
HAL Id: hal-00328847
https://hal.science/hal-00328847

Submitted on 10 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decim v2
Come Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois, Blandine
Debraize, Henri Gilbert, Louis Goubin, Aline Gouget, Louis Granboulan,

Cédric Lauradoux, et al.

To cite this version:
Come Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois, Blandine Debraize, et al.. Decim v2.
New Stream Cipher Designs - The eSTREAM finalists, Springer, pp.140-151, 2008, Lecture Notes in
Computer Science, �10.1007/978-3-540-68351-3_11�. �hal-00328847�

https://hal.science/hal-00328847
https://hal.archives-ouvertes.fr


Decimv2

Côme Berbain1, Olivier Billet1, Anne Canteaut2, Nicolas Courtois3,
Blandine Debraize4,5, Henri Gilbert1, Louis Goubin4,5, Aline Gouget4,

Louis Granboulan6, Cédric Lauradoux2, Marine Minier7, Thomas
Pornin8 and Hervé Sibert9.

1 Orange Labs, France, {come.berbain,olivier.billet,
henri.gilbert}@orange-ftgroup.com

2 INRIA Rocquencourt, France, {anne.canteaut,cedric.lauradoux}@inria.fr
3 University College of London, United Kingdom, n.courtois@ucl.ac.uk

4 Gemalto, France, {blandine.debraize,aline.gouget}@gemalto.com
5 Université de Versailles, France, louis.goubin@prism.uvsq.fr

6 EADS, France, louis.granboulan@eads.net
7 INSA Lyon, France, marine.minier@insa-lyon.fr

8 Cryptolog International, France, thomas.pornin@cryptolog.com
9 NXP Semiconductors, France, herve.sibert@nxp.com.

Abstract. In this paper, we present Decim
v2, a stream cipher hardware-

oriented selected for the phase 3 of the ECRYPT stream cipher project
eSTREAM. As required by the initial call for hardware-oriented stream
cipher contribution, Decim

v2 manages 80-bit secret keys and 64-bit pub-
lic initialization vectors. The design of Decim

v2 combines two filtering
mechanisms: a nonlinear Boolean filter over a LFSR, followed by an ir-
regular decimation mechanism called the ABSG. Since designers have
been invited to demonstrate flexibility of their design by proposing vari-
ants that take 128-bit keys, we also present a 128-bit security version of
Decim called Decim-128.

1 Introduction

Decim
v2 is a hardware-oriented stream cipher selected for the phase 3 of

the ECRYPT Stream Cipher Project [1]. Decim
v2 is the tweaked version

of the original submission Decim [3]. Decim
v2 manages 80-bit secret keys

and 64-bit public initialization as required by the initial eSTREAM call
for contribution for the hardware-oriented profile. Decim

v2 has been de-
veloped around the ABSG mechanism [9, 12] which provides a method for
irregular decimation of pseudorandom sequences. The ABSG mechanism
consists of compressing the input sequence in a very simple way and it op-
erates a highly nonlinear transformation. Being an irregular decimation,
it prevents algebraic attacks and some fast correlation attacks.



The general running of Decim
v2 consists first in generating a binary

sequence y in a regular way from a Linear Feedback Shift Register (LFSR)
which is filtered by a Boolean function. Next, the sequence y is filtered
by the ABSG mechanism. Wu and Preneel found two weaknesses [15]
in the original design of Decim that have been fixed in Decim

v2. Note
that the attacks presented in [15] do not question the main ideas behind
Decim, namely, to filter and then decimate the output of an LFSR using
the ABSG mechanism. Since designers have been invited to demonstrate
flexibility of their design by proposing variants that take 128-bit keys, we
present a 128-bit security version of Decim called Decim-128.

The outline of the paper is as follows. In Section 2, we give an overview
of Decim

v2 and we detail the differences between Decim and Decim
v2.

In Section 3, we provide a full description of Decim
v2. In Section 4,

we explain the design rationale. In Section 5, we discuss the hardware
implementation. Section 6 is dedicated to the description of Decim-128.
Finally, we conclude in Section 7.

2 Overview of Decimv2

In accordance with the requirements given by the ECRYPT stream cipher
project, Decim

v2 takes as an input a 80-bit secret key and a 64-bit public
initialization vector.

