:

Proposition 3.9. Suppose @ of finite 1-type T and let M= M’(1). There exists a neighborhood ) of pp such that,
for a > 0, there exists constant® = d(a,datd and K = K’(K,datg such that ifZ is a (K, a, p, d)-strongly-extremal
basis then for all listsZ € % (%) such that there exists>} i with | # 0 (here we suppos& ordered so that theFare

decreasing) we havieZci (p)| < K'aF(p,3)%/?F(p,d).

Proof. Let.¥ = .Z’I(__} I(__'p,iﬂ” with j <i and write
ZLci = f'l(-_;)l(-_}f"cii +5 7 (af.,Lk + aE_,L_k) L.
ip ip

Then successive application of tB& show that there exists a lisf = §’Lj such that, for alk, ﬂ( =y and‘gcii AT ’ <

KoaF</2F,.
Now the result is trivial applying once again2, 3.2.1and the hypothesis B&. O

Proposition 3.10. If the basis# is (K, a, p,d)-strongly extremal, the conclusion of Propositidr® is still valid at each
points ge B%(p,d) with a replaced by2a for d < d(a) (d(a) depending orr, K and the data).

3.5. Localization of extremal basis.
3.5.1. Definition of the local domain.

Definition 3.6. Let Q be a bounded pseudo-convex domairCih Suppose tha® is a boundary point of2 andW (Ry) €
V (Py) are neighborhood d#. LetO be a point of the real normal @Q atPR, and denote by the distance fron® to Ry. Let
us denote byz)i<j<, the coordinate system obtained translating the origi.at

Letu > 0andy(z) = ¢ (|z|2) where

0 if x < 2,
¢ (x) = { Koe—l/(x—uz) if x > IJZ7

with 3d < p < 2d.
Let us denote(z) = p(z) + (z). Thend is chosen small enough akg large enough such that, in particular:
D = {r(z) < 0} C W(Ry) andr is a defining function oD;
e D have & boundary and is pseudo-convex;
e Ateach point o?Q \ dD, the boundary ob is strictly pseudo-convex;

e In the closure 0B(0,2u) the vectorz (in the coordinate system centered at 0) is not tangept(ie. 3 ; Z—Zzi #0
everywhere irB(0,2u)).

The fact that such a domain always exits for @y 0 small and<g > 0 large is based on the construction of R. Gay and
A. Sebbar in GS89 (Théoreme 2.1). Simply, note that, @b\ 9Q, the functiorr is strictly pluri-subharmonic iKg is large

enough angt small enough (the hessian pfis O(¢ (|z|2))). Moreover, ifRy is of finite type, then all the boundary points

of D are of finite type because the order of contacd @fwith dD is infinite at the points 08 (0Q N dD).
The goal of this Section is to prove the following:

Theorem 3.3. Suppose thatfs a point of finitel-typet of dQ and choose K1) (c. f. Proposition3.5). Letd > 0 and

K > 0. If at every point oPQ NV (Py) there exists 4K, p, d)-extremal basis then one can construct the domain D condaine
in V(Py) so that, at every point’mf its boundary there exists @', p’, d)-extremal basis with Kdepending only on K and
the data.

3.5.2. Preliminary remarks.We fix now some general notations.

Let rbe thed™ projection ofV (Py) N Q ontodQ defined with the integral curves of the real normagbtdMe can suppose
V (Py) small enough such that can be considered asé&® diffeomorphism ofdD NV (Py) ontodQ NV (Fy).

If Lis a%* vector field, defined on an open d&tof dD NV (pp), tangent tadD, we associate to it a vector field?,
defined in the open set(U) C 0Q, tangent tadQ usingrt as follows: ifL = Zaiﬁ%, considering it as an application of
into C", we denote by o r* the vector field inv(U)) defined byl o m* = S ajo 1 2, and
(3.10) LP=Lom - BN,

whereN is the complex unitary normal o andB = Lo m1(p).
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Clearly,L — LP is an isomorphism frorﬂ'aDmU ontoT amnu (V(Py) sufficiently small), and thus, we also consider

associated tb® by L=LP o+ (BomNomand, ad is tangent tadD and(LP o )(p) is identically zero o Q, we have

—(LPom2)¢'(|2P)
(Nom)(p) +(Nom2) ¢'(127)
wherek is a%¢™ function whose derivatives of order less tHdrareO(¢ (|z/%)), with constant controlled by tH&?™ norm
of L, and, ifL = za;a%_ (in the coordinate system of Definitioh6), (L,z) denotes the usual scalar prodycaz, and
<La L/> =2 a*a1/

With the previous notations, I€& be a point ofdD such thaty(P) = 0 (thusP € dD N dQ) andV (P) a neighborhood of
P such thattis a diffemorphism o¥ (P) N dD ontoV (P) N dQ.

Let p€ dDNV(P). Essentially, the construction of the extremal bagiat p for D is done using a suitable basi#’ of
the tangent space ofQ near the pointt(p) translated ap (using ) then projected onto the tangent space}'Bf to geta
basis% from which the basis? is defined. Now, we only look at the relation between the wisigithe basisZ and %°.

Thus, if 2 = {L3,...,Lp_1} is abasis Oﬂ-ao inV(P)NaD, with our notations, the basig® = {L},...,LF } of Tﬁlgf, in
V(P)NoQ, is given by

(3.11) Bormn(z) =

)

(3.12) L’ =Liomr-BN
with B = Lo m1(p), and

(3.13) L :LipoTH— (BiomNo Tt
with

—(Lfom2)¢'(12°)
(Nom)(p) + (Nom.2) ¢/(12?)
Let us calculate the weighB(L;, p, ) in terms of the weight& (L, 11(z), 5) and the derivatives af. We suppose that
theL’ are normalized. Writingi; = {L., } (or) andcf} = {L,p,Lﬂ (dp), using thaiN o rTis identically 1 ondQ, a simple
calculus shows

(3.14) Biom=

& = domt(LPomllom g2 + (L om2) (Lfomz)e"(22)+
(3.15) +¢'(|17%) -t (* (LR om,2) + = <Lf<’ om, z>) +k,
= cfomt ¢'(12%) (<Lip omLfo rr>+h) +({LPom,z) <Lf o, z>¢”(|z|2) +k
where all the derivatives dfareO(¢ ¢(|2?) and the functions have a bounde@™ norm the constants depending only@n

and thez norms of theL.
As theL? are normalized, we also have

6 = omrd/(2)+ (L oma) 9 (2% + /(2D 5 (+ (L om )+ (fom2)) +k
= Ciion+¢/(|z|2)(1+h)+‘<|—ip°7TvZ>‘2¢N(|Z|2)+k

andd is chosen small enough such that #¥ norm ofh is small.
Now we need to introduce a new notation. Lebe az*(dD NV (P)) vector field tangent tdD. Forze dDNV(P) let
us define

(3.16)

2/k

+o° UM,
k=1

- P LICEAN
— p
F¢(L,z,6)fz < 5 +(LPori(z
Lemma 3.4. We have, fod and V(P) small enough, for 2 dDNV (P),
10192 (152
Fo(Lz5)~ 2120 ((|SZ| )y e om 2 020 ((|52| )y 5m,

Proof. It suffices to consider the case whigff = 2+ x > p2. Note that, fov (P) small, ¢ ¥ (2 + x) ~ Ke/*x2 and
()—1()Zk < el/MX fork < M.

1/k
Suppose(%) > 6~ YMande V¥ < 5. Then

1/k B 1/k
(m) - (Koe 1/*) L <Kot < gim,

o) o) X2 ~

1/k 1/k /
for & small. Thus, fo < &(Ko), (‘p(k( 2“)) > & YMimpliese /%> & andzM/2 (‘p(k)(g‘z“)) ~ 9 W;*X).
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2K 2/ g
Similarly, ("’( W +X)) > 5 YM impliese Y% > & andy Y (4’("( 2+X)) oy (;32+X)_ 0

Thus, we denote
F(L,z0) = ((|S2| )+|(LP nz)|2%2|2>+61/”‘,

and Fi¢ = Fi‘p(z, 0) = F"’(Ifi,z, 0),1<i<n-1. Define agaian = &2, LetL, denotes the unitary complex normalrto
the defining function ob, andLf the unitary complex normal tp.
Proposition 3.11. Let.Z be a list of Zu (@U {Ifn}) and_Z" be the list obtained replacinﬁ in .Z by I(__f)’. Then, reducing
V(P) if necessary, o@D NV (P) we havel denoting the number of times the vector fidldsr L; appears in®):

W) [Z(om — (2°cf)on] < 5y (R, for [ 2] > 2,

@ |[Zo(29)| s oM (R | 2] = 2
the constants depending only Bnand thez™+2 norms of the.;.

Proof. These properties are trivially satisfied?if;é 0, thus we supposfe = 0. Using @.19 and the fact that iff is a%™
function ondQ NV (P) andLPp = 0 then(LPom) (fom) — (LPf) o= O(¢) on dD NV (P), the Proposition is an easy
consequence 0B8(14) and the the following Lemma:

Lemma 3.5. Let.#P™ be a list of % {LP o 11, i < n— 1} of length> 1, then|. P "y| < S l(F"’)I 2,

Proof of3.5. By induction, we have

N
L

I
ML

a9 (|2°).

amfk - Z * I_l <VV|*, Z> )
L =W, W C P Wre st
m* <m-—2k

o= (o)

w0 (1512 -
¢ ('Z')ﬁ@]

where

Where<V\/,*,%> denotesW*,z) if W* is of type(0,1) and(W*,Z) if not, and the functions have az™norm controlled by

the M norms of the vector fields;. Now, the proof of3.4 shows

m/2

3

2 5 5

and itis enough to see thiat o) (127)| < & (F#)#/2 forl  {[2],...,m}. If | =m, this follows3.4 supposé =m—k,

k>1.
(mk) (12) |2/ (M=K) 2/(m=k) (12
Suppos% () 5(‘2‘ ) > 5 UM By34 ¢"(12%)

(™Y (12?) . .
— . Let £* C Z of lengthm* =m—2k =

y-11¥. The corresponding term i,  is bounded by

" 2 (m-k)/2 1 2 k/2 e " /2
(@) Mifoma = (@) .l(¢ (f')|<won,z>f)
I 2 K
o (¢ g )) =)
//(‘2‘2) 1/2 ¢/(‘Z‘2)
because the hypothesisimplié%) S—5- O

To finish the proof of Propositiof.11note that, foﬂﬂ >1,

2 (Brom (@) <FO(28)7 1R (2 5)2,
and use §.14. O
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Finally the relations between the weights associated tand toZPare as follows.
Let L a holomorphic vector field odD tangent tadD nearp andL? the associated vector field tangen9t@. Then

Proposition 3.12. For V sufficiently small, we have,fH < HEH <K,

F(L,z0) ~F(L?,m(2),8) + F?(L,z3),
with constants depending on &M norm ofL, K and the data.
Proof. From Propositior3.11 it easily follows thatF (L,z 8) < F(LP o 1,2,8) + F?(L,z 5). Let us then see that there
exists a listZ composed of andL such thatZc;; ~ & (F(Lp omz8)+F?(L,z 6)) (121272 ge SF(Z1+2/2_ LA

|(LP o 1(2),2)|* %N ~F, ¢ doit. Supposé%/ +|(LP o 11(2),2)[? %N < F, there exists a list#Psuch that.£Pc e 0 (11(2))| ~

5F(Z1+2)/2 Then calculating??cﬁ in term of ZP(c 10 ) o 11, the result follows Propositiod.11, (3.16 and the properties
of the functiondh andk.

O

3.5.3. Extremal basis on DIn this Section, we suppose always tipatis of finite typet, M = M’(1) and that at all pointg
of V(Py) NdQ and for alld > 0, 0< J < &, there exists 4K, g, d)-extremal basis, and we show that at all poiptsf 0D
and for alld > 0 there exists &K', p, d)-extremal basis (fob) with a constanK’ controlled byK and the data.

If P is a point ofdD such thafP| > u thendD is strictly pseudo-convex ne&and the construction of extremal basis
in V(P)NaD is trivial (for V(P) small). If|P| < T thenV(P) N dD is contained indQ and the existence of extremal basis
is the hypothesis. Thus, we have only to consider neightmatiod pointsP € dD such thaiP| = u (that is pointsP in the
boundary of0Q N dD).

As we said before, the final extremal basis Barat p € V(P) N dD, will be obtained extending a basig defined on
V(P)NaD which is a projection onto the tangent space &f a translation of a basi®”, at r(p), tangent tq.

