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Abstract. Understanding aerosol effects on global cli- independent knowledge, even though the inverse method did
mate requires knowing the global distribution of troposphericnot use any a priori information about aerosol sources, and
aerosols. By accounting for aerosol sources, transportsyas initialized with a “zero aerosol emission” assumption.
and removal processes, chemical transport models simulatBetrieving coarse mode aerosol emissions was less success-
the global aerosol distribution using archived meteorologicalful, mainly because MODIS aerosol data over highly reflect-
fields. We develop an algorithm for retrieving global aerosol ing desert dust sources is lacking.

sources from satellite observations of aerosol distribution by The broader implications of applying our approach are
inverting the GOCART aerosol transport model. also discussed.

The inversion is based on a generalized, multi-term least-
squares-type fitting, allowing flexible selection and refine-
ment of a priori algorithm constraints. For example, limita- .

. . . . .1 Introduction
tions can be placed on retrieved quantity partial derivatives,
ittc;/?r?Tr‘:’ga:'ensg:tosbagﬁirlg‘:’i%leirzrslg'g%stsrfgeznsett'vT:e\:‘agfr?ﬂknowledge ofthe glqbal distribution of tropospheric aeroso!s

o ) . .~ isimportant for studying the effects of aerosols on global cli-
monly used inverse modeling and remote sensing technlquel%ate. Satellite remote sensing is the most promising way to

are analyz_ed. To retain the h'_gh space and time reS_OIUt'_Or(I,oIIect information about global aerosol distributions (King
of long-period, global observational records, the algorithm ISet al. 1999° Kaufman et al 2002). However, in spite of

exgressed ;J Sl'n? Edjlo'm opelr ator.s. . trievals %t 25° recent advances in space technology, the satellite data do
ulcgess u' glo ‘Zt ?e“ffob em|53|?n reerg\éi;_r | not yet provide the required accuracy nor the level of detalil
resolution were obtained by Inverting aerosol haeded to assess aerosol property time and space variabil-

transport model output, assuming constant emissions OVBIEyI Tropospheric aerosols may display strong local varia-

;Zfeggggal I(r:]ygg(’j_?gg nfer?;egaggciz:gzox)%n;p;esr'gggfgﬂf'stions, and any single satellite instrument needs at least sev-
i ' ttion, M3ral days of observations to obtain sufficient cloud-free im-
sion sources were inverted separately from MODIS fine

q q | optical thick dat " Iages for global coverage. Also, most satellite aerosol data
and coarse mocie aerosol optical (NICkNess cata, respectivelyy . s are fimited to daytime, clear-sky conditions. Com-
These assumptions are justified, based on observational coy-

L _ rehensive, global atmospheric aerosol simulations having
erage and accuracy limitations, producing valuable aeroso

) o dequate time and space resolution can be obtained using
source locations and emission strengths. From two weeks o

) . . lobal models that rely on estimated emissions and account
daily MODIS observations during August 2000, the global for aerosol transport and removal processes.

placement of fine mode aerosol sources agreed with available At present, there are a number of well-established Global

Correspondence to: O. Dubovik Circulation Models (GCMs) that generate their own meteo-
(dubovik@Iloa.univ-lille1.fr) rology (e.g. models by Roechner et al., 1996; Tegen et al.,
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210 O. Dubovik et al.: Retrieving global aerosol sources from satellites

1997, 2000; Koch et al., 1999; Koch, 2001; Ghan et al.,modeling. In these regards, designing an inversion in a var-
2001a, b; Reddy and Boucher, 2004) and Chemical Transtiational formalism framework, using adjoint operators, is
port Models (CTMs) that incorporate meteorological datarather promising. The adjoint operators (Marchuk, 1977,
from external sources into the model physics (e.g. modelsl986; Cacuci, 1981; Tarantolla, 1987) allow direct calcu-
by Balkanski et al., 1993; Chin et al., 2000, 2002; Ginoux lation of the gradients of the quadratic form in respect to
et al., 2001; Takamura et al., 2000, 2002). However, the acmodel input parameters, without explicit use of Jacobi ma-
curacy of global aerosol models is limited by uncertaintiestrices. Such calculations have computational requirements
in aerosol emission source characteristics, knowledge of atsimilar to those of forward modeling. Correspondingly, us-
mospheric processes, and the meteorological field data usethg adjoint operators allows efficient implementation of the
As a result, even the most recent models are mainly expectethodel inversion by minimizing quadratic form (quantifying
to capture only the principal global features of aerosol trans-mismatch between observations and modeling results) with
port; among different models, quantitative estimates of av-the gradient methods, provided the methods converge rapidly
erage regional aerosol properties often disagree by amoung&nough.

exceeding the uncertainty of remote sensing aerosol obser- Adjoint techniques are widely used in meteorology and
vations (e.g. Kinne et al., 2003, 2006; Sato et al., 2003).oceanography for variational data assimilation (Le Dimet and
Therefore, there are diverse, continuing efforts to harmonizeTalagrand, 1986; Talagrand and Courtier, 1987; Courtier and
and improve global aerosol modeling by refining the meteo-Talagrand, 1987; Navon, 1997, etc.), and have been success-
rology, atmospheric process representations, emissions, arfdlly applied to inverse modeling analyses involving atmo-
other modeling components used. spheric gases (Kaminski et al., 1999a; Elbern et al., 2000;

The availability of aerosol remote sensing products, es-Menut et al., 2000; Vukicevic and Hess, 2000; Vautard et al.,
pecially global aerosol fields provided by satellite observa-2000; Elbern and Schmidt, 2001; Schmidt and Martin, 2003;
tions, is of critical importance for verifying and constrain- Menut, 2003; Elbern et al., 2007). Hakami et al. (2005) used
ing aerosol models. For example, the direct comparisons o&n adjoint approach to retrieve regional sources of black car-
model outputs with observed aerosol properties are used fdoon from aircraft, shipboard, and surface black carbon mea-
evaluating model accuracy and for identifying possible mod-surements collected during the ACE-Asia field campaign.
eling problems (e.g. Takamura et al., 2000; Chin et al., 2002, Our paper explores the possibility of deriving the global
2003, 2004; Kinne et al., 2003, 2006). The observationsdistribution and strength of aerosol emission sources from
can also be used to optimize the agreement between tracsatellite observations, using the adjoint operator formula-
transport model predictions and observation. For exampletion to invert an aerosol transport model. Figure 1 illus-
model predictions can be adjusted and enhanced by assimirates the general retrieval concept. In addition, we ana-
lating observations into the model. Collins et al. (2000, 2001)lyze possible parallels and analogies between inverse mod-
improved regional aerosol model predictions by assimilat-eling and retrieval approaches widely used in atmospheric
ing the available satellite retrievals of aerosol optical thick- remote sensing. Such analyses may be useful sources of ef-
ness. Weaver et al. (2006) suggested a procedure for assinficient methods developed in remote sensing, that could be
lating satellite-level radiances into a radiative transfer modeladapted to inverse modeling. For example, numerous remote
driven by GOCART global transport model aerosol field pre- sensing applications use the Phillips-Tikhonov-Twomey in-
dictions. Another way of improving global aerosol modeling version technique developed in the early sixties by Phillips
is retrieving (or adjusting) aerosol emissions from available(1962), Tikhonov (1963) and Twomey (1963). The technique
observations by inverting a global model. This approach issuggests constraining ill-posed problems using a priori limi-
particularly promising because aerosol emission uncertaintyations on the derivatives of the retrieved function. Here, we
is widely recognized as a major factor limiting global aerosol discuss the possibility of constraining temporal and/or spatial
model accuracy. It has been shown that inversion techniqueaerosol variability by applying a priori limitations on aerosol
are rather effective at improving the accuracy of trace gasnass derivatives with respect to time and space coordinates.
chemical models (e.g. Kaminski et al., 1999b; Khattatov etAlso, we formulate the inversion problem using a multi-term
al., 2000; Kasibhatla et al., 2000; Elbern et al., 1997; Para eteast squares approach, convenient for including multiple a
al., 2003). priori constraints in the retrieval (Dubovik, 2004).

However, implementing the same techniques for inverting We applied our approach to retrieving global aerosol
aerosol models appears to be more challenging. Indeed, a dseurces by inverting the Goddard Chemistry Aerosol Radi-
scription of the aerosol field generally requires a larger num-ation and Transport (GOCART) model. Algorithm perfor-
ber of parameters compared to a description of atmospherimance is illustrated by numerical tests, as well as by deriv-
gases, partly because of relatively high aerosol temporal antéhg global aerosol emissions, applying the algorithm to actual
spatial variability (see discussion in Sect. 2.5). In addition, MODIS aerosol observations. The algorithms potential and
direct implementation of basic inversion methods (that usdimitations are also discussed more generally.
the Jacobi matrices of first derivatives) is computationally de-
manding and, therefore, hardly applicable in aerosol global
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MODIS/MISR/POLDER Adrosol
/CALIPSO..: INVERSION global
observations of ey Vio adjoint = model:
ambient aerosol to global €= _ meteorology
A _ o - transport
© % - chemistry
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and modeling

Fig. 1. Flowchart of the retrieval scheme concept.

2 The methodology of inverse modeling If the transport operatof (¢, x) is linear, Eq. (4) can be
equivalently written in terms of the matrix equation. For ex-

The spatial and temporal behavior of atmospheric con-ample, Fig. 2 illustrates one of many possible approaches to

stituents is simulated in chemistry models by solving the con-representing the global mass distribution by a vesfor Us-

tinuity equation (Brasseur et al., 1999; Jacob, 1999): ing the same approach for representing the global emission
distribution by a vectolS, the matrix equivalent of Eq. (4)

am —v Vm + (3_’”) (3’”) +S—R. 1) can be written as (see explicit derivation in Appendix B):

diff conv

o1 ot o1 M =TS + ToMo. ®)

where v is the transport velocity vectorn is mass and  wherem, is a vector of mass values at all locations at tigye
suffixes “diff” and “conv” denote turbulent diffusivity and  »7 ands are the corresponding vectors of mass and emission
convection, respectively.S and R denote source and l0Ss ya)yes at all locations and considered tiMes,. . ., ty_1,in
terms, respectively. The characteristies v, S andR in (j e, these vectors represent the 4-dimensional (4D) aerosol
Eqg. (1) are explicit functions of timeand spatial coordinates mass and emission variability; is the coefficient matrix
x=(x, y, 2). The continuity equation does not yield a general gefining the mass transport to each locatioand time step
analytical solution and is usually solved numerically using # from all locationsx and previous time steps.,. To is
discrete analogues. Each component process in the numeshe coefficient matrix defining the transport of mass to each
cal equivalent of Eq. (1) is isolated and treated sequentiallyocationx and time step, from mass present at all locations
at each time stepy (e.g. Jacob, 1999): x and at time step. Figure 3 illustrates the relation between
integral Eq. (4) and the representation of aerosol transport
modeling in vector-matrix form by Eq. (5). Thus, the source
vector can be retrieved by solving the matrix equation if the
mass measurememgMe3=M+A , are available.

