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Abstract. Understanding aerosol effects on global cli-
mate requires knowing the global distribution of tropospheric
aerosols. By accounting for aerosol sources, transports,
and removal processes, chemical transport models simulate
the global aerosol distribution using archived meteorological
fields. We develop an algorithm for retrieving global aerosol
sources from satellite observations of aerosol distribution by
inverting the GOCART aerosol transport model.

The inversion is based on a generalized, multi-term least-
squares-type fitting, allowing flexible selection and refine-
ment of a priori algorithm constraints. For example, limita-
tions can be placed on retrieved quantity partial derivatives,
to constrain global aerosol emission space and time variabil-
ity in the results. Similarities and differences between com-
monly used inverse modeling and remote sensing techniques
are analyzed. To retain the high space and time resolution
of long-period, global observational records, the algorithm is
expressed using adjoint operators.

Successful global aerosol emission retrievals at 2◦×2.5◦

resolution were obtained by inverting GOCART aerosol
transport model output, assuming constant emissions over
the diurnal cycle, and neglecting aerosol compositional dif-
ferences. In addition, fine and coarse mode aerosol emis-
sion sources were inverted separately from MODIS fine
and coarse mode aerosol optical thickness data, respectively.
These assumptions are justified, based on observational cov-
erage and accuracy limitations, producing valuable aerosol
source locations and emission strengths. From two weeks of
daily MODIS observations during August 2000, the global
placement of fine mode aerosol sources agreed with available
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independent knowledge, even though the inverse method did
not use any a priori information about aerosol sources, and
was initialized with a “zero aerosol emission” assumption.
Retrieving coarse mode aerosol emissions was less success-
ful, mainly because MODIS aerosol data over highly reflect-
ing desert dust sources is lacking.

The broader implications of applying our approach are
also discussed.

1 Introduction

Knowledge of the global distribution of tropospheric aerosols
is important for studying the effects of aerosols on global cli-
mate. Satellite remote sensing is the most promising way to
collect information about global aerosol distributions (King
et al., 1999; Kaufman et al., 2002). However, in spite of
recent advances in space technology, the satellite data do
not yet provide the required accuracy nor the level of detail
needed to assess aerosol property time and space variabil-
ity. Tropospheric aerosols may display strong local varia-
tions, and any single satellite instrument needs at least sev-
eral days of observations to obtain sufficient cloud-free im-
ages for global coverage. Also, most satellite aerosol data
records are limited to daytime, clear-sky conditions. Com-
prehensive, global atmospheric aerosol simulations having
adequate time and space resolution can be obtained using
global models that rely on estimated emissions and account
for aerosol transport and removal processes.

At present, there are a number of well-established Global
Circulation Models (GCMs) that generate their own meteo-
rology (e.g. models by Roechner et al., 1996; Tegen et al.,
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1997, 2000; Koch et al., 1999; Koch, 2001; Ghan et al.,
2001a, b; Reddy and Boucher, 2004) and Chemical Trans-
port Models (CTMs) that incorporate meteorological data
from external sources into the model physics (e.g. models
by Balkanski et al., 1993; Chin et al., 2000, 2002; Ginoux
et al., 2001; Takamura et al., 2000, 2002). However, the ac-
curacy of global aerosol models is limited by uncertainties
in aerosol emission source characteristics, knowledge of at-
mospheric processes, and the meteorological field data used.
As a result, even the most recent models are mainly expected
to capture only the principal global features of aerosol trans-
port; among different models, quantitative estimates of av-
erage regional aerosol properties often disagree by amounts
exceeding the uncertainty of remote sensing aerosol obser-
vations (e.g. Kinne et al., 2003, 2006; Sato et al., 2003).
Therefore, there are diverse, continuing efforts to harmonize
and improve global aerosol modeling by refining the meteo-
rology, atmospheric process representations, emissions, and
other modeling components used.

The availability of aerosol remote sensing products, es-
pecially global aerosol fields provided by satellite observa-
tions, is of critical importance for verifying and constrain-
ing aerosol models. For example, the direct comparisons of
model outputs with observed aerosol properties are used for
evaluating model accuracy and for identifying possible mod-
eling problems (e.g. Takamura et al., 2000; Chin et al., 2002,
2003, 2004; Kinne et al., 2003, 2006). The observations
can also be used to optimize the agreement between tracer
transport model predictions and observation. For example,
model predictions can be adjusted and enhanced by assimi-
lating observations into the model. Collins et al. (2000, 2001)
improved regional aerosol model predictions by assimilat-
ing the available satellite retrievals of aerosol optical thick-
ness. Weaver et al. (2006) suggested a procedure for assimi-
lating satellite-level radiances into a radiative transfer model
driven by GOCART global transport model aerosol field pre-
dictions. Another way of improving global aerosol modeling
is retrieving (or adjusting) aerosol emissions from available
observations by inverting a global model. This approach is
particularly promising because aerosol emission uncertainty
is widely recognized as a major factor limiting global aerosol
model accuracy. It has been shown that inversion techniques
are rather effective at improving the accuracy of trace gas
chemical models (e.g. Kaminski et al., 1999b; Khattatov et
al., 2000; Kasibhatla et al., 2000; Elbern et al., 1997; Para et
al., 2003).

However, implementing the same techniques for inverting
aerosol models appears to be more challenging. Indeed, a de-
scription of the aerosol field generally requires a larger num-
ber of parameters compared to a description of atmospheric
gases, partly because of relatively high aerosol temporal and
spatial variability (see discussion in Sect. 2.5). In addition,
direct implementation of basic inversion methods (that use
the Jacobi matrices of first derivatives) is computationally de-
manding and, therefore, hardly applicable in aerosol global

modeling. In these regards, designing an inversion in a var-
tiational formalism framework, using adjoint operators, is
rather promising. The adjoint operators (Marchuk, 1977,
1986; Cacuci, 1981; Tarantolla, 1987) allow direct calcu-
lation of the gradients of the quadratic form in respect to
model input parameters, without explicit use of Jacobi ma-
trices. Such calculations have computational requirements
similar to those of forward modeling. Correspondingly, us-
ing adjoint operators allows efficient implementation of the
model inversion by minimizing quadratic form (quantifying
mismatch between observations and modeling results) with
the gradient methods, provided the methods converge rapidly
enough.

Adjoint techniques are widely used in meteorology and
oceanography for variational data assimilation (Le Dimet and
Talagrand, 1986; Talagrand and Courtier, 1987; Courtier and
Talagrand, 1987; Navon, 1997, etc.), and have been success-
fully applied to inverse modeling analyses involving atmo-
spheric gases (Kaminski et al., 1999a; Elbern et al., 2000;
Menut et al., 2000; Vukicevic and Hess, 2000; Vautard et al.,
2000; Elbern and Schmidt, 2001; Schmidt and Martin, 2003;
Menut, 2003; Elbern et al., 2007). Hakami et al. (2005) used
an adjoint approach to retrieve regional sources of black car-
bon from aircraft, shipboard, and surface black carbon mea-
surements collected during the ACE-Asia field campaign.

Our paper explores the possibility of deriving the global
distribution and strength of aerosol emission sources from
satellite observations, using the adjoint operator formula-
tion to invert an aerosol transport model. Figure 1 illus-
trates the general retrieval concept. In addition, we ana-
lyze possible parallels and analogies between inverse mod-
eling and retrieval approaches widely used in atmospheric
remote sensing. Such analyses may be useful sources of ef-
ficient methods developed in remote sensing, that could be
adapted to inverse modeling. For example, numerous remote
sensing applications use the Phillips-Tikhonov-Twomey in-
version technique developed in the early sixties by Phillips
(1962), Tikhonov (1963) and Twomey (1963). The technique
suggests constraining ill-posed problems using a priori limi-
tations on the derivatives of the retrieved function. Here, we
discuss the possibility of constraining temporal and/or spatial
aerosol variability by applying a priori limitations on aerosol
mass derivatives with respect to time and space coordinates.
Also, we formulate the inversion problem using a multi-term
least squares approach, convenient for including multiple a
priori constraints in the retrieval (Dubovik, 2004).

We applied our approach to retrieving global aerosol
sources by inverting the Goddard Chemistry Aerosol Radi-
ation and Transport (GOCART) model. Algorithm perfor-
mance is illustrated by numerical tests, as well as by deriv-
ing global aerosol emissions, applying the algorithm to actual
MODIS aerosol observations. The algorithms potential and
limitations are also discussed more generally.

Atmos. Chem. Phys., 8, 209–250, 2008 www.atmos-chem-phys.net/8/209/2008/
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Fig. 1. Flowchart of the retrieval scheme concept.

2 The methodology of inverse modeling

The spatial and temporal behavior of atmospheric con-
stituents is simulated in chemistry models by solving the con-
tinuity equation (Brasseur et al., 1999; Jacob, 1999):

∂m

∂t
= −v ∇m +

(

∂m

∂t

)

diff
+

(

∂m

∂t

)

conv
+ S − R, (1)

where v is the transport velocity vector,m is mass and
suffixes “diff” and “conv” denote turbulent diffusivity and
convection, respectively.S and R denote source and loss
terms, respectively. The characteristicsm, v, S and R in
Eq. (1) are explicit functions of timet and spatial coordinates
x=(x, y, z). The continuity equation does not yield a general
analytical solution and is usually solved numerically using
discrete analogues. Each component process in the numeri-
cal equivalent of Eq. (1) is isolated and treated sequentially
at each time step1t (e.g. Jacob, 1999):

m (t + 1t, x) = T (t, x) (m (t, x) + s (t, x)) 1t, (2)

wheres(t, x) – mass emission,T (t, x) is transport operator,
that can be approximated as:

T (t, x) = TqTq−1...T3T2T1 , (3)

and Ti (i=1,. . . ,q) are operators for isolated transport pro-
cesses such as advection, diffusion, convection and wet scav-
enging. Thus, the calculation of mass at any given time can
be reduced to the numerical integration of known transport
and source functions:

m (t, x) =

t
∫

t0

T
(

t ′, x
) (

m
(

t ′, x
)

+ s
(

t ′, x
))

dt ′. (4)

If the transport operatorT (t, x) is linear, Eq. (4) can be
equivalently written in terms of the matrix equation. For ex-
ample, Fig. 2 illustrates one of many possible approaches to
representing the global mass distribution by a vectorM . Us-
ing the same approach for representing the global emission
distribution by a vectorS, the matrix equivalent of Eq. (4)
can be written as (see explicit derivation in Appendix B):

M = TS + T0M0, (5)

whereM0 is a vector of mass values at all locations at timet0;
M andS are the corresponding vectors of mass and emission
values at all locations and considered timest0, t1,. . . , tn−1,tn
(i.e. these vectors represent the 4-dimensional (4D) aerosol
mass and emission variability);T is the coefficient matrix
defining the mass transport to each locationx and time step
tk from all locationsx and previous time stepsti<n. T0 is
the coefficient matrix defining the transport of mass to each
locationx and time steptk from mass present at all locations
x and at time stept0. Figure 3 illustrates the relation between
integral Eq. (4) and the representation of aerosol transport
modeling in vector-matrix form by Eq. (5). Thus, the source
vector can be retrieved by solving the matrix equation if the
mass measurementsMmeas=M+1M are available.

Using Eq. (5), the inversion of aerosol transport can be
implemented numerically as the solution of a system of
algebraic equations. However, vectorsM, S and matrix
T can have extremely large dimensions (see discussion in
Sect. 2.5), and direct implementation of some matrix op-
erations can be difficult. Therefore, inverting the transport
equation is commonly formulated in a calculus of varia-
tions framework, a field of mathematics that deals with func-
tions of functions. In this formalism, emission estimation is
achived using 4D-variational (4D-var) data assimilation tech-
niques (e.g. Le Dimet and Talagrand, 1986; Talagrand and
Courtier, 1987; Courtier and Talagrand, 1987; Elbern et al.,
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Fig. 2. Illustration representing the aerosol global mass distribution in vector form.

2000; Vukicevic and Hess, 2000; Elbern and Schmidt, 2001;
Schmidt and Martin, 2003; Menut, 2003; etc.). Neverthe-
less, here we invert the transport equation using the matrix
formulation given by Eq. (5), to retain full analogy with re-
mote sensing inversion approaches. We hope this analogy
will highlight the parallels between these two research areas,
and will make it easier to identify positive developments in
remote sensing that can be applied to inverse modeling algo-
rithms. Thus, below we discuss the inversion of the transport
equation as a formal linear system inversion problem, shown
in Eq. (5).

2.1 Statistical optimization of the linear inversion

If the statistical behavior of the errors1M is known, one
can use this knowledge to optimize the solution of Eq. (5).
In that way, the solution̂S should not only closely repro-
duce observationsMmeas, but in addition, the remaining de-
viations1̂M=Mmeas−M(Ŝ) should have a distribution close
to the expected error properties described by the Probabil-
ity Density Distribution (PDF) of errors P(1M). According
to the well-known Method of Maximum Likelihood (MML),

the optimum solutionŜ corresponds to a maximum of the
PDF as follows (e.g. Edie et al., 1971):

P(1M)=P(Mmeas−M(S))=P(M(S)|Mmeas)= max. (6)

Where the PDF P(M(S)|Mmeas), written as a function of re-
trieval parametersS for a given set of available observations
Mmeas, is known as a Likelihood Function. The MML is a
fundamental principle of statistical estimation that provides a
statistically optimum solution in many senses. For example,
the asymptotic error distribution (infinite number of1M re-
alizations) of MML estimates has the smallest possible vari-
ance. Most statistical properties of the MML solution remain
optimal for a limited number of observations (e.g. see Edie
et al., 1971). The normal (or Gaussian) distribution is widely
considered as the best model for describing actual error dis-
tribution (Tarantola, 1987; Edie et al., 1971; etc.):

P
(

M (S)| Mmeas)=
(

(2π)m det(CM)
)−1/2

exp

(

−
1

2

(

M (S) −Mmeas)T C−1
M

(

M (S) −Mmeas)
)

, (7)

where (. . . )T denotes matrix transposition,CM is the covari-
ance matrix of1M , det(C) denotes the determinant ofCM ,
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Fig. 3. Illustration of the relation between sequential time integration of aerosol transport and the representation of aerosol transport modeling
in vector-matrix form.

and m is the dimension of the vectorsM(S) and Mmeas.
The maximum of the PDF exponential term in Eq. (7) cor-
responds to the minimum of the quadratic form in the expo-
nent. Therefore, the MML solution is a vectorŜ correspond-
ing to the minimum of the following quadratic form:

9 (S) =
1

2

(

M (S) −Mmeas)T C−1
M

(

M (S) −Mmeas)= min . (8)

Thus, with the assumption of normal noise, the MML prin-
ciple requires searching for a minimum in the product of the
squared terms of(Mmeas− M(S)) in Eq. (7). This is the
basis for the widely known Least Square Method (LSM).

For linearM(S) (as in Eq. 5), the LSM solution can be
written as (e.g. Rao 1965):

Ŝ =
(

TTC−1
m T

)−1
TTC−1

m M∗. (9)

Here,M∗ is the vector of mass measurements corrected for
the backdround aerosolM0 present in the atmosphere att0
(i.e. prior observations):M∗=Mmeas–TM0.

2.2 Inversion constrained by a priori estimates of un-
knowns

If the problem is ill-posed and Eq. (5) does not have a unique
solution, then some a priori constraints need to be applied.

The expected distribution of sources is commonly used as
an a priori constraint in inverse modeling. In that case the
inversion can be considered as a joint solution of Eq. (5) and
constraining a priori the system:
{

Mmeas= M (S) + 1M

S∗ = S + 1S
, (10)

whereS*=S+1S is the vector of a priori estimates of the
sources and1S is vector of the errors that usually con-
sidered statistically independent of1M and normally dis-
tributed with zero mean and covariance matrixCS . To solve
Eq. (10), MML should be applied to the joint PDF of the
measurements and a priori estimates:

P(M(S)|Mmeas, S∗) = P(M(S)|Mmeas)P (S|S∗) = max, (11a)

i.e.

P(M(S)|Mmeas, S∗)=∼ exp

(

−
1

2

(

1MTC−1
m 1M

)

)

exp

(

−
1

2

(

1STC−1
S 1S

)

)

= max, (11b)

where1M=M(S)−M∗ and1S=S−S∗.
Accordingly, the MML solution of joint Eq. (11) corre-

sponds to a minimum of the following quadratic form:

29(S) = 2(9m + 9S) =1MTC−1
m 1M+1STC−1

s 1S. (12)
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Thus, unlike with Eq. (8), including a priori constraints
requires simultaneously minimizing both the measurement
term 29m and the a priori 29S term. Defining the solution
as a minimization of the above two-terms quadratic form is
probably the most popular approach for implementing con-
strained inversions, particularly in geophysical inverse mod-
eling applications. Indeed, the formulations of Eqs. (11) and
(12) are practically equivalent to the basic formulations used
in the Bayesian approach (e.g. Tarantolla 1997) widely used
in inverse modeling (e.g. Rodenbeck et al., 2003; Michalak
et al., 2004). In the Bayesian approach, the PDF of the mea-
surements and a priori estimatesP(S|S∗) is defined as the
prior PDF of the stateS, andP(M(S)|Mmeas, S∗) is defined
as the posterior PDF of the stateS. Therefore, the Bayesian
definition directly assumes a priori properties of the unknown
vectorS. In a contrast, Eq.(10) treats the a priori estimatesS∗

as simply a kind of “measurements” of unknownsS. Tech-
nically, this is equivalent to the Bayesian approach, but it
allows more flexibility in formulating a constrained inver-
sion: for example, it can easily be extended to use simulta-
neously multiple constraints in the inversion (see discussion
in Sect. 2.4).