Formula 3.16 shows that the expressio(igO oI, z> plays an importantrole: we have to take into account theovdietids
which are orthogonal ta. In particular, to construct a extremal basisain, we cannot simply translate an extremal basis on
JdQ and project it onto the tangent spacedo, because, even if the basﬁlsf) is extremal, we can hav(eLip oI, z> #0, for
all i, and there are linear combinations of ttfeo mwhich are orthogonal ta

Now the pointp and the positive numbe¥ are fixed. We suppose we havéka, 1i(p), §)-extremal (forp) basis#® =
{LE,...,L2 ;} at the point(p) (theLf being&™ in V(P)), such that the vectots?((p)) are orthogonal (c.f. Proposition
3.1) and we construct the basi#® = {Lf,...,LF ,} usingit. The weight associated.#” are denote&? = F(m(p),5) =
FO(L?, m(p), ), and we supposg?, < R®, fori < n— 2, changing the order of tHe? if necessary.

Recall that the canonical coordinate system is centerdebgidintO of Definition 3.6, thus|z(P)| = .

For simplicity of notations, we denotg= m1(p) (thusp = m1(q), Tbeing considered as a diffeomorphism between open
sets of the boundaries &f andD).

Let

o g = {W: Za;L?, aeCy lai|? = 1, such that(W(q), p) = O}.

LetWh_1 = ya" 1L® € s%_; such thaty =2 |ai“*1|2F(L?,q, &) =infy_sa10c , s"-2|a|?F(L2,q,5), and define

) o 12 " 2 2
(3.17) P, = L2, if 72[a Y F(LR,q.6) > LD (LS 4 (a), p)|%,
n- W,_1 otherwise

Supposel? | defined for 1< | <k—1<n. Let # = 10 [ELE .. L2 D] ELL 4. L2, .,) be-
ing the linear space span U;ﬁ,l, Lﬁ7k+1, the orthogonality being taken at Let W, x = z{‘;lla?’kL? a vector
in % _x minimizing Y1X*|a|?F (L2, q,8) for vectorsy " 1aL® € 7 k. LetT, y a vector field, of norm 1 ag, in

D= ELL . LE )N [ELL . L2 )] ThenL? ,is defined by

. ke ki2 " 2
o ) Tk i SRR 0.8) > HPE(Tok(@). P,
n- W,_x otherwise.

Note that{L(q), 1 <i < n— 1} is orthonormal. We will note later that if the dimensionf  is strictly greater than 1
thenFP"’(Lﬁfk) (see below) is, up to a multiplicative constant, indepehdéthe choice ofT,,_.

The two next Lemma prove some important properties of thtwéieldst’. Let us denoteP = {Lip, i< n} andLf the
unitary complex normal tp.
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If L=yMlalP, & € C, let us denote

9 o' (1p°) ,9" (IpP)

FPO(L) = F(L.0.8) + —5—+(L(a). p) P —5—,

andFP? —FPO(LP), 1<i<n—1,F = L and(FP9)%/2 =, (FP9)"/2, if 2 is alist of L (#° U {LA}), with the
usual notation fot;.

We will show that, up to constants, the vector fielflggive the successive minima of the functid®® (L) for L = 5 aL?,

slaf[=1.
Lemma 3.6. There exits a constant’Klepending only on K such that:
(1) If L = yalL?, Z|a;|2 =1, is orthogonal, at g, to the space generated kfy L+1<j<n-1i<n-1, then
FO(L) > FPP(LE);
() FPO(LP) > LFPP(Litq), i<n—1;
(3) FP(LP) > GF(L?,9,9),i <n.
Proof. Note first that if property 2. is satisfied foe> k then property 3. is also satisfied fior k. Indeed, more generally, if
L is orthogonal to the vectoL{, i+1<j<n-—1,andif property 2. is satisfied for- 1,...,n— 1, then

(3.18) FPO(L) 2 max{FO(L),FO(LE) ... FOULR ) } 2 FOLP,0,8) = F(LR,6,6) = R,

because the{ andL are orthogonal and the bagis?); is extremal.
Now we show that it. = 5 aiL®, 5 [a;|? = 1, thenF P9 (L) > FP?.

/ 2
If L | € # g, thenl? | =12, andF?’ =F(L2 ,,q,5)+ &5‘)‘) which gives the result. Suppose thus ; ¢ % 1.
We separate the two cases @f](?)
Suppose we are in the first cai;é’jl = Lﬁ,{l). If L € 741, the inequality is an immediate consequence of the extigmal
(EB1) of Z2. Suppose. ¢ /#%,_1. Then we can write. = a (L5, + yH) with H € %,_1. Writing H = 5 a/L?, we have

/ 2 " 2
0 (|5p|)+|a|2¢ ((|5|o|)‘< .

Lp—a(a), p> ’

)

+

FP¢( ) |Cf| [Z|ya‘ F LIQaqa +|1+Van l| F Ln lqué)

_ _ 112 2 .
and asy"2|al|?F(L2,q,5) > Y2 F (L, q,0) > ¢ (‘ ) |(L2 (a), p>\2, we obtain

" 2 "
FP¢<L>z|a|2(1+|v|2)@]<L?1<q>,p>\zz @]( ENCI

because, by equivalence of norms in finite dimensional spaaekz <1+ |y|2) >k 1. The extremality of#® implies

F(L,q,6) > F(L? ;,q,6), and the inequality is proved.
Let us now look to the caﬂeﬁfl =W,_1. If L € 241 the result is trivial, thus we suppokez /%, 1. Using the same
decomposition as before, we get

n-2
Fp¢(L)Z|a|2(l+|y|2)Z‘ai”*l‘zF 0,8 >Zw YPF(LP,q,5
i=

and, aFP?(L) > F(L,q,8) > F(L? ;,q,0), we haveFP? (L) > F(Wh_1,0,9).

Then the mductlon is as follows. Suppds®® (LP, ) > FPO(LP,) > ... 2 FP(LP_ ) andthatforalL = y &L, 5 [a|° =
1, orthogonal to the?, i+2 < j <n—1, thenFP?(L) > FPY(LL ). LetL =y alL® 5 |a|* =1, orthogonal to the.f,
i+1<j<n—1. Supposd is chosen. If; € s thenL’ = T;, FP?(T;) <F2 + %/ and, using§.19, FP9 (L) > FPO(LP).
Suppose now; ¢ 4. If LP =T, decomposing. = a (T; + yH) as in the first step, we obtafP? (L) > 5” |(Ti(q), p)|? and

we use 8.189. Otherwisel” =W and, an other time, the same decomposition gRR&(L) > z” - 1|a{-|2F(LiQ,q,6) and
we conclude with§.18).

FinaIIy we obtainFP? (L) > FP?(LP) (which proves the statement about the choic&0f), and, ad? is orthogonal to
the induction hypothesis impk? (L) > FP?(LF ) and finished the proof. O

P
L|+l7 H] n 1

We now estimate the brackets of the vector fielﬁsi < n, at the poing.

(—). =)

Lemma 3.7. Let [LE,LP] sh 1b‘,uLt +30 lb Lt For all list ., of %y (2P U{LR}), we have

’ 1/2 ~1/2
’g( ) (q)’ <K (,:p¢)$/2(|:lf¢) / (,:qub)l/Z(Ftprb) /
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with K’ depending only on K and the data.

Proof. Note that the Lemma is trivial if,(.#) > 1 and if F? < "’N(‘p‘z) (becaus&”? andF#? are both> to (‘p‘ and
¢”<\p\2> S 5-2M imp“es’ ¢'(Ip) 9" \p\

). Moreover, we also ha\ﬁp‘p <F(LP,q,8)+ 2 ‘p‘ ,and, ifLY =T, then,

by definition ofT; and the extremallty of8?, F(L,q,6) SF(LP,q,8), and, ifLy =W, F(LP,q,6) SF(L2,9,8) + ‘p”%q‘z).
Thus, it suffices to prove thatlif =

2 (5, (q)\ < (FP)7 2 (B2 (R0 (FULP.09))

=) =)

Let us writeLf = ¥ a{L? andL = 5 BiLF. Using the notatlor[L,Q, L?] =5 ,a" 2+ 5", a"L?, acalculus gives, if
ij i

t<n,
; =) ), ;
_ i ~v]am
=3 | 3 okalals ) o

with Bt = dew o€ lia ), whereo describes the set of permutations frém...,n—1}\ {t} onto{1,...,n—1}\ {m},
and

=), =),

Zakascu,

with Ci“j’ = [LIQ, Lﬂ (dp) (note that this notation gives; = C;j).

First, we prove that, if <m, |BY| < (F“"”)l/z(Fs“"’b)l/z(F(LtQ,q,cS))*l/2

indexi > t such thao (i) <t; if L’ = T, thena; 9() _ 0, and ifL? =W then
ool [9"UPP) (e o S R 0 (1 ) N P VT SR
’ai ’ S T (F(La(i)qu 6)) S T (F(Lt aqaé)) S (Fk ) (FS ) (F(Lt 7q7 6)) )

// / 21\ 2 2
becaus&h? > 5~ /M 4 £ 10 and? ‘P‘ > §-2/M implie3(¢<\6p\ >) > 9UoF)
To finish the proof, it sufflces to remark that the extremadityz implies

o] SF(L.0,8)?F(LP,q,8) 2,

for anyk ands. In that case, there exists an

and
2()| £ MFeEastriRas Ffas F(fas)
< (FPOPPE(LR,q,6)Y2F (LD, q,6)Y2F (L2, q,5) Y2,
by 3.6, fort > m. O

Then, with the notations introduced before, we considebtss atp (for D)

B ={L1,... Lo_1} with Lj = (LPom+ (BomNPom).

HL" ]

Note that3.6 and 3.7 are proved for the vector fieldsfo but it is easy to see that they are also valid for the vectaddiel
LE /LR

To simplify the notations, in the remainder of the proof, eetor f|eldsHL I will be denoted b)L and the function

THE- I will be denoted3; so thatl = (L o 1+ (B o MNP o ).

Proposition 3.13. The basisZ is (K’, p,d)-extremal for a constant kdepending only on K and the data.

Proof. We first prove condition ER that is, ifa; are complex numbers then

n-1 n-1 5 _
F <iZC{iLi,p,5> ~ i;|ai| F (Li,p,5).

By induction, it suffices to see that, for &l

n-k n—k-1 , -
F (iZO{iLi,p, 5) ~F < i; aiLi, p, 5) + |an_|“F (Ln,k, P, 5) )
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n—k—1

To simplify notations we writ& = $1'— 1 aiL; andXP = "%t a;LP. By Propositior8.12 we have to prove

" 2 ! 2
(3.19) F(XP +apilP ,,0,8)+ % [((XP+ an il ) o 7(p), P)| + : (|5p| )

” 2 / 2
~ F(X°.0,8) + an 10 2F (L2 400.8) + TP (P o ) (). 2 ¢ fan il (L2 o (), ) + P,

t P ~ ~
Indeed, if3(q) = ”%{le_'t‘ HEZ; , B~1 have @™ norm controlled by andF (B*lz}zl aili, p, 6) ~xF (Zle aili, p, 6).
i=1Y15

Note that if that ifY andZ are two linear combinations (with constant coefficientsjraf L2, by extremality,F (Y
Z,q,8) <K?[F(Y,q,8) +F(Z,q,9)], and then

1

This implies that the first member 03.(L9 is < than the second one, and we have only to prove the convergeslity. To
do it, we consider separately the two possibilitiesligry.

Suppose first?_, =T, .

If the second member 08(19 is equivalent td(XP,q,0) + |on— k| F(L? n_k0,0), by (3.20, we have only to consider

the case wheR (XP,q,8) ~ |an k|2 F(L? P 0.0). UsingF (Th_k,q,0) S F(LY ,.q,0), 3.6gives the result.
Suppose now that the second membei30f9 is equivalent to

n" 2
PECPE) (1(xe o (), 902+ ltn 42 (L2 m(0). ).