Using Eq. (5), the inversion of aerosol transport can be
3) implemented numerically as the solution of a system of

algebraic equations. However, vectavs, S and matrix

and7; (i=1....,q) are operators for isolated transport pro- 1 can have extremely large dimensions (see discussion in
cesses such as advection, diffusion, convection and wet scawreCt. 2.5), and direct implementation of some matrix op-
enging. Thus, the calculation of mass at any given time carfrations can be difficult. Therefore, inverting the transport
be reduced to the numerical integration of known transport€duation is commonly formulated in a calculus of varia-

m(t+At,x)=T (,x) (im(@,x)+s(t,x)) At, (2)

wheres (¢, x) — mass emissiorf; (¢, x) is transport operator,
that can be approximated as:

T(t,x)=T,T;1..T37T1

and source functions: tions framework, a field of mathematics that deals with func-
tions of functions. In this formalism, emission estimation is

! achived using 4D-variational (4D-var) data assimilation tech-

m(t,x) = / T(t',x) (m(t',x)+s (. x)) dr’. (4)  niques (e.g. Le Dimet and Talagrand, 1986; Talagrand and

Courtier, 1987; Courtier and Talagrand, 1987; Elbern et al.,

fo
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Vector of global Vector elements - values of aerosol mass :
aerosol mass M, Mg=m{t,, x;, ¥, z,) (=1, ... Ny
Miw, 1)
/’ ‘\ ' Time and space coordinates
{ ‘ M +1) z,=nxAz (n=1,...,N,)
l\ ! M= |m, Vio=kx Ay (k=1,...N,)
\/ Mig-1) X, = jxAx (j=1,...N,)
@ / t = ixAt (i=1,..N,)
MZ
M, Index convention:

g = (i-1) NN, N+ (-1) N,N,+ (k-1) N, +n

v
m( t+At, x, vy, z)
41
— AZ m(t x,y z)
N
N [
b\
\/[A_ \_Y_I
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.' \7 . = >
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Fig. 2. lllustration representing the aerosol global mass distribution in vector form.

2000; Vukicevic and Hess, 2000; Elbern and Schmidt, 2001the optimum solutionS corresponds to a maximum of the
Schmidt and Martin, 2003; Menut, 2003; etc.). Neverthe- PDF as follows (e.g. Edie et al., 1971):

less, here we invert the transport equation using the matrix
formulation given by Eq. (5), to retain full analogy with re- P(Ay)=P(M™*=M(5)=P(M($)|M"**)=max. (6)
mote sensing inversion approaches. We hope this analogyhere the PDE ¥ (S)|M™e33, written as a function of re-
will highlight the parallels between these two research areasgieval parameters for a given set of available observations
and will make it easier to identify positive developments in pgmeas s known as a Likelihood Function. The MML is a
remote sensing that can be applied to inverse modeling algofundamental principle of statistical estimation that provides a
rithms. Thus, below we discuss the inversion of the transporktatistically optimum solution in many senses. For example,
equation as a formal linear system inversion problem, shownhe asymptotic error distribution (infinite number &f, re-

in Eq. (5). alizations) of MML estimates has the smallest possible vari-
ance. Most statistical properties of the MML solution remain
2.1 Statistical optimization of the linear inversion optimal for a limited number of observations (e.g. see Edie

etal., 1971). The normal (or Gaussian) distribution is widely
considered as the best model for describing actual error dis-
tribution (Tarantola, 1987; Edie et al., 1971; etc.):

-1/2

If the statistical behavior of the errois;; is known, one
can use this knowledge to optimize the solution of Eq. (5).
In that way, the solutior§ should not only closely repro-  p (M ()| M™% = ((27)™ det(Cy))
duce ob§ervatioaneas, put in addition, the remaining de- 1 T
viationsA ,,=M™e3s_p1(S) should have a distribution close eXP<—§ (M (S) =M™y C; (M (S) —Mmea&)> . (M
to the expected error properties described by the Probabil-

ity Density Distribution (PDF) of errors B(y;). According  where (...} denotes matrix transpositioB,, is the covari-
to the well-known Method of Maximum Likelihood (MML), ance matrix ofAj;, detC) denotes the determinant Gfy,

Atmos. Chem. Phys., 8, 209-250, 2008 www.atmos-chem-phys.net/8/209/2008/
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Time Integration of
Transport Model:

emitted mass:
s(tx) (fyst=<t,,

initial mass:
m { to- X}

1
mit,x) = [ T(t'x)(m(t’x)+ s(t', x))dt’
t,

T -Ty T, BT,

| mt, x)=T(tyX)(m(to.x)+5(t,, X)) AR
m(t, x)=T(t,x)(m(t,x)+s(t; x))A

 m(ty X)=T(t,X) (M (t,X)+5 (1, X)) AP

T; - operators of isolated
transport processes:

- advection,

- diffusion,

- convection,

- wet deposition,

- dry deposition, etc.

Matrix equivalent:

M =TS +TyM,

M - vector of global aerosol mass,

M, - vector of global aerosol mass at t,,
S - vector of global aeroscl emissions,
T - matrix defining mass transport

T,- matrix defining transport of M; mass

OUTPUT

transported mass:
m(tx) (t,st<t...)

Fig. 3. lllustration of the relation between sequential time integration of aerosol transport and the representation of aerosol transport modeling
in vector-matrix form.

and m is the dimension of the vector® (S) and M™eas The expected distribution of sources is commonly used as
The maximum of the PDF exponential term in Eq. (7) cor- an a priori constraint in inverse modeling. In that case the
responds to the minimum of the quadratic form in the expo-inversion can be considered as a joint solution of Eq. (5) and
nent. Therefore, the MML solution is a vectSicorrespond- ~ constraining a priori the system:
ing to the minimum of the following quadratic form: {Mmeas: M (S)+ Ay (10)
S*=8 +A ’

V()= 2 (M ($)~M™T L (M (5) M"Y ~min.  (8) +As

where §*=S+A is the vector of a priori estimates of the
Thus, with the assumption of normal noise, the MML prin- sources andAs is vector of the errors that usually con-
ciple requires searching for a minimum in the product of thesidered statistically independent &fy; and normally dis-
squared terms ofM™®3S— M (S)) in Eq. (7). This is the tributed with zero mean and covariance magix To solve
basis for the widely known Least Square Method (LSM).  Eq. (10), MML should be applied to the joint PDF of the

For linearM(S) (as in Eq. 5), the LSM solution can be measurements and a priori estimates:

written as (e.g. Rao 1965): POM(S)M™3S §%) = P(M(S)|M™35 P(S|S") = max (11a)
A -1 .
§= (TTC,;lT) TTC: M*. @ e

1 _
Here, M* is the vector of mass measurements corrected forP (M ($)| M™% §¥)=~ EXP(—E (AMTleAM>>
the backdround aerosdfy present in the atmosphere rat

(i.e. prior observationsM*=MMe3ST M. exp (_% <AsTcglAs)> = max, (11b)

2.2 Inversion constrained by a priori estimates of UN-\whereAM=M (S)—M* andAS=S—S*.

knowns Accordingly, the MML solution of joint Eq. (11) corre-

If the problem is ill-posed and Eq. (5) does not have a uniqueSponds to a minimum of the following quadratic form:

solution, then some a priori constraints need to be applied2 W (S) = 2(¥,, + ¥5) =AM 'C,,*AM+ASTC,1AS. 12)

www.atmos-chem-phys.net/8/209/2008/ Atmos. Chem. Phys., 8, 209-250, 2008



214 O. Dubovik et al.: Retrieving global aerosol sources from satellites

Thus, unlike with Eq. (8), including a priori constraints Egs. (13b) and (14b) are preferable for inverting underde-
requires simultaneously minimizing both the measurementermined measurement set§,(<Ns). Indeed, Eq. (13a)
term 2, and the a priori g term. Defining the solution directly relates to LSM Eq. (9), where the estimaies

as a minimization of the above two-terms quadratic form ismostly determined by the measurement tarhC,M* and
probably the most popular approach for implementing con-the generally minor a priori term is mainly expected to pro-
strained inversions, particularly in geophysical inverse mod-vide uniqueness and stability to the solution. In contrast, in
eling applications. Indeed, the formulations of Egs. (11) andgq. (13b) the solutios§ is expressed in the form of an a priori
(12) are practically equivalent to the basic formulations usedestimateS* corrected or “filtered” by measurements, which

in the Bayesian approach (e.g. Tarantolla 1997) widely usegs the situation when the number measuremeftss small

in inverse modeling (e.g. Rodenbeck et al., 2003; Michalak(y,, < Ns), and cannot fully determine the set of unknowns
etal., 2004). In the Bayesian approach, the PDF of the meag but can improve the assumed a priori val$es Also, it
surements and a priori estimat@sS|S™*) is defined as the  should be noted that the problem of source retrieval as for-
prior PDF of the staté, and P (M (S)|M™®% $*) is defined  mulated by Eq. (5) assumes the simultaneous retrieval of the
as the posterior PDF of the stafe Therefore, the Bayesian entire vectors, which includes global emission sources for
definition directly assumes a priori properties of the unknownthe entire time period considered. However, the problem of
vectorS. Ina contrast, Eq.(10) treats the a priori estim#tes  emjssions retrieval (e.g. Hartley and Prinn, 1993) and data as-
as simply a kind of “measurements” of unknowis Tech-  similation in general (Dee and Da Silva, 1998; Khattatov et
nically, this is equivalent to the Bayesian approach, but ita|. 2000) is often formulated as a time-sequential correction
allows more flexibility in formulating a constrained inver- g a known parameter field based on observations, whereas
sion: for example, it can easily be extended to use simultathe optimal estimation Eq. (13b) is used to optimize the fore-
neously multiple constraints in the inversion (see discussiortast ofS(#), i.e. emission at time, based on known values

in Sect. 2.4). of emission at previous tine_1:
The solution minimizing Eq. (12) can be found using the )
following equations: S, =8,_1—Cs,_ T/ (c,m+1 + chgilTrT) (TS, — M?,,), (15a)

S = (TTC#T 4 CS_1>*1 (TTcglM* +c;t S*) ., (13a) and the covariance matr;, is the following:

-1
or Cy =Cys —Cy i 7T (Cona + TiC5L,TT) TG,y (15b)

13

S=8*—C,TT (cm + Tcs—lTT)_l (TS*— M*). (13b) where the index#” indicates that the vectors are associated
with time stepr. Correspondingly, Egs. (15) does not solve
Eqg. (5) directly, rather, it searches for a solution by solving

The covariance matrix of estimatéscan also be obtained : ) :
the following sequence of the equations, formulated for a sin-

using two formally equivalent formulations:

gle time step:
-1
Cs=(TTC, T+crh) (142)  MF = M"—T,M, = T,S,, (16)
or WhereM;‘H:M;rff‘s—T, M, is the vector of mass measured
T 1o\ -1 at time step+1, corrected for the effect of aerosol mads
Csg=Cs —CiT (Cm +TC,°T ) TC; (14b)  present in the atmospheres at the previous time stef,

_ o o is the vector of emission sources at time stefd; is the
Most efforts in deriving emission sources, and generallymatrix describing the aerosol mass transport from timestep

in assimilating geophysical parameters, rely on these basig time step+1. The vectorss;, and M, relate to vectors
equations (e.g. Hartley and Prinn, 1993; Elbern et al., 1997gndarused in Eq. (5) as follows:

Dee and Da Silva, 1998; Khattatov et al., 2000; Kasibhatla et

al., 2000; Para et al., 2003). ST=(Si4n - Sixr. SHT andM ™= My, ... M; 11, M), (17)
Equations (13a) and (13b), as well as (14a) and (14b) . _ .

are considered to be generally equivalent (e.g. see Taran € relationship between matrixc&s and T can be seen

tola, 1987). One of the important differences is that the ma_from Eq. (B5) n the Appendlx. . )

trix (TTC#—HCEl) inverted in Egs. (13a) and (14a) has di- Correspondingly, instead of the_10|r_1t_ system given by

mensionN; (the number of retrieved parameters) whereasEd- (10), E@s. (15) solves the following joint system:

(Cn+TCsTT) inverted in Egs. (13b) and (14b) has the di-  5ymeas_ M, (S))+ Ay

mensionN,, (the number of measurements). In these re—{ ’+Sl* — S 1+ A ,

gards, the pairs of Egs. (13) and (14) are fully equivalent rT ot s

when N,,=Ng. Equations (13a) and (14a) are preferable where the second line describes an a priori assumption of

for inverting redundant measurements, (> Ngs), whereas continuity between emissions at time ste@sds—1. (Note

(18)

Atmos. Chem. Phys., 8, 209-250, 2008 www.atmos-chem-phys.net/8/209/2008/
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that in Eq. (10) the a priori estimaté&¥ do not directly as-  wherey is the Lagrange parameter aflis the so-called
sume such continuity). The solution given by Egs. (15) cor-smoothness matrix of-th differences. For example, for the

responds to a minimum of the following quadratic form: second differences, the matiixis the following:
2Wi41(S) = AM[,,C,L AM, 1+ AS[CSt AS,, (19) 1-21 0 0..
-25-41 00..

whereAM,1=T,S,—M; , andAS,;=S,—S;_1. 1 -46-4100 ..