2.1 Keystream generation

The size of the inner state of Decim
v2 is 192 bits. The keystream gen-

eration mechanism is described in Figure 1. The bits of the internal
state of the LFSR are numbered from 0 to 191, and they are denoted
by (x0, . . . , x191).

The Boolean function f is a 13-variable quadratic symmetric function
which is balanced. The whole filter F is a 14-variable Boolean function.
The output of the function F at time t is denoted by yt. The ABSG takes
as an input the sequence y = (yt)t≥0. The sequence output by the ABSG
is denoted by z = (zt)t≥0. The buffer mechanism guarantees a constant
throughput for the keystream; we choose a 32 bit-length buffer and the
buffer outputs 1 bit for every 4 shifts by one position of the LFSR.

2.2 Key/IV setup

The Key/IV setup mechanism consists in clocking 4 × 192 = 768 times
the LFSR using the nonlinear feedback described in Figure 2.



ciphertext

191 x0x1

ABSG
z z’ c

...

...

y

f

Buffer

M message

x

Fig. 1. Decim
v2 keystream generation

f

191 x0x1

...

...x

Fig. 2. Key/IV setup mechanism

2.3 Differences between Decim and Decimv2

We do not recall in this paper the full description of the original design
of Decim (see [3] for details). However, we briefly describe the two flaws
in Decim found by Wu and Preneel [15], and we explain how Decim

v2

fixed these two weaknesses.

The first flaw lies in the initialization stage, i.e. the computation of
the initial inner state for starting the keystream generation. In Decim, at
each clock of the initialization process, one of two 7-variables permuta-
tions π1 and π2 was applied over the internal state in order to break the
linearity of the process faster. However, this mechanism could be exploited
to retrieve the key. In Decim

v2, we use an initialization procedure that is
both simpler and more secure than the one of Decim. In particular, the
permutations are removed in Decim

v2 (we refer to [5] for more details).



Moreover, the number of clocks of the register during the initialization
phase is increased in Decim

v2 in order to ensure that the nonlinearity of
the initialization stage is sufficient.

The second flaw lies in the keystream generation algorithm. More
precisely, there is a flaw in Decim in the generation of the sequence y
which is the output of the filter (the sequence y is next decimated by the
ABSG mechanism). This flaw is due to the fact that the sequence y is
directly the output of a symmetric Boolean function. Indeed, the outputs
of the function associated to two input vectors which have one element in
common are correlated. It was then shown in [11] that the filter criterion
to avoid such correlation is the quasi-immunity criterion. The choice of
the filter in Decim

v2 takes this design criterion into account.

3 Specification

In this section, we describe each component of Decim
v2.

3.1 The filtered LFSR

This section describes the filtered LFSR that generates the sequence y
(the sequence y is the input of the ABSG mechanism).

The LFSR. The underlying LFSR is a maximum-length LFSR of length 192
over F2. It is defined by the following primitive feedback polynomial:

P (X) = X192 + X189 + X188 + X169 + X156 + X155 + X132 + X131

+X94 + X77 + X46 + X17 + X16 + X5 + 1 .

The sequence of the linear feedback values of the LFSR is denoted by
s = (st)t≥0 and the recursion that corresponds to P for the LFSR is

s192+n = s187+n ⊕ s176+n ⊕ s175+n ⊕ s146+n ⊕ s115+n ⊕ s98+n ⊕ s61+n

⊕ s60+n ⊕ s37+n ⊕ s36+n ⊕ s23+n ⊕ s4+n ⊕ s3+n ⊕ sn .

The filter. The filter function is the 14-variable Boolean function defined
by:

F : F
14
2 −→ F2; a1, . . . , a14 7→ f(a1, . . . , a13) ⊕ a14

where f is the symmetric quadratic Boolean function defined by:

f(a1, . . . , a13) =
⊕

1≤i<j≤13

aiaj

⊕

1≤i≤13

ai



The tap positions of the filter are:

191− 186− 178− 172− 162− 144− 111− 104− 65− 54− 45− 28− 13− 1

and the input of the ABSG at the stage t is:

yt = f(st+191, st+186, st+178, st+172, st+162, st+144, st+111, st+104, st+65, st+54,
st+45, st+28, st+13) ⊕ st+1

3.2 Decimation

This part describes how the keystream sequence z is obtained from the
sequence y.