Then, we only have to consider the case WHEXP o m)(p),p) = —(1+ s)an,k<(Lﬁ7ko m)(p), p), with € small. Then

if W is the vector fieldXP + (1+ €)an_ kLﬁ,k normalized atg, W € ., and thusF(W,q,d) > %" [{Th_k(q), p)|2 =

%" [(LE_(a), p>\ ThenF(X,q,0) 2 &5 (%” |(LE (@), p)] ) 2F(L? ,,q,0), and the conclusion follows.
To finish suppose that] |, =W, .
. . " 2 2 )
If the second member 08(19) is equwalentto‘% <| (XPom)(p),p)|* + |an_i|? | <(Lﬁ7k° m)(p), p)| ) there is noth-

ing to do becauséL? , o i(p), p) = 0.
Suppose then that the second membeBdlfQ is equivalent td=(X”,q,d) + |an_ k| F(LP n_k:0,0). As before, the conclu-
sion is evident except i (XP,q, 8) ~ |an_|*F (L? n_k-3.9). Suppose

9'(Ip%)
0
Note that(T,_(q), p) # 0, and we can defind/ = XP + an_ L, + uTy_k such thatW(q), p) = 0. Then by3.6,

F(XP+an kP ,,q,8)+ < |n-k|?F (Wh_k, G, 8).

|an7k| F(ankaq56)>>|:( n— kaq56)7

" 2
and (extremality of2%) |(T,,_«(q), p)|* % > L (F(Wh-k,q,0) — KF (L2 ,.q,5). From this we deduck| < |an_k| and
W is of norm almost 1 at. Then

FW,G.0) < K2 (F(XP+an b 1,6.8)+ |u[2F (Th 1,6, 3))
< |an—k|2 (F (ank;qa 5) + F(Lfl{kaqa 5)) )

becausdy_k € & (L2 ,...,LY ;), and thus= (W, g, 8) < F (Wh_«,q, ) which contradicts the definition &%h_.
To see that# satisfy EB, a simple calculus shows that it suffices to applyand Propositior3.11 O

Then, by3.1we conclude:

Proposition 3.14. The basisZ previously defined by = {Li,...,In_1}, with i = LY o m+ (o mNP ot is (K', p, 5)-
extremal for a constant kdepending on the constant K of extremality#fand the data.

Now the proof of3.3is complete.

4. GEOMETRICALLY SEPARATED DOMAINS

4.1. Definition and examples.
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Definition 4.1. Let Q = {p < 0} be a bounded pseudo-convex domain vt boundary Up # 0 in a neighborhood of
0Q). We callQ K-geometrically separatedt pp € dQ if po is a point of finite 1-typa and there exists two neighborhood of
Po, W(po) € V(po), a constandy > 0, a constani, an integeM larger tharr + 1 and a basisg® = {L9,...,L% ,} of (1,0)
vector fields tangent tp in V (pg), whose&? norm are bounded bi their “determinant” bounded from below by K and
a positive real numbeiysuch that:

For each poinp e W(pg) NdQ and eacd, 0< & < &, there exits &M, K, p, d) extremal basisz(p, d) = {Lf’é, e Lﬁ’fl}
such that, for each the vector field P can be written (ol (po)) L7 = ¥;a/L% with &) € C, ¥ [a|* = 1. In other words,

the Lip’5 are normalized vector fields belonging to the vector sicgenerated byz°.

A notable property (that will not be used later) of these dimsi&s that the weightB; satisfy a better estimate than the one
given in Propositior8.5.

Proposition. Suppos& is geometrically separated apgof typet). Then for [ pg) and & sufficiently small, there exists a
constant C> 0 depending only on K an@, such that the extremal basig(p,d) = {Lip"s, 1<i<n- 1}, peW(po)NoQ,

0< 3 < &, satisfy [y (LP?,p,8) > C5 %7+ foralliand all & € [0, &), with M = [1] + 1.

Proof. Suppose there exists a sequence of pgiptsonverging topp, a sequenceéy in ]0, &[ and an integer < n— 1 such
that, denoting(pm, m) = (LT,..., L7 ;) the (M, K, pm, &m)-extremal basis aim, 3 we «,1m [-£(9p)(Pm)| <1/m. Then

. . 2 . .
L=y al(pm)L9, ¥ ’aﬂ (pm)‘ =1, and we may suppose that the sequemcesa/ (pm) converge to complex numbeas

satisfyingy ]aj \2 = 1. Then, by uniform convergence, the vector fiele Zaj L? satisfieshv (L, po, ) = 0, for all 6. But,

we havel = S b L™, 5 |by|? >k 1, and, by extremalitf (L, po,d) ~k ¥ |bk|2FM(L|f°, po, d), thus there existk such that
Fum (L, po,d) =0, i. e. Zﬁf’efM(LEo) |-Z(0p)(po)| = 0. Then, by (4) of Definitior8.2 this contradicts the definition of the
1-type. 0

Thus, in all the paper, for a geometrically separated dormaaboundary poinpg, the integeM could be changed to
[t] + 1. As this change gives no advantage, we will kkeg M’(7) and then we can apply directly the results of the preceding
Sections.

Remark4.1 SupposeQ is geometrically separated ap € dQ. Let p be a point ofQ "\W(pg). If T is the projection
onto dQ defined in Sectior8.5.2let g = ri(p). Then, reducingV(pp) and & if necessary, iff%p(p) < & < &, the basis
B(q,8) = (L3°,...,L%°)) is clearly(2K, p, 5)-extremal, andry (L™, p, 5) > C'6-2/T+ for a constan€’ depending only on

K and the dataThus we will always consider that a geometrically separateahain is equipped, by definition, with extremal
basis of the form given in the definition at every point ¢ipyj N Q for —%p(p) <0< d.

This is clear, because ¥ € A (%), then|.Z(dp)(p) —-Z(dp)(r(p))| = O(d), whereO depends only o andQ.
Then EB is satisfied becausg(p, ) > Cd~%M with C depending only o® and EB is also satisfied becaubgp, §) < 62
(o small enough).

Example 4.1.
(1) The three first examples of extremal basis given in Exarddlimmediately show that, ipg is a point of finite type
of 0Q thenQ is geometrically separated p§, under one of the four following conditions:
(a) 0Q is convex neapp, or, more generally, lineally convex nepy (see Sectiof7.1);
(b) The eigenvalues of the Levi form are comparablppat
(c) The Leviform is locally diagonalizable a@b.
(d) Nearpg, 9Q belongs to the class introduced by M. Derridj Ddgr99.
(2) Moreover, we will see in Sectiof.3that, if Q is geometrically separated pg then the local domai® defined in
Section3.5.1is geometrically separated at every point of its boundary.

Example 4.2. The domaim) = {z € C3such thatlez; + |2|° + |z3|° + |zz3|? < 0} studied by G. Herbort injer83 is not
geometrically separated €3, 0) (see Sectior.2for details).

4.2. Structure of homogeneous spaceFirst recall that we define in Sectidh3.4the “polydisc”B¢(4, p,d) (Definition
3.3 and the “pseudo-ballsBg, (%, p,d) andBZ, (%, p, d) (Definition 3.4).
In general, we will just denote bg,,(p, 6) andB%,(p, d) the pseudo-ballBg,,(%, p, ) andBZ, (%, p,d) omitting %,
but recall that, ifd; # &, the ballsBg,,(p, 1) andBg,,(p, &) are not necessarily constructed with the same basis.
Then by the methods used i€D06 (based on the Campbell-Hausdorf formula and the ideadi8#f85), reducing
W(po) if necessary, one can prove the following properties of #itsb

Proposition 4.1. There exists constantg,a, a, B andy such that, for ps W(po) N9Q, & < & and c< ¢o, B{,(p,d) C
B%(p, 8) C BEp(p, 8) and B,(p, 8) € BS(p,8) € BYy(p, 9).
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The importance of this Proposition to construct the stmgctaf homogeneous space is the following: to be able to use
Taylor's formula, we have to work with a coordinates systerich is easy in the se®°(p, d); the hypothesis of geometric
separation and Propositiéh6 imply that the sets associated to curves are associatedgeuslp-distance; and, finally, the
sets associated to the exponential map are used to pro\adittiase sets are equivalent.

Ideas of the proof of Propositioh L It is similar to the proofs of Proposition 3.4 (p. 96) and Lenfi16 (p. 101) of
[CD06Y. Thus we will only give the main articulations.

The first inclusion comes easily from the control of the cegdfits of the vector fields; in the coordinate systeifz) in
the polydisc (PropositioB.6). The second one is more complicated.

Let exp, be the exponential map basedmtelatively to the vector fieldg/ (real an imaginary parts of th). Let

WP = (W), o= (expp)fl. We establish the following estimate on the derivativeshef functionsWP: there exists
constantg3 andK;, depending otk and the data, such that
(4.) f Q= expy(u), max{[u|uienl} < BRi(p.8) /2 then| AWP(a)| < KaFu(p,8)"Fi(p,5) ¥/

with the notation of DefinitiorB.4.
To prove this, we estimate the derivatives of the exponkemigg. Considering, fou € R", the vector field? = 5 u;#,
the derivatives of expare estimated via the Campbell-Hausdorff formula. d.etg(u) = exp,(u), [u] < Uo,

S C|U|M+l,

0 M
dexp, <d_ui> (u)—#(q) +k;ak (2, .. (%0, 2] .. ]) (Q)

whereay are universal constants corresponding to brackets ofhidntee Lemma 1 (p. 97) ofD064). The brackets
are then estimated with Propositi@r6 and @.1) is easily obtained. The second inclusion of the Propasiahen easily
proved.

The equivalence between the sets defined with the expohemdia and the curves is a quite simple consequence of
(4.7). O

Proposition 4.2. Let Q be a bounded pseudo-convex domain K-geometrically segmhait p € dQ. Then there exists

a constant g > 0, depending on K and the data such that, for alKay, the sets B#(p,d),p,d) are associated to a
pseudo-distance in the following sense: there exists ataoh€ depending on K and the data (but not on ¢) such that, if
peW(po)NdQandd < &, and if ge B(A(p,d), p,0) NIQ, then

B(#(a,9),q,9) C B(#(p,9),p.Cd),
B denoting one of the set$,BBg,, or B°.
Remark.If we definey, onW(pp) N9Q, by
(4.2) y(p,q) = inf {J such thag € B(#A(p,d),p,d)} .,
thenyis a real pseudo-distance.
Proof.
Lemma. 1. For all A> 0there exists B depending on A and K such that
B%°(#(,6),40) C BY(#(q,B3),q,Bd).
2. For all B> O there exists C depending on B such that
B ((q,B3),q,B5) C BYF(#(q,6),q,9).

Proof. Let us denote by(q,d) (respLi(qg,Bd)) the vector fields 0f4(q,d) (resp.#(q,Bd)). By the hypothesis of, we
haveLi(q, ) = Sk BXLk(q,Bd), with B¥ constants. By extremality,

‘Bik‘ < KF(Li(qg,9),q, Bé)l/ZF(Lk(q, BJd).q, 85)71/2

< KB YMF(Li(0.),9,0)"*F (Lk(q,B0).0.B5) /%,
which proves the first part of the Lemma wih= (AK(n—1))M. The second part is proved similarly wigh= (BK(n—

1H))M, O

To prove the assertion on the pseudo-distance in the Ptapgsby Propositior.], it is enough to prove that, there
exists a constario such that ifq,q € BS.(#4(p,0),p,d) thend € Bt}oc(%’(q, 5),q,8). But there existg, € piecewise
smooth, such thap(0) = g, ¢(1) = ¢ and, almost everywher@, (t) = 52", a;(t)Z($(t)), with max{|a(t)|,|an(t)|} <
2cF(Li(p,0),p,0) < 4cF(Li(p,9),q,9), if we choosec small enough (Propositiof.6). Now, as in the Lemma, writing
Li(p,8) = 3 akLy(q, 8) (with af constants), using extremality we easily conclatie B2°(#%°,q, 3). O



EXTREMAL BASIS, GEOMETRICALLY SEPARATED DOMAINS 21

Let us now define “pseudo-balls” centered at pointQofW(po), denotedBC(q, d) (resp."B (q, 0) "Bgxy(0, ) by

"B%(0,8) = {q € V(po) such thavt(q) € B°(£8(11(q),8),7(q),8) andp(d) € [p(q) — B, p(q) +¢d]} .
Then:
Theorem 4.1. Let Q be a pseudo-convex domain geometrically separatedyat #§Q. There exists a constang ¢ O,
depending on K and the data, such that, for alkay, the sets B(g,d) define a structure of “homogeneous space” on

W(po) N Q in the following sense: there exists a constant C, dependirlg on K and the data (not on c) such that, if
g1 € W(po)NQ, & < &, and @ € B(qz,d), we have

B(dz,9) € B(qu,C)
and
Vol (B(g,29)) < CVol(q,9)),
B denoting one of the set§,BBg,, or B°.