This sequential correction (filtering) given by Eqgs. (15)are =] 0 1 -4 6 —41 0 0 .. |. (21)
widely known as a “Kalman filter”, named after the author .
(Kalman, 1960) who originated the technique for engineer- .. 01-45 -2
ing purposes. 01 -21

Constrained inversion techniques are also widely used in ' o
remote sensing for retrieving vertical profiles of atmospheric The solution of Eq. (20) corresponds to a minimum of the
properties (pressure, temperature, gaseous concentratiorf§/lowing quadratic form:

etc.), where Eqgs. (13-14) are associated with studies b T T
Strand and Westwater (1968) and Rodgers (1976). It shoulé‘y(s) =2(Wm + Ysmooth = AM"AM +yS§'QS. (22)

be ”Ote?' thé_‘t in remote sensing, I_Eq. (13Db) is not related to # contrast with Egs. (13-14), the original Phillips-Tikhonov-
sequential time retrieval (as considered by Kalman (1960)),-|-Womey technique was not based on direct assumptions

but instead it is formulated for retrieving the entire vecfor 51,0t the error statistics. Nevertheless, this formula can be
of unknowns as given by Eq. (17) (Rodgers, 1976). The im-yaneralized within the statistical formalism by using normal
portant difference between Egs. (13b), (14b) and the Kalman, jise assumptions (e.g. see Dubovik, 2004). The princi-
filter Eq. (15) is that the solutiof; of Eq. (15) is_influenced pal difference of Eq. (20) from Egs. (13-14) is the fact that
only by the observations performed at one time stéft, g4 20) does not use a priori values of unknonsinstead,
whereas in Egs. (13b), (14b) (as well as in Egs. 13a, 14a)gq (20) limits the differences between the componéntsf

the componens; of the entire solutiors can be influenced  the vectors. For example, if the vectcs is a discrete analog
by observations of aerosol ontained at later time steps. of a continuous function of one parameter®.g.

2.3 Inversion constrained by a priori smoothness con-g; = §(x;), (23)

straints (limiting derivatives of the solution)
wherex; are equidistant pointsc(; 1=x;+Ax), then the a

Equations (13-14) illustrate only the group of methods for priori term in the minimized quadratic form (Eq. 22) would
performing constrained inversions, where the constraints exrepresent the norm of n-th derivatives (see Twomey, 1977;
plicitly contain the a priori estimateS* of unknowns. An-  Dubovik, 2004):

other group of popular constrained inve[sion methods doesxma
not restrict the magnitudes of the solutidn instead these " d"S(x)\? ngmax AR ()2

methods use smoothness constraints that limit only the dif- (W) x~ A ( (Ax)" ) =

ferences between elemerfls of the solution vectos. If  min Hmn

the vectors is discrete analog ofa contingous function,. thle'n (Ax)™" (D, S)T (D,S) ~ST (DIDn> S=STQ,S, (24)
the smoothness constraints can be considered as a priori lim-

itations on the functior$ (7, x, y, z), so the smoothness con- \yhereD,, is the matrix ofn-th differences:

straints can be considered a priori limitations on the deriva-

tives of the functiorS(z, x, y, z) with respect to time or spa- Al = Si41 — ;) (n=1),

tial coordinates. The potential advantage of smoothness conA? = S;» — 28,11 + S;. (n =2, (25)
straints is the fact that, in principle, using smoothness con-A% = S; ;3 — 3S;42 + 3Si41 — Si (n =3).

straints imposes weaker limitations on the solution than usingF ] ) )
a priori constraints (since knowledge of function derivatives FO" €xample, matriD; of second differences is the follow-

is less constraining than knowledge of function itself). Ing:
Numerous atmospheric remote sensing retrievals using 1-21 0
smoothness constraints are based on the constrained in- 01-21 .O
version approach originated by Phillips (1962), Tikhonov 00 1-210.. . (26)

(1963) and Twomey (1963). If one formally applies the
Phillips-Tikhonov-Twomey approach for solving Eqg. (5), the
solution would be the following:

R T -1 o The corresponding smoothness magix=D] D; is given by
= (T T+7’9) M, (20)  Eq. (22).
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Thus, in many remote sensing applications where param2.4 Constrained inversion within multi-term LSM
eter functionsS(x;) are retrieved, using smoothness con-
straints as shown in Eq. (20) is fruitful and popular. For Dubovik and King (2000) and Dubovik (2004) demonstrated
example, such constraints are widely used in aerosol sizéhat Egs. (13a) and (20) can be naturally derived and gener-
distribution retrievals, for eliminating unrealistically strong alized by considering inversions with a priori constraints as
oscilations in the dependence of aerosol particle concentrad version of multi-term LSM. Formally, both measured and a
tion on particle size (e.g. Twomey, 1977; King et al., 1978; priori data can be written as

Nak_aurna gt al., 1996; Dupowk and K_mg,. 2000, etc.). .US|'ng [i=ful@+Afr k=12 .. . K), (28)
a priori estimates as solution constraints in those applications
tends to over-constrain the retrievals. where f7 are vectors of measurementsf; are vectors of

Using a priori limitations on the derivatives (shown above) méasurement errors, anft (a) are forward models that al-
does not seem to be as popular for geophysical parametdpW adequate simulations ¢fy from predetermined param-
data assimilation and inversion of tracer modeling. Such con€t€rsa. Indexk denotes different data sets. The separa-
straints are certainly included in general formalations of as-ions of data sets assume that the data from the same data
similation techniques (e.g. Navon, 1997), and they have beef€t have similar error structure, independent of errors in the
utilized for oceanographic data assimilations (e.g. Thackerdata from other sets. Assuming thatf is normally dis-
1988; Thacker and Long, 1988; Yaremchul et al., 2001 tributed with covariance matric&€,, the MML optimum so-
2002). Nonetheless, inverse modeling techniques commonljHtion of Eq. (28) corresponds to the minimum of the follow-
favor Bayesian formulations that constrain the solution with INg quadratic form:

a priori estimates of terms, as shown in Eq. (13) (e.g. see the K
review by Lahoz et al., 2007). Constraints on time and spac@¥ @) =Y (A f)" (Ci)™* (A f1)=min, (29a)
variability are often included in Bayesian formulations, by k=1

using in Egs.(13) the covariance mat@x of a priori esti-  whereA f; = fi(a)— f}. This condition does not prescribe
mates having non-zero non-diagonal elements (e.g. Roderthe value of the minimum and, therefore, it can be formulated
beck et al., 2003; Michalak et al., 2004; Houweling et al., via weighting matrices:
2004).

One of the many possible reasons for the unpopularity of K K
a priori limitations on the derivatives in inverse modeling is 2%’ @ =) %(Af0" W™ (Af0=2)_ nW¥ @ =min, (29b)
probably the fact that tracer modeling deals with 4D charac- k=t k=t
teristics. For example, the unknown vecsan Eq. (5) repre-  where weighting matriced/, defined as:

sents global aerosol sources. Correspondingly, instead of one 2
parametric function shown by Eq. (23), we should consideny, = —Cr andy, = 8_2 (30)
vectorS as the discrete equivalent of the 4D function: €k &

Heree? is the first diagonal element @, i.e. e2={Cy}11.
Si =S, xj, Yk» Zm)s 27) Using the weighting matriced/; is, in principle, equivalent

to using covariance matrices;, although sometimes it is
i.e. vectorS has a total ofV, x N, x Ny x N, elements, where = more convenient because it explicitly shows that the mini-
N;,N, ,N, and N, are the total numbers of discrete points Mization depends only on the relative contribution of each
for coordinates, x, y andz, respectively. Obviously, the termw to the total . The Lagrange parametersweight
variability of emissionsS(t, x, y, z) with time 7, vertically ~ the contribution of each source relative to the contribution
with z and horizontally withy andx does not have to be Of first data source (obviously;=1). The minimum of the
the same. This is why, using a single smoothness term innulti-term quadratic form given by Eq. (29) can be found by
Eq. (22) with a single smoothness matft(as the one given the multi-term equivalent of Eq. (9):
in Eqg. 21) is not appropriate for constraining the retrieval of X -1
four-dimensional characteristift, x, y, z). Atthe sametime, a= (Z e KoTwp?t (Kk)) (
some temporal and spatial horizontal and vertical continuity k=1
of aerosol emission can naturally be expected (the same i$he corresponding covariance matrix can be estimated from
applicable for most of geophysical parameters). Thereforethe following:
applying smoothness constraints on the variabilitys @if X, « 1
y, 2) with each coordinate instead of using a single variability . T 1 2
constraint can be useful. However, that would require usingc‘i = <Z Vi (Ki) ™ (W) (K")> £ (32)
several constraints simultaneously. A possible approach for
using multiple constraints is discussed by Dubovik and Kingwhere 82 is estimated from the minimum oft’ as:
(2000) and Dubovik (2004). 52:\1//(Nf—Na), Ny is the total number of elementg'};

K
D n KT Wyt fI) - (31)

k=1

k=1

Atmos. Chem. Phys., 8, 209-250, 2008 www.atmos-chem-phys.net/8/209/2008/



O. Dubovik et al.: Retrieving global aerosol sources from satellites 217

(in all setsf), N, is the total number of unknown parame- derivative. For example, for the second term, which corre-
tersa;. sponds to the time coordinateone can write;

Using the above multi-term equations, one can formulate , .
an inversion with smoothness constraints on the variability A (11, %), Vi Zm) , T oms(t, x)\?

. e =y [(——5— mp,(s):/ d

of S(t, X, y, 2), separately for each coordinate. Specifically, (An)" arn
such multiple smoothness constraints represent a solution of
the following joint system:

G, lm) -

(373a)

Mmeas: M(S) + AM and

Of =AY (t,x)+ A _ 1-2n T _ 1-2n T

0F = AN (£ x) + Ay | (33) v, (S)T_ (A1) (Dm,,)sl) an(,lT,,)S = (A1) S

0; = A% (t,x) + A, (DWQDWQ>S=(AU" ST, s, (37b)

O =A%t x)+A;

where the matriXD, ) is the matrix of differences corre-
sponding tor-th partial derivative with respect to time. For
exampleD 2 ;) S would produce a vector with elements equal
to the second differences, as shown in Eg. (34).