The solution minimizing Eq. (12) can be found using the
following equations:

Ŝ =
(

TTC−1
m T + C−1

s

)−1 (

TTC−1
m M∗ + C−1

s S∗
)

, (13a)

or

Ŝ = S∗ − CsTT
(

Cm + TC−1
s TT

)−1
(

TS∗ − M∗
)

. (13b)

The covariance matrix of estimatesŜ can also be obtained
using two formally equivalent formulations:

C
Ŝ

=
(

TTC−1
m T + C−1

s

)−1
, (14a)

or

C
Ŝ

= Cs − CsTT
(

Cm + TC−1
s TT

)−1
TC.

s (14b)

Most efforts in deriving emission sources, and generally
in assimilating geophysical parameters, rely on these basic
equations (e.g. Hartley and Prinn, 1993; Elbern et al., 1997;
Dee and Da Silva, 1998; Khattatov et al., 2000; Kasibhatla et
al., 2000; Para et al., 2003).

Equations (13a) and (13b), as well as (14a) and (14b),
are considered to be generally equivalent (e.g. see Taran-
tola, 1987). One of the important differences is that the ma-
trix (TTC−1

m T+C−1
S ) inverted in Eqs. (13a) and (14a) has di-

mensionNS (the number of retrieved parameters) whereas
(Cm+TCSTT) inverted in Eqs. (13b) and (14b) has the di-
mensionNm (the number of measurements). In these re-
gards, the pairs of Eqs. (13) and (14) are fully equivalent
when Nm=NS . Equations (13a) and (14a) are preferable
for inverting redundant measurements (Nm>NS), whereas

Eqs. (13b) and (14b) are preferable for inverting underde-
termined measurement sets (Nm<NS). Indeed, Eq. (13a)
directly relates to LSM Eq. (9), where the estimateŜ is
mostly determined by the measurement termTTC−1

m M∗ and
the generally minor a priori term is mainly expected to pro-
vide uniqueness and stability to the solution. In contrast, in
Eq. (13b) the solution̂S is expressed in the form of an a priori
estimateS* corrected or “filtered” by measurements, which
is the situation when the number measurementsNm is small
(Nm<NS), and cannot fully determine the set of unknowns
a, but can improve the assumed a priori valuesS*. Also, it
should be noted that the problem of source retrieval as for-
mulated by Eq. (5) assumes the simultaneous retrieval of the
entire vectorS, which includes global emission sources for
the entire time period considered. However, the problem of
emissions retrieval (e.g. Hartley and Prinn, 1993) and data as-
similation in general (Dee and Da Silva, 1998; Khattatov et
al., 2000) is often formulated as a time-sequential correction
to a known parameter field based on observations, whereas
the optimal estimation Eq. (13b) is used to optimize the fore-
cast ofS(ti), i.e. emission at timeti , based on known values
of emission at previous timeti−1:

St = St−1 − CSt−1TT
t

(

Cmt+1 + TtC
−1
St−1

TT
t

)−1
(

TtSt − M∗
t+1

)

, (15a)

and the covariance matrixCst is the following:

Cst = Cst−1 − Cst−1TT
t

(

Cmt+1 + TtC
−1
St−1

TT
t

)−1
TtCst−1. (15b)

where the index “t” indicates that the vectors are associated
with time stept . Correspondingly, Eqs. (15) does not solve
Eq. (5) directly, rather, it searches for a solution by solving
the following sequence of the equations, formulated for a sin-
gle time step:

M∗
t+1 = Mmeas

t+1 − TtM t = TtSt , (16)

whereM∗
t+1=Mmeas

t+1 –Tt M t is the vector of mass measured
at time stept+1, corrected for the effect of aerosol massM t

present in the atmospheres at the previous time stept ; St

is the vector of emission sources at time stept , Tt is the
matrix describing the aerosol mass transport from time stept

to time stept+1. The vectorsSt andM t relate to vectorsS
andMused in Eq. (5) as follows:

ST=(St+n, . . ., St+1, St )
T andMT= (M t+n, . . ., M t+1, M t )

T. (17)

The relationship between matrixcesTt and T can be seen
from Eq. (B5) in the Appendix.

Correspondingly, instead of the joint system given by
Eq. (10), Eqs. (15) solves the following joint system:
{

Mmeas
t+1 = M t (St ) + 1M

S∗
t = St−1 + 1S

, (18)

where the second line describes an a priori assumption of
continuity between emissions at time stepst andt−1. (Note
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O. Dubovik et al.: Retrieving global aerosol sources from satellites 215

that in Eq. (10) the a priori estimatesS* do not directly as-
sume such continuity). The solution given by Eqs. (15) cor-
responds to a minimum of the following quadratic form:

29t+1(St ) = 1MT
t+1C−1

mt+1
1M t+1 + 1ST

t C−1
St−1

1St , (19)

where1M t+1=TtSt−M∗
t+1 and1St=St−St−1.

This sequential correction (filtering) given by Eqs. (15) are
widely known as a “Kalman filter”, named after the author
(Kalman, 1960) who originated the technique for engineer-
ing purposes.

Constrained inversion techniques are also widely used in
remote sensing for retrieving vertical profiles of atmospheric
properties (pressure, temperature, gaseous concentrations,
etc.), where Eqs. (13–14) are associated with studies by
Strand and Westwater (1968) and Rodgers (1976). It should
be noted that in remote sensing, Eq. (13b) is not related to a
sequential time retrieval (as considered by Kalman (1960)),
but instead it is formulated for retrieving the entire vectorS

of unknowns as given by Eq. (17) (Rodgers, 1976). The im-
portant difference between Eqs. (13b), (14b) and the Kalman
filter Eq. (15) is that the solutionSt of Eq. (15) is influenced
only by the observations performed at one time stept+1,
whereas in Eqs. (13b), (14b) (as well as in Eqs. 13a, 14a),
the component̂St of the entire solution̂S can be influenced
by observations of aerosol ontained at later time steps.

2.3 Inversion constrained by a priori smoothness con-
straints (limiting derivatives of the solution)

Equations (13–14) illustrate only the group of methods for
performing constrained inversions, where the constraints ex-
plicitly contain the a priori estimatesS∗ of unknowns. An-
other group of popular constrained inversion methods does
not restrict the magnitudes of the solutionŜ; instead these
methods use smoothness constraints that limit only the dif-
ferences between elementsŜj of the solution vectorŜ. If
the vectorS is discrete analog of a continuous function, then
the smoothness constraints can be considered as a priori lim-
itations on the functionS(t, x, y, z), so the smoothness con-
straints can be considered a priori limitations on the deriva-
tives of the functionS(t, x, y, z) with respect to time or spa-
tial coordinates. The potential advantage of smoothness con-
straints is the fact that, in principle, using smoothness con-
straints imposes weaker limitations on the solution than using
a priori constraints (since knowledge of function derivatives
is less constraining than knowledge of function itself).

Numerous atmospheric remote sensing retrievals using
smoothness constraints are based on the constrained in-
version approach originated by Phillips (1962), Tikhonov
(1963) and Twomey (1963). If one formally applies the
Phillips-Tikhonov-Twomey approach for solving Eq. (5), the
solution would be the following:

Ŝ =
(

TTT + γ�
)−1

TTM∗, (20)

whereγ is the Lagrange parameter and� is the so-called
smoothness matrix ofn-th differences. For example, for the
second differences, the matrix� is the following:

� =





















1 −2 1 0 0 ...

−2 5 −4 1 0 0 ...

1 −4 6 −4 1 0 0 ...

0 1 −4 6 −4 1 0 0 ...

...

... 0 1 −4 5 −2
... 0 1 −2 1





















. (21)

The solution of Eq. (20) corresponds to a minimum of the
following quadratic form:

29(S) = 2(9m + 9smooth) = 1MT 1M + γST�S. (22)

In contrast with Eqs. (13–14), the original Phillips-Tikhonov-
Twomey technique was not based on direct assumptions
about the error statistics. Nevertheless, this formula can be
generalized within the statistical formalism by using normal
noise assumptions (e.g. see Dubovik, 2004). The princi-
pal difference of Eq. (20) from Eqs. (13–14) is the fact that
Eq. 20) does not use a priori values of unknownsSi . Instead,
Eq. (20) limits the differences between the componentsSi of
the vectorS. For example, if the vectorS is a discrete analog
of a continuous function of one parametersx, e.g.

Si = S(xi), (23)

wherexi are equidistant points (xi+1=xi+1x), then the a
priori term in the minimized quadratic form (Eq. 22) would
represent the norm of n-th derivatives (see Twomey, 1977;
Dubovik, 2004):

xmax
∫

xmin

(

dnS(x)

dxn

)2

dx ≈

xi=xmax
∑

xi=xmin

(

1n (xi)

(1x)n

)2

=

(1x)−n (DnS)T (DnS) ∼ST
(

DT
nDn

)

S=ST�nS, (24)

whereDn is the matrix ofn-th differences:

11 = Si+1 − Si, (n = 1),

12 = Si+2 − 2Si+1 + Si, (n = 2),

13 = Si+3 − 3Si+2 + 3Si+1 − Si, (n = 3).

(25)

For example, matrixD2 of second differences is the follow-
ing:

D2 =













1 −2 1 0 ...

0 1 −2 1 0 ...

0 0 1 −2 1 0 ...

... ... ... ... ... ... ... ...

... ... ... ... ... 0 1 −2 1













. (26)

The corresponding smoothness matrix�2=DT
2D2 is given by

Eq. (21).
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Thus, in many remote sensing applications where param-
eter functionsS(xi) are retrieved, using smoothness con-
straints as shown in Eq. (20) is fruitful and popular. For
example, such constraints are widely used in aerosol size
distribution retrievals, for eliminating unrealistically strong
oscilations in the dependence of aerosol particle concentra-
tion on particle size (e.g. Twomey, 1977; King et al., 1978;
Nakajima et al., 1996; Dubovik and King, 2000, etc.). Using
a priori estimates as solution constraints in those applications
tends to over-constrain the retrievals.

Using a priori limitations on the derivatives (shown above)
does not seem to be as popular for geophysical parameter
data assimilation and inversion of tracer modeling. Such con-
straints are certainly included in general formalations of as-
similation techniques (e.g. Navon, 1997), and they have been
utilized for oceanographic data assimilations (e.g. Thacker,
1988; Thacker and Long, 1988; Yaremchul et al., 2001,
2002). Nonetheless, inverse modeling techniques commonly
favor Bayesian formulations that constrain the solution with
a priori estimates of terms, as shown in Eq. (13) (e.g. see the
review by Lahoz et al., 2007). Constraints on time and space
variability are often included in Bayesian formulations, by
using in Eqs.(13) the covariance matrixCS of a priori esti-
mates having non-zero non-diagonal elements (e.g. Roden-
beck et al., 2003; Michalak et al., 2004; Houweling et al.,
2004).

One of the many possible reasons for the unpopularity of
a priori limitations on the derivatives in inverse modeling is
probably the fact that tracer modeling deals with 4D charac-
teristics. For example, the unknown vectorS in Eq. (5) repre-
sents global aerosol sources. Correspondingly, instead of one
parametric function shown by Eq. (23), we should consider
vectorS as the discrete equivalent of the 4D function:

Si = S(ti, xj , yk, zm), (27)

i.e. vectorS has a total ofNt×Nx×Ny×Nz elements, where
Nt ,Nx ,Ny andNz are the total numbers of discrete points
for coordinatest , x, y and z, respectively. Obviously, the
variability of emissionsS(t, x, y, z) with time t , vertically
with z and horizontally withy and x does not have to be
the same. This is why, using a single smoothness term in
Eq. (22) with a single smoothness matrix� (as the one given
in Eq. 21) is not appropriate for constraining the retrieval of
four-dimensional characteristicS(t, x, y, z). At the same time,
some temporal and spatial horizontal and vertical continuity
of aerosol emission can naturally be expected (the same is
applicable for most of geophysical parameters). Therefore,
applying smoothness constraints on the variability ofS(t, x,
y, z) with each coordinate instead of using a single variability
constraint can be useful. However, that would require using
several constraints simultaneously. A possible approach for
using multiple constraints is discussed by Dubovik and King
(2000) and Dubovik (2004).

2.4 Constrained inversion within multi-term LSM

Dubovik and King (2000) and Dubovik (2004) demonstrated
that Eqs. (13a) and (20) can be naturally derived and gener-
alized by considering inversions with a priori constraints as
a version of multi-term LSM. Formally, both measured and a
priori data can be written as

f ∗
k = f k(a) + 1f k, (k = 1, 2, . . ., K), (28)

wheref ∗
k are vectors of measurements,1f k are vectors of

measurement errors, andf k (a) are forward models that al-
low adequate simulations off k from predetermined param-
etersa. Index k denotes different data sets. The separa-
tions of data sets assume that the data from the same data
set have similar error structure, independent of errors in the
data from other sets. Assuming that1f k is normally dis-
tributed with covariance matricesCk, the MML optimum so-
lution of Eq. (28) corresponds to the minimum of the follow-
ing quadratic form:

29 (a) =
K
∑

k=1

(1f k)
T (Ck)

−1 (1f k)= min, (29a)

where1f k = f k(a)−f ∗
k . This condition does not prescribe

the value of the minimum and, therefore, it can be formulated
via weighting matrices:

29 ′ (a) =
K
∑

k=1

γk(1f k)
T (Wk)

−1 (1f k)=2
K
∑

k=1

γk9k
′ (a) = min, (29b)

where weighting matricesWk defined as:

Wk =
1

ε2
k

Ck andγk =
ε2

1

ε2
k

. (30)

Hereε2
k is the first diagonal element ofCk, i.e. ε2

k={Ck}11.
Using the weighting matricesWk is, in principle, equivalent
to using covariance matricesCk, although sometimes it is
more convenient because it explicitly shows that the mini-
mization depends only on the relative contribution of each
term9k

′
to the total9

′
. The Lagrange parametersγk weight

the contribution of each source relative to the contribution
of first data source (obviously,γ1=1). The minimum of the
multi-term quadratic form given by Eq. (29) can be found by
the multi-term equivalent of Eq. (9):

â =

(

K
∑

k=1

γk (K k)
T (Wk)

−1 (K k)

)−1( K
∑

k=1

γk (K k)
T (Wk)

−1 f ∗
k

)

. (31)

The corresponding covariance matrix can be estimated from
the following:

Câ ≈

(

K
∑

k=1

γk (K k)
T (Wk)

−1 (K k)

)−1

ε̂2, (32)

where ε̂2 is estimated from the minimum of9
′

as:
ε̂2=9

′
/(Nf –Na), Nf is the total number of elements{f k}j
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(in all setsf k), Na is the total number of unknown parame-
tersai .

Using the above multi-term equations, one can formulate
an inversion with smoothness constraints on the variability
of S(t, x, y, z), separately for each coordinate. Specifically,
such multiple smoothness constraints represent a solution of
the following joint system:






















Mmeas= M (S) + 1M

0∗
t = 1n

t (t, x) + 1t

0∗
x = 1n

x (t, x) + 1x

0∗
y = 1n

y (t, x) + 1y

0∗
z = 1n

z (t, x) + 1z

, (33)

where1n (...) denotes then-th difference (see Eq. 25) of
aerosol sources with respect to time, or to coordinatesx, y

or z. For example, for the time coordinatet , second differ-
ences (Eq. 25) can be written as:

{12
t (t, x)}g=12

t (ti, xj , yk, zm)=

S(ti+1, xj , yk, zm)−2S(ti, xj , yk, zm)+S(ti−1, xj , yk, zm).

(34a)

where the indexg can be calculated (see Fig. 2), for example,
as follows

g = (i − 1)NxNyNz + (j − 1)NyNz + (k − 1)Nz + (m − 1). (34b)

The second line in Eq. (33) states that differences1n(ti) are
equal to zero with errors1ti . Accordingly, forn=2 the vec-
tors0∗

t , 12(t) and1t consist of (Nt–2)×Nx×Ny×Nz zeros,
12

t (ti, xj , yk , zm) and1ti , respectively. The 3rd, 4th and
5th lines in Eq. (33) are defined in the same way for coor-
dinatesx, y andz respectively. Assuming that1t , 1x,1y

and1z are normally distributed with zero means and diago-
nal covariance matricesCt=ε2

t I t , Cx=ε2
x Ix , Cy=ε2

y Iy and

Cz=ε2
z I z, the multi-term LSM solution of Eq. (33) can be

written as follows:

Ŝ =
(

TTW−1
m T + γt�t + γx�x + γy�y + γz�z

)−1
TTW−1

m M∗, (35)

where

Wm=
1

ε2
m

Cm, γt=
ε2
t

ε2
m

, γx=
ε2
x

ε2
m

, γy=
ε2
y

ε2
m

, γz=
ε2
z

ε2
m

,

and ε2
m={Cm}11, ε2

t ={Ct }11, ε2
x={Cx}11, ε2

y={Cy}11 and

ε2
z={Cz}11. The matrices� are determined via correspond-

ing matrices of n-th differences�=DT
nDn. Equation (35)

yields the minimum of the following quadratic form:

29(S) = 29m(S) + 2
∑

(q=t,x,y,z)

γq 9q(S) =

2(1M)T W−1
m 1M + 2

∑

(q=t,x,y,z)

γqST�qS. (36)

Each of the smoothness terms in this equation can be consid-
ered as a discrete equivalent of the norm of then-th partial

derivative. For example, for the second term, which corre-
sponds to the time coordinatet , one can write:

9t (S) =
∑

(i,j,k,m)

(

1n
t

(

ti, xj , yk, zm

)

(1t)n

)2

≈ 9 ′
t (s) =

tmax
∫

tmin

(

∂ns(t, x)

∂tn

)2

dx

(37a)

and

9t (S) = (1t)1−2n
(

D(n,t)S
)T D(n,t)S = (1t)1−2n ST

(

DT
(n,t)D(n,t)

)

S = (1t)1−2n ST�tS, (37b)

where the matrixD(n,t) is the matrix of differences corre-
sponding ton-th partial derivative with respect to time. For
example,D(2,t)S would produce a vector with elements equal
to the second differences, as shown in Eq. (34).