Proof. The first assertion follows immediately the Proposition. pfove the second assertion, we use the fact that both
B (#(p,9d), p, 6) andBg,,(#(p, 6), p,d) are equivalent t8° (#(p, d), p,d), the fact that the coordinate system associated

to the extremal basis have a Jacobian uniformly bounded &loowe and below and the preceding Lemma. O
Remark4.2
(1) Forp e 0Q, the sets’B¢(q,0) N dQ (for each definition) are the pseudo-balls of a structureomibigeneous space
onadQNW(po).

(2) OnoQ, asin NRSW89, we could define equivalent pseudo-balls using complegdahcurves.

4.3. Localization. Suppose tha€ is K-geometrically separated @b € 0dQ, and consider the domaid constructed in
Section3.5.1near that point. TheB is K-geometrically separated at each poind€fN dD, and, by strict pseudo-convexity,
the same is true 04D \ 0Q N JD.

Suppose tha® is a point of the boundary a#Q N dD, and letp be a point oV (P) N dD andd small enough (with the

notations of the previous Section). Let us denoteA(yp, o) = {Lf"s, o L,ﬁ”fl} the extremal basis given by Propositi®mi4
and by %9 = {L?’Q,...,Lgﬁ} the basis denotel in Definition 4.1 Then, by the construction a&(p,d) made in the
previous Section, we hatd® = L? o 1— B(LP)NP o rwith L — B(L) linear. Thus, if we define#®P = {L%D, e Lgf)l} by
LOP — 1296 1— B(L>?)NP o 11, we see that the vector fields &f(p, ) are linear combinations (with constant coefficients)
of the vector fields 0f8%P. Thus, we have proved the following result:

Theorem 4.2. If Q is K-geometrically separated ayE dQ, then the domain D defined in DefinitiBrbis K’'-geometrically
separated (at every point of its boundary) for a constanti&pending only on K and the data.

Remark.Recall that every point adQ is of finite 1-type.

5. ADAPTED PLURFSUBHARMONIC FUNCTION FOR GEOMETRICALLY SEPARATED DOMAINS
5.1. Definition and examples.
Definition 5.1. Let Q be geometrically separated p§. Let E be the vector space generated %9 U {N}, and, ifL =
zir‘;llbi L2+ bsN = L; + bpN € E denotes, fod < &, F(L,q,8) = F(L,q,8) + ‘%‘2. A € pluri-subharmonic function in
Q, H;, is said to bg3-adapted taZ° at py if there exists a constagi such that the following properties hold:

(1) [Hsl|<1onQ;
(2) Forqe W(pp)NQnN{p > —24} and for all vector field € E,

(09Hs L) (q) > %F(L,q, 5):

(3) Forqe W(po)NQnN{p > —248} and for all list.¥ € .Z3(E),

|ZHs| (a) < B [ F(L,q,8)Y2
Le

Remark5.1 Note that (3) implies in particular that, for a¥’ € -Z3(A(n(q),d) U{N}),
| ZHs|(a) S F(#(n(0),8),9,0)%/2.

Definition 5.2. A bounded pseudo-convex domdhis called ‘K-completely geometrically separated” pg if it is K-
geometrically separated and, there ex&s> 0 such that, for all 0< & < &, there exists a pluri-subharmonic function
K-adapted taz° at po.
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Example 5.1. (1) If the boundary of2 is locally convex neapg (a point of finite type), it is proved inMlIcN94, MNO2]
that it is completely geometrically separatedgt More generally, using the results @03 it can be shown that
if Q is locally lineally convex neapg (see Kis98]) then it is completely geometrically separatecatisee Section
7.1for some details on the construction). Moreover, when thendary ofQ is locally convex, resp. locally lineally
convex, neapy, the local domairD can be chosen convex, resp. lineally convex, (choodisignall enough anég
large enough) and thus, in both cases, it is completely geaakly separated at every point of its boundary.

(2) In [Cho02h Cho02a Cho03, it is proved that, at a point of finite type, if the eigenvaduof the Levi form are
comparable apg then it is also completely geometrically separatedpat

(3) Inthe next Section, we prove that geometrically segairddbmains whose extremal basis are strongly extremal with a
sufficiently smalla are completely geometrically separated, and, moreovgrftirdahose domains, the local domain
defined in Sectio®.5is completely geometrically separated at every point diésndary. In particular, this applies
when the Levi form is locally diagonalizable pg.

(4) 1t can also be proved that if a domain is of the type considdy M. Derridj in Der99 near a boundary poiryg
then it is completely geometrically separateg@t

5.2. The case of geometrically separated domains with stronglyxéremal basis. In this Section we prove the two follow-
ing Theorems:

Theorem 5.1. Supposé is K-geometrically separated afpyE dQ. Then there exists a constamg, depending on K and
the data, such that, if for all g W(po) N9dQ andd < &, the basis”(p,d) are (K, a, p, d)-strongly extremal (c.f. Definition
3.5 with a < ag then it is completely geometrically separated gt p

The second deals with the local dom&irtonstructed in Sectiod.5.1, and, in fact contains the first one:

Theorem 5.2. Suppose tha® is K-geometrically separated apE dQ. There exists a constant, depending on K and the
data such that, if for all pe W(pg) NdQ andd < &, the basis#(p, d) are (K, a, p, d)-strongly extremal witler < a1, then
the local domain constructed in SectiBrb.1lis K'-completely geometrically separated at every point of dsrimary for a
constant K depending only on K an@.

We will prove in details the first Theorem and only give the ifiodtions needed to obtain the second one.

5.2.1. Proof of5.1 Here we suppose that the bagi§p, d), pe W(p)NaQ, d < &, are(K, a, p,d)-strongly extremal for a
constanix not yet fixed. During the proof, we will impose successiveditans ona (depending oK, M andn) to be able
to construct the good pluri-subharmonic function. Thetexise ofa will be clear at the end of the proof but we will not give
an explicit value. Now, we fixd > 0.

The ideas of construction are comparable to those develiopggeD061 (following ideas of [Cat87) but the technical
proofs are slightly different. On one hand the basis arel lostead to be global and we have to construct local “almost
pluri-subharmonic” functions and then add them using thecttire of homogeneous space instead to construct diractly
global function. On the other hand, the control of listsdaling our hypothesis are weaker than those following thalloc
diagonalizability of the Levi form. Thus, for reader’s cemience, we will write the proof with enough details.

Let us start with a local construction. We need to introdusg notations.

Let us fixd and denot&*(p, d) the pointsg in W(po) such thatrr(q) belongs taB®(p, d), the polydisc associated to the
extremal basigZ(p, 6) (see Definitior8.3). Let L be a vector field ifE (the vector space generated42 andN). We write
L = Lr+anN, wherel, is tangent tgp. Because is geometrically separated we can wilite= " 1a’LP® (a € C). As
usual,c? will denote the coefficient of the Levi form associated toweetor fieIdLip"5 € AB(p,d), andQ = {—€ < p < 0}.

Now we state the local result and show how it lead$tb For the proof we need only estimates in the sfligy =
{—3d < p <0}, but in Sectiorb.2.3ve need corresponding results in a larger domain, and thistate the local result for
the set%(p,d):

Proposition 5.1. For all constant C> 1 there exists constantg (depending only on K, ¢, C and the datff)andy; such
that if the basis#(p,d) are (K, a, p, d)-extremal witha < ag, then for alld < d(ap) (depending o, K and the data)
and all point pe W(po) N9Q, there exists a function } = H with support in G(p, d) satisfying, for every vector field L,
the following conditions:

(D) H[ <1
— — . 2
(2) (90H;L,L) (a) > BF(Lr,q,8) — yi (573 [aP[* % + % +1) (q). for a € Q¥2(p,5) N Qg
(3) (90H:L,L) (a) > —£F (Lr.0,8) — yi (374 |aP* $ + 28 +1) (q). for ae Q/2(p, 5) N Qs5,
(4) For & € 23(#(p,5) U{N}), | ZH|(0) < yo[TLe# F(L,0,8)Y/2, for g€ Q¥2(p,8) N Qss.
We will prove this Proposition in the next Section. Now we whww 5.1 follows this Proposition:

Proof of5.1. We coverdQ NW/(po) with a minimal system of pseudo-balB®/?(py, 5) NdQ, px € dQ. As the pseudo-balls
are associated to a structure of homogeneous space, thgsesexinteges, independent od, such that each point ¥¥(po)
belongs to at mos$setsQ®(pj, d). We apply Propositios.1with C = 2SG to get the functioH, 5.



EXTREMAL BASIS, GEOMETRICALLY SEPARATED DOMAINS 23

For all pointg € V (Py) N Q35 there existgp such thag € QC/Z(pjo, ) and thus (denoting the coefficient of the Levi
form in the directiorL™ andak = a’*), by Propositiorb.1,

5 AT B Ianl
5.1 00N Hy, s:L,L > —=F(L{,0,0) — 1
(5.1) < Z Pk;0 > (a) 2 (Lr,0,0) —ya st quc 0 <Z\’ ‘ 32 + )

Let us consider the function
H= ZHpkﬁJrAe’p/‘er B|Z|?,

for suitable constantd andB anda small enough:

Claim. There exists constants B, y anda’q depending only oK and the data such thatdf < a’o,
(1) H is uniformly bounded, independently 6f< &y, on Q3s;
— _ 2
(2) Forany vector field € E, for q € Qz5 "W (po), (99H;L,L) (q) > BF (L,,q,8) + %;
(3) Forge Qs35NW(po) and all list.Z € Z(E), |ZH|(q) < o [Ler F(L,q,8)Y2.
Proof of the Claim.For everyk such thay € Q%(py, 9),

Sl L[ 1(1 g o) o Ll
/8. _en/d |2 Kk Pk 2 :
<ddep ,L,L>(q) e° lé (2”2 a,a Cij +2I]e<Za1 dap L] ,N>) + |an| <adp,N,N>) + 5|
Then, we use the hypothesis of strong extremality and Tayflmmmula to estimat%c}‘j ‘ i # j, inthe seQ%(px, d) N Qzs.
Using the fact thatij = |cii| + O(d) (recallQ is pseudo-convex), this gives a constiptdepending oK and the data such
that
(00€/%L.0) (a) = —Ko+ o5,  laol? +5= ’a, ] d(@)| -~ 4n*KaF (LY, q,8),

because, by definition @ in the setQ®(pk,d), F(L,q) < 3F(LT, pk) (see PropositioB.6).
Now we choos@ = 2Séy; + 1 andB = KoA+ y1. The Claim follows easilyg.1). O

To finish the proof 0b.1, we cutH to adapt it to good neighborhood$py) andW(pg) and the required properties in the
strip {3 (p) < 23}, and we addD |z} for a large constard. More precisely, the cutting functions are defined as fodlow

Let 8 = %19, whered1(q) = x1 (1 la- po‘) with x; a ¢’ increasing function equal to 0 dn- «,0], 1 on[1/4,+oo]
andy(t) =t* on[0,1/8], andd,(q) = x5(p(q)) with x5(t) = x(t/), x being even, increasing dn- 0, 0[, equal to 0 on

4

| — o, —4],to 1 on]—2,0[ and to% fort € [-4,—-8/3].

Then the final calculus is made as @)06Y, remarking the following estimate

(009;L,L) > —0(1).
0

5.2.2. Proof of Proposition5.1. The proof uses essentially the ideas developed in Sectionf4CD06H, except that we
have to work locally around the poipt Thus the technique is more complicated (it needs to usdrilnetigre of homogeneous
space) and we will give it with some details.

ForpeW(po)NaQ andd < & fixed, letAB(p,d) = {Lip"S =L;,1<i<n-1}bethelK,a,p,d)-strongly extremal basis
associated, and = Cbg the adapted change of coordinate$@®).

Fori=1,...,n—1and =3,...,M, let us define

& ={0e(Z(dp), IM(ZL(p), | L =1 -1,2 ={L1,... L'}, e {Li,[}}},
_ U
|
If ¢ € &', we denotd(¢) =1.

Note thatFi(.,8) = F(Li,.,8) =~ 4! + 5, i |58

F and are denoted genericalty We also defmda(c,.) =2, and, for the other functiorfs, | (fi) = r(¢i). In the following proof,
these components cannot be considered individually. TWhesntroduce the terminology of i — 1)-uplet” of components:
f =(f1,..., fa_1), wheref; are component df, is called an— 1)-uplet of components of the weights The set of all such
(n—1)-upletis denoted by# . .77 is ordered by the lexicographic order.