Thus, it was shown above that using the multi-term LSM
(A2, x) e =A2(t, X} Yoo 2m)= approach, one can apply multiple smoothness constraints in
the retrieval of emission sources. Therefore, it is possible
to utilize knowledge about typical time, horizontal and verti-
(34a) cal variability of the emissions as a priori constraints on the
retrieval. As shown in Egs. (33-37), such smoothness con-
straints are included as restrictions on the n-th partial deriva-
tives of (¢, x, y, z) assuming zero values for the correspond-
g=( —1DNN,N, + (j —DNyN, + (k — HN, + (m — 1). (34b) ing differences in Eq. (33), and that values of the Lagrange

S ] parameters determine the variations from zero. The order of
The second line in Eq. (33) states that differentés:;) are  he differences assumed relates to the character of expected

equal to Zero with errora,. Accordingly, forn=2 the vec-  \ariapility; for example for a one-parameter functis(r),
torsQf, A“(r) andA, consist of (V;=2)x Ny x Ny x N; ZEI0S,  there are following relationships:

A2(t;, xj, yk , zm) @nd A,,, respectively. The 3rd, 4th and

5th lines in Eq. (33) are defined in the same way for coor- A1(r) = 0 — S(¢) = const — constant

dinatesx, y andz respectively. Assuming thak;, A,,A, A%(1)=0— S(t) = A+ Bt — straight line  (38)
andA. are normally distributed with zero means and diago- A3(;) = 0 — S(r) = A + Bt + Ct2 — parabola, etc.

nal covariance matrice8,=¢7? 1, , C,=¢?1,, C,=¢3 |, and

Cz=812 I, the multi-term LSM solution of Eq. (33) can be Note that the constraints employed in Kalman filter Eq. (15)
written as follows: are equivalent to restricting the first differences (see Eq. 18),
A » i.e. assuming a priori linear continuity of the source variabil-
§= (TTW;lT T+ R+ 12y + yzQz) T'w,M*, (35) ity. In a contrast, Egs. (35-36) with multiple constraints al-
low using higher order constraints on time variability, and
can constrain not only time, but also the space and vertical
variability of the emissions.

where A" (...) denotes then-th difference (see Eq. 25) of
aerosol sources with respect to time, or to coordinates
or z. For example, for the time coordinatesecond differ-
ences (Eqg. 25) can be written as:

S(ti+1’ xjv Yk, Zm)_zs(tl’ Xj, Yk, Zm)—i_S(ti*lr xj’ Yk, Zm)'

where the indey can be calculated (see Fig. 2), for example,
as follows

where

1 f & e 2
Wm: 2 Cm7 Ye= 2 Vx= ) Vy= 2 Y= 2
Sm 8’7[ € m 81/)

2.5 Inversion using adjoint equations
and e2={Cp}11, ¢7={Ci}11, £2={Ci}11, £=(Cy}11 and
ezz={CZ}11. The matricex2 are determined via correspond-

ing matrices of n-th difference=D]D,. Equation (35)
yields the minimum of the following quadratic form:

Methods analogous to Eq. (13) are used for retrieving CO
sources from surface-based and satellite observations (e.g.
see Enting et al., 1995; Patra et al., 2003). However, direct
implementation of Egs. (9, 13) for retrieving aerosol emis-
2W(S) = 2U,,(S) + 2 Z Vg Wy (S) = sion sources_is not feasible, due to the very large dimen-
sions of matrixT and vectorsS and M. For example, CQ

(g=t.x,y,2)
Tir—1 T emission sources can be assumed constant for monthly or
2(AM)"W,, =AM + 2( Z )qu 2S5. (36) yearly periods over large geographic areas (e.g., Patra et al.,
q=r,x,y,2

2003, used 22 and 53 global regions). The temporal and spa-
Each of the smoothness terms in this equation can be considial variability of tropospheric aerosols and their sources are
ered as a discrete equivalent of the norm of jiki partial much higher. For aerosols, the GOCART model (see below)
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Backward Time
Integration of Adjoint Residual obtained using s°(t,x):
Transport Model: AP(tx) = o2’ (tx)(mP(tx)- m'(tx) (t,<t<t, ..)

mP(t,x) - mass simulated using s”(t,x),
AsP (t,x) = m(tx) - mass measurements
tn ey
- TR 0wsP (0 + AT EXy g
t o”(t' x)

T 0 - T T
ASP(t, x)=TH(t,,x)(AP(t,, X)) At

T*, - adjoint operators of

isolated transport processes:
- advection, ASP(t, 1. %)= Th(t, 1, X)(ASP(t,, X)+AP(t, 4, X))At

- diffusion,
& elion ASP(t.2,X)= TH(t, 2, X)(ASP (b, 1, X)+AP(¢, 5, X)) AL
- wet deposition,

- dry deposition, etc.

Matrix equivalent:

B e OUTPUT

Solution Correction:

M, - vector of global aerosol mass at t,,
TT - transpose of transport matrix T, ASP( t,X) (to-s t= l‘max)

C - measurement covariance matrix.
, p+1 = gP, - )
A MP - vector of residuals (A Me =M(S?)- M), 8= (s hsity

Fig. 4. lllustration of the calculation of gradiemW,, (S) (Eqg. 40) by means of implementing the sequential backward time integration of
the adjoint aerosol transport model.

has 2 x2.5° horizontal resolution (144 longitudes, 91 lati- the strategy used for global model forward simulations. As
tudes) and 30 vertical layers, with the possibility of having shown by Eq. (5), transport modeling can be formulated as
variable sources in each layer. As a result, inverting a fewa matrix operator; however, in practice, transport models are
weeks of observations using Egs. (9) or (13) requires dealimplemented with numerical time integration (Eq. 4), by se-
ing with the vectorS having dimensiornVs far exceeding quentially computing chemical transports during each time
200 000, even under the conservative assumption that sourcesepAr (Eq. 2), and with separate treatment of isolated pro-
are near surface and constant during 24 hours. Performingesses (Eq. 3). Figure 3 illustrates the relationship between
the vector and matrix operations of Egs. (9, 13) directly onthe matrix formulation of aerosol transport Eq. (2), and direct
terms of such high dimensionality is problematic. One waytime integration. A similar approach can be employed in in-
to avoid dealing with such large vectors and matrices is toverse modeling, by developing so-called “adjoint” transport
perform the inversion using time sequential retrievals, as isoperators as formulated in a variational assimilation frame-
given by Kalman filter formulation of Eq. (15), where the re- work (e.g. Le Dimet and Talagrand, 1986; Talagrand and
trieval uses generally smaller matrices and vectors contain€ourtier, 1987; Elbern et al., 1997; Menut et al., 2000; EI-
ing parameter values at only a single time stegHowever,  bern et al., 2007). The analogies between the variational and
in Kalman filter procedure given in Eq. (15), the retrieval matrix formulations are rather apparent. (In order to assist
relies only on observations at a single time step, and on asthe reader in understanding the considerations discussed be-
suming linear continuity of the emission strength. However, low, Figs. 4-5 provide diagrams outlining matrix formula-
the emitted aerosol is transported over a period of time, andions and their continuous analogs). Indeed, any inversion
therefore, observations during that entire period (a week) caran be implemented by iterations without the explicit use of
be useful for the retrieval. In these regards, using Eqgs. (10+matrix inversion. For example, a solution equivalent to the
13) seem preferable to Egs. (15-19), and can be implementegne of Eq. (9) can be obtained by the steepest descent itera-
with computational requirements close to those of forwardtive method:

modeling. To achieve this, the inversion routine must adopt.. 1 a N
S§PHt =8P —1,ASP, (39)
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Implementation of Steepest
Descent Method via Adjoint

Matrix Formulation:

sPH - sP _TTc'AMP

MOde"ng (AMP ~ M(SP)-M" and M(SP)~T(M, +SF)
- = = o+ ))
e oo o oo o e e am am e omm omm e o ow o
[=========- |
I 1
RS | M(SP) =T(M, +57)!
Initialization (p=0): ... mit, x) = I I
[ ""‘ me(t x) -
p-th Approximation | —7 — 77— —""~  __ __ ______
of Solution: ' i :
_ | c_qAMp |
i/ so(tx) Residual calculation: : :
} yes i
no i AP(LX) = o2 (t,X)(MP(t, X)- m'(t.x) b
END |e———<F (p<p,.) > SRS AT .
et 1|r
L ASP -TTCTAMP |
Solution correction: L .
sPH1(t x)= sP(t,x)- AsP(t x) ‘ ‘ AsP(t,x) =
o BT !
— = 1 v
| 5P+ = 8P _TTCAMP!
1

Fig. 5. Diagram illustrating implementation of the steepest descent iteration in terms of the adjoint modeling approach.

ASP =V, (SP) =T'C,lAM? (40)
where AMP=M(SP)—M*, VV¥,,(S) denotes the gradient
of v, (S) andt, is a non-negative coefficient. This method
uses the fact that the gradievitv,,, (S) points in the direc-
tion of maximal local changes oF,,(S), and this direction
(tp V¥, (SP), generallyr, <1) can always be used to correct
S”, so it moves toward the solutigh that minimizesy,, (S),

i.e W, (SPt1<w, (SP). Equations (39—-40) do not require
inversions of high dimension matrices (inverting a diagonal
covariance matrix is trivial). The gradieMy,,(S) can be
simulated using a time integration scheme similar to the on
employed for forward modeling so the matrix solution of the
steepest descent method Egs. (39—-40) can be replaced by

analogous continuous operation. Namely, the elements of the

gradient vectoV ¥, (S) can be simulated in a manner simi-

lar to Egs. (2—4) and the inversion can be implemented using

a continuous analog of the gradient vectob,, (S) (see also
Figs. 3—4). A continues equivalent of Eq. (40) can be written
as follows (the detailed derivations is given in Appendix B):

[}
ASP (1, x) = / (¢, x) (A5 (1 %) +072 (', %) Am? (,x) ) (~dt),
t

(41a)

www.atmos-chem-phys.net/8/209/2008/

where
1
AmP (1, x) = m* (1, x) — / T (/. x) (m (', x) + s (i'.x))dr’. (41b)
o
andT?# (¢, x) is the adjoint of the transport operatbr(, x),

that is composed of adjoinﬂ$# (¢, x) of the component pro-
cesseq; (¢, x):
T*(t,x) = 1T 1§..T) 4 1) (41c)

The vectorsAS? (¢, x) and o2 (t,x) AmP (¢, x) denote

Sunctional equivalents of vectorsS? andC, 1 AMP respec-

tively. For example, if one intends to use the continuous
ction As? (¢, x) in numerical calculations, it can be rep-
resented by a vectak S” with the following elements:

IAS‘"]I = ASP (1. %), Yer 2m) - (42a)

where the index is determined in the same way as in
Eq. (34b).

Similarly, if the observational errors are uncorrelated, i.e.
the covariance matrix of the measureme@ysis diagonal,
with the diagonal elements equaktd (1;, x;, Yk, zm ), the el-
ements of vecto€,,* A M? relate to the continuous function
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o2 (t, x) AmP (¢, x) in straightforward way: large number of iterations. The even faster method of con-
_ _ jugated gradients may require up My iterations (Press et
{leAMp}/ = 07 (112 ). i Tn) Am® (6 %) i 7m) - (420) al., 1992). Nevertheless, a rather limited number of simple
If observational errors do not have time correlations but doiterations appears to be sufficient for global inverse model-
have spatial correlations;,, has an array structure that can ing of high dimensionality. For instance, the iterations of
be included in the algorithm (see Egs. (B12-B15) in Ap- Egs. (39-40) converge from an arbitrary initial guess to the
pendix B), provided one can formulate a weighting func- solution rapidly if the following sequence tends toward the

tion C~1(z, x, x’) from the covariance functiof'(z, x, x’), ~ Z€ro matrix (Dubovik, 2004):
to perform a role analogous to the one of mal@gl'l in o
the discrete representation. Including the spatial correlations
during each time moment is feasible because the model i%:ll
integrated by time steps, and each step can be treated rather
independently. However, accounting for observational errorgvherel is unity matrix. It is clear that rapid convergence
that are correlated in time is not feasible without changingof Egs. (39-40) can be achieved onlyTif T is predomi-
the structure of Eq. (41). nantly diagonal C,, is often diagonal and does not cause
It is important to note that Eq. (41) is convenient for prac- Problems). Fortunately, in transport modeling, the diago-
tical implementation of the inversion. Indeed, as outlined innal elements of 'T dominate, because local aerosol emis-

Fig. 4 (compare with Fig. 3), Eq. (41) is related to Eq. (4), sion typically influence only nearby locations (i.e. maffix

(1-5T7C ) =0 (44)

with the difference that it usesm? (¢, x) in place ofs (¢, x), !s rather sparse and has a large number of zeros, see Eq. (B5)
andAS$P? (z, x) in place ofm (¢, x), and it performs the back- in Appendix B). _ _
ward time integration of the adjoint operatdf (s, x) . If It should be noted that Eqgs. (41) expressing the inver-

T (¢, x) is functionally equivalent to the matrix operatéy  sion via adjoint operators, are generally analogous to tech-

then the adjoint operatdf? (¢, x) is an equivalent to the niques used in variational assimilation (e.g. Le Dimet and

transposed matrist T (Appendix A). Therefore, the main Talagrand, 1986; Talagrand and Courtier, 1987; Menut et al.,

reason for developing the adjoint operaﬁﬁ from T can 2000; Vukicevic et al., 2001). Nevertheless, the statistical es-

be illustrated by considering matrix transposition. For ex- timation approach employed in our study makes it possible to

ample, since the transport operator integration can be apestablish direct relationships between Eqgs. (41) and conven-

proximated using the split operator approach (e.g. see Jdional LSM minimization which therefore improves flexibil-

cob, 1999), where matrices corresponding to different atmodty in implementing the inversion. For example, using error

spheric processes are multiplied at each time step (e.g. se@@variances directly makes it possible to account for differ-