Thus, it was shown above that using the multi-term LSM
approach, one can apply multiple smoothness constraints in
the retrieval of emission sources. Therefore, it is possible
to utilize knowledge about typical time, horizontal and verti-
cal variability of the emissions as a priori constraints on the
retrieval. As shown in Eqs. (33–37), such smoothness con-
straints are included as restrictions on the n-th partial deriva-
tives ofS(t, x, y, z) assuming zero values for the correspond-
ing differences in Eq. (33), and that values of the Lagrange
parameters determine the variations from zero. The order of
the differences assumed relates to the character of expected
variability; for example for a one-parameter functionS(t),
there are following relationships:

11(t) = 0 → S(t) = const − constant,
12(t) = 0 → S(t) = A + Bt − straight line,
13(t) = 0 → S(t) = A + Bt + Ct2 − parabola, etc.

(38)

Note that the constraints employed in Kalman filter Eq. (15)
are equivalent to restricting the first differences (see Eq. 18),
i.e. assuming a priori linear continuity of the source variabil-
ity. In a contrast, Eqs. (35–36) with multiple constraints al-
low using higher order constraints on time variability, and
can constrain not only time, but also the space and vertical
variability of the emissions.

2.5 Inversion using adjoint equations

Methods analogous to Eq. (13) are used for retrieving CO2
sources from surface-based and satellite observations (e.g.
see Enting et al., 1995; Patra et al., 2003). However, direct
implementation of Eqs. (9, 13) for retrieving aerosol emis-
sion sources is not feasible, due to the very large dimen-
sions of matrixT and vectorsS andM. For example, CO2
emission sources can be assumed constant for monthly or
yearly periods over large geographic areas (e.g., Patra et al.,
2003, used 22 and 53 global regions). The temporal and spa-
tial variability of tropospheric aerosols and their sources are
much higher. For aerosols, the GOCART model (see below)
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77

 

∇Ψ
m

(S)
Fig. 4. Illustration of the calculation of gradient∇9m(S) (Eq. 40) by means of implementing the sequential backward time integration of
the adjoint aerosol transport model.

has 2◦×2.5◦ horizontal resolution (144 longitudes, 91 lati-
tudes) and 30 vertical layers, with the possibility of having
variable sources in each layer. As a result, inverting a few
weeks of observations using Eqs. (9) or (13) requires deal-
ing with the vectorS having dimensionNS far exceeding
200 000, even under the conservative assumption that sources
are near surface and constant during 24 hours. Performing
the vector and matrix operations of Eqs. (9, 13) directly on
terms of such high dimensionality is problematic. One way
to avoid dealing with such large vectors and matrices is to
perform the inversion using time sequential retrievals, as is
given by Kalman filter formulation of Eq. (15), where the re-
trieval uses generally smaller matrices and vectors contain-
ing parameter values at only a single time stepti . However,
in Kalman filter procedure given in Eq. (15), the retrieval
relies only on observations at a single time step, and on as-
suming linear continuity of the emission strength. However,
the emitted aerosol is transported over a period of time, and
therefore, observations during that entire period (a week) can
be useful for the retrieval. In these regards, using Eqs. (10–
13) seem preferable to Eqs. (15–19), and can be implemented
with computational requirements close to those of forward
modeling. To achieve this, the inversion routine must adopt

the strategy used for global model forward simulations. As
shown by Eq. (5), transport modeling can be formulated as
a matrix operator; however, in practice, transport models are
implemented with numerical time integration (Eq. 4), by se-
quentially computing chemical transports during each time
step1t (Eq. 2), and with separate treatment of isolated pro-
cesses (Eq. 3). Figure 3 illustrates the relationship between
the matrix formulation of aerosol transport Eq. (2), and direct
time integration. A similar approach can be employed in in-
verse modeling, by developing so-called “adjoint” transport
operators as formulated in a variational assimilation frame-
work (e.g. Le Dimet and Talagrand, 1986; Talagrand and
Courtier, 1987; Elbern et al., 1997; Menut et al., 2000; El-
bern et al., 2007). The analogies between the variational and
matrix formulations are rather apparent. (In order to assist
the reader in understanding the considerations discussed be-
low, Figs. 4–5 provide diagrams outlining matrix formula-
tions and their continuous analogs). Indeed, any inversion
can be implemented by iterations without the explicit use of
matrix inversion. For example, a solution equivalent to the
one of Eq. (9) can be obtained by the steepest descent itera-
tive method:

Ŝp+1 = Ŝp − tp1Ŝp, (39)
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78

 
Fig. 5. Diagram illustrating implementation of the steepest descent iteration in terms of the adjoint modeling approach.

1Ŝp = ∇9m(Sp) = TTC−1
m 1Mp , (40)

where1Mp=M(Sp)−M∗, ∇9m(S) denotes the gradient
of 9m(S) andtp is a non-negative coefficient. This method
uses the fact that the gradient∇9m(S) points in the direc-
tion of maximal local changes of9m(S), and this direction
(tp∇9m(Sp), generallytp<1) can always be used to correct
Sp, so it moves toward the solutionS

′
that minimizes9m(S),

i.e 9m(Sp+1)<9m(Sp). Equations (39–40) do not require
inversions of high dimension matrices (inverting a diagonal
covariance matrix is trivial). The gradient∇9m(S) can be
simulated using a time integration scheme similar to the one
employed for forward modeling so the matrix solution of the
steepest descent method Eqs. (39–40) can be replaced by an
analogous continuous operation. Namely, the elements of the
gradient vector∇9m(S) can be simulated in a manner simi-
lar to Eqs. (2–4) and the inversion can be implemented using
a continuous analog of the gradient vector∇9m(S) (see also
Figs. 3–4). A continues equivalent of Eq. (40) can be written
as follows (the detailed derivations is given in Appendix B):

1ŝp (t, x) =

t0
∫

t

T # (t ′, x
)

(

1ŝp
(

t ′, x
)

+ σ−2 (t ′, x
)

1mp
(

t ′, x
)

)

(−dt ′),

(41a)

where

1mp (t, x) = m∗ (t, x) −

t
∫

t0

T
(

t ′, x
) (

m
(

t ′, x
)

+ sp
(

t ′, x
))

dt ′, (41b)

andT # (t, x) is the adjoint of the transport operatorT (t, x),
that is composed of adjointsT #

i (t, x) of the component pro-
cessesTi (t, x):

T # (t, x) = T #
1 T #

2 T #
3 ...T #

q−1T
#
q . (41c)

The vectors1ŝp (t, x) and σ−2 (t, x) 1mp (t, x) denote
functional equivalents of vectors1Ŝp andC−1

m 1Mp respec-
tively. For example, if one intends to use the continuous
function1ŝp (t, x) in numerical calculations, it can be rep-
resented by a vector1Ŝp with the following elements:
{

1Ŝp
}

l
= 1ŝp

(

ti, xj , yk, zm

)

, (42a)

where the indexl is determined in the same way as in
Eq. (34b).

Similarly, if the observational errors are uncorrelated, i.e.
the covariance matrix of the measurementsCm is diagonal,
with the diagonal elements equal toσ 2

(

ti, xj , yk, zm

)

, the el-
ements of vectorC−1

m 1Mp relate to the continuous function
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σ−2 (t, x) 1mp (t, x) in straightforward way:
{

C−1
m 1Mp

}

l
→ σ−2 (ti, xj , yk, zm

)

1mp
(

ti, xj , yk, zm

)

. (42b)

If observational errors do not have time correlations but do
have spatial correlations,Cm has an array structure that can
be included in the algorithm (see Eqs. (B12–B15) in Ap-
pendix B), provided one can formulate a weighting func-
tion C−1(t, x, x′) from the covariance functionC(t, x, x′),
to perform a role analogous to the one of matrixC−1

m in
the discrete representation. Including the spatial correlations
during each time moment is feasible because the model is
integrated by time steps, and each step can be treated rather
independently. However, accounting for observational errors
that are correlated in time is not feasible without changing
the structure of Eq. (41).

It is important to note that Eq. (41) is convenient for prac-
tical implementation of the inversion. Indeed, as outlined in
Fig. 4 (compare with Fig. 3), Eq. (41) is related to Eq. (4),
with the difference that it uses1mp (t, x) in place ofs (t, x),
and1ŝp (t, x) in place ofm (t, x), and it performs the back-
ward time integration of the adjoint operatorT #(t , x) . If
T (t , x) is functionally equivalent to the matrix operatorT,
then the adjoint operatorT # (t , x) is an equivalent to the
transposed matrixTT (Appendix A). Therefore, the main
reason for developing the adjoint operatorT # from T can
be illustrated by considering matrix transposition. For ex-
ample, since the transport operator integration can be ap-
proximated using the split operator approach (e.g. see Ja-
cob, 1999), where matrices corresponding to different atmo-
spheric processes are multiplied at each time step (e.g. see
Eq. 3). The following matrix identity is helpful:

(T3 T2 T1)
T = (T1)

T (T2)
T (T3)

T . (43)

This reversing of the order of operations by transposition pro-
duces an overturned sequence of component process applica-
tions within each time step Eq. (41c), and reverses the order
of integration in Eq. (41a), i.e. in backward time integration
Eq. (41a). Also, the transposition of matrixTi changes rows
and columns, so ifT is non-square, the input of (Ti)

T should
have the dimensions ofTi output, and vice versa. Thus, the
adjoint model (Eq. 41) can be developed on the basis of the
original model (Eq. 4) by reversing the order of operations
and switching the inputs and outputs of the routines (e.g. El-
bern et al., 1997; Menut et al., 2000).

Thus, using the adjoint of the transport model allows us
to implement the LSM inversion (Eq. 9) without using ex-
plicit matrix inversions, and therefore demands only moder-
ate computational efforts. As is shown in Fig. 5 each iteration
in Eq. (41) requires one forward integration of the transport
model (Eq. 41b) followed by one backward integration of the
adjoint transport model (Eq. 41a).

The need to perform a number of iterations in Eq. (41) is
a potential drawback of implementing inversions via adjoint
modeling. Indeed, the steepest descent method of Eqs. (39–
40), in general, converge to the exact solution after a very

large number of iterations. The even faster method of con-
jugated gradients may require up toNS iterations (Press et
al., 1992). Nevertheless, a rather limited number of simple
iterations appears to be sufficient for global inverse model-
ing of high dimensionality. For instance, the iterations of
Eqs. (39–40) converge from an arbitrary initial guess to the
solution rapidly if the following sequence tends toward the
zero matrix (Dubovik, 2004):

∞
∏

p=1

(

I − tpTTC−1
m T

)

⇒ 0, (44)

where I is unity matrix. It is clear that rapid convergence
of Eqs. (39–40) can be achieved only ifTTT is predomi-
nantly diagonal (Cm is often diagonal and does not cause
problems). Fortunately, in transport modeling, the diago-
nal elements ofTTT dominate, because local aerosol emis-
sion typically influence only nearby locations (i.e. matrixT
is rather sparse and has a large number of zeros, see Eq. (B5)
in Appendix B).

It should be noted that Eqs. (41) expressing the inver-
sion via adjoint operators, are generally analogous to tech-
niques used in variational assimilation (e.g. Le Dimet and
Talagrand, 1986; Talagrand and Courtier, 1987; Menut et al.,
2000; Vukicevic et al., 2001). Nevertheless, the statistical es-
timation approach employed in our study makes it possible to
establish direct relationships between Eqs. (41) and conven-
tional LSM minimization which therefore improves flexibil-
ity in implementing the inversion. For example, using error
covariances directly makes it possible to account for differ-
ent levels of accuracy in the inverted observations. Moreover,
formulating the inversion using a statistical approach is con-
venient for including several a priori constraints in the same
retrieval, for example, by following multi-term LSM strategy
discussed in Sect. 2.4.

2.6 Including a priori constraints in inversion, using adjoint
equations

Equations (41) can be easily adopted for constrained inver-
sion. Figures 6–7 illustrate the considerations discussed in
this Section. For example, the inversion constraining the so-
lution Ŝ with its a priori estimatesS∗, shown as a matrix
inversion in Eq. (13), can be implemented iteratively, e.g. us-
ing steepest descent iterations:

Ŝp+1 = Ŝp − tp1Ŝp, (45a)

1Ŝp=∇9m(Sp)+∇9S(Sp)=TTW−1
m 1Fp+γsW−1

s 1Sp.

(45b)

Here we used weighting matricesW... instead of covariance
matricesC... in order to align these equations with the LSM
multi-term formulations given by Eqs. (28–32). If we assume
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9

 

Fig. 6. illustrating implementation of the steepest descent method with a priori constraints, by means of adjoint aerosol transport modeling.

for simplicity that all measurements are statistically indepen-
dent and have the same accuracyεm (i.e.Cm=I ε2

m→Wm=I ),
and that all a priori estimates are statistically independent and
have the same accuracyεs (CS=I ε2

S→WS=I ), then we can
write the continuous analog to Eq. (45b) as follows:

1ŝp (t, x) =

t0
∫

t

T # (t ′, x
) (

1ŝp
(

t ′, x
)

+1mp
(

t ′, x
))

(−dt ′)

+γS

(

ŝp
(

t ′, x
)

−ŝ∗
(

t ′, x
))

. (45c)

whereγ S=ε2
m/ε2

S .
The iterative analog to Eq. (35), constraining the solution

by limiting the time and spatial derivatives ofŜ (t, x), can be
written as follows:

Ŝp+1 = Ŝp − tp1Ŝp, (46a)

1Ŝp = ∇9m(Sp) +
∑

(q=t,x,y,z)

γq ∇9q(Sp)

= TTW−1
m 1Fp +

∑

(q=t,x,y,z)

γqDT
nDnS

p. (46b)

The function1ŝp (t, x), corresponding to vector1Ŝp can
be formulated as follows:

1ŝp (t, x) =

t0
∫

t

T ∗ (t, x)
(

1ŝp
(

t ′, x
)

+ 1mp
(

t ′, x
))

(−dt ′)

+
∑

(q=t,x,y,z)

γq D#
nDns

p(t, x) =

=

t0
∫

t

T ∗(t, x)
(

1ŝp(t ′, x) + 1mp(t ′, x)
)

(−dt ′)

+
∑

(q=t,x,y,z)

γq

∂(2n)sp(t, x)

∂q(2n)
, (47)

wherex′=(xj , yk, zm), Dn denotesn-th derivative operator
andD#

n denotes the adjoint to then-th derivative operator.
For the adjoint operatorD#

n, one can write the following:

D#
n = (−1)nDn. (48a)
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Fig. 7. Illustration of the combination of sequential backward time integration of the adjoint aerosol transport model with a priori constraints.

This identity can be obtained from the transposition of the
matricesDn. For example, forD1

T we have the following:

DT
1 =

















1 −1 0 . . .

0 1 −1 0 . . .

0 0 1 −1 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 1 −1 0

. . . . . . . . . . . . . . . 0 1 −1

















T

=

















1 0 . . .

−1 1 0 . . .

0 −1 1 0 . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . −1 1 0

. . . . . . . . . . . . . . . 0 −1

















. (48b)

Here one can see that with exception of the first and last
lines ofD1

T, each row corresponds to first differences. Sim-
ilarly, it is easy to demonstrate that the lines of the matrices
Dn

T(n > 1) corespond ton-th differences, with exception of
first and lastn lines. If both the number of lines and columns
in Dn

T are much larger thann, this difference betweenDn

andDn
T can be neglected, e.g. in the continuous case when

1q−>0. For example, when the norm of the second deriva-
tives of s(t, x) over time is constrained, the following re-

lationship can written for thep-th element of the gradient
∇9t (S

p):

D#
2D2S

p(t, x)|ti =
∂4Sp(t, x)

∂t4

∣

∣

∣

∣

∣

ti

≈ {9t (S
p)}g =

= (1t)−4 (S(ti+2, x) − 4S(ti+1, x) + 6S(ti, x)

−4S(ti−1, x) + S(ti−2, x)) (49)

where the indexg can be calculated according Eq. (34) and
2<i<Nt–2 (see Eq. 21). Equations analogous to Eq. (49) can
be written for terms corresponding to the spatial coordinates
x, y andz. It should be noted that in practice, the calculation
of the first “transport term” and the second “a priori term” in
Eq. (47) can be performed rather independently as shown in
Fig. 6. For example, in Section 3 (where Eq. (47) is imple-
mented) the “transport term” is integrated with the time step
of the GOCART model (20 min), whereas the “a priori term”
is calculated as shown in Eq. (49) with time step1t=ti+1−ti
equal to 24 h.

These formulations can also adopt the same a priori con-
straints as those used in the Kalman filter, i.e. when only
the continuity of sources is constrained a priori by assum-
ing S∗

t =St−1+1S (see Eqs. 15 and 18). In this situation,
one can assume that the first derivative ofs(t, x) over time is
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close to zero, i.e.∂s(t, x)/∂t≈0. Similarly, Eq. (47) should be
used with only one a priori term, corresponding to the norm
of the first derivatives∂s(t, x)/∂t i.e.q=t andn=1. This way
Eq. (47) relies on the same a priori constraints as those used
in the Kalman filter Eq. (47), and observationsm(t, x) dur-
ing the entire time periodt>ti can contribute to the solu-
tion S(ti, x), whereas Eq. (15) relies only on observations
m(ti, x) at timeti .

Also, it should be noted that for clarity Eqs. (45c) and (47)
were written for the case of the simplest measurements co-
variance matrices and a priori data errorsC...=ε2

... I .... How-
ever, the generalization of these equations to cases when the
accuracies within each data set are different ({C}ii 6={C}jj ,
i 6=j ), or the covariance matrices are non-diagonal, is rather
straightforward (similar to that shown by Eqs. (41–43).