First we define a cutoff function with support@f(p, d) and in the set where a componentis "dominant”. More pregisel
if Bis a positive number anfl= (f;) a (n— 1)-uplet of components df, we define, for fixed < ¢y,

|'| X8 ( ) Xo = Xt 8Xo,

i)

2/i(¢n) ; 0 |21
‘ . The functioné%“ and’L'T‘p" are called theomponentsf
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where xg(t) = x(Bt), x : [0,4+%[— [0,1], being a¥* function equal to 0 orf0,1/2] and 1 on[1,+], and xo(q) =
X1 ((me(n(q))i) ) , with x1 a ¢ function identically 1 orB(0,1/2) and with compact support (0, 1).
|
We say thatf is B dominantifxt g =1

P4 ‘2/I<n>

Then, to each component Bf of type f; = "T , We associate, fok > 1 the function

Hi(f,A,B) =320y,

whereys (o) = #(3UF (p,5) 2.

Lemma 5.1. For each constant B- 0, there exists a constanpKiepending only on B, ¢, K and the data such that, for each
i, if g € Q°(p,3) N Qgg, for each L= 31, 4L, ¥ |a; \2 =1, we have the following estimates:

(1) 1L44(0)] < Ko (F(Lr,a,8)Y2+ %), and|LL () (@)] < Ko (F(Lr,q,8) + M)-

(2) |Lx18(0)] <Ko (F(Lr,,8)2+131), and|LLxre| < Ko (F(Lr.0.6) + 35);

(3) 1L O(H(F,1,8)] < Kor 12 (F(Lr,0,6)42+ ).

Proof. If g€ dQ, the inequalityLyi(q)| < Ko (F(LT, q,0)Y2+ @5‘) follows immediately Propositio.6and the extremal-
ity of the basig(L;) at(p,d). The general case for (1) follows.
(2) is obtained using the fact that, (£) is the change of coordinates associatedptand L = Zaijdizj, then ‘aﬂ’ <

1/Z(p, O)F; 1/Z(p, o) for g € Q%(p,d) N dQ (Proposition3.6), and similar techniques as for (1).
d)is proved similarly, using the estimates of the coeffitseof the bracketd.L;] in Q°(p, ) NdQ (Propositior8.6). [

For f = (f1,...,fh-1), a(n— 1)-uplet of components of the weighls let us denote by the set of indexessuch that
Py 12/1(fi)
fi = ’L'T‘p" . Then we consider the function

H(f,A,B) :ZHif,/\,B).

The next Lemma gives some properties of the funckidii, A, B). To state it we need to introduce the following set:
For f a(n— 1)-uplet of components of the weighHgsandB' a positive number, we denote

Ug.t = {g€ Q%(p,d) for which there exist§’ < f such thatf’(q) is B’ dominant .

Lemma 5.2. Let f be a(n— 1)-uplet of component, A, B arathree positive fixed real numbers. Then there exists cotsstan
ag, A, A, B, A >A, B >B, ¢ and K, depending only on A, B, K and the data, such that, if the constanf strong
extremality is< oy, then the function Kif,A,B,&) = H(f,A,B) = H satisfies, on @ p, d) N Qz5:

(1) [H] <Ky;

2) IfL = LP=L;+aN,a€C, — 1, ther{(3dH;L,D)| (q) < A’ (F(Lr,q,8) + 2L,

@) Sia r+aN,a€C, ylal* =1, ther|( )| (a) < (Lr,0,8) + 8 );

(3) ifa ¢ Us, X;g(a) =1, Xo(a) > €, for the same L,

(90H;L,L) (a) > AF(Lr,q,5) - <Z ja|? 'C"( A % + 1) :

(4) <00_H;L,E> (q) < ( (Lt,q9,0) + ) implies g€ Uy andxo(q) > €'
(5) Foralllist .Z € Z3(#(p, )U{N}), |LH ()] < Ko (MLey F(L,9,6)Y2).
Proof. Recall thatH = ¥, Hi, thus the properties are trivially satisfied i 0 and we supposk## 0. The functiongy|

being bounded by 2 (see Proposit®®f), (1) is satisfied with a constak depending only ol andn.
Leti € 1. Then(ddH;;L,L) = LLH; + [L,L] (dH;), and as

LLH = A~2/20 [ (A2|Li P+ ALLW ) X1+ A (Lwifxf s+ LéiLxrs) + LLxis|.

5.1 implies(dz;Hi; L,L)(q) > A~3/2er¥ (A2|Lw|| Xig—KHAF(Le,q,0) + ‘ + 1) and thus the existence of a constant
A, depending only on the choice &f B, c, K and the data, satisfying (2).

Now, ifforalli e l, [Ag| < 1, then forA large enough, we hav@)dH;L,L) > —F(L). Thus we suppose that there exists
ani 1 such that|/\Lp( )| = Mg (5, 5)(2-190)/2 > 1. Thus there exists a constait> B, depending ol such that
‘d’ 2/ él:l(p, ), and this implies that there exists(m— 1)-uplet f’ < f which is B'-dominant at the point
g. In other words, to each choice afwe can associat®’ such that the first conclusion in (4) is true. MoreoverB and



EXTREMAL BASIS, GEOMETRICALLY SEPARATED DOMAINS 25

¢ being fixed,x1 being@™, there existg’, depending ord, B, ¢ and 1, such that the hypothesis of (4) implies the second
conclusion.

Let us now show that we can choosdthusA’, B', K; ande’ will be fixed) such that (3) is satisfied df is small enough.
Suppose thev(}’B(q) = landxo(q) > €. The hypothesis of strong extremality and the invarianctéhefr (q) and aikj in
B(p, d) ( Propositions3.6and3.10 gives, ifd < d(a),

2 2
an
Lu@P> 4 4nc<K><2a > \a,-|2Fj<p>+—'5z'>,
n—1>j>i

> aiLiw)(a)

i<i

and then, by extremality g,

Lw@P >,

> aiLidi(g

i<i

2
- (K)(azF(Lr,q,é) 'f;' +1>

Now we make use of the following Lemma:
Lemma. Let B! be complex numbers= 1,2,--- .n—1, j </, verifying |B!| > ca; and ‘Bij‘ < Caj for j <i. Then there
2
exists a constant W= W(c,C, n) such thaty " ’zlj:l B ’ >W3sM (ai)2.

It implies, using the invariance d%(q) andF(L,q) in the ball and the extremality of the basis@tthat there exists
constant®V, K3z andK,, depending o, M, K and the data, such that:
|<ii (9 W |an|2
|Ll1UI | + Z_F(LT7q76)_aK3(F(LT7q76)+1)_K4—7
2 275 X 52
and thus, foig = W/4KKj3 (depending only on the dab, K, B, c andn),

Ci
Ly (a)|*+ [Gi (@] >W'F(Lr,q,0) — Kq |a”2| +1
i€ 1€l 0 0
This finishes the proof of the Lemma for a choiceloflepending o, €, B, M, K andc, c depending itself only o, K

and the data, the property (5) being trivial. O

Proof of Propositiorb.1. First, note that there exists a constﬁntdepending oM andn, such that, forp € W(pg) and
o> % |p(p)|, there exists a componefof F(p, d) verifying fi(q) > sF(p, d) for all pointsg € B%(p, d), ¢ < ¢p (Proposition
3.6.

To define completely our functiod, we have to define, for eadin — 1)-uplet of component € 7 (the set of(n— 1)-
uplets of components of the weighg p, 8)), the constantg¢, B; and&; from which A (f) is constructed. Let® be the
largest element af# for the lexicographic order. Defirgs, = CcaMn+1, Br, = D ander, = 1. Suppose we have constructed
the constanté, Bf andes for f > f1. Consider the constan&#l, B’fl ande;1 obtained applying.2for the constants\1,
B andey1, and define, foff2 precedingf!, Ajo = 3Cy (. 12 A, Bz = B, andegz = g1 ThusH = 3 ¢ H(f,A¢,Brgr)
is well defined.

Forq e Q°(p, d) define the following subsets o%:

Ei(q) = {f e suchthatthere exists < f, such thatf’(q) is B;-dominant and(o(q) > &} },
Es(@) = {f €2 suchthai;g, (a) =1 andxo(a) > &

Ex(@) = J\{E(q)UEs(a)}.

Note that ifE1(q) is not empty, and iff is it's smallest element, then there exi$ts< f such thatf’(q) is B; dominant,
that isx},,Bf/ (9) =1, and, agy < €, we also have(p(q) > & which meansf’ € E3(q), f being the smallest element of
E1(q).

Now suppose first thag € Q%/?(p,5). Then, by definition oD, E(q) is not empty, and, i€1(q)is also not empty there
exists inEz(q) some strict minorant d;(q). Then, by5.2

— _ n—
<00H;L,L>(q)z< S A- S A’f#Ez(q)) (L.0,8) — 3 Ka(Ar.Br, A7) <Zi| 2°” |%”2| +1>
feks(a) feEq(a)

for a small enough, depending only &, K andn (#Ex(f) denoting the number of elementstf( f)). Then, the preceding
remark and the fact thaBs(q) < 4M" < %Afo imply

(00H;L,L) () > CA""F (L., 5) <Z|a|2|°" +|a”| +1>
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Finally, if g is any point inB®(p, d) thenEs(q) may be empty, but thelEl(q) is also empty, and thus

(00H;L,L) (q) > —4"F (L, q,3) (Zl 2|°” |a”| +1>

This finishes the proof of Propositidnl, property (4) being trivial. O

5.2.3. Proof of 5.2 If P is a point of the boundary dd, by the definition ofD and5.1, to prove that there exists a pluri-
subharmonic function adapted to the structure of geonadlyiseparated domain neBr we have only to consider the case
whereP is in the boundary o# QN dD. Thus, with the notations introduced just before, we proedollowing reformulation
of 5.2

Proposition 5.2. Let P be a point of the boundary ofQ N dD, and V(P) the neighborhood considered in the previous
Section. For all K> 0, there exists constants; and &; depending on K and the data such thafifis K-geometrically
separated at p< dQ and if the extremal basis @ are (K, a, p, d)-strongly extremal wittor < a3, then, for0 < é < dy,
there exists a pluri-subharmonic functiory lén the local domain D which i&5,K’)-adapted to°P at P.

Proof. The proof is a modification of the proof &f1 and we will only indicate the differences. Here we have tosider
both weights associated to the doma@andD, that we denot&® andFP, which are constructed respectively with the
defining functiong andp + ¢.

We fix & small enough and then will omit the subscrdin the notations of the vector fields. Consider, as in Section
5.2.1the covering o@D NV (P) by the pseudo-ballB®?(qy, 5) N dQ (note that herd® plays the role ofyg in the previous
Sections).

We denotepy = (qx) and fixk. Let (Lik)i = (Lj); be thed-extremal basis (foD) at the pointgk. LetLf be the vector
field tangent tg associated tb; (i. e. Lj = L o 1+ (B o m)Ng o 11). We saw (in Sectios.5.3 that the weight&P° (L, ., 5)
associated to the vector fieltlsare equivalent to

van o7 (1
FQ(Lf,n(.),5)+¢g|)+ (5 )|<Lf’(n(.)),.>\2.

Let (LIQK) = (LiQ)i be thed-extremal (forQ) basis atpy so that the vector fieldbip are linear combinations of tHe?.

Let | ,
/
Iy = {i such thaF® (LiQ, pk,5) > W} .

We supposéy, non empty. As the vector fields? are ordered so that their weights are decreadinip a segment oR,
{1,2,...,n¢}. Then, we consider the-uplets of components of the weighis (L2, py, 8), i < ng, f = (fl, . fnk) and the

function
in7T
XfB= X8|l =7 o —= | Xo
® Qk B(FQ(L?,pk,6)> °

wherexo(q) = X1 (FD'( )quk( (q)), TH being the projection ontdD associated to the real normall@o

To obtain the good estimates of the derivativeg pg with respect to the vector fields, we first estimate the derivatives
of the functionsf; o rTat the poinig:

Lemma 5.3. Fori € Iy, if |fi(py)| > 55F2 (L2, px, 8), for £ € Au (Ly, ..., Ln_1), we have
2 (fiom) ()| S8 F2 (LY, px, 8)F Pk, 8)7/2.
Proof. Let us consider the casg”’| = 1. AsL;j = LP o 1T+ (Bj o MNg o 11, for p = 11(q),

L (o (@)] < [L2(p) (fy0m) (@) +O(|Bi(P)])

By (3.19. [B;(p)| S ¢' (Ip°) <9 (o) + 0 (¢ (1a*)) =0 (¢ (o) ). thus

1B(PO] 5 FOA(LP, P )FO AL 6, 0)
because € Iy. As theLf are tangent t@, Lp( p)(fiom(q) = ( p)(fi)(p), and, as thd';f are in the space spanned by the
L2, by Propositior8.3,
1/2
‘('—f(pk)(fi)) (Dk)‘ SF? (LiQ, Dk,5) Fo (Lf, Dk,5) ;

and thus

2
(L pa() (0] < F2 (L P 8) (L, pk,5)1/2+ @.