Eq. 3). The following matrix identity is helpful: ent levels of accuracy in the inverted observations. Moreover,
formulating the inversion using a statistical approach is con-

TaT2Ty' =T (T2 (T)". (43)  Venient for including several a priori constraints in the same

This reversing of the order of operations by transposition pro-retrieval, for example, by following multi-term LSM strategy

duces an overturned sequence of component process applicdiscussed in Sect. 2.4.

tions within each time step Eq. (41c), and reverses the order

of integration in Eq. (41a), i.e. in backward time integration 2.6 Including a priori constraints in inversion, using adjoint

Eq. (41a). Also, the transposition of matiix changes rows equations

and columns, so iT is non-square, the input oT )T should

have the dimensions df; output, and vice versa. Thus, the Equations (41) can be easily adopted for constrained inver-

adjoint model (Eq. 41) can be developed on the basis of th&ion. Figures 6—7 illustrate the considerations discussed in

original model (Eq. 4) by reversing the order of operations this Seption. For example, the inversion constraining the so-

and switching the inputs and outputs of the routines (e.g. ElHution § with its a priori estimatess®, shown as a matrix

bern et al., 1997; Menut et al., 2000). inversion in Eqg. (13), can be implemented iteratively, e.g. us-

Thus, using the adjoint of the transport model allows using steepest descent iterations:

to implement the LSM inversion (Eq. 9) without using ex- . .

plicit matrix inversions, and therefore demands only moder-S”* = 87 — 1,AS?, (453)

ate computational efforts. As is shown in Fig. 5 each iteration

in Eq. (41) requires one forward integration of the transport .

model (Eq. 41b) followed by one backward integration of the AS”=VW,, (8”)+VWs(S")=T W, 'AF?+y,W AS?.

adjoint transport model (Eq. 41a). (45b)

The need to perform a number of iterations in Eq. (41) is

a potential drawback of implementing inversions via adjoint Here we used weighting matric®¢__ instead of covariance

modeling. Indeed, the steepest descent method of Egs. (39natricesC . in order to align these equations with the LSM

40), in general, converge to the exact solution after a verymulti-term formulations given by Egs. (28-32). If we assume
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Implementation of Steepest --- - - - --"-"--——-- - - = = = - — - — — — :
Descent Method With a priori

|
. . s I epHl _gp _TTw-TAm”: p_qa p i
Constraints via Adjoint : §7 = 87 T W AMP:- 1y(S” - §7) - Q28" . :
|
|

L R R S R

Modeling (AMP = M(SP)-M" and M(SP)=T(M,+S")| o il :
| |
I 1
----------------------------------------------------------------- : M(SF)=T(M, +S"J:
Initialization (p=0): ... m_l’f_g x) : - ':, R E—. !
= me(t, x) .
p-th Approximation |\ ———WW—7r— —— — _ __ __ __ ___
of Solution: ] : 1 i
oo LOWTAMP
‘S"'”(IX) - Shitx) Residual calculation: : :
yes G
APt Xx) = w2 (8, x)(mP(t, x)- m'(t,.x))

___________

e

no

END |e———<TF(p<p,.) >
/

I
Y

-

Solution correction:

s71(t,x)= s(t,x)- AsP(t,x) ‘ ‘ AsP(t x)

=7
__________ s e + Y G mtes RN R e T et P

a priori constraints:

i |
= ’,_! ASE = y,(8” -587)- ;/EQS".,,:
‘ ASP(t,X) SASP(t,X)- \SP_(1,%) ° J{ =S R

Fig. 6. illustrating implementation of the steepest descent method with a priori constraints, by means of adjoint aerosol transport modeling.

for simplicity that all measurements are statistically indepen-The functionAs? (¢, x), corresponding to vectohS? can
dent and have the same accuragyi.e.C,,=I 831—>Wm:I), be formulated as follows:

and that all a priori estimates are statistically independent and

have the same accuraey (Cs=I g§—>WS:I), then we can

write the continuous analog to Eq. (45b) as follows: lo

ASP (t,x) = / T*(t,x) (ASP (¢, x) + AmP (', x))(—dt")

fo
t
ASP (1, x) :fT# (¢, x) (ASP (¢, x) +AmP (', x))(—dt) Yy DEDsT(x) =
t (g=t.x,y,2)
+ys (87 (¢, x) =5* (¢, x)) . (45¢) fo
=/T*(l,x) (ASP(', x) + AmP (', x)) (—dt')

—.27.2
wherey s=e;, le5. /

The iterative analog to Eq. (35), constraining the solution 9@gp (¢, x)
by limiting the time and spatial derivatives 81z, x), can be + Z Yq T 47)
written as follows: (q=t.x.y.2) 9q
SPL =87 —1,ASP, (46a)

wherex'=(x;, y, zm), D, denotes:-th derivative operator
and D¥ denotes the adjoint to the-th derivative operator.
A For the adjoint operatof)jf, one can write the following:
ASP =V, (ST + Yy VW, (SP)
(g=t,x,y,2)
=T'W_ LAFP + voD'D, S”. (46b)
: (q=fo;y,z) o Df: (=1)"Dp. (48a)
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Backward Time Integration of Adjoint
Transport Model with a priori constraints: a(tx.y,2) =

& !
Asp(f,x)=_{T"(t',x)(As%t’,xH% =

T %) =TT T T

T#i - adjoint operators of isolated
transport processes:
- advection,
- diffusion,
- convection,
- wet deposition,
- dry deposition, etc.

limiting 2 derivatives:

a*s (t,x,y,2) a8t x.y,z)
e ‘}’yay—4 EE

a*S(t,x,y,z) *S(t.x.y.2)
e +n—

Matrix equivalent:

J 4
SP* _ 8P _TTW'AMP - ASP = y
Ty ~
=SP-T'WAMP - y,(SP-8") - ¥y, SP
(q=t,x,y,z) I w,,lc

4 1 0 0 2

M, - vector of global aerosol mass at t;, 6 -4 1 0 1

TT - transpose of transport matrix T, =ANa =4 0 512

A MP - vector of residuals (a Me =M(S»)- M') Yi = ?

W- weighting matrix, Q - smoothness matrix, s BT o8 B i

. 0 1 -2 1

Fig. 7. lllustration of the combination of sequential backward time integration of the adjoint aerosol transport model with a priori constraints.

This identity can be obtained from the transposition of thelationship can written for the-th element of the gradient

matricesD,,. For example, foD1" we have the following: VU, (SP):
T
1-10... 34SP (1, x)
01-10.. DEDoS (1, x)ly = ——5 37|~ (Wi(SP))g =
pT — 0 0 1-10... ti
1= = (AT (Sti12, X) — 4S(ti41, X) + 65(1;, )
- 1-10 —4S (11, X) + S(ti-2, X)) (49)
.0 1 -1

where the index can be calculated according Eq. (34) and

11 (1) '0 2<i<N;-2 (see Eg. 21). Equations analogous to Eq. (49) can
_0 11 0 be written for terms corresponding to the spatial coordinates

= o ) (48b)  x,yandz. Itshould be noted that in practice, the calculation
of the first “transport term” and the second “a priori term” in
R Eq. (47) can be performed rather independently as shown in
- 01 Fig. 6. For example, in Section 3 (where Eq. (47) is imple-
Here one can see that with exception of the first and lasimented) the “transport term” is integrated with the time step
lines of D1, each row corresponds to first differences. Sim- of the GOCART model (20 min), whereas the “a priori term”
ilarly, it is easy to demonstrate that the lines of the matricesis calculated as shown in Eg. (49) with time step=t; . 1—t;
D."(n > 1) corespond ta-th differences, with exception of equal to 24 h.
first and last: lines. If both the number of lines and columns  These formulations can also adopt the same a priori con-
in D,T are much larger than, this difference betweeb,, straints as those used in the Kalman filter, i.e. when only
andD, " can be neglected, e.g. in the continuous case wheithe continuity of sources is constrained a priori by assum-
Ag—>0. For example, when the norm of the second deriva-ing S;=S,_1+As (see Eqgs. 15 and 18). In this situation,
tives of s(¢, x) over time is constrained, the following re- one can assume that the first derivative @f x) over time is
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close to zero, i.39(¢, x)/9t~0. Similarly, Eq. (47) should be

223

where indicesj, j’, i and i’ are indices for the ele-

used with only one a priori term, corresponding to the normments f;, m;, m;;, S; of the corresponding vectorB =

of the first derivative9s(z, x)/dt i.e.g=t andn=1. This way

(f1. /2,0 - ) MTZ(ml,mz,. ) andST:(Sl,Sg,. ..). The fol-

Eq. (47) relies on the same a priori constraints as those useldwing relationship between the Jacobi matricesdbitis,

in the Kalman filter Eq. (47), and observationsz, x) dur-
ing the entire time period>¢; can contribute to the solu-

tion S(#;, x), whereas Eq. (15) relies only on observations *”

m(t;, x) attimer;.

dm/ds and thedf/dm derivatives was used in Eq. (53):
K,=F,T, (53c)

The functionAs? (¢, x), corresponding to vectcmS‘l’, can

Also, it should be noted that for clarity Egs. (45¢) and (47) tormulated as follows:
were written for the case of the simplest measurements co-
variance matrices and a priori data errérs=s2 | . How-
ever, the generalization of these equations to cases when thas” (t, x) = f T} (¢, x) Fy (1, x)
accuracies within each data set are differgat};#{C},;, t
i#j), or the covariance matrices are non-diagonal, is rather (Agp ([/, x) + AfP (t/’ x)) (—dt)),
straightforward (similar to that shown by Egs. (41-43).

o

(54)

where T/ (z, x) and F(z, x) are adjoint operators for the
mass transpoif (s (z, x)) and the optical mode¥ (m(z, x)),
. _ _ _ _ ~and indexp indicates that these adjoint operators are equiv-
Previous sections described an approach to inverting a lineagjents of transposed Jacobi matrid'%and ET. The deriva-
transport model (Eq. (5)), provided global aerosol miss ; # ; ; ’ ;

P 4. ), p gl¢ tion of F;(z, x) is quite transparent because optical proper-
measurements are available. In practice, the transport mOd‘ﬁlesf(m(t, x), ...) usually are related only to local aerosols,

may be non-linear, and the global aerosol data fields may bg, j yractical implementations of Eq. (54) (that are usually
available only in the form of satellite optical measurements: performed in discrete representationEf,(t, x) can be ex-

(50) plicitly replaced by the transposed Jacobi maﬁ]}<

] ) ] ] Equation (54) can be expanded easily to implement a con-
wheref(...) is generally a non-linear function depending on gtrainted inversion of =F(m(t,x), 1,0, ...) . For example,

2.7 Inverting models having non-linearities

f=Fm(t,x),1,0;..),

aerosol mass:(z, x), instrument spectral characteristics
observation geometrg, etc. Therefore, the following non-
linear equation should be solved instead of Eq. (5):

F* = F (M(S)) + AF, (51)

whereF andAF are vectors of global optical data and their
uncertainties. Since, the steepest descent method can be ap-

plied to both linear and non-linear problems, Egs. (41, 45, + Z
47), that use adjoint operators, can be expanded to solve
Eq. (51). For example, for a basic case when only optical

measurement&™* are inverted with no a priori constraints,
the steepest descent solution can be written as:

Sl = 87 —1,ASP, (52a)

ASP = VW (8P) =K C;'AF? =T F]C;*AF” , (52b)

whereAFP=F (§P)-F*. MatricesK , T, andF, denote Ja-
cobi matrices of the first derivative$f/ds, dnm/ds and df/dm
calculated in the vicinity of the vectd”:

_ dfim($),2,0,.)