2.7 Inverting models having non-linearities

Previous sections described an approach to inverting a linear
transport model (Eq. (5)), provided global aerosol massM∗

measurements are available. In practice, the transport model
may be non-linear, and the global aerosol data fields may be
available only in the form of satellite optical measurements:

f = F(m(t, x), λ, θ; ...), (50)

wheref (. . . ) is generally a non-linear function depending on
aerosol massm(t, x), instrument spectral characteristicsλ,
observation geometryθ , etc. Therefore, the following non-
linear equation should be solved instead of Eq. (5):

F ∗ = F (M(S)) + 1F , (51)

whereF and1F are vectors of global optical data and their
uncertainties. Since, the steepest descent method can be ap-
plied to both linear and non-linear problems, Eqs. (41, 45,
47), that use adjoint operators, can be expanded to solve
Eq. (51). For example, for a basic case when only optical
measurementsF ∗ are inverted with no a priori constraints,
the steepest descent solution can be written as:

Ŝp+1 = Ŝp − tp1Ŝp, (52a)

1Ŝp = ∇9f (Sp) = KT
pC−1

f 1Fp = TT
pFT

pC−1
f 1Fp , (52b)

where1Fp=F (Sp)–F ∗. MatricesKp Tp andFp denote Ja-
cobi matrices of the first derivativesdf/ds, dm/ds anddf/dm
calculated in the vicinity of the vectorSp:

{

Kp

}

ji
=

dfj (m(S), λ, θ, ...)

dSi

∣

∣

∣

∣

S=Sp

, (53a)

and

{

Tp

}

j ′i
=

dmj ′(S, t, x)

dSi

∣

∣

∣

∣

S=Sp

,

{

Fp

}

ji′
=

dfj (M, λ, θ, ...)

∂mi′

∣

∣

∣

∣

Mp=M(Sp)

, (53b)

where indicesj , j ′, i and i′ are indices for the ele-
mentsfj , mj ′ , mi′ , Si of the corresponding vectorsF T=
(f1,f2,. . . ), MT=(m1,m2,. . . ), andST=(S1,S2,. . . ). The fol-
lowing relationship between the Jacobi matrices ofdf/ds,
dm/ds and thedf/dm derivatives was used in Eq. (53):

Kp = FpTp . (53c)

The function1ŝp (t, x), corresponding to vector1Ŝp, can
formulated as follows:

1ŝp (t, x) =

t0
∫

t

T #
p

(

t ′, x
)

F #
p

(

t ′, x
)

(

1ŝp
(

t ′, x
)

+ 1f p
(

t ′, x
))

(−dt ′), (54)

whereT #
p (t, x) and F #

p(t, x) are adjoint operators for the
mass transportT (s(t, x)) and the optical modelF(m(t, x)),
and indexp indicates that these adjoint operators are equiv-
alents of transposed Jacobi matricesTT

p andFT
p. The deriva-

tion of F #
p(t, x) is quite transparent because optical proper-

tiesf (m(t, x), . . . ) usually are related only to local aerosols,
so in practical implementations of Eq. (54) (that are usually
performed in discrete representations),F #

p(t, x) can be ex-
plicitly replaced by the transposed Jacobi matrixFT

p.
Equation (54) can be expanded easily to implement a con-

strainted inversion off =F(m(t, x), λ, θ, ...) . For example,
when the solution is constrained by a priori limits on the tem-
poral and spatial derivatives of̂S (t, x) (utilized in Eqs. 35
and 48), Eq. (54) can be written as follows:

1ŝp (t, x) =

t0
∫

t

T #
p

(

t ′, x
)

F #
p

(

t ′, x
) (

1ŝp
(

t ′, x
)

+ 1f p
(

t ′, x
))

(−dt ′)

+
∑

(q=t,x,y,z)

γq

∂q(2n)

(sp (t, x)) ∂q(2n)
. (55)

Using this1ŝp (t, x), (if the same discrete representation is
used), the iterative retrieval would amount to minimizing the
following quadratic form:

29(S) = 29f (S) + 2
∑

(q=t,x,y,z)

γq9q(S) =

2(1F )T 1F + 2
∑

(q=t,x,y,z)

γqSTDT
n,qDn,qS. (56a)

This quadratic form can be generalized by the following
functional:

29 ′ = 2
∫

t

∫∫∫

x,y,z

1f # (t, x, y, z) 1f (t, x, y, z)dxdydzdt

+2
∑

(q=t,x,y,z)

γq

qmax
∫

qmin

(

∂ns(q, ...)

∂qn

)2

dq, (56b)

where1f (t, x, y, z)=f ∗ − f (t, x, y, z) and1f #(t, x, y, z)

denotes the adjoint of1f (t, x, y, z).
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Thus, the above derivations show the high potential of
using a statistical estimation approach for implementing
aerosol transport inverse modeling. For example, it was
demonstrated that by following the multi-term LSM strat-
egy, there is flexibility to apply various types of a priori
constraints in inverse modeling. For example, Eqs. (46–49)
show how constraints on aerosol (or other tracer) emission
derivatives with respect to spatial coordinates or time can be
included in the adjoint integration of tracer models, that are
widely used in variational assimilation for atmospheric tracer
source identification (e.g. Le Dimet and Talagrand, 1986; Ta-
lagrand and Courtier, 1987). Using such constraints in in-
verse modeling may have high potential because, in princi-
ple, a priori limitations on the derivatives of emission vari-
ability is a weaker and more flexible way of constraining the
solution than assuming a priori values of the emission. Equa-
tions (55–56) give the formulation of the approach for invert-
ing satellite observations (e.g. radiances measured by pas-
sive satellite observations). This generalization may have the
high potential, because using satellite observations directly
in inverse modeling and satellite data assimilation has ad-
vantages compared to relaying on satellite retrieval products
(Weiver et al., 2006). However, using the steepest descent
iteration in Eqs. (55–56) makes the application of Eqs. (55–
56) less attractive in practice, because generally, inverting ra-
diative transfer equations by the method of steepest descent
requires a large number of iterations (Dubovik and King,
2000). Therefore, it might be useful to explore the possibil-
ity of adopting iterative strategy of the conjugated gradients
method (Appendix C), as this method is known to have su-
perior convergence properties than steepest descent.

3 Application of the inverse methodology for aerosol
source retrieval from satellite observations

– First, we consider the inversion of an aerosol transport
model, to derive the “unknown input” (aerosol emis-
sions) to the model from the “known output” (aerosol
mass distribution). Our inverse algorithm developments
are based on the GOCART aerosol transport model.

– Second, we discuss differences between inverting the
model output and satellite data and outline the modifi-
cations required for applying the model based inverse
algorithm to the satellite observations. We consider in-
version of the aerosol observations from MODIS.

– Finally, we illustrate the performance of developed al-
gorithm by numerical tests and then we apply the algo-
rithm to the actual MODIS aerosol data.

3.1 Algorithm for inverting the GOCART model

The inversion algorithm (Eqs. 39–41) treats the strength of
the aerosol emission at each global location as an unknown.

Therefore, in an ideal situation, when the observations pro-
vide enough information to retrieve all the emission pa-
rameters, the emissions derived from the observations the-
oretically could replace the original module prescribing the
aerosol emissions in the chemical transport model. Such an
ideal situation is likely if reliable observations about all the
aerosol characteristics are provided by the transport model
output, i.e. if these observations are sensitive to all the time
and space (4D) aerosol variations provided by model. As
we will discuss in the next Section, the real observations are
not sensitive to all the aerosol distribution details that can
be modeled, therefore successful inversion of model output
does not guarantee the successful inversion of real observa-
tions. Nonetheless, inverting the detailed model output can
be helpful for verifying the performance of different blocks
in the inversion algorithm. As a first step in implementing
the inverse algorithm, we developed an algorithm to invert
GOCART output, and carried out series of numerical tests to
verify algorithm performance under highly constrained con-
ditions (the entire output is prescribed) and in a “no error”
environment.

The GOCART – Goddard Chemistry Aerosol Radiation
and Transport model is described in papers by Chin et
al., (2000, 2002) and Ginoux et al. (2001). The model uses
the assimilated meteorological data from the Goddard Earth
Observing System Data Assimilation System (GEOS DAS)
and provides four-dimensional aerosol mass distributions in
20 to 30 atmospheric layers, at a horizontal resolution of
2◦ latitude by 2.5◦ longitude. The model calculates aerosol
composition and size distribution, optical thickness and ra-
diative forcing. There are seven modules representing at-
mospheric processes: emission, chemistry, advection, cloud
convection, diffusion (boundary layer turbulent mixing), dry
deposition, and wet deposition. The model solves the conti-
nuity Eq. (1) using an operator-splitting technique (Eqs. 2–
3), with a time step of 15 min for advection, convection and
diffusion, and 60 min for the other processes.

GOCART provides 4D distributions of about 16 aerosol
particle types/size bins: sulfate, hydrophilic and hydrophobic
Organic Carbon (OC), hydrophilic and hydrophobic Black
Carbon (BC), four size-differentiated sea salt bins, and up
to seven dust size-differentiated bins, depending on the GO-
CART model version (Chin et al., 2002, 2004; Ginoux et
al., 2001). The model does not include interactions between
different aerosol particles, with the exception of transforma-
tions between hydrophilic and hydrophobic components of
BC and OC. Therefore, GOCART simulates distributions of
sulfates, BC, OC, desert dust and sea salt independently. Cal-
culations for different size bins of dust and sea salt are also
independent, and the atmospheric processes sensitive to par-
ticle size (e.g. sedimentation) are incorporated accordingly.
The same concept can be adopted for inverting the model out-
put, i.e. each aerosol component of the output can be inverted
independently with an inverse algorithm that uses an adjoint
model tuned to the properties of each aerosol component.
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The inverse algorithm described by Eqs. (41, 45, 47, 54
and 55) and illustrated by diagrams in Figs. 5 and 6 was
implemented for the GOCART model. The adjoint trans-
port operatorT ∗p(t, x) was developed by redesigning GO-
CART modules for each atmospheric process. Namely, the
adjoint operation for advection was performed with the orig-
inal GOCART advection algorithm (Lin and Rood, 1996),
using sign-reversed wind fields (Vukicevic et al., 2001). The
equivalence between such physically derived retro-transport
and adjoint equations has been proven rigorously by Hour-
din and Talagrand (2006). The adjoints of the local pro-
cesses were developed by analogy with the corresponding
transpose matrix operators. Specifically, cloud convection,
diffusion, dry deposition, and wet deposition affect only ver-
tical aerosol motion. All these processes have local char-
acter in the sense that for a single time step in the model,
they work independently in each horizontally resolved ver-
tical column. Therefore, such processes can be easily mod-
eled via explicit use of matrices of rather small dimension,
and the corresponding adjoint operators can be obtained by
direct transposition of those matrices. First, we arranged the
cloud convection, diffusion, dry deposition, and wet deposi-
tion in matrix form, and derived the transpose of those ma-
trices. Then, for achieving faster calculation time, we re-
designed the original programs so that their application to a
vector provides a product equivalent to the application of the
corresponding transpose matrices. Chemical aging transfor-
mations of black and organic carbon aerosols require chang-
ing only the proportions of different components, and do not
induce any vertical or horizontal aerosol motions. Therefore,
the adjoints of these chemical processes can be constructed
simply by changing the direction of chemical transformation.
Once the adjoint model was developed, we implemented sev-
eral inversions of 4D mass fields simulated by GOCART for
different aerosol components. These numerical tests showed
that the algorithm retrieves the emissions of all aerosols ac-
curately and no inversion issues that could substantially limit
the accuracy of the aerosol source retrievals in such well-
constrained situations were revealed. Particular emphasis
was placed on testing inversions of BC, OC and dust, since
we expect algorithm applications to be focused on observa-
tions of these types of aerosol.

3.2 Application of the algorithm for inverting satellite data

Naturally, satellite observations (as well as observations of
any other type) do not provide the same aerosol quantities,
coverage, and sampling as model simulations (see Fig. 8).
Accordingly, the inverse algorithm settings, as well as some
aspects of inversion concept, needs to be adjusted when in-
verting observations. Below we discuss in detail the appli-
cation of inverse modeling for retriving global aerosol emis-
sions from MODIS data, though many of the aspects consid-
ered are relevant to inverse modeling with any other satellite
data.

MODIS – the MODerate resolution Imaging Spectrora-
diometer aboard both NASA’s Terra and Aqua satellites, pro-
vides near-global daily observations of Earth over a wide
spectral range (0.41 to 15.0µm). These measurements are
used to derive spectral aerosol optical thickness and aerosol
size parameters over land and ocean (Kaufman et al., 1997;
Tanŕe et al., 1997; Remer et al., 2005). The primary aerosol
products avaiable include aerosol optical thickness at three
visible wavelengths over land and seven wavelengths over
ocean, aerosol effective radius, and fraction of optical thick-
ness attributed to the fine mode. The present study uses the
MODIS aerosol optical thickness product aggregated to 1◦

by 1◦ spatial resolution. The expected accuracy of MODIS
optical thickness is1τ=±0.03±0.05τ over ocean (Tanré et
al., 1997; Remer et al., 2005) and1τ=±0.05±0.15τ over
land (Kaufman et al., 1997; Remer et al., 2005).

3.2.1 Main issues for applying inverse modeling to the
MODIS data

First, to use MODIS observations as input to the inversion,
the adjoint formulation must include the conversion from
modeled aerosol mass into measured aerosol optical param-
eters. Accordingly, the operatorFp is rearranged into the
adjointF #

p and is used in the inversion according to Eqs. (54–
55). Since the aerosol optical thickness operatorFp sums the
contributions from different layers and aerosol types, its ad-
joint F #

p redistributes the total sum to the individual layers
and aerosol types.

Second, the MODIS globalτ (0.55) observations reported
at 1◦ by 1◦ need to be rescaled to the 2◦ by 2.5◦ GOCART
horizontal resolution.

Third, as mentioned above, satellite data provide less in-
formation than global model output. Specifically, a passive,
multi-spectral, polar-orbiting, cross-track scanning, single
view remote sensor such as MODIS has the following main
limitations (Kaufman et al., 1997; Tanré et al., 1996, 1997;
Remer et al., 2005).:

– no sensitivity to aerosol vertical distribution;

– global coverage only once in two days, only for cloud-
free conditions, and not over bright surfaces such as
deserts or in glint regions over water;

– limited capability to identify aerosol type based on
coarse/fine mode size discrimination only; no informa-
tion about particle shape or composition.

Indeed, the top-of-atmosphere radiances are sensitive
mainly to the total effective aerosol content in the atmo-
spheric column. But it is worth noting that coarse/fine mode
discrimination contains some particle type information, as
desert dust and maritime aerosols are dominated by coarse
mode particles, whereas biomass burning and urban pollu-
tion are dominated by fine mode particles (Dubovik et al.,
2002). In summary, the problem of retrieving all the aerosol
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Fig. 8. The diagram summarizing concepts of constraining global emission retrievals from satellite observations.

sources used by GOCART from MODIS observations is ill-
posed (see Fig. 8). From a formal viewpoint, the number
of observations is significantly smaller than a number of re-
trieved parameters.

3.2.2 Approaches to constraining aerosol emission retrieval
from MODIS data

Constraining inversion by a priori estimates

One way to assure retrieval uniqueness is to use a pri-
ori constraints, and search for a solution of equation sys-
tem Eq. (10) that satisfies both the measurements and the a
priori estimates (see illustration on Fig. 8). The solution of
Eq. (10) is always unique, since formally, the number of mea-
surementsNm+NS always exceeds the number of unknowns
NS . The solution can be obtained by the matrix inversion
of Eq. (13), or by Eqs. (45), that uses the adjoint transport
model. (To invert optical measurements, the adjoint trans-
port integration should be implemented, as in Eq. (54)). For
example, following the strategy commonly employed in as-
similations techniques, one can use the original GOCART
emissions as a priori estimates of unknown emissionsS∗.
With this approach, the a priori emission estimate errors are
equivalent to uncertainties in the emission modeling. The
potential drawback of this approach is that in some cases, a
priori emission estimates can over-restrict the freedom of the

algorithm to search for the actual solution. For example, if
the values of modeled emissionsS∗ in certain locations de-
part from real emissionsS

′
much more than expected (i.e. if

the errors ofS∗ are underestimated), then the solution given
by Eq. (13) or Eqs. (45) will not provide a solution having
the required departure at that location fromS∗ toward S

′
,

which will cause a bias in the results. The appropriate choice
of corresponding Lagrange multipliers in Eq. (45) (or covari-
ance matrices of a priori estimates in Eq. (13)) is supposed
to prevent the appearance of solution biases caused by incor-
rect a priori information. However, the optimum choice of
Lagrange multipliers (or covariance matrices of a priori es-
timates) is nontrivial, and having some criteria that indicate
problems in the assumedS∗ uncertainties (as well as in all
other assumptions) would be highly desirable. The value of
the quadratic form 29 obtained by the minimization could be
used as such an indicator. Specifically if all assumptions are
correct, the values of the form 29 given by Eq. (29) follow
a χ2 distribution with “m−n” degrees of freedom, the mean
minimum is (see detailed discussion by Dubovik, 2004):

〈

(

29
(

â
))

min

〉

=
K
∑

k=1

(

1f k

(

â
))T

(Ck)
−1 (1f k

(

â
))

−
(

1â
)T (Câ

)−1 (
1â
)

=
K
∑

k=1

Nk − Na, (57a)
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whereNk = rank(Ck) andNa = rank(Câ). Similarly, for 29
′

formulated for the joint system Eq. (10) formalized in the
same manner as Eq. (29b), one can write:

〈 (

29 ′
(

Ŝ
))

min

〉

=
2
∑

k=1

γ 2
k (1f k)

T (Wk)
−1 (1f k)

−
(

1Ŝ
)T
(

W
Ŝ

)−1
(

1Ŝ
)

=
(

N1 + N2 − N
Ŝ

)

ε2
1. (57b)

Here we in addition assumed statistical independence of
measurementsf ∗

1 and a priori estimatesS∗, i.e. N1 =
rank(W1), N2 = rank(W2) andN

Ŝ
= rank(W

Ŝ
)

Thus, for the retrieval of emissions from MODIS measure-
ments when a priori estimates are used, the following mini-
mum of 29

′
can be expected:

〈 (

29 ′
(

Ŝ
))

min

〉

=

Nobs
∑

j=1

(

τ ∗
j − τj

(

Ŝ
))2

+ γS2
∗

NS∗
∑

j=1

(

S∗
j − Ŝj

)2
≈ Nτ ε

2
τ .