EXTREMAL BASIS, GEOMETRICALLY SEPARATED DOMAINS 27

Derivatives of higer order are treated similarly. O

Corollary. Under the same hypothesis, foedQf (0k, ) N1D3s and.Z € %u (L1,...,Ln-1), we have
- (fiom) (a)] S8 F2(LP, pk, 6)F P (ak, 6)“/2.

The derivatives ofp being trivial, we deduce fronB8(8) and Taylor’s formula:

Lemma 5.4. Fori € Iy and g€ QR (g, 0) NDgg, for £ € % (L,...,Ln—1), we have
|2 X1 8(0)] <e F°(ak. 8)%/2.

We now define the basic functioh$(f,A,B) used here. Let = {i < ng such thatf; # @} and, fori € 1, if fj =

’L.rb ‘2/|

Hi(f,A,B) = 3/2e““”xfswherew|—@‘L¢' T

andH =H(f,A,B) = ZHi(M’B)'
If L= &L = Ly +anln (3 [aif* = 1), as in the proof 8.2, using the last Lemma we get
(00HL.L) (a) = A2 (Azleilzxf,eKo (AFD(L“%‘” |a3| ”))

for g € QR (0k, ) N D3s. The estimate ofLy | has now to be done more carefully.
Lt(q) = L7 (p) +B(P)Na gives

/ 2 2
L@ g ‘r’<p>wi|2<q>—c(¢ () +¢('q|5)+6).

Then, decomposingf on thed-extremal basis gty (L,Q) Z“ 1b LQ we obtain, using the strong extremality hypoth-

esis,
2 ¢ (l9?)+0o
(q) -C (azFQ(L¢7 Pk, 5) + (7| |6) .

Using the same method, we sum all these inequality to getiggii* = [LIQ, Lﬂ (9p))

2 1
IL2(p)ti|” () > 3

L
=

o

5 : (197
Z‘L?Wi‘Z(Q) > BFQ<ZlbjL?,pk,5>c< 5 |bi|2%(q)+azFQ(L?,pk,5)+ (6 )+1)
Ie 1= il =<y
Q I 2

PIREY

and, agLyi|® > % [L¢i[® —clyf

52—, we finally obtain

c? ¢'(ldl
Z|Lwi|2zBFQ<L¢,pk,6>—c( 5 b1+ Bl a2eaqe p )+ ) 1),
il T=ng

le

Then the proof s finished as in the previous Section using &g (gx, 5) N D35, we have

/ " 2
<d§er/5;L,L> )> B (Zlblz‘ i |an| +¢ (|Q|2)—|—¢ (|;|2)]<L?(p),q>\ ) —K(aFQ(Lf,pk,é)—i—l).
Indeed,
(5.2) <05e’/5;L,E> _d/o <2De(an <z96(9r;LT,N>) N |;:Sn2|2> @+ <05er/5;Lr,L_r> Q).

2
Forqe {r > —3d}, the first term of §.2) is > %% —Kp. Let us look at the second term & .p).
)

€ ((@0pL Ty + L2’ (1) + (L2000 )" (1a)).

<05e'/5;LT,L_T> =
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But
(09p:Le, L) (6) = (090 LE (P, LE(P)) (a) + O (¢ (10 [{LE(p). 0) )

and, first we can choo&ésmall enough so thaj’ (|q|2) \(L‘T’(p),q>|2 < ¢ (Iqlz) +¢” (|q|2|<L?(p),q>|2), and secondly
(90p;L2(p).LE(M) (@) = Y bibicd(a)
3 6 [c?| () + O[adF(LE(p) + ¢ (Ia?) + ] .

Y

6. APPLICATIONS TO COMPLEX ANALYSIS

6.1. Statements of the results for geometrically separated doniias. In [CD0O6H and [CD064 we proved that the methods
introduced, for the study of the Bergman and Szegd prajecty A. Nagel, J. P. Rosay, E. M. Stein and S. Waingetin
(INRSW89) and by J. McNeal and E. M. Stein for convex domaing$04 MS97) can be adapted to pseudo-convex
domains having an “adapted geometry”. The study made in téeiqus Sections show that it is the case for completely
geometrically separated domains and thus we have the fioljpsharp estimates:

Theorem 6.1. Suppos& is completely geometrically separated atgpd Q. Let Kg(z, w) be the Bergman kernel €f. There
exists a neighborhood \¥o) of pp such that:

(1) For pe W(po) NQ, Ka(p, p) ~ M, F(LP?P b 55 (p)), wheredq (p) is the distance from p taQ.

(2) For p1,p2 € W(po) NQ, for all integer N, there exists a constant @epending o2 and N, such that for all list
Fy =L}, LK} (respZz, = {L1,...LK}) of length k< N (resp. k< N) with U € #(n(py),T) U{N} (resp.
Lg € B(n(p1),7) U{N}), we have

n
| L2, %7,K8(Z1,Z2)(P1, P2)| <Cn ”F(Li"(pl)aT7 mi(pa), )2,
=

wheret = Jq(p1) + Opa(p2) + Y(T(p1), TT(P2)), Y(TI(p1), TI(P2)) is the pseudo-distance from{p;) to 17(p2) asso-

ciated to the structure of homogeneous space aisdtie number of times the vector fielqig’fi)’r or Li"( P1T appear
in the union of the lists#%, and %%, .

Corollary. Suppos@& satisfies the hypothesis®2. Let D be the local domain considered3r2. Then the Bergman kernel
Kp(z,w) of D satisfy all the estimates stated in the Theorem at anytdiits boundary.

Using the methods of Section 5 &€D97 the following result on invariant metrics is easily proved

Theorem 6.2. Suppose is completely geometrically separated af 9 Q. Let us denote by &z L) (resp. G(zL),
resp. Kqo(zL)) the Bergman (resp. Caratheodory, resp. Kobayashi) meifi@ at the point z= Q. Then there exists a
neighborhood \po) such that, for all vector field E E, L= L; +asN, we have, for ¢ V(pg) N Q,

Jan|
5(q)’

whered(q) is the distance of g to the boundary@fand the constants in the equivalences depend only on theactrog
geometric separation and the data.

BQ(qaL> = CQ(qv L) = KQ(qv L) = F(LTaqaé(q)) +

Theorem 6.3. Suppose&? is completely geometrically separated at every point obd@sndary. Then the following results
hold:

(1) Let Ry be the Bergman projection 6. Then:
(a) for 1 < p < +o and s> 0, B maps continuously the Sobolev spadé)into itself;
(b) for 0 < a < 4o, Bs maps continuously the Lipschitz spatg(Q) into itself;
(c) for 0 < a < 1/M, Bs maps continuously the Lipschitz spag(Q) into the non-isotropic Lipschitz space
Ma(Q).
(2) Let R5be the Szeapprojection ofQ. Then:
(a) for 1 < p < + and se N, Ps maps continuously the Sobolev spagédQ )into itself;
(b) for 0 < a < 4, Ps maps continuously the Lipschitz spaeg(dQ) into itself;
(c) for 0 < a < 1/M, Ps maps continuously the Lipschitz spatg(dQ) into the non-isotropic Lipschitz space
Mo (0Q).

Note. (1) Statements (1) (c) and (2) (c) can be extended tarall 0 with convenient definitions of the spadeg(Q) and
Mq(0Q).
(2) In view of Examplées.1, the previous theorem applies in particular for all lingaibnvex domains.
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Corollary. Supposé& satisfy the hypothesis 6f2. Let D be the local domain consideredst?. Then all the results stated
for Q in the previous Theorem are valid for D.

Using an idea of M. Machedomac8g we deduce local estimates for the Szego projection:

Theorem 6.4. Suppose satisfies the hypothesis BR2. Let R be the Szegprojection ofQ. Then if f is a B(dQ) function
which is locally near pin the Sobolev spacell1 < p < +o and sc N, (resp. in the Lipschitz spade,, 0 < a < 1/M) then
its projection R(f) is locally near p in LY (resp. in the non-isotropic Lipschitz spag). In particular this applies if the
Levi form ofQ is locally diagonalizable at @

Proof. if f € L?(Q) and if x € €°(dQ) has compact support in a sufficiently small neighborhoogpénd x = 1 in a
neighborhood ofyg, then the subelliptic estimates fol, and Kohn's theory foh85 KN65]) implies Ps((1— x)f) is €
nearpo, and, denoting? the Szego projection d, (Ps— PL)(x f) is € in a neighborhood ofy (see alsokan9q); the
result follows thus the previous Corollary. O

6.2. A guide of the proofs of the results of Sectior.1. LetU be a neighborhood atQ where we can define a projection
montodQ using the integral curve of the real normalgoWe will always suppose th&t(pg) C U.

The two notions of “weak homogeneous space” and “adapta@qibharmonic function” plays a crucial role i€P06h
CDO064:

Definition 6.1. We say that the domai@ satisfy the hypothesis of “weak homogeneous space” at adasympointpg of
finite typertif there exists two neighborhoods po) andW(pg) € V(po) and a constari such that:

(1) There existgy > 0 such that, for everp € W(pg), Vo € [—%p(p), &), there exists a basis of vector fields tangent to
pinV(po), #(p,9), for which there exists K-adapted coordinate system

(2) There exists two constarfsandcy, depending oK and T, such that, foc < ¢y, the setB°(4(p,d), p,d) (asso-
ciated to the coordinate systerBf, (%(p,d), p,5) andBg,,(%(p,d), p,d) satisfy the following conditions, for all
pEW(po)NQandalld € [-3p(p), &l:
(a) forqe B§(p,d), B5(#(q,9),q,8) C B{(A(p,d),p,Cd), whereBf andB denotes one of the selBs, B, or

Bexp:

(b) Vol (B§((p,25), p,28)) < CVol (BS(%(p.?),p.?)).

Note that, in this Definition the weights are defined wititM = M'(T).

Definition 6.2. Let# = {L3,...,Ln_1} be a basis of vector fields tangentdan a neighborhood (pg) of a boundary point
po and 0< d < &. We say that a pluri-subharmonic functiehe PSHQ) is (po,K,c, d)-adapted to this basis? if the
following properties are satisfied: _

[H < 1in Q, and, for all pointp € W(pg) N Q, p(p) > —39, the two following inequalities are verified for points
qe B (A,p,0)NQ:

(1) ForallL =737 ,ali,a €C,
— _ (L 5
( )2k 2, i

(2) ForZ € Z(AU{N}),
| ZH| <K [ F(L,p,8)Y2
Il

Note that this Definition depends on the values of the vec&idéiLip at pointsq in Q. But, in the situation of the
applications below (i.e. with a finite type hypothesis) indse shown that it depends only (up to uniform constants) en th
restriction of the basis 0fQ.

The following Proposition follows the work irJD06h CD063:

Proposition. LetQ be a bounded pseudo-convex domain aptiepa boundary point of finite type (resp. a bounded pseudo-
convex domain of finite type). Then(ifsatisfies the hypothesis of “weak homogeneous spaceg &epp. at every point

of its boundary) and if there exists a pluri-subharmonicdiion .75 adapted to%(p, d) for all p € W(pp) N Q and all

o€ [—%, do] (resp. if this property holds at every poing pf Q) then the conclusions éf 1 (resp.6.3) are satisfied.

To prove Theorem6.1and6.3t suffices then to use the properties of extremal basis andt®the two following facts:
(1) The existence of extremal basis and adapted coordigsterss for points 08Q NW (po) allows us to define basis
and coordinate systems for points insfd¢see Remark.1) and, -
(2) if pr € W(po)NQ, p= 1(p1), the setBS(2(p,d), p1,8), —3p(p1) < & < &, defined byg € B§(#A(p, ), p1,9) if
n(q) € B§(#(p,d),p,0) and|p(q) — p(p1)| < ¢d induce a structure of “weak homogeneous space”.