The action of the ABSG on y consists in splitting y into subsequences
of the form (b, bi, b), with i ≥ 0 and b ∈ {0, 1}; b denotes the complement
of b in {0, 1}. For every subsequence (b, bi, b), the output bit is b for i = 0,
and b otherwise. The ABSG algorithm is given in Figure 3.

Input: (y0, y1, . . . )
Set: i ← 0; j ← 0;
Repeat the following steps:

1. e ← yi, zj ← yi+1;
2. i ← i + 1;
3. while (yi = e) i ← i + 1;
4. i ← i + 1;
5. output zj

6. j ← j + 1

Fig. 3. ABSG Algorithm

3.3 Buffer mechanism

The rate of the ABSG mechanism is irregular and therefore we use a
buffer in order to guarantee a constant throughput. We choose a buffer
of length 32 and for every 4 bits that are input into the ABSG, the
buffer is supposed to output one bit exactly. With these parameters, the
probability that the buffer is empty while it has to output one bit is less
than 2−89.

If the ABSG outputs one bit when the buffer is full, then the newly
computed bit is not added into the queue, i.e. it is dropped. The initial
filling of the buffer is part of the initialization process detailed in 3.4.



3.4 Key/IV Setup

This subsection describes the computation of the initial inner state for
starting the keystream generation. Notice that the ABSG mechanism is
not used during the initialization stage.

Initial filling of the LFSR. The secret key K is a 80-bit key denoted by
K = K0, . . . , K79 and the initialization vector IV is a 64-bit IV denoted
by IV0, . . . , IV63. The initial filling of the LFSR is done as follows.

xi =























Ki 0 ≤ i ≤ 79

Ki−80 ⊕ IVi−80 80 ≤ i ≤ 143

Ki−80 ⊕ IVi−144 ⊕ IVi−128 ⊕ IVi−112 ⊕ IVi−96 144 ≤ i ≤ 159

IVi−160 ⊕ IVi−128 ⊕ 1 160 ≤ i ≤ 191

The number of possible initial values of the LFSR state is 280+64 = 2144.

Update of the LFSR state. The LFSR is clocked 4× 192 = 768 times
using a nonlinear feedback relation. Let yt denote the output of f at time
t and let lvt denote the linear feedback value at time t > 0. Then, the
value of x191 at time t is computed using the equation:

x191 = lvt ⊕ yt .

Notice that there is no bit of the LFSR state output during this step.

Initial filling of the buffer. After the previous step, the buffer has to
be filled before starting keystream generation. In order to fill the buffer,
we repeat the keystream generation process until the buffer is full. During
this step, the buffer is not shifted. In particular, the buffer does not output
any bit until it is completely filled. Then, the buffer is filled on average
after 96 steps, and it is filled after 234 steps with probability bigger than
1 − 2−80. Thus, if a constant duration initialization process is required,
one can choose to execute 234 steps and throw away the ABSG output
bits when the buffer is full.

4 Design rationale

In this section, we give the rationale for every component of Decim
v2.



4.1 The filtered LFSR

The LFSR. The length of the LFSR, which corresponds to the size of
the internal state of the cipher, must be at least 160 in order to avoid
time-memory-date trade-off attacks [13, 6]. Nevertheless, we add a secu-
rity margin to the LFSR length in order to deal with a reduction of the
size of the potential initial state due to the initialization procedure (see
Section 4.3). Therefore, we choose a 192-bit LFSR.

The choice of the primitive feedback polynomial P must be made in
accordance with the following constraints. The differences between two
consecutive positions of the inputs of the feedback polynomial are pairwise
coprime. Furthermore, the weight of P must be large enough in order to
prevent the existence of sparse multiples with low degree that could be
exploited in fast correlation attacks or in distinguishing attacks. However,
we do not want the weight of P to be too large, in order to reduce both
the overall computational time of the cipher and its hardware size.

The feedback polynomial has been chosen carefully, i.e. it has not
low Hamming weight multiples at least for the first 240 next degrees.
However, we mention the possibility of a distinguishing attack similar to
the distinguishing attack on the Self-Shrinking Generator given in [8].

The filtering function. An important property for the filter is that the
output of the filter must be uniformly distributed. Moreover, the filter-
ing function must satisfy some other well-known cryptographic proper-
ties. Indeed, it is expected to be far from an affine function (using the
Hamming distance). Moreover, the attack presented by Wu and Preneel
against Decim [15] revealed that the filtering function must also fulfil
the quasi-immunity criterion [11], which is a criterion weaker than being
correlation-immune of order 1.