(58)

Here we assumed the simplest covariance matrices for uncer-
tainties in MODIS measurementsτ ∗

j and a priori estimates

S∗: Cτ=Iε2
τ andCS∗=Iε2

S∗ . Correspondingly,γ 2
S∗=ε2

S∗/ε
2
τ .

Thus, Eq. (58) relates the value of the derived minimum
(

29
′
)

min
with expected error varianceε2

τ of the measure-

mentsτ ∗
j . Any significant difference between the derived

(

29
′
)

min
andNτ ε

2
τ indicates inconsistency in some assump-

tions. Such inconsistencies could include inadequate pre-
scription of the magnitudes and shapes of random error dis-
tributions in the measurements and a priori estimates. They
also can indicate the existence of systematic inconsistencies
(biases) between the model and observations that exceed the
random error magnitude.

The estimate ofε2
τ in Eq.(58) is written as the product

of Nobs measurement residuals
(

τ ∗
j − τ ∗

j

(

Ŝ
))2

and NS
∗

residuals of fitting a priori estimates
(

S∗
j−Ŝj

)2
. Accord-

ingly, if Nobs≪NS∗ , then the a priori residuals dominate the
value of the minimized form 29

′
, and the sensitivity of the

Eq. (58) criterion to the measurement fitting accuracy be-
comes weak. Therefore, if we try to retrieve aerosol emis-
sions from MODIS data (averageτfine (550 nm) andτcoarse
(550 nm) for each atmospheric column horizontally resolved
by the GOCART model) in exactly the same format as is as-
sumed in GOCART model (i.e. 16 aerosol particle types/size
with possible sources at different layers and allowing hourly
emission variability),Nobs exceedsNS by a factor of about a
hundred or larger. So the residual value shown by Eq. (58)
is dominated by the fitting of a priori estimates, And the re-
trieval is too dependent on the a priori assumptions. From
a practical point of view, it is difficult to ensure appropriate
sensitivity of the solution̂S to the MODIS measurements.

Simplifying the forward model

The goal of our study is to develop a global emission re-
trieval that is highly sensitive to the satellite observations
and minimally dependent on a priori assumptions. It is par-
ticularly appealing to explore the performance of an unsu-
pervised retrieval that distributes the global aerosol emission
based only on satellite observations and transport. Therefore,
instead of correcting a large number of parameters describing
aerosol emissions in GOCART with a relatively small num-
ber of MODIS observations, we consider constraining the re-
trieval by employing a simplified GOCART model, having a
reduced number of parameters to be retrieved. We adopted
the following simplifications (see illustration in Fig. 8).

– First, MODIS sees each location on the globe no more
than once in 24 h (except at high latitudes). Therefore,
to constrain the retrieval, the emission variability over
24 h was neglected.

– Second, MODIS characterizes each atmospheric col-
umn by only two parameters (τfine (550 nm) andτcoarse
(550 nm)). Therefore, we reduce the aerosol particle
type/size discrimination to only two mono-size particle
bins, one for fine mode and one for coarse mode aerosol.

– Third, we assume that all aerosol sources are located in
the surface level. Thus, we have reduced the number
of unknowns to only two parameters for each horizon-
tally resolved atmospheric column, so the number of
unknownNS is comparable to the number of MODIS
measurementNobs.

– Fourth, the measurement set becomes well determined
(Nobs>NS) if we further reinforce the constraints on
emission variability, by assuming constant emission
during several days. However, taking into account that
typical aerosol lifetime is about a week, one might ex-
pect that assuming constant aerosol emission over 24 h
might be sufficient for constraining the retrieval. In-
deed, subsequent MODIS observations of aerosol diffu-
sion in the region surrounding an aerosol source should
be sufficient to constrain the location and magnitude of
aerosol emissions from this source that occurred at the
beginning of the week. It is important to understand that
any simplifications of the forward model used in the re-
trieval algorithm can be justified only if those simplifi-
cations do not induce systematic errors (biases) exceed-
ing the measurement uncertainty. This condition can be
verified by numerical tests.

The possibility of non-unique solutions

In addition, it should be noted that our algorithm is based
on steepest descent iterations (see Eqs. 39–41), so it will not
collapse even for an ill-posed problem. Under these condi-
tions, the non-unique solution would depend strongly on the
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initial guess (e.g. Dubovik, 2004) in the sense that the al-
gorithm would simply correct the emission initial guess as
needed to improve agreement between the model and obser-
vations. Similarly, in some situations such non-unique so-
lutions can still provide useful information, especially when
only an identifiable sub-group of the retrieve parameters is
non-unique, and the remaining sub-space of the retrieved so-
lution is stable and independent of the initial guess. For ex-
ample, in subsequent Sections we will consider the retrieval
of emissions into several vertical layers. Since MODIS
data do not have sensitivity to aerosol vertical distribution,
MODIS data cannot appropriately constrain the retrieval of
emission vertical variability.

Nevertheless, it is sometimes possible for the algorithm to
place emissions in higher atmospheric layers when it helps
to fit the measurements and, therefore, may avoid producing
some strong biases. For example, if the aerosol is really emit-
ted into higher altitudes (e.g. smoke from forest fires) and is
transported according to the distribution of winds at higher
altitudes, then modeling the transport of such an aerosol
event may not be satisfactory if the emissions in the model
are restricted to the lowest atmospheric layer. On the other
hand, in other situations, non-stability of the retrieved aerosol
emission vertical distribution may not be a serious issue, for
example, if only the vertical distribution of the emission is
uncertain, whereas the total emission into atmospheric col-
umn is stable. This retrieved emission field can be satisfac-
tory, taking into account that the emissions vertical distribu-
tion is often not critical, since strong vertical mixing occurs
in the planetary boundary layer.

To understand the potential of our approach for retrieving
aerosol sources from MODIS observations, we will exam-
ine the impact of MODIS data limitations, test the effect of
the proposed simplifications on modeling accuracy, and test
retrieval performance for different scenarios: retrievals con-
strained by a priori data and/or reduced aerosol emission pa-
rameterizations, and unconstrained retrievals dependent on
the initial guess.

3.3 Inverse algorithm testing

A series of numerical tests was performed to verify and il-
lustrate how the algorithm inverts the modeled data in a “no
error” environment, i.e., when the inverted aerosol fields are
fully consistent with the model, and neither measurements
nor model errors are present. We also tested the retrieval
sensitivity to the presence of random measurement noise.

We tested the possibility of retrieving emissions from
MODIS-like remote sensing data that lack information about
aerosol vertical distribution and horizontal diurnal variabil-
ity of aerosol amount and type. These tests are also used
for evaluating the effects of reducing the number of aerosol
types and limiting the temporal and spatial emission variabil-
ity, adopted as a simplification of the GOCART model for
constraining emission retrievals.

3.3.1 Sensitivity of the retrieval to columnar aerosol prop-
erties (no information on vertical aerosol distribution)

The algorithm was applied to the global “synthetic measure-
ments” ofτ (0.55) – optical thickness at 0.55µm for a sin-
gle aerosol type. Two scenarios were employed for restrict-
ing emission variability: (i) the emissions are constant over
24 h; (ii) the emissions are constant over one week. The
tests were performed for the same time period as the one
chosen for inverting actual observations, i.e. the meteoro-
logical fields corresponding to the last two weeks of August
2000 were used for these tests. For simplicity the aerosol
was assumed in the test to be a single, BC component, and
the “synthetic measurements” were simulated as BC optical
thicknessτBC(0.55). Aerosol chemical transformations in-
cluded in GOCART model were neglected. The test aerosol
emissions where assumed equal to the total of BC and OC
emissions used in the GOCART model for the same two
weeks. The optical thickness was modeled based on the GO-
CART total atmospheric column aerosol mass, by adopting a
density of 1 g/cm3), deriving the aerosol volume and assum-
ing that the aerosol has the same optical properties as fine
mode smoke from Zambian savanna burning (Dubovik et al.,
2002). For constraining aerosol emission vertical variability,
two scenarios were used: (i) aerosol sources were restricted
to the near-surface layer; (ii) aerosol sources were allowed
within the 10 lowest aerosol layers (i.e. approximately below
2 km, as suggested by recent analysis of lidar observations
of biomass burning emissions by Labonne et al., 2007). For
constraining horizontal variability of emissions we tested two
scenarios: (i) aerosol sources were restricted to the land sur-
face; (ii) aerosol sources were allowed everywhere over land
and ocean. The retrieval was initialized by in the tests as fol-
lows: (i) initial guess for emission estimates was set to “zero
emissions” (no sources). We chose this setting because if re-
trieval is non-unique in some situations, using zero emissions
should not create any false emission. With this initialization,
the algorithm is expected to create sources only where they
are required to fit the observations. The same retrieval initial-
ization is used in all subsequent tests, unless specified other-
wise.

After conducting a large series of the tests, we selected
the following algorithm setting for use in follow-up tests and
applications to actual data:

1. The emissions are constant over 24 h. The retrieval with
this assumption provided a better fit toτ (0.55) than
when emissions were constrained over one week. Also,
this assumption did not produce any false weekly vari-
ability in the retrieved emissions that we could detect.

2. The aerosol sources are allowed within the 10 lowest
aerosol layers. The test results were not substantially
different when the retrievals constrained to the lowest
or the 10 lowest atmospheric layers. Nevertheless, we
favor the second scenario, because it provides a slightly
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Fig. 9. Inversion test for retrieving daily emissions of fine-mode BC component from two weeks of simulated observations (August 18-30,
2000). Results are shown here only for one day, August 28, 2000.(a) Assumed BC aerosol source distribution (emissions units: 107 kg/day)
(b) Retrieved BC aerosol source distribution.(c) Initial global BC aerosol optical depth distribution.(d) Global BC aerosol optical depth
distribution simulated from retrieved sources. Optical depth is given as 0.55 micron total column values.
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Fig. 10. Inversion test for retrieving daily emissions of a coarse-mode dust component from two weeks of simulated observations (August
20-28, 2000). Results are shown here only for one day, August 28, 2000.(a) Assumed dust aerosol sources (emissions units: 108 kg/day).
(b) Retrieved dust aerosol source distribution.(c) Initial global dust aerosol optical depth distribution.(d) Global dust aerosol optical depth
distribution simulated from retrieved sources. Optical depth is given as 0.55 micron total column values.

better fit to theτ (0.55) field, and also because this as-
sumption provides additional freedom in vertical distri-
bution of emissions without any negative impact on the
horizontal distribution of sources.

3. The aerosol sources are allowed everywhere over land
and ocean. All our tests showed that this assumption

does not produce significant false sources over ocean
when “synthetic measurements” were simulated using
emissions over land only. On the other hand, the as-
sumption seems to be more practical, since some types
of aerosols have sources over ocean.
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Fig. 11. Actual satellite sampling for August 28, 2000. (a) Global MODIS measurements of total optical depth. (b) MODIS-observed
fine-mode optical depth.

Figure 9a–d illustrates the retrieval results for one spe-
cific day, 28 August. Figure 9a–b shows that the total emis-
sion produced in the first 10 layers agrees well with the “as-
sumed” emissions. Figure 9c–d shows that this retrieved
emission results inτ (0.55) fitting accurately the “synthetic
measurements”. Since the retrieval uses zero emissions as
the emission estimate initial guess, the agreement is espe-
cially encouraging. There are minor differences between the
prescribed and retrieved emissions in Fig. 9a–b, such as the
appearance of minor aerosol sources over the ocean. Because
the forward and backward aerosol mass and optical thickness
were simulated under the same assumptions without adding
any model error or other perturbations, these differences can
only be explained by an insufficient number of retrieval it-
erations or by the effect of numerical errors and instabili-
ties inherent in transport model simulations (Vukicevic et al.,
2001).

The accuracy of optical thickness fitting for the entire pe-
riod of the test is was characterized by two residual values:

σabs=

√

√

√

√

1

Ni

∑

(j=1,...,Nj )

(

τ ∗
i − τi(Ŝ)

)2
, (59a)
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τ ∗
k
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,

(τ ∗
k ≥ 0.05), (59b)

where the absolute standard deviationσabswas simulated us-
ing all locations and times and the relative standard devia-
tion σrel was simulated using only points whereτBC(0.55)
was not smaller than 0.05. The quantityσabs is rele-
vant to the minimized quadratic form. Specifically, as-
suming the measurement covariance matrix isC...=ε2

... I ,
σabs corresponds to a first term in the quadratic form given
by Eq. (58). This assumption was used in our inversion
tests. The valueσrel is introduced to characterize the ac-
curacy with which aerosol events having high loading are
fit. After 40 iterations the residuals wereσabs≈0.005 and
σrel≈9%, i.e. the fitting accuracy achieved is below the ex-
pected MODIS measurement accuracy (1τ=±0.03±0.05τ
over ocean and1τ=±0.05±0.15τ over land). It should be
noted that Fig. 9a–b shows the total mass emitted into the
first 10 atmospheric layers. Unfortunately, the exact vertical
structure of the emissions was not reproduced well, because
the observations ofτBC(0.55) do not provide any vertical in-
formation.
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Fig. 12. Inversion test for retrieving daily emissions of a fine-mode BC component, using actual MODIS data sampling for August 18-30,
2000. Results are shown here for the two week average of retrieved daily emissions. (a) Two week average of assumed aerosol source
distribution from GOCART model (emissions units: 107 kg/day). (b) Two week average of the retrieved aerosol source distribution for the
same period. (c) Two week average of initial daily distributions of global aerosol optical depth. (d) Two week average of daily distributions
of global aerosol optical depth simulated from retrieved sources.

Figure 10a–d shows the corresponding results for the
coarse mode aerosol test, where desert dust emissions were
retrieved from simulated measurements of the desert dust op-
tical thicknessτDust(0.55). For simplicity, instead of seven
size-resolved components usually used in GOCART model,
desert dust was treated here as a single aerosol component
with particle radius 2.3µm. This size corresponds to the
median size of the coarse mode climatological size distribu-
tion model derived by Dubovik et al. (2002) from multi-year
AERONET observations of desert dust in Saudi Arabia. This
optical model was also used for calculations of optical depth
from the aerosol mass provided by the GOCART model. The
test was conducted using the same meteorology and desert
dust emission values assumed in the GOCART model for the
two weeks in August 2000. The fitting residuals achieved af-
ter 40 iterations for this test were:σabs≈0.01 andσrel≈15%.
These values are slightly higher that those obtained for the
BC aerosol test. This is can be explained by the fact the initial
residuals were higher, since we used the same zero emissions
initial guess, but the magnitude of the prescribed emissions
for desert dust is higher than for BC (compare Figs. 9a and
10a). Some differences in the retrieval convergence can also
be attributed to differences in aerosol removal processes, for
example gravitational settling is higher for larger particles.

In a contrast to the BC and other fine mode aerosols that
can be emitted within the boundary layer but above the sur-
face, an additional constraint on the retrieval is that coarse
mode desert dust and sea salt aerosol are emitted only into
the surface level.

3.3.2 Retrieval sensitivity to input data time and space sub-
sampling

In the tests illustrated by Figs. 9–10, the synthetic observa-
tions were available at each global location, although as men-
tioned earlier, this is not the case for actual MODIS data. The
observations for any single day have gaps; Fig. 11 shows
τfine(0.55) provided by MODIS for August 28, (which can
be compared to Fig. 9c). To analyze the effects of gaps in
the MODIS data on the global emission retrieval, another
test was performed, where the synthetic measurements of
τ (0.55) where sub-sampled in exactly the same way as the
real MODIS data for same observation period.

Figure 12a–d illustrates the results of this test for the BC
emissions retrieval. The test is analogous to the one shown
on Fig. 9a–d, the only difference being that theτBC(0.55)
used in Fig. 12a–d had exactly the same coverage as the ac-
tual MODIS observations collected during the same time pe-
riod. The convergence of the retrieval process was slightly
slower than for the test whereτBC(0.55) had no gaps. Af-
ter 40 iterations, the fitting residuals wereσabs≈0.009 and
σrel≈12%. These numbers are still lower than the expected
MODIS measurements accuracy and, as can be seen from
Fig. 12c–d, the fittedτBC(0.55) reproduces the “synthetic
measurements” ofτBC(0.55) rather well. The retrieved emis-
sions shown in Fig. 12b are also in good agreement with the
assumed emission. However, the agreement is slightly poorer
than the emission retrieval fromτBC(0.55) with no gaps, il-
lustrated in Fig. 9.
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Fig. 13. Inversion test for retrieving daily emissions of a fine-mode BC component, using actual satellite sampling during period August
18-30, 2000, and perturbed by random noise. Results are shown here for the two week average of retrieved daily emissions. (a) Two week
average of assumed daily aerosol source distributions assumed in the GOCART model. (b) Two week average of retrieved daily aerosol
source distributions, when the variance of added random noise wasσ = 0.02 + 0.04τ . (c) Two week average of retrieved aerosol source
distribution, when the variance of added random noise wasσ = 0.03 + 0.05τ over ocean andσ = 0.05 + 0.15τ over land (emissions units:
107 kg/day).