30 PHILIPPE CHARPENTIER & YVES DUPAIN

6.3. Main articulations of the proof of the Proposition. In the Section 2 of CD06H we showed that if the Levi form is

locally diagonalizable then the local hypothesis of thep@sition is satisfied, and irf[D06g CDO06H, even if the statements
are given in the case of a locally diagonalizable Levi forme, proofs of the estimates on the Bergman and Szeg0 piajscti
are made only using the hypothesis of the Proposition. Wegjus here the main articulations of the proofs:

e The Bergman kernel estimates on the diagonal is done usiagrém 6.1 of Cat89 and the change of coordinates
®,, adapted to the basi#(p, d(p)).

e The estimates on the derivatives of the Bergman kernelaritsie diagonal follow the methods developed by A.
Nagel, J. P. Rosay, E. M. Stein and S. Waind¢REW89 and J. Mc Neal McN89 for the pseudo-convex domains
of finite type inC?, and used for some generalizations (see the introductiquaiiticular by J. Mc NealNIcN94] in
the case of convex domains. It consists to obtain uniforrallestimates for the Neumann operatér and then to
apply the ideas developed by N. Kerzm#&®{77 in the study of strictly pseudo-convex case. This requscsging.
The starting point is to write the Bergman keri&§ using the Bergman projection. More preciselyyif is a
radial function centered af with compact support if2 and of integral 1, ancﬂ’é2 is the Bergman projection of
Q thenD“D"KQ(W {) = D“PQ(DVI,UZ)( w). Then,P2 being related to thé-Neumann problem by the formula

=Id— 19JVO whered is the formal adjoint ta) and.# the inverse operator @ + 9 0 the estimates on

PB are obtained via estimates o#f. To obtain these estimates, we use the theory developedJoyadhn and L.
Nirenberg KN65] which gives local Sobolev estimates fof” if there exists a local sub-elliptic estimates for the
d-Neumann problem and the famous work of D. Catli@g{87), where it is proved that the existence of an adapted
pluri-subharmonic function implies the existence of sllip#c estimates for th&-Neumann operator.
The study of the Bergman kernel is not directly don@ifout in ®(Q), where®,, is a coordinate system adapted
to the basisZ(p, d;0(pP) + dsa(q) + v(1(p), (0))), wherey is the pseudo-distance @). One difficulty is to
see that all the constants appearing in the estimates aticcalomains where the estimates are done are uniformly
controlled.

e The estimates for the Bergman and Szegt projectors armebtadapting the methods developed by J. Mc Neal and
E. M. Stein in MS94, MS97] (and also NRSW89), related, in particular, to the theory of non isotropicaathing
operators, to non convex domains.

Remark.The results on the Szego projection are thus obtained iadehe theory of NIS operators to our settings. The
estimates, for example, for the domains considered by Mridjén [ Der99 can also be obtained using the estimatédfigrof
Derridj's paper, the estimate on the Bergman projectioivddifrom the fact that these domains are completely geacadir
separated and the results on the comparison of the Bergnila®zago projection obtained by K. D. Koenig Kde07.

7. EXAMPLES AND ADDITIONAL REMARKS

7.1. The lineally convex case.In this Section we show, with some details the statementsroadineally convex domains
in Example3.1, Example4.1and Examplé. 1

Suppose&) = {p < 0} is lineally convex neapy € dQ, a point of finite type, antlV is a small neighborhood qfy. (Z);
is a coordinate system centeredpgtsuch thaZ, is the complex normal taQ at pg, and ﬁé’ ~1inW.

We begin with the statement in Exam@el (1). Letp € Q"W andd > 0. Let(z); be thed-extremal basis (considered
as a coordinate system) ptdefined by M. Conrad inGQon03 (the main results concerning this basis are summarized in
[DFO]), which is centered gb. To be coherent with our previous notations, we supposelieatomplex normal toQ at p
iS z, (in M. Conrad paper this normal ).

To each vectov = (ay,...,an_1,0) € C" we associate thel, O)—vector field, tangent tp,

n-1 0

(7.1) va_Z +B\/ —V+B\/

07, 07,

1
(thus, =~V () (52) -

If vi = (6li<)1§k§n' 1<i<n-—1, we denotd; = L, = a% +Bidizn. Note that the vector fields; depend orp and &
(Li = Li(p, d)) and are a basis of the complex tangent spageitoWw.

Proposition 7.1. There exists a constant K such that, for altpQ W and alld < &, & small enough, the basiki(p,d));
is (K, d)-extremal at p.

Proof. pandd being fixed, we drop them in the notations. First we expressabightsF(Ly, p,d) in terms of the vector
fieldV of (7.1).

Lemma. Let.# be a list composed af L, and Ly, ||v|| < 1. Then

Z(0p)=NVFp)+ Y wIVF(p)
a’+B'<a+pB

where are functions &&2™ (9+8) norm uniformly bounded in p andl
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Proof. Look first ateww=2[Ly,Ly] (9p): c = _ZL_V(B")% = 2LV (p)++V(p) = 2VV(p)+ =V (p). The Lemmais proved
by induction. O

Corollary. F(Ly,p,0) ~% |ai|?F (Li, p, ) uniformly in p andd.

Proof. It suffices to prove this formula whejv|| = 1. By the Lemma

2
VGVB a+B
FlLops) ~ 3 [Fn®
2<a+B<m
2
a+p a+p
B _,;faa,\B(P)(p‘f'/\V)\A:o ’
2<a+B<m o
2 2
N (duw&)’
(wheret(p,V,d) is Conrad’s notation).
Using properties (iii) and (iv) of Proposition 3.1 dF0§ we get
m |a |2
F(Ly,pd)~§ —— .
PO 2 Tpvid)
As all constants are uniform ipandd the Corollary is proved. O

To finish the proof of Propositioii.1 we have to prove property BEBf Definition 3.1 For example, let us look at the
bracket|Li,L;]:

[L“L_j]<f9iz_1+ﬁjﬂiz_n>(ﬁ')0zn < +B'dzn)(ﬁ')d_zn ain+ba(;n

Let.Z € Zw(Ly,...,La-1). As, forallk, F 12

to show that

>5 andﬂiZn =3 ai 0% with a; uniformly bounded irg’™ norm, it is enough

(1-2a|+ .2bl) (p) < 3F¥/2(p, 8)F"*(p, &)F"*(p,0).

_ _ % o\t 2% o\t % -
If |.Z]=0,a(p) = aziaz*j(o) (azn) (p) and, if|.Z| = 1, Lka(p) P (0)(%) (p)+*dzﬁz_j. Thus, in those cases,

the result follows Lemma 3.2 of M. Conrad’s pap€ojn03 which states

<o _ 1 ai+ﬁig5|:(p 5)(a+B)/2
~ (p,vi,9) ’ ’

the last equivalence resulting of the proof of the previoaso@ary. The case of a genet& is easily done similarly. [

(7.2)

|dawp<m

07997P

Now let us prove the statement made in Exanfplie(1). The construction of the adapted plurisubharmonic fionds
inspired by the McNeal’s construction for convex domairgng support function, written inrMNO2]. We use the support
function for lineally convex domains constructed by J. Errfé@ss and K. Diederich ilDF03. The right behavior in the
normal direction is obtained, as in Secti12, adding the function&e®/? andK |z|2.

Consider the support function constructed by K. Diederiuth & E. Fornaess ifDF03 at the pointp:

LY 1 9lp(0)
Sz, z0) = —€5 M?g; — ~
M2, et oz

aagm) olha)

whereA, is a¢’® function, uniformly bounded (i), such that\,(0) = 0. ShrinkingW (po) if necessarys, is uniformly
bounded oW (pyg).

Then there exists a constavly (> 8n and independent gf andd) such that, ifS=
(1) De(S) <0;
(2) De(S(2)) < —n, if there exists < n such thatz| > F(p, ) Y/2;
(3) —1/4< D0e(S(2)) if ze cP(p,d) = {zsuch thatz| < cF(p,8) Y2,i=1,...,n}.

%e(s"), we have:
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Let F be the function defined bl (z) = S Fi(p,d) z|2, andy be the convex function such thgt= 0 on] —co, —1|
andy (x) = &1 —10n]—1,+oo[. Define then
n

ClearlyH; = 0 on a neighborhood of the boundaryR{fp, ). Then we denote bl the function equal tél; in P(p,d) and
0 outside. Then:

(1) SupgH) C P(p,9);

(2) [H| < Co;
(3) OnP(p,d) we have

<(9¢9H Za Zaaz'> (F+S——|zn| ) Z|a| F(p,5

We now estimatéddH;L,L) in P(p,3) for a vector field. =" ; biL? wherel? = 5 —B23%-, fori <n,andLf = N the

complex normal vector (recall that the extremal basis aesli combinations of the4d). Denotel = L + byN, so thatl_
is tangent tgo. Then

(7.3) (00H;L,L) = (00H; Ly, L7) + 206 (bn (90H; Lr,N)) + |bn|2 (99H; N,N) .

The last term of the second member of this equality isO <|bn|2)(’ (F +S— % |zn|2) %) and, if(L;) is thed-extremal
basis ap andL; = "} aL;, we have

_ _ _n-1 0 —
H:L;,N) = H; i——,N H; (
(00H:L, ) <aa 3 ag )+ (00H; (S ap) 55 ).
Using (7.2) the first term of the second member of this equality iégj(’ (F +S— % |zn|2)), and the second term is

o (%x’ (F +S5-% |zn|2) s lail Fi(p, 6)1/2) becauseq.2) and the fact thag;(p) = 0 implies = O (6F (p, 5)/2). Notice
that, by extremalityy |&| Fi(p,8)%2 ~ F (L, p,8)Y/?, thus, there exists a constatt such that

206 (Bn (99H; Le,N)) + |bnf? (90H; N,N) > —Kox' (F +S- 5 a0 <|t;12| +@ (Lr,p,5)1/2>-

Let us now look at the first term of the second membei7a3)(

(90H; L. T7) = x (F+S——|zn|)< <F+S n%”' ) LT,LT>—|—

|20l
<F+S n—- 52

Z'a" F(p.8) ~ 55 |(90 |z Lr.Tr)

n-1 2
Zaﬁi -
i=

To estimateB, write

L, <F+S n|2”|> nzla <F+S n|zgz|> (Zaﬁ.)%(wrs n|zg‘,|g>.

Then the first term of the second member of this equalityQE @, p, 6)1/2) by extremality (useq.2), and

J 20| y2), Mo 9 Gl 2 (o
0z, <F+S n52> O<F(Lr’p’5) )+ 6 0Za \1-Ap(2) oM 52 g, ()

But, if W(pp) is small enough’,ﬂiZn (1 A )‘ [1/2,3/2], and, inP(p,d), %

+x" (F+S——|zn| )L

= A+B.

ShrinkingW (o) if necessary, we have

A

Y

X <F+S——|Zn| )

|

Y]

X (F+s-lal) [%nzl|aq|zﬁ<p,6>§

oy

% (z7)| <
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Thus, asy” = x’/, for & small enough, we have, by the choosévpf

_ . n n—1
9OH; L, L) > X' (F+S— 51z § laPR(p.o).
( olo) ( 52 ) i; '
Using again the extremality of the basls), we conclude that
o n bn|? b
(09H;L.L) > ax' (F+S- = 20) |F(Le.p.8) - K, 5”2| + KZ%F(LT, P, 5)1/2] :

and, using Cauchy-Schwarz inequality,

== n
(90H;L.L) = BX' (F+5— 55 |l”) =

b 2
F(LT,p,é)—K3| n ]

In particular, orcP(p, d)
bn”

<00_H,L,E> Z VF(LTapaé)_K 62 5

and(ddH;L,L) > fK‘%‘z onP(p,d).

If we note that choosing sufficiently small we havé& (L, p,d) ~ F(L,q,d), we get:

Proposition 7.2. There exists two constanggnd K depending only on the data such that,#L; +b,N = zi”;ll b LP+ bnN,

1L [ i 1L [bn|®
we hav<ddH,L,L> > K and, if ge cP(p, 5), <00H,L,L> (0) = YF (Lr,q,8) — K2,
To finish the construction of the plurisubharmonic functaafapted to the structure &f at p, as in the proof 0b.1, we
have to add functions of the precedent type to get a localifumcThus, we covedQ NW/(pp) with a minimal system of
polydiscsSP(pkd), px € 9QNW(po) and, then, there exists an integemdependent od such that every point d belongs
to at mostJ polydiscsP(pk,d). Indeed, there exists a const&hsuch that

c c
P(p,aé) C EP(p, 0) C P(p,cC9)

and the polydisc®(p, d) are associated to a structure of homogeneous space.