Since Decim
v2 is a hardware-oriented cipher, the Boolean filtering

function must have a low-cost hardware implementation. In order to get
an efficient computation of the function, the Boolean function f has been
chosen to be symmetric, i.e. the value of f only depends on the Hamming
weight of the input.

The symmetric Boolean functions that best fulfils the previous men-
tioned criteria are quadratic and have an odd number of input variables.
The whole filter F of Decim

v2, constructed from a balanced 13-variable
symmetric function, is balanced and correlation-immune of order 1.

The tap positions: filter and feedback polynomial. Assuming knowledge of
the keystream z, an attacker will have to guess some bits of the sequence y



in order to attack the function f . The knowledge of the bits of y directly
yields equations in the bits of the initial state of the LFSR. Thus, the
number of monomials in the bits of the initial state of the LFSR that are
involved in these equations has to be maximized. Moreover, this number
has to grow quickly during the first clocks of the LFSR. This implies the
following two conditions:

1. each difference between two positions of bits that are input to f should
appear only once;

2. some inputs of f should be taken at positions near the one of the
feedback bit (which means that some inputs should be leftmost on
Figure 1).

Finally, the tap positions of the inputs of the Boolean function f and the
inputs of the feedback relation should be independent.

4.2 Decimation

The ABSG mechanism was first presented at the ECRYPT Workshop
State of the art of stream ciphers [9] and next published in [12]. The
ABSG is a scheme that, like the Shrinking Generator (SG) [7] and the
Self-Shrinking Generator (SSG) [14], provides a method for irregular dec-
imation of pseudorandom sequences. The ABSG has the advantage on the
one hand over the SG that it operates on a single input sequence instead
of two and on the other hand over the SSG that it operates at a rate 1/3
instead of 1/4 (i.e. producing n bits of the output sequence requires on
average 3n bits of the input sequence instead of 4n bits).

The best known attack on the ABSG filtering a single maximum-
length LFSR [12, 10] is based on a guess of the most favorable case. Such
a guess requires ℓ output bits in order to guess 2ℓ inputs bits. The guess
is correct with probability 1

2ℓ . In order to check the correctness of his
guess, the attacker should try to solve the equations in the bits of the
initial state of the LFSR that arise from the bits of y he has guessed.
This attack can be used in order to reconstruct 2L consecutive bits of the
sequence y from L consecutive bits of the sequence z; it costs O(2

L
2 ) and

requires O(L2
L
2 ) bits of z.

Let Λ(y) denote the linear complexity of y. Then, the minimal length
of a linear feedback shift register which generates the sequence y is Λ(y).
The previous attack can be used to reconstruct the initial state of the
equivalent LFSR that generates the sequence y. Then, this attack costs

O(2
Λ(y)

2 ) to recover Λ(y) consecutive bits of y.



We have checked that the linear complexity of y is the best linear
complexity expected according to the choice of the Boolean function and
the primitive polynomial, that is, Λ(y) = 18528.

4.3 Key/IV Setup

The components of the keystream generation are re-used for the key/IV
setup; we do not introduce new components.

By using a 80-bit key and a 64-bit IV, the number of possible initial
states is at most 2144 which is the case in Decim

v2. The key schedule in-
cludes a non-linear feedback mechanism that is repeated L times, where
L is the length of the register. Thus, in order to deal with the reduction of
the potential internal state of the register during this phase, and consid-
ering that this non-linear feedback behaves randomly, we chose L = 192
to ensure that the final internal state is at least twice the key length, that
is, 160.

4.4 The buffer mechanism

The buffer mechanism guarantees a constant throughput for the keystream.
However, the buffer must have a reasonable length since the keystream
generation process starts when the buffer is full.

Recall that for every α bits that are input into the ABSG, the buffer
is supposed to output one bit exactly. The output rate of the ABSG is
1/3 in average. Then, the value of α is greater than 3. For α = 4 and a
buffer of length 32, the probability that the buffer is empty while it has
to output one bit is less than 2−89 (the analysis of the buffer mechanism
is detailed in [3]).

Timing measurements at the output of the keystream generator is use-
less since a buffer is used and the throughput is constant. However, if the
attacker gets timing information from the internal keystream generator,
then timing attacks apply.