Figure 13 shows the effect on the retrievals of perturbing
the measurements with random noise. Comparing Fig. 13
with Figs. 9 and 12, one can see that the main pattern of
the BC emissions distribution is recovered in the presence of
significant (Fig. 13, middle panel) and even high (Fig. 13,
lower panel) random noise. The retrieval is stable for ma-
jor emission hotspots. However, minor sources are strongly

contaminated by false emissions appearing (e.g. over ocean)
as result of the propagation of random measurement error in
the retrieval results. Fitting accuracy was also significantly
affected by random noise: after 40 iterations, fitting resid-
uals wereσabs≈0.024 andσrel≈36% for the results shown
in the middle panel andσabs≈0.038 andσrel≈58% for the
results shown in the lower panel. This demonstrates that
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Fig. 14. Inversion test for retrieving daily emissions of a fine-mode BC component from two weeks of simulated observations (August 18-30,
2000). Results are shown here only for one day, August 28, 2000. (a) Assumed BC aerosol source distribution (emissions units: 107 kg/day).
(b) Retrieved BC aerosol source distribution. (c) Initial global BC aerosol optical depth distribution. (d) Global BC aerosol optical depth
distribution simulated from retrieved sources. Optical depth is given as 0.55 micron total column values.

the data contain sufficient redundancy to identify the random
noise contribution to the observations. It should be noted that
following the discussion in Sect. 3.2.2, the fitting residuals
should be expected to be close to zero even in the presence
of random noise because in our test,Nobs is equal toNS (or
is even smaller, in tests with the gaps). However, the both
σabs andσrel are always noticeably larger than zero (even in
“no error” tests). This can be explained by the fact that we
allow only limited number of iterations and, therefore we do
not reach the actual minimum of the residual. The significant
increase of theσabsandσrel in the test with random noise in-
dicates there is some redundancy in the data that does allow
exact fitting of noisy data, as expected ifNobs=NS . Since the
model distributes the emitted aerosol using predetermined
meteorological fields and processes, it cannot reproduce ar-
bitrary distribution of aerosols.

The desert dust emission retrieval, fromτdust(0.55) sub-
sampled according to the MODIS observations, was less suc-
cessful than BC retrieval. Figure 14a–b shows that the re-
trieval did not adequately reproduce the assumed “test desert
dust” emissions. For example, some patterns of strong desert
dust emissions in the Western Sahara do not appear correctly
in the retrieved emission field. In this case, theτdust(0.55)
observations do not sufficiently constrain the retrieval over
the areas where the strongest desert dust sources are ex-
pected (Ginoux et al., 2001), because MODIS does not pro-
vide aerosol retrievals over bright desert surfaces (Kaufman
et al. 1997, Remer et al., 2005; Hsu et al., 2004). As a result,
the prescribed and retrieved desert dust emissions produce
virtually identicalτdust(0.55) (see Fig. 14c–d), despite some

false desert dust source locations in the retrieval such as over
the Atlantic Ocean near the western Africa coast). The val-
ues of the fitting residuals wereσabs≈0.006 andσrel≈12%.
It should be noted that these values are actually lower than
the residuals obtained in the tests with data that was not sub-
sampled. The explanation is that the sub-sampled data set for
the coarse aerosol is not sufficiently redundant, and therefore
can be well fit with a coarse aerosol source distribution dif-
ferent from the real one. In another words, the solution is
non-unique in this situation sinceNobs≪NS .

3.3.3 Retrieval sensitivity to aerosol type

As explained earlier, to constrain the global emission re-
trieval with imperfect data, we simplified the GOCART
model to include only two particle types: fine and coarse
mode aerosols. Several numerical tests were performed to
evaluate the consequences of this limitation.

We focus on invertingτfine(0.55), because fine mode
aerosol covers a range of aerosol types. GOCART assigns
sulfate, OC and BC aerosols exclusively to the fine mode,
along with minor fractions of desert dust and sea salt. Fig-
ure 15a–d illustrates the results of the test where modeled
τfine(0.55) was set to the sum of the optical thicknesses of
sulfate, BC and OC aerosols simulated using original GO-
CART model. Then the modeledτfine(0.55) were inverted
assuming a single fine mode aerosol. As before, aerosol
mass was converted to optical thickness assuming a generic
BC component, and we used the same aerosol removal pro-
cess parameterization as GOCART uses for BC. Note that the
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Fig. 15. Inversion test for for retrieving daily emissions of a three-component fine-mode aerosol distribution using a single, fine-mode
aerosol model. Results are shown here for the two-week average of retrieved daily emissions (August 18-30, 2000). (a) Two week average
of the assumed three-component fine-mode aerosol source distribution, from GOCART model simulations (emissions units: 107 kg/day).
(b) Two week average of the retrieved single-component fine-mode aerosol source distribution for the same period. (c) Two week average
of initial daily global aerosol optical depth distribution of three-component fine-mode aerosolτ (0.55)=τBC(0.55)+τOC(0.55)+τsulfates(0.55).
(d) Two week average daily global aerosol optical depth distribution, simulated from retrieved daily sources of the retrieved single-component
fine-mode aerosol.

data were not sub-sampled for these tests, because such data
have higher redundancy, making the inversion more sensitive
to model simplification. As can be seen in Fig. 15a–d, the
results of using a simplified single-fine-mode aerosol look
encouraging. For example, the retrieved fine mode aerosol
source retains all the major features of the original BC, OC
and sulfate sources (Fig. 15a–b). Because sulfate is formed
in the atmosphere via photochemical oxidation of its precur-
sor gases, the sulfate source is not confined to land. The
differences between the assumed and retrieved source mag-
nitudes and shapes arise because the algorithm attempted to
reproduce the combination of BC, OC and sulfates with op-
tical properties for a single BC aerosol component. Never-
theless, as Fig. 15c–d shows, the simplified aerosol model
performs well; the fitting errors for this test areσabs≈0.02
(andσrel≈25%).

These values are higher than in previous tests, but still
below the expected accuracy of aerosol optical thickness
provided by MODIS retrievals. This suggests that even a
simplified transport model using a single fine mode aerosol
with no further aerosol type discrimination can reproduce the
global observations ofτfine(0.55) at the accuracy level of the
MODIS observations. Note that the calculation of residu-
als (as well as the entire retrieval) was based on the distri-
bution of τfine only, and the presence of a significant coarse
mode fraction could not mask the possible difficulties in fit-
ting τfine.

Another test (not illustrated here) was performed for evalu-
ating the behavior of under-constrained retrievals using a ver-
sion of the algorithm that includes all the GOCART chemi-
cal processes and retrieves emissions for hydrophilic and hy-
drophobic BC and OC aerosols simultaneously. As stated
above, such retrievals represent an alternative to using the
simplified single component aerosol model. However, an
under-constrained retrieval does not yield a unique solution,
so the value of such retrievals is limited. The numerical test
showed that if the “synthetic measurements” ofτfine(0.55)
were composed of BC and OC only, this retrieval provides
a better fit than the retrieval based on a single fine mode
aerosol. The fitting errors were:σabs≈0.005 andσrel≈15%,
whereas the retrieval with a single fine mode aerosol pro-
duced fitting errorsσabs≈0.01 andσrel≈20%. However, as
expected, the partitioning between BC and OC emissions
was strongly dependent on the initial guess, so this approach
is not clearly preferred to the retrieval based on the single
component aerosol. Thus, these results show that if discrim-
ination by particle type is required, the retrieval must include
substantial a priori constraints in addition toτfine(0.55) mea-
surements.

Retrieving coarse mode aerosol emissions is simpler, as,
in the GOCART model, only desert dust and sea salt aerosol
types are involved, and dust is emitted exclusively over land
whereas sea salt is emitted over water. These properties can
be used as natural constraints. Tests show that sea salt and
desert dust emissions can be reasonably well discriminated
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Fig. 16. Inversion of MODIS fine-mode optical depthτfine(0.55) measured during August 18-30 2000. Results are shown here for the
two week average of retrieved daily emissions (August 18-30, 2000). (a) Two week average of retrieved aerosol source distribution with
emissions constrained to land only. (b) Two week average of retrieved aerosol source distribution with emissions allowed over both land and
water (emissions units: 107 kg/day). (c) Two week average of MODIS global measurements ofτfine(0.55) observed during August 18-30,
2000. (d) Two week average ofτfine(0.55) simulated using retrieved daily emissions retrieved over both land and water, assuming a single
fine-mode aerosol model.

even if a single coarse mode aerosol is assumed. However,
the sea salt retrieval appears very sensitive to uncertainties in
the inverted data (e.g. the random noise) because the typical
optical thickness of sea salt is very low.

We also performed tests verifying the improved results ob-
tained using a priori constraints in the retrieval. However, the
accuracy of the results depends upon the quality of the a pri-
ori estimates. Tests showed that constraints on emission time
and space variability can be useful for inverting data that have
coverage gaps. Some illustrations are given in next Section.

3.4 Inverting MODIS observations

We applied the inversion algorithm to global MODIS mea-
surements of fine mode aerosol optical thicknessτfine(0.55)
between 18 and 30 August 2000. This is a period of high
biomass burning activity, so performing the inversion was
expected to illustrate how this approach can constrain BC
and OC emissions, that are currently rather uncertain (Sato
et al., 2003). For the test, the MODIS Level 3, Collection 4
τfine(0.55) global 1◦ by 1◦ data was rescaled to the 2◦ by 2.5◦

GOCART horizontal resolution. Where MODIS retrievals
were available for the same day over more than 90% of a 2◦

by 2.5◦ GOCART grid cell, the average value of available
τfine(0.55) was assigned to the entire 2◦ by 2.5◦ cell. Where
MODIS data were available for less than 90% of a GOCART
grid cell, the MODIS data in that cell were not used in the
inversion.

3.4.1 Retrieval emissions of fine mode aerosol

Figure 16a–d shows the results of the retrieval assuming a
single fine mode aerosol (τfine(0.55)); the BC aerosol model
was used, as was done in the numerical tests). The re-
trieved daily emissions shown in Fig. 16a–b were averaged
over the entire time period considered. Figure 16c–d com-
pares averaged MODISτfine(0.55) observations with the re-
trieved values. The global instantaneous observation fitting
accuracy, rescaled to GOCART resolution, wasσabs≈0.04
andσrel≈48% after 40 iterations. Thus,τfine(0.55) simulated
from the retrieved sources reproduces most of the spatial and
temporal tendency in the MODIS observations. It is also im-
portant to note than even when the retrieved emissions are not
restricted to the land surface, the distribution of main aerosol
sources does not significantly change (compare Fig. 16a and
b). The retrieved emissions (Fig. 16a–b) may be attributed
largely to BC, OC and Sulfates. They may also include some
fine mode component dust and possibly sea salt emissions,
although these sources are likely to be small, and have rather
predictable spatial distributions. Indeed, emissions retrieved
over oceans have relatively small magnitudes and are most
likely sea salt. (Figure 13 also suggests that random noise
can produce small magnitude sources.)

The separation of BC, OC and Sulfate sources is particu-
larly difficult because the emissions of these species are com-
parable in magnitude, and are often associated with the same
biomass burning, fuel combustion and industrial sources
(Chin et al., 2002). Therefore, to help in interpreting the
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Fig. 17. GOCART simulated fine-mode components, averaged over August 18-30, 2000. (a) BC + OC emissions. (b) Sulfate emissions +
atmospheric production. (c) BC + OC + sulfate sources (emissions units: 107 kg/day).

retrieval result, we display in Fig. 17 the BC, OC and Sulfate
sources assumed in GOCART for August of 2000. In addi-
tion, Fig. 18 shows the total carbon emission, obtained from
a combination of satellite data and biogeochemical modes
by van der Werf et al. (2004), the same data upon which the
default BC and OC sources in the GOCART model (shown
at upper panel of Fig. 17) are based. Comparing Fig. 16a–
b with Figs. 17–18, the global placement of the major fine
aerosol sources in the retrieved emission field is in general
agreement with known sources of carbon and sulfates. At
the same time, the exact shapes and magnitudes of the main
retrieved emission patterns (Fig. 16a–b) differ from those as-
sumed in the GOCART model (Fig. 17). According to the
main assumption of our approach, these differences should
reflect primarily the mismatch between the global aerosol
emissions used in modeling and the more realistic emissions
distribution that is needed for better agreement with satel-
lite observations, though other factors, including limitations
of both measurements and modeling, may be involved (see

further discussion of our approach limitation in Sect. 3.5).
This assumption is recognized in the modeling community
(e.g. Kinne et al., 2003), and many efforts are being made
at using observations to improve emissions modeling accu-
racy. However, the satellite observations used contain infor-
mation only about monthly variability, whereas the emission
retrieval approach considered here could be used to derive
emission on daily time scales. For example, standard output
of the GOCART model, when the standard emission fields of
BC, OC and sulfates are used, produces much higher residu-
als (σabs≈0.12 andσrel≈170%)) than the output of the sim-
plified single-fine-mode-aerosol GOCART version retrieval
(σabs≈0.04 andσrel≈48%).

3.4.2 Coarse mode aerosol emissions retrievals

Figure 19a–d show the results obtained from the MODIS
coarse mode aerosol optical thicknessτcoarse(0.55) inversion.
The retrievals were performed assuming a single aerosol
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Fig. 18.Monthly carbon emissions (g/m2) for August 2000 obtained by combining satellite hotspots and burned area with a biogeochemical
model (Van der Werf et al., 2003).
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Fig. 19. Inversion of MODIS coarse-mode optical depth (τcoarse(0.55)) measured during August 18-30 2000. Results are shown here for
the two week average of retrieved daily emissions (August 18-30, 2000). (a) Two week average of retrieved aerosol source distribution with
emissions constrained to land only. (b) Two week average of retrieved aerosol source distribution with emissions allowed over both land and
water (emissions units: 108 kg/day). (c) Two week average of MODIS global measurements ofτcoarse(0.55) observed during August 18-30,
2000. (d) Two week average ofτcoarse(0.55) simulated using retrieved daily emissions retrieved assuming a single coarse-mode aerosol
model.

component, corresponding to the desert dust aerosol model.
The desert dust and sea salt emission distributions used by
GOCART for the same time period are shown in Fig. 20.
Comparing Figs. 19a–b and 20, the major expected desert
dust sources can be identified in the retrieved emission field.
However, the most intense sources (e.g. over the Saharan
Desert) seem to be underestimated, and are more spread out

than expected. As discussed earlier, the main cause of these
uncertainties is the lack of MODIS observations over deserts
(see Fig. 19c). Therefore, even though theτcoarse(0.55) fit-
ting criteria have low values (σabs≈0.04 andσrel≈48% af-
ter 40 iterations), the desert dust retrieval is less robust than
the τcoarse(0.55) inversion. Also, some likely false sources
appear over the Atlantic Ocean near the western coast of

www.atmos-chem-phys.net/8/209/2008/ Atmos. Chem. Phys., 8, 209–250, 2008



238 O. Dubovik et al.: Retrieving global aerosol sources from satellites

 

Fig. 20. Averaged (August 18-30, 2000) aerosol sources of desert dust and sea salt (emissions units: 108 kg/day) assumed in the GOCART
model: Upper panel shows desert dust emissions; Middle panel shows sea salt emissions; Lower panel shows total desert dust + sea salt
sources.

Africa. These sources show highτcoarse(0.55) concentra-
tions that cannot be explained by desert dust transport from
Saharan sources. At the same time, high biomass burn-
ing aerosol concentrations were transported from Africa, as
can be seen in Fig. 16. Given the bulk mode treatment of
biomass burning aerosols by GOCART, one can speculate
that τcoarse(0.55) observed over that area could be at least
partially attributed to coarse mode biomass burning aerosol.
The apparent agreement between the retrieved sea salt source
(we attribute all coarse mode aerosol emissions over ocean to
sea salt) and that assumed by the GOCART model (Fig. 20)
is rather dubious. It probably can be explained by typically
low marine aerosol loading (Smirnov et al., 2003), that is of-
ten at the level of MODIS retrieval uncertainty. Also, any
cloud contamination in the MODIS data is falsely identified
by our retrieval as aerosol. Such contamination is common
over the tropical oceans. At the same time, both the re-
trieval (Fig. 16b) and the GOCART assumptions (Fig. 20)

show pronounced sea salt emissions over the roaring forties
region in the Southern Hemisphere.

We also note that the retrieved emission patterns in
Fig. 19b exhibits unrealistically high variability. Indeed, the
coarse mode aerosol emission variability is usually related to
wind speed variations (e.g. see Ginoux et al., 2001). Never-
theless, it is clear that the emissions shown in Fig. 19b are
much more heterogeneous than those assumed in the GO-
CART model (Fig. 20). We therefore tested the possibility
of constraining emission timing and horizontal variability by
applying a priori limitations on the second derivatives of the
retrieved emissions with respect to time horizontal coordi-
natesx andy (the formulation is given in Sect. 2.6). Fig-
ure 21 shows that applying such a priori constraints, espe-
cially on spatial variability, helps to eliminate some unreal-
istically strong emissions over ocean. However, the fitting
residuals are higher (σabs≈0.06 andσrel≈61% after 40 itera-
tions) when the a priori constraints are applied.
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Fig. 21.Effects of time and horizontal continuity smoothness constraints on global coarse-mode source retrievals.(a) Results when only the
time continuity constraints were applied.(b) Results when only the horizontal (xy) aerosol emission variability smoothness constraints were
applied.(c) Results when both the time and horizontal variability constraints were applied (emissions units: 108 kg/day).