K , 53a
{Kp};; 25, o (53a)
and
{T } _ dmj/(Satvx)

Plii— ds; S—sp
{F } L= M‘ (53b)

Pl dmjs MP=M(SP)

www.atmos-chem-phys.net/8/209/2008/

when the solution is constrained by a priori limits on the tem-
poral and spatial derivatives ¢f(z, x) (utilized in Egs. 35
and 48), Eq. (54) can be written as follows:

o]

ASP (1, x) =/T,’j‘ (' x) Fif (¢ x) (AP (', x) + AfP (', x)) (—=dt")
t

dq‘2n)

D) )

(g=t.x.y.2)
Using thisAs? (¢, x), (if the same discrete representation is
used), the iterative retrieval would amount to minimizing the
following quadratic form:

20(S) =2,(S)+2 Y yW(8) =
(g=t,x,y,2)
2(AF)T AF+2 " y,5TD] D, ,S. (56a)
(g=t,x,y,2)

This quadratic form can be generalized by the following
functional:

20 = Z/f// AFF @, x, y,2) Af (1, x, v, 2)dxdydzdt

rox,y.z

gmax 2
Z / B”S(C], ) d
Yq 9q" q,

q=t,x,y,z)

+2 (56D)
¢

dmin

whereAf(t, x, y, )=f* = f(t,x,y,2) andAf*(t, x, y, 2)
denotes the adjoint ok f (¢, x, y, z).
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Thus, the above derivations show the high potential of Therefore, in an ideal situation, when the observations pro-
using a statistical estimation approach for implementingvide enough information to retrieve all the emission pa-
aerosol transport inverse modeling. For example, it wasrameters, the emissions derived from the observations the-
demonstrated that by following the multi-term LSM strat- oretically could replace the original module prescribing the
egy, there is flexibility to apply various types of a priori aerosol emissions in the chemical transport model. Such an
constraints in inverse modeling. For example, Egs. (46—49)deal situation is likely if reliable observations about all the
show how constraints on aerosol (or other tracer) emissioraerosol characteristics are provided by the transport model
derivatives with respect to spatial coordinates or time can beutput, i.e. if these observations are sensitive to all the time
included in the adjoint integration of tracer models, that areand space (4D) aerosol variations provided by model. As
widely used in variational assimilation for atmospheric tracerwe will discuss in the next Section, the real observations are
source identification (e.g. Le Dimet and Talagrand, 1986; Ta-nhot sensitive to all the aerosol distribution details that can
lagrand and Courtier, 1987). Using such constraints in in-be modeled, therefore successful inversion of model output
verse modeling may have high potential because, in princi-does not guarantee the successful inversion of real observa-
ple, a priori limitations on the derivatives of emission vari- tions. Nonetheless, inverting the detailed model output can
ability is a weaker and more flexible way of constraining the be helpful for verifying the performance of different blocks
solution than assuming a priori values of the emission. Equain the inversion algorithm. As a first step in implementing
tions (55-56) give the formulation of the approach for invert- the inverse algorithm, we developed an algorithm to invert
ing satellite observations (e.g. radiances measured by passOCART output, and carried out series of numerical tests to
sive satellite observations). This generalization may have theerify algorithm performance under highly constrained con-
high potential, because using satellite observations directhditions (the entire output is prescribed) and in a “no error”
in inverse modeling and satellite data assimilation has adenvironment.
vantages compared to relaying on satellite retrieval products The GOCART — Goddard Chemistry Aerosol Radiation
(Weiver et al., 2006). However, using the steepest descerdnd Transport model is described in papers by Chin et
iteration in Egs. (55-56) makes the application of Egs. (55-al., (2000, 2002) and Ginoux et al. (2001). The model uses
56) less attractive in practice, because generally, inverting rathe assimilated meteorological data from the Goddard Earth
diative transfer equations by the method of steepest desce@bserving System Data Assimilation System (GEOS DAS)
requires a large number of iterations (Dubovik and King, and provides four-dimensional aerosol mass distributions in
2000). Therefore, it might be useful to explore the possibil-20 to 30 atmospheric layers, at a horizontal resolution of
ity of adopting iterative strategy of the conjugated gradients2® latitude by 2.8 longitude. The model calculates aerosol
method (Appendix C), as this method is known to have su-composition and size distribution, optical thickness and ra-
perior convergence properties than steepest descent. diative forcing. There are seven modules representing at-

mospheric processes: emission, chemistry, advection, cloud
convection, diffusion (boundary layer turbulent mixing), dry

3 Application of the inverse methodology for aerosol  deposition, and wet deposition. The model solves the conti-
source retrieval from satellite observations nuity Eq (1) using an Operator_sp"tting technique (Eqs 2—
. . . _ 3), with a time step of 15 min for advection, convection and

— First, we cons.lder the inversion (_)f an aerosol transportdiﬁusion' and 60 min for the other processes.

model, to derive the “unknown input” (aerosol emis-  GOCART provides 4D distributions of about 16 aerosol
sions) to the model from the “known output” (aerosol naicle types/size bins: sulfate, hydrophilic and hydrophobic
mass distribution). Our inverse algorithm developmen'[sOrgamiC Carbon (OC), hydrophilic and hydrophobic Black

are based on the GOCART aerosol transport model.  c4rhon (BC), four size-differentiated sea salt bins, and up

— Second, we discuss differences between inverting thé0 seven dust size-_differen_tiated bins, dependin.g on the GO-

model output and satellite data and outline the modifi- ©ART model version (Chin et al., 2002, 2004; Ginoux et
al., 2001). The model does not include interactions between

cations required for applying the model based inversed.]cf ¢ | particl ith th i ft f
algorithm to the satellite observations. We consider in- erent aerosol particies, wi € exception of franstorma-

: : tions between hydrophilic and hydrophobic components of
version of the aerosol observations from MODIS. BC and OC. Therefore, GOCART simulates distributions of

— Finally, we illustrate the performance of developed al- sulfates, BC, OC, desert dust and sea saltindependently. Cal-
gorithm by numerical tests and then we apply the algo-culations for different size bins of dust and sea salt are also

rithm to the actual MODIS aerosol data. independent, and the atmospheric processes sensitive to par-
ticle size (e.g. sedimentation) are incorporated accordingly.
3.1 Algorithm for inverting the GOCART model The same concept can be adopted for inverting the model out-

put, i.e. each aerosol component of the output can be inverted
The inversion algorithm (Eqgs. 39-41) treats the strength ofindependently with an inverse algorithm that uses an adjoint
the aerosol emission at each global location as an unknownmodel tuned to the properties of each aerosol component.
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The inverse algorithm described by Eqgs. (41, 45, 47, 54 MODIS — the MODerate resolution Imaging Spectrora-
and 55) and illustrated by diagrams in Figs. 5 and 6 wasdiometer aboard both NASA's Terra and Aqua satellites, pro-
implemented for the GOCART model. The adjoint trans- vides near-global daily observations of Earth over a wide
port operatorT (¢, x) was developed by redesigning GO- spectral range (0.41 to 150n). These measurements are
CART modules for each atmospheric process. Namely, thaised to derive spectral aerosol optical thickness and aerosol
adjoint operation for advection was performed with the orig- size parameters over land and ocean (Kaufman et al., 1997;
inal GOCART advection algorithm (Lin and Rood, 1996), Tan et al., 1997; Remer et al., 2005). The primary aerosol
using sign-reversed wind fields (Vukicevic et al., 2001). The products avaiable include aerosol optical thickness at three
equivalence between such physically derived retro-transportisible wavelengths over land and seven wavelengths over
and adjoint equations has been proven rigorously by Hourocean, aerosol effective radius, and fraction of optical thick-
din and Talagrand (2006). The adjoints of the local pro- ness attributed to the fine mode. The present study uses the
cesses were developed by analogy with the correspondinylODIS aerosol optical thickness product aggregated°to 1
transpose matrix operators. Specifically, cloud convectionpy 1° spatial resolution. The expected accuracy of MODIS
diffusion, dry deposition, and wet deposition affect only ver- optical thickness i®\7=+0.03+0.05c over ocean (Tarr et
tical aerosol motion. All these processes have local charal., 1997; Remer et al., 2005) amdr=40.05+0.15c over
acter in the sense that for a single time step in the modelland (Kaufman et al., 1997; Remer et al., 2005).
they work independently in each horizontally resolved ver-
tical column. Therefore, such processes can be easily mod3-2.1 Main issues for applying inverse modeling to the
eled via explicit use of matrices of rather small dimension, MODIS data
and the corresponding adjoint operators can be obtained b
direct transposition of those matrices. First, we arranged th
cloud convection, diffusion, dry deposition, and wet deposi-

tion in matrix form, and derived the transpose of those ma- X . ;
trices. Then, for achieving faster calculation time, we re- €t€rs. Accordingly, the operatdr, is rearranged into the

- . # - . - . .
designed the original programs so that their application to 2di0iNt¥; andis used in the inversion according to Egs. (54—

vector provides a product equivalent to the application of the®2)- Since the aerosol optical thickness oper&jpsums the

corresponding transpose matrices. Chemical aging tramsfor_qc?nt”b;tft'onf5 frpm different layers and aerc_)so_l t_ypes, its ad-
mations of black and organic carbon aerosols require chang®Nt £, redistributes the total sum to the individual layers

ing only the proportions of different components, and do not@nd aerosol types. _
induce any vertical or horizontal aerosol motions. Therefore, S€cond, the MODIS global(0.55) observations reported

the adjoints of these chemical processes can be constructé I Py 1° need to be rescaled to thé By 2.5 GOCART
simply by changing the direction of chemical transformation. horlzpntal resolutilon. ! . .
Once the adjoint model was developed, we implemented sev- | Nird, as mentioned above, satellite data provide less in-
eral inversions of 4D mass fields simulated by GOCART for formation than global model output. Specifically, a passive,

different aerosol components. These numerical tests showe@ulti-spectral, polar-orbiting, cross-track scanning, single

that the algorithm retrieves the emissions of all aerosols acY/eW remote sensor such as MOI'DIS,has the following main
curately and no inversion issues that could substantially limitimitations (Kaufmar? etal., 1997; Tamet al., 1996, 1997;
the accuracy of the aerosol source retrievals in such wellRémer etal., 2005).:

constrained situatigns.were_revealed. Particular emphasis — no sensitivity to aerosol vertical distribution;

was placed on testing inversions of BC, OC and dust, since

we expect algorithm applications to be focused on observa- — global coverage only once in two days, only for cloud-
tions of these types of aerosol. free conditions, and not over bright surfaces such as

deserts or in glint regions over water;

irst, to use MODIS observations as input to the inversion,
the adjoint formulation must include the conversion from
modeled aerosol mass into measured aerosol optical param-

3.2 Application of the algorithm for inverting satellite data limited capability to identify aerosol type based on

coarse/fine mode size discrimination only; no informa-

Naturally, satellite observations (as well as observations of tion about particle shape or composition.

any other type) do not provide the same aerosol quantities,
coverage, and sampling as model simulations (see Fig. 8). Indeed, the top-of-atmosphere radiances are sensitive
Accordingly, the inverse algorithm settings, as well as somemainly to the total effective aerosol content in the atmo-
aspects of inversion concept, needs to be adjusted when irspheric column. But it is worth noting that coarse/fine mode
verting observations. Below we discuss in detail the appli-discrimination contains some particle type information, as
cation of inverse modeling for retriving global aerosol emis- desert dust and maritime aerosols are dominated by coarse
sions from MODIS data, though many of the aspects considimode particles, whereas biomass burning and urban pollu-
ered are relevant to inverse modeling with any other satelliteion are dominated by fine mode particles (Dubovik et al.,
data. 2002). In summary, the problem of retrieving all the aerosol
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. Constraining
Model = Observations === ~. :
inversion.
Model settings: Satellite products | : | Extra - assumptions
(GOCART) (MODIS) e - -
E 2 - | Emissions: x;y;z; t
MASS: M(x;y;z;t) tical thickness: | : 24h-1week constant ’
at 2°x2.5°,~20 min Oy ) at 10 x 10, ! | Limited to 1-10 layers
Emissions: S(x;y;z;t) # global coverage in 1= onents
At P06 7,55, 20 BN ~2 days i | - fine aerosol (BC + OC +
X £, : | sulfates + fine dust + fine
) Comgonents.’ i | sea salt)
@ﬂm@ﬁ = Tpi,(@.55um) : | - Coarse aerosol (coarse
- BC hydrophilic = Teoarse (. 55um) dust + coarse sea salt)
- BC hydrophobic :
- 0C hydrophilic e LT e > I “alternatives®
- 0C hydrophobic : P = 5
Using a priori estimates about all unknowns
- sulfates B ;
. (~ assimilation)
- dust (7 sizes) :
- sea salt (4 sizes) Tt = 1(3)+AT S -solution