5 Hardware implementation

There is a trade-off between the size of the hardware implementation and
the throughput of the cipher. Indeed, the 32-bit length of the buffer has
been chosen to ensure that the buffer is ready with probability (1− 2−89)
to output one bit every 4 bits entered into the ABSG.



Since each LFSR clock contributes one bit to the sequence entering
the ABSG mechanism, one solution is to clock four times the LFSR be-
fore outputting one bit. The number of gates involved in an hardware
implementation can be estimated as follows, based on the estimation for
elementary components given in [2], i.e., 12 gates for a flip-flop, 2.5 gates
for an XOR, 1.5 gates for an AND and 5 gates for a MUX.

– LFSR: 2339 gates corresponding to 192 flip-flops and 14 XORs.
– Filtering function: 86.5 gates corresponding to 6 Full Adders and 7

XORs (details on the hardware implementation of quadratic symmet-
ric functions are given in [3]).

– 1-input ABSG, as described in Figure 4: 67 gates corresponding to 2
MUX, 3 XORs, 1 AND, and 4 flip-flops.

m
ux

m
uxdata

Pattern seeker

pattern

command_pattern

1

next

Fig. 4. Hardware implementation of the ABSG

Moreover, the throughput of the generator can be doubled at a low
implementation cost by using a simple speed-up mechanism. This can
be done with a circuit which computes two feedback bits for the LFSR,
simultaneously, as described in [3]. This LFSR with doubled clock rate can
be implemented within 192 flip-flops and 28 XORs. One additional copy
of the filtering function is also required, and a 2-input ABSG mechanism
must be used.

6 Decim-128

In this section, we describe Decim-128 which is an adaptation of the
design of Decim

v2 to get 128-bit security (we refer to [4] for more details).



Decim-128 takes as input a 128-bit secret key and a 128-bit public
initialization vector. The keystream generation mechanism is similar as
the one described in Figure 1 and the Key/IV setup mechanism is similar
as the one described in Figure 2 except that the LFSR has length 288.

6.1 The filtered LFSR

The underlying LFSR is a maximum-length LFSR of length 288 (instead
of 192) over F2. It is defined by the following primitive feedback polyno-
mial:

P (X) = X288 + X285 + X284 + X247 + X204 + X185 + X154 + X125

+X124 + X123 + X82 + X35 + X18 + X5 + 1

The filter function is the same as in Decim
v2. The only difference between

Decim
v2 and Decim-128 is a different choice of tap positions:

287, 276, 263, 244, 227, 203, 187, 159, 120, 73, 51, 39, 21, 1

The sequence y produced by the filter is of maximal nonlinear com-
plexity, namely equal to 288×289

2
= 41616.

6.2 The buffer mechanism

For Decim-128, we choose a buffer of 64 bits instead of 32. Since the
buffer outputs one bit exactly for every 4 bits that are input into the
ABSG, the probability that the buffer is empty while it has to output
one bit is less than 2−178 at each step.

6.3 Key/IV Setup

The secret key K is a 128-bit key denoted by K = K0, . . . , K127 and the
initialization vector IV is a 128-bit IV denoted by IV = IV0, . . . , IV127.
The initial filling of the LFSR is done as follows.

xi =

{

Ki 0 ≤ i ≤ 127

Ki−128 ⊕ IVi−128 128 ≤ i ≤ 255

We complete the register with x256 . . . x287 = 0x55555555. The number
of possible initial values of the LFSR is 2256.

This step slightly differs from the injection in Decim
v2. Namely, it is

simpler, partly due to the fact that the key and the IV have the same
size.



The update of the LFSR is done in the same way as for Decim
v2.

The number of clocks performed is also 4 times the length of the LFSR,
so here 4 × 288 = 1152 times. After this step, the buffer has to be filled
in the same way like for Decim

v2, i.e. by performing the same steps as
for keystream generation without shifting the buffer and outputting bits,
until the buffer is full. Nevertheless, the buffer is filled with probability
bigger than 1 − 2−128 after 432 steps, which can be used if a constant
initialization time is required.

7 Conclusion

We have presented the stream cipher Decim
v2 selected in the Phase 3 of

the eSTREAM call for stream cipher profile 2, and the 128-bit security
version of Decim

v2 called Decim-128.