3.5 Issues and perspectives

We have shown through numerical tests and applications
to real satellite data that the algorithm developed here can
retrieve useful information about the global distribution of
aerosol emissions without applying excessive a priori con-
straints on the location and strength of aerosol sources. Fur-
ther, one can expect that applying the algorithm to long
time series of satellite observations should provide a global
aerosol emissions climatology that can help to improve our
understanding of aerosol climate forcing. Although we have

analyzed only two weeks of observations, the algorithm can
easily be applied to longer sets of observations. We illustrate
this with 6 months ofτfine(0.55) MODIS data from 2001.
Figure 22 shows the global distribution of fine mode aerosol
emissions for February, May and July of that year. The dy-
namics of global aerosol emissions are apparent, for exam-
ple, as higher Central and Southern African emissions dur-
ing February and July, compared to May. This is a mani-
festation of biomass burning seasonality. Also, the retrievals
show high emission over the Indian sub-continent in Febru-
ary, in agreement with known high levels of pollution in this
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Fig. 22. Monthly averages of retrieved, daily fine-mode global aerosol sources.(a) February 2001.(b) May 2001.(c) July 2001 (emissions
units: 107 kg/day).

region during winter (e.g., DiGirolamo et al., 2004). The re-
trievals in Fig. 22 are mainly illustrative; analysis of longer
time series, and refinements to the algorithm, are planned.

3.5.1 Limitations of the satellite observations

Obviously the quality of these global emissions retrievals
depends on MODIS aerosol data quality. Specifically, as
discussed earlier, MODIS data do not provide information
about aerosol property vertical variation, and do not distin-
guish aerosol types by chemical composition (e.g. BC, OC
and sulfates). The lack of MODIS retrieval reliability over
bright surfaces seriously limits the outcome of desert dust
emission retrievals. The accuracy of MODIS optical depth
retrievals overall also imposes limitations on global emission
retrievals. For example, the inversion ofτfine(0.55) produced
measurement fitting errors (σabs≈0.04 andσrel≈48%) that
are as large as MODIS data accuracy, and random measure-
ment noise is not the only limitation. Indeed, the emissions
obtained from actual MODIS data (Fig. 16) look significantly
more spatially homogeneous than the results of the test re-

trieval in Fig. 13 (lower panel). This suggests that, in addi-
tion to a component of more heterogeneous random noise,
significant systematic differences between MODIS observa-
tions and GOCART modeling results exist (see also Sec-
tion 3.5). Our numerical tests indicate that errors of this size
would not allow us to benefit fully from atmospheric mod-
eling refinements. Indeed, in the numerical tests shown in
Fig. 15a–d,τfine(0.55) composed of BC, OC and sulfates in
the GOCART model simulation was fitted with noticeably
higher accuracy (σabs≈0.02 andσrel≈25%) when a single
fine mode aerosol was assumed, neglecting the differences in
aerosol chemical composition. Note that the quoted MODIS
aerosol optical depth uncertainty applies to the total column,
whereas some decrease in accuracy may be expected when
τtotal(0.55) is divided into theτcoarse(0.55) andτfine(0.55)
quantities used in the present study (Remer et al., 2005; An-
derson et al., 2005). Fortunately, a number of improvements
in the operational MODIS aerosol algorithm are under de-
velopment (Remer et al., 2005), including more reliable re-
trievals over bright surfaces (Hsu et al., 2004).
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The global emission retrieval can also be applied to data
from other aerosol satellite sensors, such as, MISR (Diner et
al., 1998; Kahn et al., 2005), POLDER (Deschamps et al.,
1994; Deuze et al., 2001), APS (Mishchenko et al., 2004,
2007), and CALIPSO (Poole et al., 2003). For example,
the MISR sensor has multi-angle measurement capability
that generally allows a larger number of aerosol properties
to be retrieved, including some information about aerosol
size and shape, and also produces more robust optical thick-
ness retrievals over bright surfaces (e.g. Kahn et al., 2005;
Martonchik et al., 1998). Moreover, satellite instruments
with multi-angular polarimetric capabilities have additional
sensitivity to particle size distribution and the real part of
the refractive index (Mishchenko et al., 2004, 2007). So
satellite multi-angle polarimeters may provide aerosol source
chemical composition discrimination to hope constrain the
global retrieval. For example, the Aerosol Polarimetry Sen-
sor (APS), which is part of currently planned Glory mission
(Mishchenko et al., 2007) will perform sensitive polarimet-
ric measurements (over a wide spectral range and with high
angular resolution), and is expected to provide such detailed
information as fine and coarse mode aerosol refractive in-
dex and particle shape. The data provided by space borne
lidar on CLAIPSO satellite (Poole et al., 2003) constrain
aerosol vertical distribution. Note, however that unlike the
MODIS, MISR and POLDER passive imagers that provide
two-dimensional global coverage, CLAIPSO and APS are
limited to extremely narrow cross-track swaths only a single
pixel wide, often referred to as jail-bar coverage.

To maximize the benefits from available satellite aerosol
measurements, the global inversion should utilize both the
detailed aerosol information provided by CLAIPSO and APS
together with less accurate but more extensive observations
by satellite imagers. Using data from multiple satellite sen-
sors as input to the global inversion should provide better
spatial and temporal data coverage compared to the cover-
age of any single sensor. For example, the MODIS instru-
ments on the Terra and Aqua satellites (Remer et al., 2006)
observe the same geographic locations in the late morning
and early afternoon, offering the global inversion some in-
formation about aerosol emission diurnal variability.

The global inversion can also include ground-based net-
work observations, such as those from the AERONET sun-
photometer network (Holben et al., 1998), and the EAR-
LINET lidar network (Boesenberg et al., 2003). Unlike satel-
lite observations, these networks do not provide global cov-
erage, but they offer more accurate, high-temporal-resolution
information at a number of global locations that can be used
in the global inversion. The benefits of these data combi-
nations will probably be greatest when, unlike the exam-
ples given here, global inversions having high temporal and
spatial resolution are required. Thus, the global aerosol
inversion can also be considered a tool for synthesizing in-
formation from multiple measurement types.

3.5.2 Modeling accuracy limitations

As discussed in Sect. 2, our inversion approach finds an op-
timal solution using known measurement error statistics, un-
der the assumption that the model errors are much smaller
than those of the measurements, so the effect of the model
errors can be neglected. This assumption is employed in
most inverse methodologies, and it can easily be justified in
many applications. However, it is not yet possible to per-
form global transport modeling with the same level of cer-
tainty as radiative modeling, for example, so the effects of the
transport modeling uncertainties on the retrievals may not be
negligible. Many factors may contribute to transport model-
ing uncertainty. For example, the atmospheric temperature,
pressure, wind distributions, and other meteorological fields
inputed to the models are known with limited accuracy. Sig-
nificant uncertainty in the four-dimensional distribution of
clouds affects the aerosol modeling, e.g. via uncertainties in
aerosol transport by cloud convection. The aerosol removal
processes employed by the models are also known with only
limited accuracy, and aerosol-cloud interactions can be de-
scribed only qualitatively at present. The temporal and spa-
tial resolution achieved by models such as GOCART are in-
sufficient to reproduce some local details of aerosol dynam-
ics. In addition, all models suffer from numerical instabil-
ities that can produce negative aerosol mass, failure to con-
serve aerosol mass in transport simulations, etc. All these un-
certainties limit the accuracy of global aerosol modeling, as
demonstrated in recent model inter-comparison studies (e.g.,
Kinne et al., 2003, 2006; Textor et al., 2006).

However, a number of efforts aim at addressing many of
these modeling uncertainties in the near future. For exam-
ple, four-dimensional meteorological wind fields and cloud
distributions will probably be improved by assimilation of
observations from multiple sources. There is also hope that
model aerosol optical properties can be improved by re-
mote sensing data. Like most models, GOCART assumes
all coarse aerosols are either dust or sea salt. Satellite re-
trieval algorithms (e.g. Kaufman et al., 1997; Tanré et al.,
1997; Remer et al., 2005, etc.) rely on aerosol type clima-
tologies obtained from other remote sensing measurements.
Unlike global models, such climatologies (e.g. Remer et al.,
1997; Dubovik, 2002) indicate the presence of coarse par-
ticles in practically all types of aerosol including biomass
burning and urban pollution. Also, satellite retrievals usually
use complex indices of refraction derived from remote sens-
ing observations to describe ambient aerosol, whereas mod-
els tend to calculate radiative properties of aerosol based on
chemical composition, using indices of refraction obtained
from in situ or laboratory measurements of each chemical
component. This difference may be another source of in-
consistency between remote sensing retrievals and models.
For example, recent analysis of aerosol remote sensing re-
trieval results (Kaufman et al., 2001; Dubovik et al., 2002)
showed that mineral dust is less absorbing than was previ-
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ously thought, and comparisons with aerosol transport mod-
els showed systematic differences with remote sensing ob-
servations of aerosol absorption for situations dominated by
mineral dust (e.g. Takemura et al., 2002; Sato et al., 2003).
One possible way to address this inconsistency is to include
these aspects of the satellite retrieval as part of inverse model-
ing. In this approach, the aerosol emissions will be retrieved
directly from atmospheric radiances (e.g. using the mathe-
matical formalism described in Sect. 2.8).

3.5.3 Limitations of the retrieval approach employed

The numerical inversion approach has some limitations in it-
self. As explained in Sect. 2.5, the algorithm is based on an
iterative, steepest descent method that in general converges
very slowly (e.g. Tarantolla, 1987). However, the fitting
residual can decrease to a value much smaller than the ex-
pected noise level of inverted satellite data after 40 iterations
(see Sects. 3.3–3.4), because the transport operatorT (writ-
ten in matrix form) is sparse. Since each iteration involves
two GOCART model runs (forward and backward), invert-
ing global data takes about 80 times longer than a GOCART
forward simulation of the aerosol fields covering same time
period. Nevertheless, taking into account the global nature of
the problem and the increasing speed of modern computers,
these requirements are probably acceptable. For this study,
which used only moderately powerful computers, we tried
to identify ways to reduce the number of iterations (e.g. Gill
et al., 1982; Tarantolla, 1987). Theoretically, the method of
conjugated gradients can accelerate convergence compared
to steepest descents; it also uses only gradient vectors and
can therefore be implemented with transport model adjoint
operators (see Appendix C). However, in practice, round-
ing errors often cause the computed directions to loose con-
jugacy rapidly, and the method behaves more like an iter-
ative method, making converge much slower than theoret-
ically predicted (Gill et al., 1982). To test the possibility
of accelerating inversion convergence, we implemented the
method of conjugated gradients described in Appendix C.
Convergence improved: after only 20 iterations, the method
of conjugated gradients achieved the same residual size as
the steepest descent method after 40 iterations. However,
as can be seen from the derivation in Appendix C, our im-
plementation of the method of conjugated gradients requires
running the GOCART model four times for a single itera-
tion, instead of the two runs needed for steepest descents.
Therefore it took the same computing time to perform 20
iterations with method of conjugated gradients as 40 itera-
tions with steepest descents, so conjugated gradients did not
effectively accelerate the inversion. At the same time, imple-
menting the method of conjugated gradients required greater
effort, because the formal logic is significantly more com-
plex. Nevertheless, there may be a need to explore conver-
gence acceleration possibilities further, in anticipation of the
inevitable increase in aerosol global model resolution. Simi-

larly, the steepest decent method may converge more slowly
if the satellite retrieval is included as part of the inverse mod-
eling (discussed in Sect. 2.7), due to the complexity of the
radiative transfer equations.

Using diverse a priori constrains is another direction re-
quiting further exploration. In Sect. 2.6 we described the
mathematical techniques for using a priori emissions esti-
mates or a priori limitations on the derivatives of emissions
variability in time and space. Using these a priori constraints
can substantially extend the field of retrieved parameters. For
example, with an a priori estimate of emissions, MODIS
data can be used in an emissions retrieval that discriminates
aerosol type, even though the MODIS data contain little in-
formation about aerosol type. As discussed in Sect. 3.3, to
enhance the sensitivity of our retrieval to the satellite obser-
vations, we decided not to constrain the retrieval with a priori
emissions estimates. However, to produce a unique retrieval
without such a priori information, we eliminated the aerosol
chemical composition discrimination in our retrieval. As a
result, the retrieval provided by this algorithm has high sen-
sitivity to spatial and temporal emission features that were
observed by satellites, but were unexpected from a model-
ing viewpoint. However the retrieved emission fields are
of limited value for modeling activities that require aerosol
type discrimination. Future efforts to improve this approach
will aim at including in the retrieval a priori constraints that
retain aerosol type discrimination without over-constraining
retrieved emission spatial and temporal variability.

This advance is imperative for the future development of
global emission retrievals, because even the most advanced
aerosol satellite sensors will not constrain all the parameters
used to describe aerosol emission in chemical transport mod-
els. For example, we will attempt to constrain a priori only
relative contributions from different aerosol components to
the total aerosol optical thickness, without constraining its
magnitudes of the emissions.

We also showed (Fig. 21) that by placing a priori limita-
tions on the emission variability time and space derivatives,
one can retain emission fields with physically realistic time
and space continuity (with no sharp oscillations), even if the
inverted measurements do not provide sufficient constraints.
However, we found that due to the relatively coarse time
(24 h) and space (2.0◦×2.5◦) resolution used in this study,
these constraints generally do not seem critical to our re-
trievals. Nevertheless, in future studies that attempt retrievals
at much higher resolutions, the importance of continuity con-
straints will likely increase.

4 Conclusions

This paper describes an algorithm that uses inverse model-
ing to retrieve global aerosol source emissions from satellite
observations.
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The numerical inversion in the algorithm was structured
as a multi-term least-squares-type fit. This statistical opti-
mization scheme allows for high flexibility in constraining
the retrieval, such as using multiple constraints in a single
inversion. We also discuss and demonstrate the possibility
of applying a priori constraints on retrieved quantity par-
tial derivatives, to improve retrieved global aerosol emission
time and space variability. This approach is widely used in
atmospheric remote sensing, though rarely in inverse model-
ing. The similarities and differences of our inversion scheme
with the standard Kalman filter and 4-D-var assimilation in-
verse modeling and Phillips-Tikhonov-Twomey constrained
inversion remote sensing approaches are discussed. To si-
multaneously retrieve global aerosol fields over extended pe-
riods of time at the space and time resolution of the model,
the fitting was expressed in terms of a variational approach,
using an adjoint of the aerosol transport in a convenient form
for practical implementation of the inversion. We also dis-
cuss the application of various a priori constraints in the ad-
joint form of the retrieval algorithm.

The algorithm was implemented in a practical way with
the GOCART aerosol transport model, retrieving global
aerosol emissions at 2◦×2.5◦ horizontal resolution from the
global distribution of aerosol optical thickness. The numeri-
cal tests conducted showed that the algorithm accurately de-
rives aerosol emissions when inverting the detailed, global
aerosol mass distribution produced from a forward run of
GOCART model. However, when MODIS data was used as
input for the inversion, some extra constraints were needed
to produce a unique retrieval, due to limitations in coverage
and information content of the MODIS data. Specifically,
emission variability over the diurnal cycle was neglected,
and aerosol types were discriminated by particle size, but
not by their chemical composition. Emissions of fine and
coarse mode aerosols were retrieved from the MODIS fine
and coarse mode aerosol optical thickness data, respectively.

From two weeks of daily MODIS observations during
August 2000, the global placement of fine mode aerosol
sources agreed with available independent knowledge, even
though the inverse method did not use any a priori informa-
tion about aerosol sources, and was initialized with a “zero
aerosol emission” assumption. The retrieval reproduced two
weeks of global, instantaneous MODIS observations, with
an aerosol optical thickness standard deviation for the fit
of ∼0.04. Aerosol optical thickness observations of 0.05
and higher were reproduced with a standard deviation of
∼48%. Such agreement between global modeling and ob-
servation is quite encouraging, given that the coherence be-
tween model and observations is limited by MODIS obser-
vation accuracy, aerosol variability that can be much higher
than the model resolution, uncertainties in the wind fields,
three-dimensional cloud distributions, and other meteorolog-
ical data, the accuracy of assumptions made in modeling at-
mospheric processes, numerical instabilities, etc. As a result,
model predictions can differ significantly from observations,

even for monthly and yearly averaged regional aerosol prop-
erties (Kinne et al., 2003; Sato et al., 2003).

Retrieving coarse mode aerosol emissions was less suc-
cessful, mainly because MODIS aerosol data over highly re-
flecting desert dust sources is lacking. This situation should
be much improved by the most recent MODIS product ver-
sion (Collection 5), which includes aerosol retrievals over
deserts from the “deep blue” algorithm of Hsu et al. (2004).

The efficiency of using a priori constraints on values of
the emissions or on their variability was also evaluated. The
use of such a priori constraints is a clear alternative to a
straightforward reduction of the number of retrieved param-
eters characterizing the aerosol emission. For example, in
spite of limitations in the MODIS data, if the algorithm uses
GOCART emission fields as a priori estimates, it can be set
to retrieve aerosol emissions in the same format as those used
in the GOCART model (i.e. fully discriminated by chemical
composition and sizes). This strategy is usually employed
in assimilation methods. However, in that retrieval approach,
the derived emissions tend to be influenced by the a priori es-
timates to an extent that may devaluate the satellite observa-
tions. Therefore, further effort is needed to minimize the pos-
sible effect of over-constraining the solution. In the present
paper, we did not use a priori estimates for inverting MODIS
observations; instead, we applied constraints that limit the
general temporal and spatial variability of the emissions, and
demonstrated that such general constraints were useful for
eliminating some unrealistic features in underdetermined re-
trievals, such as coarse mode aerosol emission retrievals from
MODIS observations.