§ = $+4s —(av)' C;'(av)+ (AS)' C5'(AS) = min

Modeled At=1"-7(S") and AS=5 -8

Fig. 8. The diagram summarizing concepts of constraining global emission retrievals from satellite observations.

sources used by GOCART from MODIS observations is ill- algorithm to search for the actual solution. For example, if
posed (see Fig. 8). From a formal viewpoint, the numberthe values of modeled emissioS$ in certain locations de-
of observations is significantly smaller than a number of re-part from real emission§ much more than expected (i.e. if
trieved parameters. the errors ofS* are underestimated), then the solution given
by Eqg. (13) or Egs. (45) will not provide a solution having
3.2.2 Approaches to constraining aerosol emission retrievathe required departure at that location frafh toward §',

from MODIS data which will cause a bias in the results. The appropriate choice
of corresponding Lagrange multipliers in Eq. (45) (or covari-
Congtraining inversion by a priori estimates ance matrices of a priori estimates in Eq. (13)) is supposed

to prevent the appearance of solution biases caused by incor-
One way to assure retrieval uniqueness is to use a prirect a priori information. However, the optimum choice of
ori constraints, and search for a solution of equation syslagrange multipliers (or covariance matrices of a priori es-
tem Eq. (10) that satisfies both the measurements and thetamates) is nontrivial, and having some criteria that indicate
priori estimates (see illustration on Fig. 8). The solution of problems in the assumesf uncertainties (as well as in all
Eqg. (10) is always unique, since formally, the number of mea-other assumptions) would be highly desirable. The value of
surementsv,, +Ng always exceeds the number of unknowns the quadratic form @ obtained by the minimization could be
Ns. The solution can be obtained by the matrix inversion used as such an indicator. Specifically if all assumptions are
of Eq. (13), or by Egs. (45), that uses the adjoint transportcorrect, the values of the formi2given by Eq. (29) follow
model. (To invert optical measurements, the adjoint trans-a x 2 distribution with “m—n" degrees of freedom, the mean
port integration should be implemented, as in Eq. (54)). Forminimum is (see detailed discussion by Dubovik, 2004):
example, following the strategy commonly employed in as-
similations technigues, one can use the original GOCART
emissions as a priori estimates of unknown emissi§hs e(( w (&)) . >=
With this approach, the a priori emission estimate errors ar min
equivalent to uncertainties in the emission modeling. The
R R R . K
potential drawback of this approach is that in some cases, a _ (A&)T (CA)_l (A&) _ ZNk —N,. (57a)
k=1

';mfk (@)" Co (A7 (@)

k
priori emission estimates can over-restrict the freedom of the “
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whereN; = rank(C;) andN, =rank(C;). Similarly, for P
formulated for the joint system Eq. (10) formalized in the
same manner as Eq. (29b), one can write:

Smplifying the forward model

The goal of our study is to develop a global emission re-
trieval that is highly sensitive to the satellite observations
and minimally dependent on a priori assumptions. It is par-
ticularly appealing to explore the performance of an unsu-
pervised retrieval that distributes the global aerosol emission
based only on satellite observations and transport. Therefore,
instead of correcting a large number of parameters describing
erosol emissions in GOCART with a relatively small num-

20’ (8)) =§2jy,3<Afk>T Wo (A fo)
<( < ))mln)
k=1

_ (AS)T (Wg)*(A8) = (N1 + N2 = Ng) e, (57b)

Here we in addition assumed statistical independence OE
measurementsf] and a priori estimates™, i.e. Ny =
rankWsi), N2 = rankWz) andNg = rankV )

Thus, for the retrieval of emissions from MODIS measure-
ments when a priori estimates are used, the following mini-
mum of 28" can be expected:

(58)
Here we assumed the simplest covariance matrices for uncer-
tainties in MODIS measurement? and a priori estimates
S*: Cr=le? andCg-=l¢2,. Correspondinglyy 2 =e2, /2.
Thus, Eq. (58) relates the value of the derived minimum
(2\1/> ~ with expected error variano&? of the measure-

min
mentSrJ’.k . Any significant difference between the derived

(2\1/’) , andN,sfindicates inconsistency in some assump-
min

tions. Such inconsistencies could include inadequate pre-
scription of the magnitudes and shapes of random error dis-
tributions in the measurements and a priori estimates. They
also can indicate the existence of systematic inconsistencies

(biases) between the model and observations that exceed the

random error magnitude.
The estimate 0%$ in EQ.(58) is written as the product

AN 2
of Ngps measurement residua(sr;.“ — r}* (S)) and Ng*

residuals of fitting a priori estimate(sS}’f—Sj . Accord-
ingly, if Nops& N+, then the a priori residuals dominate the
value of the minimized form @', and the sensitivity of the
Eq. (58) criterion to the measurement fitting accuracy be-
comes weak. Therefore, if we try to retrieve aerosol emis-
sions from MODIS data (averag@ne (550 nm) andrcoarse
(550 nm) for each atmospheric column horizontally resolved
by the GOCART model) in exactly the same format as is as-
sumed in GOCART model (i.e. 16 aerosol particle types/size
with possible sources at different layers and allowing hourly

er of MODIS observations, we consider constraining the re-
trieval by employing a simplified GOCART model, having a
reduced number of parameters to be retrieved. We adopted
. the following simplifications (see illustration in Fig. 8).

— First, MODIS sees each location on the globe no more
than once in 24 h (except at high latitudes). Therefore,
to constrain the retrieval, the emission variability over
24 h was neglected.

— Second, MODIS characterizes each atmospheric col-
umn by only two parametersige (550 Nm) andrcoarse
(550nm)). Therefore, we reduce the aerosol particle
type/size discrimination to only two mono-size particle
bins, one for fine mode and one for coarse mode aerosol.

Third, we assume that all aerosol sources are located in
the surface level. Thus, we have reduced the number
of unknowns to only two parameters for each horizon-
tally resolved atmospheric column, so the number of
unknown Ny is comparable to the number of MODIS
measuremen¥ops.

Fourth, the measurement set becomes well determined
(Nops>Ng) if we further reinforce the constraints on
emission variability, by assuming constant emission
during several days. However, taking into account that
typical aerosol lifetime is about a week, one might ex-
pect that assuming constant aerosol emission over 24 h
might be sufficient for constraining the retrieval. In-
deed, subsequent MODIS observations of aerosol diffu-
sion in the region surrounding an aerosol source should
be sufficient to constrain the location and magnitude of
aerosol emissions from this source that occurred at the
beginning of the week. It is important to understand that
any simplifications of the forward model used in the re-
trieval algorithm can be justified only if those simplifi-
cations do not induce systematic errors (biases) exceed-
ing the measurement uncertainty. This condition can be
verified by numerical tests.

emission variability) Nops exceedsVs by a factor of abouta  Tpe possibility of non-unique solutions

hundred or larger. So the residual value shown by Eq. (58)
is dominated by the fitting of a priori estimates, And the re-

In addition, it should be noted that our algorithm is based

trieval is too dependent on the a priori assumptions. Fromp steepest descent iterations (see Egs. 39-41), so it will not
a practical point of view, it is difficult to ensure appropriate collapse even for an ill-posed problem. Under these condi-

sensitivity of the solutior$ to the MODIS measurements.  tjons, the non-unique solution would depend strongly on the
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initial guess (e.g. Dubovik, 2004) in the sense that the al-3.3.1 Sensitivity of the retrieval to columnar aerosol prop-
gorithm would simply correct the emission initial guess as erties (no information on vertical aerosol distribution)
needed to improve agreement between the model and obser-
vations. Similarly, in some situations such non-unique so-The algorithm was applied to the global “synthetic measure-
lutions can still provide useful information, especially when ments” ofz(0.55) — optical thickness at 0.38n for a sin-
only an identifiable sub-group of the retrieve parameters isgle aerosol type. Two scenarios were employed for restrict-
non-unique, and the remaining sub-space of the retrieved sdng emission variability: (i) the emissions are constant over
lution is stable and independent of the initial guess. For ex24h; (i) the emissions are constant over one week. The
ample, in subsequent Sections we will consider the retrievalests were performed for the same time period as the one
of emissions into several vertical layers. Since MODIS chosen for inverting actual observations, i.e. the meteoro-
data do not have sensitivity to aerosol vertical distribution, logical fields corresponding to the last two weeks of August
MODIS data cannot appropriately constrain the retrieval of2000 were used for these tests. For simplicity the aerosol
emission vertical variability. was assumed in the test to be a single, BC component, and
Nevertheless, it is sometimes possible for the algorithm tothe “synthetic measurements” were simulated as BC optical
place emissions in higher atmospheric layers when it helpghicknesszsc(0.55). Aerosol chemical transformations in-
to fit the measurements and, therefore, may avoid producin§luded in GOCART model were neglected. The test aerosol
some strong biases. For example, if the aerosol is really emitemissions where assumed equal to the total of BC and OC
ted into higher altitudes (e.g. smoke from forest fires) and iseMissions used in the GOCART model for the same two
transported according to the distribution of winds at higherweeks. The optical thickness was modeled based on the GO-
altitudes, then modeling the transport of such an aerosofSART total atmospheric column aerosol mass, by adopting a
event may not be satisfactory if the emissions in the modeensity of 1 g/cri), deriving the aerosol volume and assum-
are restricted to the lowest atmospheric layer. On the othefnd that the aerosol has the same optical properties as fine
hand, in other situations, non-stability of the retrieved aerosomode smoke from Zambian savanna burning (Dubovik et al.,
emission vertical distribution may not be a serious issue, for2002). For constraining aerosol emission vertical variability,
example, if only the vertical distribution of the emission is WO scenarios were used: (i) aerosol sources were restricted
uncertain, whereas the total emission into atmospheric colt0 the near-surface layer; (ii) aerosol sources were allowed
umn is stable. This retrieved emission field can be satisfacWithin the 10 lowest aerosol layers (i.e. approximately below
tory, taking into account that the emissions vertical distribu-2 km, as suggested by recent analysis of lidar observations
tion is often not critical, since strong vertical mixing occurs Of biomass burning emissions by Labonne et al., 2007). For
in the planetary boundary layer. constraining horizontal variability of emissions we tested two
To understand the potential of our approach for retrievingsce”ari033 (i) aerosol sources were restricted to the land sur-
aerosol sources from MODIS observations, we will exam-face; (i) aerosol sources were allowed everywhere over land
ine the impact of MODIS data limitations, test the effect of and ocean. The retrieval was initialized by in the tests as fol-
the proposed simplifications on modeling accuracy, and testows: () initial guess for emission estimates was set to “zero
retrieval performance for different scenarios: retrievals con-€missions” (no sources). We chose this setting because if re-
strained by a priori data and/or reduced aerosol emission pdfieval is non-unique in some situations, using zero emissions
rameterizations, and unconstrained retrievals dependent oshould not create any false emission. With this initialization,

the initial guess. the algorithm is expected to create sources only where they
are required to fit the observations. The same retrieval initial-

3.3 Inverse algorithm testing ization is used in all subsequent tests, unless specified other-
wise.

A series of numerical tests was performed to verify and il-  After conducting a large series of the tests, we selected

lustrate how the algorithm inverts the modeled data in a “nothe following algorithm setting for use in follow-up tests and
error” environment, i.e., when the inverted aerosol fields areapplications to actual data:
fully consistent with the model, and neither measurements
nor model errors are present. We also tested the retrieval
sensitivity to the presence of random measurement noise.
We tested the possibility of retrieving emissions from
MODIS-like remote sensing data that lack information about
aerosol vertical distribution and horizontal diurnal variabil-
ity of aerosol amount and type. These tests are also used2. The aerosol sources are allowed within the 10 lowest
for evaluating the effects of reducing the number of aerosol aerosol layers. The test results were not substantially

1. The emissions are constant over 24 h. The retrieval with
this assumption provided a better fit +¢0.55) than
when emissions were constrained over one week. Also,
this assumption did not produce any false weekly vari-
ability in the retrieved emissions that we could detect.

types and limiting the temporal and spatial emission variabil- different when the retrievals constrained to the lowest
ity, adopted as a simplification of the GOCART model for or the 10 lowest atmospheric layers. Nevertheless, we
constraining emission retrievals. favor the second scenario, because it provides a slightly
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Fig. 9. Inversion test for retrieving daily emissions of fine-mode BC component from two weeks of simulated observations (August 18-30,
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Fig. 10. Inversion test for retrieving daily emissions of a coarse-mode dust component from two weeks of simulated observations (August
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20-28, 2000). Results are shown here only for one day, August 28, 280A8ssumed dust aerosol sources (emissions unitskgiay).
(b) Retrieved dust aerosol source distributi¢z). Initial global dust aerosol optical depth distributidid) Global dust aerosol optical depth
distribution simulated from retrieved sources. Optical depth is given as 0.55 micron total column values.

better fit to ther(0.55) field, and also because this as-
sumption provides additional freedom in vertical distri-
bution of emissions without any negative impact on the
horizontal distribution of sources.