ConsideH = 3 Hp, where the functioi), is the one considered in the previous Proposition relatiethe pointp = py
(notice that||H|| < JGp). Then, shrinking eventuali(po) and choosing equivalent to the distance to the boundary with
a constant close to 1, for all poigte W(po) N {0> p > —$3} there existko such thaty € P(py,,d) and the seE(q) of
indexk so thatg € cP(pk, &) has at mosf elements and we have

||

(@0H;LL) (q) > yF (Lr,0,8) —KJ R

Moreover, without conditions og, we have

2

- b
(90H;LL) (q)z—KJ|6”2| ,

andddH (@) =0if p(g) < —20.
We now evaluatédde?/5;L, L) in W(po):

(030010 = e/ | 1 (15 bt + e b (090 L0 | + 2
)T o) 2”:1'1'1 i;In ) 52

cﬂ being the coefficient of the Levi form in the directifém?,L_?). As the level set op are pseudo-convex (W (pp)), we
get

= - 1 |by|?
<00ep/5;L,L> > eP/d <§% K1> .

Consider nowH = H + K1e°/9 4K, |z|2, for K1 andKj large enough (independent &f. ThenH is plurisubharmonic on
QNW(po), uniformly bounded (with respect @) and satisfies, oW (pp) N {0 >p> —‘—2’6}

[bn?
262"
To changed in 24 it suffices to apply the relations betwegf.,.,ad) andF(.,.,d).
Finally, we extendH to a bounded plurisubharmonic functionusing the functior; of the end of the proof 05.1

(00H;L,L) > yF(Ly,.,8) +
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7.2. Example of non geometrically separated domainThe example presented here is the domaiibintroduced by G.
Herbort in Her83:

Q= {ze C3 such thatlez, + |z|° + |z3|® + |22)? |z3]? < 0} .

LetL? = a% +Bidizl, i=23,B=— (6|zz|4z_2+2|23|22_2) andfs = — (6|23|4Z_3+2|22|22_3) so that(L3,L9) is a basis
of (1,0) tangent vector fields in a neighborhood of the origin.
The fact that this domain is not geometrically separatedeabtigin is a consequence of the stronger following result:

Proposition 7.3. For all real constants K and C, there exisig > 0 such that for alld, 0 < & < Jy, there does not exist basis
(L‘f, Lg) of (1,0) tangent vector fields in a neighborhood of the origirzdf norm bounded by C satisfying property E&
Definition3.1, for the constant K, at the origin.

Proof. Let L be a(1,0) tangent vector field in a neighborhood of the origin, andhvatr usual notationss(L,0,d) =

2/|Z] .
Z(90) ‘ (0). We writeL = aL9+ bL3.

Y e (L) ’

Lemma. F(L,0,5) ~ \a<g)1%0)\ 4 (%)1/3_

Proof. Because | = 2[L,L] (dp), itis easy to see that:
e ¢ (0)= LcLL;(O) =Lc (0) = 0: B
e LLc, i (0) = LLc,(0) = 0 andLLc, [ (0) = LLc, {(0) = 4|a(0)b(0)|?;
e There exists a consta@h depending only of th&® norm ofa andb (i.e. ofL) such that, if.Z| = 3, |-Zc (0)| <
Cola(0)b(0)];
e There exists a constant depending only of th&® norm ofL, such thaf(L,0,5) > apd 3. Indeed, the origin
being of type 6, this follows a result of T. BloorBlp81] and a compacity argument.

1/3
22+ ()Y

We now finish the proof of the Proposition. L&tbe small enough. Suppose that there exists a jKsi8)- extremal
basis at the origin(L2,12), the©’® norms of the vector fields bounded 8y LetL = aL9 + BLS andL’ = a’L$ + B'LS with
a,B,a’,B' € C chosen so thdt(0) = L9(0) andL’(0) = L3(0). Then, by extremality o(L‘f,Ig) and the Lemma, we get

Then, the Lemma follows the fact that, for all> 0, () O

1\ /3
aPF(LE.0.9)+ BF(L,0.8) = F(L0.8) =cx (5)

and
5 5 1\ /3
lo’|“F(L2,0,8) + |B'|"F(L3,0,8) ~« F(L',0,8) ~ck (3) :
Similarly, the extremality would imply

1/3
FL+L.00) ¢ o+ o PFILE0.8)+ 6+ BR300 Sex (3)

But the Lemma give§ (L +L',0,0) ~¢ # which is a contradiction fod small. O

7.3. Additional remarks. Let Q be geometrically separated pe dQ. In Definitions3.3and3.4we defined the pseudo-
ballsB°(p, d), B (p,d) andBg,y(p,d), which are equivalent by Propositienl, and we expressed the Bergman kernel at
(p, p) with their volumes.

Let (z) be the coordinate system adapted to the extremal fbgis ., ; = (Lip’5) at p. B(p,9) is defined (in the

coordinate system) using only the directions of the extidrasis. Let us now define a new pseudo-ball using all the tilines
of the linear space generated by the vector fieldée. the spac&y):
For|Z| =1,Z € C", defineLz = "~} ZL; + Z,N and (in the coordinate systefn))

Dz(p,d) = {aZ such thatja| < cF(Lz, p, 5)*1/2}

and

D(p,d) = |J Dz(p,9).
z|=1

Then, property EBof extremality for(L;), implies that these pseudo-balls are equivalent (in theestirat they define the
same structure of homogeneous space) to the previous ewe®d, ifz€ Dz(p, d),

~1/2
ol = lazl < |2 (3 EPFLPY) | <F(Lipo),
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and use Propositions1and4.2. Conversely, ize B°(p,d), z# 0, andZ = z/ ||Z||, thenF (Lz,p,d) ~ 5 %F(Li, p,od) <
nc

22 thus||z||?> < nc?F (Lz, p, 3) and we conclude as before.

Note that this shows that,  is completely geometrically separatedmte dQ then the Bergman kern&(p, p) at a
point p nearpp is equivalent to the inverse of the volume®fp, 9).

If Q is not geometrically separated pg choosing a coordinate system and a basis of tandefj vector fields conve-
niently associated (in a sense to be defined), one can alvediyed “pseudo-ballD(p, ).

Let us do this, for example, for the domains considered iptegious Section, at the origin with the canonical coortiina
system(z)and the vector fieldk? (note that(z) is not adapted to the bagis?) in the sense of Definitio.2because, even
if condition (3) is satisfied, the conditions on the derivasi ofp are not).

A direct calculus shows that, at the poipg = (—9,0,0), the volume ofD(ps,d) is Vol (D(ps,d)) ~ (53Iog((—§))71
(uniformly in ), thusB(ps,d) and D(ps,d) are not equivalent, and the result of G. HerboH€f83) shows that the
Bergman kerneK of the domain satisfiel (ps, ps) ~ Vol (D(ps, )L

Then it is natural to ask if, for that example, the “pseudtsbd(p, d) define a structure of homogeneous space. Unfor-
tunately this is absolutely not the case. Indeed) (8, 5) consider the two pointp = (0,—ad%4,0) andq = (0,0, a6/4)
(for a small enough, these points arebx0, o) for all 4, 0 < < &) and estimate a constalitso thatq € D(p,Kd). In

the coordinate system centeredpatve haveq = (0,066, a6%/6) = /2a51/6 (0, 1/v2, 1/\/2); then calculating, [ for
L= \A[ZL‘H %Lg we see that

25-2/3

F(L,p,Ko) > 2 ie. F(L,p.KS) Y2 < VKoY/3,

Theng belongs td(p,K &) impliesk > 6~/3,

8. APPENDIX
The following Lemma is an improvement of Lemma 3.9 6J064:

Lemma 8.1. Let B; be the unit ball inCl. Let Kibe a positive real number, M and n two positive integers. &leists a

constant ¢K;) depending on K M and n such that, for & 1,...,n— 1, if g is a non negative function of clags"on B;

satisfyingsup {|D*Pg(w)|, |a + B| <M} <K, where B'F = 0P then, for all(a®, B°) € (N1)?, |a®+ B°| < M, there

: = wiowp’
exists ac NJ, 2|a| < |a®+ B°| such that

- 40169
(1200 iy oo™

wherel = #;ZT denotes the Laplacian in the @oordinate.

Note that there is no absolute value in the left hand sideeirtbquality.

Proof. We only indicate how the proof of Lemma 3.9 &ID06H has to be modified.
Without loss of generality, we can suppggofog(0)| = MaX 51|04 o] |D?Fg(0)|. By induction, it is enough to
prove that there exists two constansndC, depending oM andn, such that one of the following two cases holds:

Firstcase  there exista € NJ, 2|a] = |a®+ O] such that(ﬂijzlA?") g(0) > c’D"OBOg(O)‘;

Second case there existgd, §) €€ (NJ)Z,

5{+[§‘ < |a®+ BO| such that

- 1 —|a+B|+|a®+B0+1
Letp= |a°+[§0|, & =ue, uel01], e= (&), & <1,and, asin the proof of Lemma 3.9 &P06H let us write Taylor
formula:

p-1

9&) = Z}u" S #DPg(0)e?eP + P Z «D?g(0)e”€P + uPR(e, 1)
k= la+B|=k la+Bl=p

= AL(&)+uPAE) + uPTIR(e, 1),

wherex are multinomial coefficients an@R| < K;K;, Kz depending only o andn.
Remark now thaty being non negative,

(*){ If there existsy ~ ‘D"Oﬁog(O)’ such thatAx(&) + HR(g, 1) < —c1 ‘D"Oﬁog(O)’, c1 > 0, then theSecond
casehold.
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In the proof of Lemma 3.9 of§D06H we introduced a multi-indeg (|c| = p), depending oy, and complex numbeis
(Vi, |&| > c(M, n)), depending oy andK (M, n), such that

Dg(0)|
(8.1) *D"Bg(O)e"Eﬁ‘ <
la+Bl=p
a+pB#c
and
Dg(0)|
(8.2) «DPg(0)e%eP| >4 —— 1
a+p=c K

To finish the proof, we show now that, either we can finand u satisfying the hypothesis of (*), or we are in thist
case

°F9(0)| D g(0)

D .
We takeu = ‘KW Then|Ax(&) + UR(E)| > —x—— andAx(&) + uR(&) has the sign OEHB:C*D"ﬁg(O)e"EB.
If o p—c*DPg(0)e?eP <0, (*) is then satisfied, thus consider the case wiygres_.+D?Pg(0)e%€P > 0.
If there exists an indeksuch that; is odd, takinge’ defined byej = ¢; if j #i andgf = ¢, then

4 DGOBOQ(O)

«DPBg(0)e" e < - ’

a+p=c

)

and, by 8.1), (*) is verified.
So we suppose that for allc; = 2¢, and we write

—B a k—c1—k
«DPg(0)e" e :%S’le’f A &),
a+pB=c k=

with |&'| = |&|, and we choose < 4/K. We separate two cases.
First suppose thaét},l(ez, &) < C‘D"oﬁog(O)‘. If ¢ = 0 then .2) implies

«DY%g(0)e%eP < —¢
a-+p=c

0
D*"g(0)|

which gives (*). Thus supposg # 0. Let
So={¢€, suchthat/ = &,i > 1, &g = F¢&, with 9% = 1}.

Thus

«DPg(0)e"% e = clAtllJ1 €|t
gepa+p=c

Then, by 8.2), there existg’ € & such that

«DPg(0)e"%e” < ¢
a+p=c

Daoﬁog(o) ‘ ,

(recall|er| > c(M,n)) and (*) is verified as before.
Suppose nowAél(ez, &) >C D"OBOg(O)‘. Write

C2
Al1 - Z’g'z‘g_ZCZ*kAﬁ(sg,,...sn).
k=

As before, ifc; = 0 or if A2 (&3,...&) <"

%

D“Oﬁog(O)‘ we can change, such that we obtain

A},l(eé, gy <=

0
DGOB g(o) ‘ ,

and we conclude that (*) is satisfied. Aﬁ,z(eg, .. &) > D"oﬁog(O) , we do an other time the same thing, on the third

variable. Then, by induction, if the process does not stopldst step shows that if (*) is not satisfied, then the inéyuan
D¢ g(0) implies that we are in thEirst case O
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