Decim
v2 and Decim-128 are especially suitable for hardware appli-

cations with restricted resources such as limited storage or gate count.
Design choices influence the miniaturization of the cipher system:

– the ABSG mechanism has low-cost hardware implementation,

– the filtering function f only depends on the Hamming weight of its
input in order to reduce the cost in hardware implementation,

– the IV injection/key schedule re-uses the main components of the
keystream generation mechanism.

For applications requiring higher throughputs, speed-up mechanisms can
be used to accelerate Decim

v2 and Decim-128 at the expense of a higher
hardware complexity. Finally, the security of Decim

v2 and Decim-128
mainly relies on the security of the ABSG, and there is no identified
attack better than exhaustive search.

Acknowledgement

This work was partially supported by the French Ministry of Research
RNRT Project “X-CRYPT” and by the European Commission via the
ECRYPT Network of Excellence IST-2002-507932. Note that this work
was done while the 4th author was affiliated to Axalto/Gemalto (France),
the 8th and the 13th authors were affiliated to France Télécom R&D/Orange
Labs (France), the 9th author was affiliated to the École Normale Supérieure
(France), the 11th author was affiliated to INRIA Rocquencourt (France).



References

1. eStream, Stream cipher project of the European Network of Excellence in Cryp-
tology ECRYPT. http://www.ecrypt.eu.org/stream/.

2. L. Batina, J. Lano, S.B. Örs, B. Preneel, and I. Verbauwhede. Energy, perfomance,
area versus security trade-offs for stream ciphers. In The State of the Art of Stream

Ciphers: Workshop Record, pages 302–310, Brugge, Belgium, October 2004.
3. C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert,

L. Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin,
and H. Sibert. Decim – A new Stream Cipher for Hardware applica-
tions. In ECRYPT Stream Cipher Workshop SKEW 2005, 2005. Available at
http://www.ecrypt.eu.org/stream/.

4. C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert, L. Goubin,
A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sibert.
Decim-128. 2007. Available at http://www.ecrypt.eu.org/stream/.

5. C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert, L. Goubin,
A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sibert.
Decim

v2. In ECRYPT Stream Cipher Workshop SASC 2007, 2007. Available at
http://www.ecrypt.eu.org/stream/.

6. C. De Cannière, J. Lano, and B. Preneel. Comments on the rediscovery of Time
Memory Data Tradeoffs. http://www.ecrypt.eu.org/stream/TMD.pdf, 2005.

7. D. Coppersmith, H. Krawczyk, and Y. Mansour. The shrinking generator. In D.R.
Stinson, editor, CRYPTO, volume 773 of Lecture Notes in Computer Science, pages
22–39. Springer, 1993.

8. P. Ekdahl, T. Johansson, and W. Meier. Predicting the shrinking generator with
fixed connections. In Advances in Cryptology - EUROCRYPT 2003, volume 2656
of Lecture Notes in Computer Science, pages 345–359. Springer-Verlag, 2003.

9. A. Gouget and H. Sibert. The Bit-Search Generator. In The State of the Art of

Stream Ciphers: Workshop Record, pages 60–68, Brugge, Belgium, October 2004.
10. A. Gouget and H. Sibert. How to strengthen pseudo-random generators by using

compression. In S. Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes

in Computer Science, pages 129–146. Springer, 2006.
11. A. Gouget and H. Sibert. Revisiting correlation-immunity in filter generators.

In C. Adams, A. Miri, and M. Wiener, editors, Selected Areas in Cryptography,
Lecture Notes in Computer Science. Springer, 2007.

12. A. Gouget, H. Sibert, C. Berbain, N. Courtois, B. Debraize, and C. Mitchell.
Analysis of the Bit-Search Generator and sequence compression techniques. In Fast

Software Encryption - FSE 2005, Lecture Notes in Computer Science. Springer-
Verlag, 2005.

13. J. Hong and P. Sarkar. Rediscovery of Time Memory Tradeoffs. http://eprint.

iacr.org/2005/090.ps, 2005.
14. W. Meier and O. Staffelbach. The self-shrinking generator. In A. De Santis, editor,

EUROCRYPT, volume 950 of Lecture Notes in Computer Science, pages 205–214.
Springer, 1994.

15. H. Wu and B. Preneel. Cryptanalysis of the stream cipher decim. In M.J.B.
Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer Science, pages
30–40. Springer, 2006.