To illustrate algorithm performance when processing long
satellite observation records, we inverted the fine mode
aerosol optical thickness produced by MODIS, for the first
six months of 2001. Realistic global aerosol emission ge-
ographic distribution patterns, and their seasonal variations,
were derived.

Thus, the method developed can be a useful tool for im-
proving global aerosol source characterization in chemical
transport models. Nevertheless, this paper describes only
the first phase of the effort, and further analysis is needed
to realize the full potential of the method. Specifically, we
plan to use MODIS data to generate climatological records
of remote-sensing-driven aerosol emission fields; these are
expected to provide improved global aerosol source descrip-
tions as inputs to chemical transport models. We plan to re-
fine and optimize the use of a priori constraints and the con-
vergence of the method. Also, at least some of the satellite
measurement limitations are expected to be addressed in fu-
ture studies, for example, by planned MODIS aerosol algo-
rithm improvements.

Moreover, the global emission retrievals can incorporate
a combination of aerosol products from other satellite sen-
sors, such as CALIPSO, MISR, PARASOL and APS, as well
as aerosol measurements from ground-based networks, such
as AERONET and EARLINET. Using data from multiple
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satellite sensors as input should improve spatial and tempo-
ral constraints from the global emission retrievals, compared
to using data exclusively from any single sensor. In addition,
using data from multi-angle radiometers (MISR), polarime-
ters (PARASOL, APS), lidar (CALIPSO), and ground-based
networks (AERONET and EARLINET), may make it pos-
sible to discriminate between emissions of different aerosol
types in the retrievals. Thus, the global aerosol inversion
can also be considered as a tool for integrating the informa-
tion from models and remote sensing instruments, providing
aerosol information of enhanced value for climate research.

Appendix A

The adjoint operator

According to its formal definition (e.g. Tarantola, 1987), the
adjoint ofG, G#, is a linear operator defined by the equality
of scalar products:

< G#x, y >=< x, G y > . (A1)

If scalar product is defined as follows:

< a, b >= aTb, (A2)

then the right side of Eq. (A1) is:

< x, G y >= xT G y. (A3)

The left side of Eq. (A1) is:

< G#x, y >= (G#x)Ty = xT(G#)Ty. (A4)

Thus, in order to achieve the equality between Eqs. (A3) and
(A4) we can write forG#:

G# = GT. (A5)

It should be noted that Tarantola (1987) gives a more general
definition of the adjoint operator that is not used here.

Appendix B

Derivation of Eq. (41)

Equation (2) can be written in matrix form, for a single time
step, as follows:

Mn = Tn−1(Mn−1 + Sn−1), (B1)

where subscripts “n−1 “ and “ n “ are associated with
times stepstn−1 andtn=tn−1+1t , i.e. matrixTn−1 and vec-
torsSn−1, Mn−1 andMn representT (tn−1, x), s (tn−1, x),
m (tn−1, x) andm (tn−1+1t, x), respectively. For time steps
tn−2, tn−1 andtn one can write:

Mn = Tn−1(Mn−1 + Sn−1) = Tn−1(Tn−2(Mn−2 + Sn−2) + Sn−1) =

= Tn−1Tn−2Mn−2 + Tn−1Tn−2Sn−2 + Tn−1Sn−1. (B2)

Correspondingly, the mass transport fort0, t1, . . . , tn can be
expressed as:

Mn =

(

i=n−1
∏

i=0

Ti

)

M0 +
k=n−1
∑

k=0

(

i=n−1
∏

i=k

Ti

)

Sk , (B3)

where
i=n−1
∏

i=0

Ti = Tn−1Tn−2...T2T1T0 . (B4)

Based on Eq. (B3), the entire matrix Eq. (5) for mass distri-
bution during the time period fromt0 to tn can be written as
follows:













M∗
n

...

M∗
3

M∗
2

M∗
1













=



























Tn−1

i=n−1
∏

i=n−2
Ti ...

i=n−1
∏

i=2
Ti

i=n−1
∏

i=1
Ti

i=n−1
∏

i=0
Ti

... ... ... ... ... ...

0 0 ... T2

i=2
∏

i=1
Ti

i=2
∏

i=0
Ti

0 0 ... 0 T1

i=1
∏

i=0
Ti

0 0 ... 0 0 T0







































Sn−1
...

S2
S1
S0













+



























i=n−1
∏

i=0
Ti

...
i=2
∏

i=0
Ti

i=1
∏

i=0
Ti

T0



























M0, (B5)

whereM∗
n denotes the mass distribution of aerosols emitted

during time period fromt0 to tn: i.e.

M∗
n = Mn −

(

n−1
∏

i=0

Ti

)

M0. (B6)

Thus, Eq. (B5) is equivalent to the generalized matrix expres-
sion:

M∗ = M − TM0 = T S, (B7)

This is a slightly modified form of Eq. (5). Similarly, for the
correction term1Ŝp of the steepest descent iterative solution
given by Eq. (40) can be written as:

1Ŝp = TTC−1
m 1Mp = TT1p =





































TT
n−1 ... 0 0 0

i=n−2
∏

i=n−1
TT

i ... 0 0 0

... ... ... ... ...
i=2
∏

i=n−1
TT

i ... TT
2 0 0

i=1
∏

i=n−1
TT

i ...
i=1
∏

i=2
TT

i TT
1 0

i=0
∏

i=n−1
TT

i ...
i=0
∏

i=2
TT

i

i=0
∏

i=1
TT

i TT
0





























































1
p
n

1
p

n−1

...

1
p

3

1
p

2

1
p

1

























, (B8)
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where1p=C−1
m 1Mp, 1

p
i denotes the component of vector

1p corresponding to time stepti and the following identity
for the transpose of the matrix multiplication product is used:
(

i=n
∏

i=0

Ti

)T

= (TnTn−1...T2T1T0)
T = TT

0TT
1TT

2 ...TT
n−1TT

n =
i=0
∏

i=n

TT
i . (B9)

From Eq. (B8),1Sp can be obtained as:

1Sp =

















1S
p
n

1S
p

n−1
...

1S
p

2
1S

p

1
1S

p

0

















=



































TT
n−11

p
n

TT
n−21

p

n−1 + TT
n−2TT

n−11
p
n

...

k=n−1
∑

k=3

(

i=k
∏

i=n−1
TT

i 1
p
k

)

k=n−1
∑

k=2

(

i=k
∏

i=n−1
TT

i 1
p
k

)

k=n−1
∑

k=1

(

i=k
∏

i=n−1
TT

i 1
p
k

)



































=

















TT
n−11

p
n

TT
n−2

(

1
p

n−1 + S
p

n−1

)

...

TT
2

(

1
p

3 + 1S
p

3

)

TT
1

(

1
p

2 + 1S
p

2

)

TT
0

(

1
p

1 + 1S
p

1

)

















. (B10)

From this equation it can be seen that1S
p
i can be calculated

via the following sequence starting fromi=n as follows:

1S
p

i−1 = TT
i−1

(

1
p
i + 1S

p
i

)

. (B11)

The component1p
i of vector1p corresponding to time step

ti can be easily formulated if observational errors1M∗ are
not correlated with respect to time, though they may have
spatial correlations. In this case,Cm has the array structure:

Cm =









Cmn ... 0 0
... ... ... ...

0 ... Cm2 0
0 ... 0 Cm1









, (B12)

and1p can be decomposed:

1p =









1
p
n

...

1
p

2
1

p

1









=















C−1
mn

(

Mn

(

Ŝp
)

− M∗
n

)

...

C−1
m2

(

M2

(

Ŝp
)

− M∗
2

)

C−1
m1

(

M1

(

Ŝp
)

− M∗
1

)















. (B13)

Thus, Eq. (B11) gives the relationship between1S
p

i−1 for
time stepti−1 and1S

p
i for time stepti=ti−1+1t . As the

time step approaches zero, i.e.1t→0, then Eq. (B11) can be
rewritten as its integral equivalent:

1ŝp (t, x) =

t0
∫

t

T # (t ′, x
) (

1ŝp
(

t ′, x
)

+ 1p
(

t ′, x
))

(−dt ′), (B14)

where the function1p (t, x) is the continuous analog of the
vector 1p. It can be formulated via the weighting func-
tion C−1(t, x, x′) (from covariance functionCt (t, x, x′)),
and performs a role analogous to that of matrixC−1

mi
in the

discrete representation, i.e.:
{

1
p
i

}

=
{

C−1
mi

1Mp
}

l
→

∫∫∫

x′,y′,z′

C−1
t

(

ti, xj , yk, zm, x′, y′, z′
)

1mp
(

ti, x
′, y′, z′

)

dx′dy′dz′.

(B15)

T # (t, x) is the transport adjoint operatorT (t, x), and is
composed of adjointsT #

i (t, x) of the component processes
Ti (t, x):

T # (t, x) = T #
1 T #

2 T #
3 ...T #

n−1T
#
n . (B16)

If the observation errors are uncorrelated, i.e. the covari-
ance matrix of measurementsCm is diagonal with the el-
ements on diagonal equal toσ 2

(

ti, xj , yk, zm

)

, the ele-
ments of vectorC−1

m 1Mp relate to the continuous function
σ−2 (t, x) 1mp (t, x) in a straightforward way (see Eq. 42
in body text). Then Eq. (B14) can be written:

1ŝp (t, x) =

t0
∫

t

T # (t ′, x
)

(

1ŝp
(

t ′, x
)

+ σ−2 (t ′, x
)

1mp
(

t ′, x
)

)

(−dt ′).

(B17)

where

1mp (t, x) = m∗ (t, x) −

t
∫

t0

T
(

t ′, x
) (

m
(

t ′, x
)

+ sp
(

t ′, x
))

dt ′, (B18)

The symbols1ŝp (x, t) and σ−2 (t, x) 1mp (t, x) denote
function equivalents of the vectors1Ŝp andC−1

m 1Mp, re-
spectively.

Thus, the steepest descent iterative solution written in the
form of matrix expression in Eq. (40) can be replaced by its
integral equivalent (Eqs. B17–B18). Further discussion is
given is Sect. 2.5.

Appendix C

Application of the conjugated gradient method to
the inversion, based on the adjoint transformation of
the forward transport model

C1 Basic formulation of the conjugated gradient method

Let us formally write the linear system as follows:

Ax = y∗. (C1)

Then, the solution of this system in the conjugated gradient
method is given by the following iterative process:

xk+1 = xk − αkpk, (C2)
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where

αk =
pT

k ∇k

pT
k Apk

=
∇T

k ∇k

pT
k Apk

, (C3)

and the gradient∇k is:

∇x(xk) = Axk = Axk − y∗. (C4)

The vectorpk is determined as follows:

pk = ∇k + βpk−1, (C5)

where

β =
∇T

k ∇k

∇T
k−1∇k−1

. (C6)

The initial condition for the iterative process is:

p0 = ∇0. (C7)

C2 Application of the forward transport model to inver-
sion, using adjoint operators

For inverting the aerosol mass transport modelM=T (S +

M0) with the basic LSM, the following equation should be
solved:

(TTC−1T) S = TTC−1M∗, (C8)

whereM∗ = Mmeas–TM0.
Similarly, for applying the conjugated gradient method,

we can determine the matrixA and vectory* as:

A = TTC−1T, (C9)

y∗ = TTC−1M∗, (C10)

∇k = ASk − y∗ = (TTC−1T)Sk − TTC−1M∗

= TTC−1(TSk − M∗) = TTC−11Mk, (C11)

pT
k Apk = (Tpk)

T C−1(Tpk) = pT
k TTC−1Tp.

k (C12)

Finally, we have the following procedure:

pk = ∇k + βk−1pk−1, (C13)

p−1 = 0 andβ−1 = 0 (C14)

∇k = TTC−1 1Mk, (C15)

where1Mk=TSk–M∗. This equation can be used only for
the first iteration (when∇k can be calculated using Eq. C20).

βk−1 =
∇T

k ∇k

∇T
k−1∇k−1

. (C16)

Sk+1 = Sk − αkpk, (C17)

where

αk =
∇T

k ∇k

pT
k TTC−1Tpk

, (C18)

The vectorbk=TTC−1Tpk can be calculated using adjoint
transformations:

bk (t, x) =

t0
∫

t

T # (t ′, x
)

(

bk

(

t ′, x
)

+ σ−2 (t ′, x
)

1gk

(

t ′, x
)

)

(−dt ′)

(C19)

where bk (t, x) are the components of the vector
TTC−1Tpk, and 1gk (t, x) are the components of the
vectorTpk.

In addition, we can use the following equation:

∇k+1 = ASk+1 − y∗ = A(Sk − αkpk) − y∗ = A(Sk − y∗)

−αk Apk = ∇k − αk Apk. (C20)

Thus, for implementing this method, we need to run
the transport model twice to calculateTTC−1Tpk: once
forward for Tpk and once backwardTTC−1Tpk (where
S=Tpk). A problem may appear if the transport opera-
tor does not allow use of negative sources; in this case we
should always carry two termsSk=Tpk=S

(+)
k +S

(−)
k , and

TS=T(S(+)
k +S

(−)
k )=TS

(+)
k –T(–S

(−)
k ).

Appendix D

List of acronyms and abbreviations

AERONET Aerosol Robotic Network
APS Aerosol Polarimetry Sensor
BC Black Carbon
CALIPSO Cloud-Aerosol Lidar and Infrared

Pathfinder Satellite Observations
GEOS DAS Goddard Earth Observing System Datda

Assimilation System
GOCART Goddart Chemistry Aerosol Radiation and

Transport model
EARLINET European Lidar Network
LSM Least Squares Method
MISR Multiangle Imaging SpectroRadiometer
MML Method of Maximum Likelihood
MODIS Moderate Resolution Imaging Spectrometer
OC Organic Carbon
PDF Probabillity Density Function
POLDER Polarization and Directionality of the

Earth’s Reflectance

Atmos. Chem. Phys., 8, 209–250, 2008 www.atmos-chem-phys.net/8/209/2008/



O. Dubovik et al.: Retrieving global aerosol sources from satellites 247

Acknowledgements. We thank the EOS Project Science Office
for the support. We acknowledge support from NASA Radiation
Science Program managed by H. Maring. We thank R. Levy for
the help with MODIS data analysis, G. van der Werf and J. Collatz
for assistance with obtaining global carbon emission map. We also
thank L. Bounoua, and J. Collatz, T. Eck and V. Shcherbakov for
reading early version of the manuscript and providing comments.

Edited by: T. Peter

References

Anderson, T. L., Wu, Y., Chu, D. A., Schmid, B., Redemann,
J., and Dubovik, O.: Testing the MODIS satellite retrieval of
aerosol fine-mode fraction, J. Geophys. Res., 110, D18204,
doi:10.1029/2005JD005978, 2005.

Balkanski, Y. J., Jacob, D. J., Gardener, G. M., Graustein, W. C.,
and Turekian, K. K.: Transport and residence times of tropo-
spheric aerosols inferred from a global 3-dimensional simula-
tions of PB-210, J. Geophys. Res., 98 , 20 573–20 586, 1993.

Brasseur, G. P., Orlando, J. J., and Tyndall, G. S.: Atmospheric
Chemistry and Global Change, Oxford University Press, 1st ed.,
654 pp., 1999.

Boesenberg, J., Matthias, V., Amodeo, A., et al., EARLINET: A Eu-
ropean Aerosol Research Lidar Network to Establish an Aerosol
Climotology, Report 348, Max Planck Institute for Meteorology,
Hamburg, Germany, 2003.

Cacuci, D. G.: Sensitivity theory for non-linear systems. I: Nonlin-
ear functional analysis approach, J. Math. Phys., 22, 2794–2802,
1981.

Chin, M., Rood, R. B., Lin, S. J., Muller, J. F., and Thompson,
A. M.: Atmospheric sulfur cycle simulated in the global model
GOCART: Model description and global properties, J. Geophys.
Res., 105(D20), 24 671–24 687, 2000.

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan,
B. N., Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima,
T.: Tropospheric aerosol optical thickness from the GOCART
model and comparisons with satellite and Sun photometer mea-
surements, J. Atmos. Sci., 59, 461–483, 2002.

Chin, M., Chu, D. A., Levy, R., Remer, L. A., Kaufman, Y. J.,
Holben, B. N., Eck, T., and Ginoux, P.: Aerosol distribution in
the northern hemisphere during ACE-Asia: Results from global
model, satellite observations, and sunphotometer measurements,
J. Geophys. Res., 109, D23S90, doi:10.1029/2004JD004829,
2004.

Collins, W. D., Rasch, P. J., Eaton, B. E., Khattatov, B. V., Lamar-
que, J. F., and Zender, C. S.: Simulating aerosols using a chem-
ical transport model with assimilation of satellite aerosol re-
trievals: Methodology for INDOEX, J. Geophys. Res., 106,
7313–7336, 2001.

Collins, W. D., Rasch, P. J., Eaton, B. E., Fillmore, D. W., Kiehl, J.
T., Beck, C. T., and Zender, C. S.: Simulation of aerosol distri-
butions and radiative forcing for INDOEX: Regional climate im-
pacts, J. Geophys. Res., 107, 8028, doi:10.1029/2000JD000032,
2002.

Courtier, P. and Talagrand, O.: Variational assimilation of meteoro-
logical observations with the adjoint of the vorticity equations:
Part II. Numerical results, Q. J. Roy. Meteor. Soc., 113, 1311–
1328, 1987.

Dee, D. P. and Da Silva, A. M.: Data assimilation in the presence of
forecast bias, Q. J. Roy. Meteor. Soc., 124(545), 269–295, Part
A, 1998.

Deschamps, P. Y., Breon, F. M., Leroy, M., Podaire, A., Bricaud, A.,
Buries, J. C., and Seze, G.: The POLDER mission: Instrument
characteristics and scientific objectives, IEEE Trans. Geosci. Re-
mote Sens., 32, 598–615, 1994.
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