3. The aerosol sources are allowed everywhere over land
and ocean. All our tests showed that this assumption

www.atmos-chem-phys.net/8/209/2008/

does not produce significant false sources over ocean
when “synthetic measurements” were simulated using
emissions over land only. On the other hand, the as-
sumption seems to be more practical, since some types
of aerosols have sources over ocean.
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Fig. 11. Actual satellite sampling for August 28, 2000. (a) Global MODIS measurements of total optical depth. (b) MODIS-observed
fine-mode optical depth.

Figure 9a—d illustrates the retrieval results for one spe- 1 T — %w(S) 2
cific day, 28 August. Figure 9a—b shows that the total emis-orel = 100 Ve <—*> ,
sion produced in the first 10 layers agrees well with the “as- K e=1,2 ) T
sumed” emissions. Figure 9c—d shows that this retrievedz; > 0.05), (59b)

emission results i (0.55) fitting accurately the “synthetic o )
measurements”. Since the retrieval uses zero emissions d41€re the absolute standard deviaigpswas simulated us--
the emission estimate initial guess, the agreement is espd?9 all Iocatlon_s and t|mes_ and the re_latlve standard devia-
cially encouraging. There are minor differences between theiOn orel Was simulated using only points wherge(0.55)
prescribed and retrieved emissions in Fig. 9a—b, such as th%as not smaller than 0.05.  The quantitys is rele-
appearance of minor aerosol sources over the ocean. Becau¥ant 1o the minimized quadratic form. SPe?'f'Caz"y, as-
the forward and backward aerosol mass and optical thicknesUMing the measurement covariance matrixCis=e” I,
were simulated under the same assumptions without addingabs COrreésponds to a first term in the quadratic form given
any model error or other perturbations, these differences caRY Ed- (58). This assumption was used in our inversion
only be explained by an insufficient number of retrieval it- (€StS. The valuere is introduced to characterize the ac-
erations or by the effect of numerical errors and instabili- €Uracy with which aerosol events having high loading are

ties inherent in transport model simulations (Vukicevic et al., fit- After 40 iterations the residuals wergrs~0.005 and
2001). o01el®9%, i.e. the fitting accuracy achieved is below the ex-

pected MODIS measurement accuragyr &+0.03+0.05c
over ocean and\t=+0.05+0.15c over land). It should be
noted that Fig. 9a—b shows the total mass emitted into the
first 10 atmospheric layers. Unfortunately, the exact vertical
1 2 structure of the emissions was not reproduced well, because
Oabs= v Z (‘L’i* — 1 (S)) , (59a) the observations ofgc(0.55) do not provide any vertical in-

L (j=L...N)) formation.

The accuracy of optical thickness fitting for the entire pe-
riod of the test is was characterized by two residual values:
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Fig. 12. Inversion test for retrieving daily emissions of a fine-mode BC component, using actual MODIS data sampling for August 18-30,
2000. Results are shown here for the two week average of retrieved daily emissions. (a) Two week average of assumed aerosol sourct
distribution from GOCART model (emissions units: “Iky/day). (b) Two week average of the retrieved aerosol source distribution for the
same period. (c) Two week average of initial daily distributions of global aerosol optical depth. (d) Two week average of daily distributions

of global aerosol optical depth simulated from retrieved sources.

Figure 10a—d shows the corresponding results for the3.3.2 Retrieval sensitivity to input data time and space sub-
coarse mode aerosol test, where desert dust emissions were sampling
retrieved from simulated measurements of the desert dust op-

tl_cal th'CkIne(sjer“s‘(O'SS)'t For SIII’|np|ICIt)(;, _mggangéTseveg IIn the tests illustrated by Figs. 9-10, the synthetic observa-
slze-resolved components usually used in MOG€Lions were available at each global location, although as men-

desert dust was treated here as a single aerosol componetri}gned earlier, this is not the case for actual MODIS data. The

with particle radius 2.3m. This size corresponds to the observations for any single day have gaps: Fig. 11 shows

median size of the coarse mpde climatological size d'istribu—rﬁne(O.SS) provided by MODIS for August 28, (which can
tion model derived by Dubovik et al. (2902) from mult'l-year' be compared to Fig. 9c). To analyze the effects of gaps in
AERONET observations of desert dust in Saudi Arabia. Thlsthe MODIS data on the global emission retrieval, another

optical model was also used for calculations of optical depthtest was performed, where the synthetic measurements of

from the aerosol mass provided by the GOCART model. Ther 0.55) where sub-sampled in exactly the same way as the

test was conducted using the same meteorology and desetr al MODIS data for same observation period
dust emission values assumed in the GOCART model for the '

two weeks in August 2000. The fitting residuals achieved af- Figure 12a—d illustrates the results of this test for the BC
ter 40 iterations for this test werepe0.01 andsre15%. emissions retrieval. The Fest is analqgous to the one shown
These values are slightly higher that those obtained for th&" Fig. 9a—d, the only difference being that thg:(0.55)

BC aerosol test. This is can be explained by the fact the initial!S€d in Fig. 12a—d had exactly the same coverage as the ac-
residuals were higher, since we used the same zero emissioféd! MODIS observations collected during the same time pe-
initial guess, but the magnitude of the prescribed emissiondiod- The convergence of the retrieval process was slightly
for desert dust is higher than for BC (compare Figs. 9a ancblower than for the test whergc(0.55) had no gaps. Af-
10a). Some differences in the retrieval convergence can alsi" 40 iterations, the fitting residuals wesgns~0.009 and

be attributed to differences in aerosol removal processes, fofre®12%. These numbers are still lower than the expected
example gravitational settling is higher for larger particles. MODIS measurements accuracy and, as can be seen from
Fig. 12c—d, the fittedrgc(0.55) reproduces the “synthetic

In a contrast to the BC and other fine mode aerosols thameasurements” afzgc(0.55) rather well. The retrieved emis-
can be emitted within the boundary layer but above the sursions shown in Fig. 12b are also in good agreement with the
face, an additional constraint on the retrieval is that coarseassumed emission. However, the agreement is slightly poorer
mode desert dust and sea salt aerosol are emitted only inttihan the emission retrieval frongc(0.55) with no gaps, il-
the surface level. lustrated in Fig. 9.

www.atmos-chem-phys.net/8/209/2008/ Atmos. Chem. Phys., 8, 209-250, 2008



232 O. Dubovik et al.: Retrieving global aerosol sources from satellites

60S L -

90s ‘
180 120W 60W 0 60E 120E 180

®
S
i}
N
3
@
3
3
o
[+)]
o
m
&
N
o
m

180

0 .001 005 .01 03 .05 01 02 04 06 08 10

Fig. 13. Inversion test for retrieving daily emissions of a fine-mode BC component, using actual satellite sampling during period August
18-30, 2000, and perturbed by random noise. Results are shown here for the two week average of retrieved daily emissions. (a) Two week
average of assumed daily aerosol source distributions assumed in the GOCART model. (b) Two week average of retrieved daily aerosol
source distributions, when the variance of added random noiserwa8.02 + 0.04z. (c) Two week average of retrieved aerosol source
dis7tribution, when the variance of added random noiseavag).03 + 0.05r over ocean and = 0.05 + 0.15¢ over land (emissions units:

10" kg/day).

Figure 13 shows the effect on the retrievals of perturbingcontaminated by false emissions appearing (e.g. over ocean)
the measurements with random noise. Comparing Fig. 13&s result of the propagation of random measurement error in
with Figs. 9 and 12, one can see that the main pattern othe retrieval results. Fitting accuracy was also significantly
the BC emissions distribution is recovered in the presence o&ffected by random noise: after 40 iterations, fitting resid-
significant (Fig. 13, middle panel) and even high (Fig. 13, uals wereoap0.024 andoe~36% for the results shown
lower panel) random noise. The retrieval is stable for ma-in the middle panel anda,s0.038 andoe~58% for the
jor emission hotspots. However, minor sources are stronglyresults shown in the lower panel. This demonstrates that
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Fig. 14. Inversion test for retrieving daily emissions of a fine-mode BC component from two weeks of simulated observations (August 18-30,
2000). Results are shown here only for one day, August 28, 2000. (a) Assumed BC aerosol source distribution (emissioﬁ&gmla;y)lo

(b) Retrieved BC aerosol source distribution. (c) Initial global BC aerosol optical depth distribution. (d) Global BC aerosol optical depth
distribution simulated from retrieved sources. Optical depth is given as 0.55 micron total column values.

the data contain sufficient redundancy to identify the randomfalse desert dust source locations in the retrieval such as over
noise contribution to the observations. It should be noted thathe Atlantic Ocean near the western Africa coast). The val-
following the discussion in Sect. 3.2.2, the fitting residuals ues of the fitting residuals wergps~0.006 andoer212%.
should be expected to be close to zero even in the presendeshould be noted that these values are actually lower than
of random noise because in our tefps is equal toNg (or the residuals obtained in the tests with data that was not sub-
is even smaller, in tests with the gaps). However, the bothsampled. The explanation is that the sub-sampled data set for
oabs@ndoye are always noticeably larger than zero (even in the coarse aerosol is not sufficiently redundant, and therefore
“no error” tests). This can be explained by the fact that wecan be well fit with a coarse aerosol source distribution dif-
allow only limited number of iterations and, therefore we do ferent from the real one. In another words, the solution is
not reach the actual minimum of the residual. The significantnon-unique in this situation sin@é;ps& Ns.
increase of thepsandorg in the test with random noise in-
dicates there is some redundancy in the data that does allog 3.3 Retrieval sensitivity to aerosol type
exact fitting of noisy data, as expectedgp,s=Ns. Since the
model distributes the emitted aerosol using predetermineg\g explained earlier, to constrain the global emission re-
rrlleteoro_logllcallflelds and processes, it cannot reproduce agicyal with imperfect data, we simplified the GOCART
bitrary distribution of aerosols. model to include only two particle types: fine and coarse
The desert dust emission retrieval, frams(0.55) sub- ~mode aerosols. Several numerical tests were performed to
sampled according to the MODIS observations, was less sucevaluate the consequences of this limitation.
cessful than BC retrieval. Figure 14a—b shows that the re- We focus on invertingrine(0.55), because fine mode
trieval did not adequately reproduce the assumed “test desederosol covers a range of aerosol types. GOCART assigns
dust” emissions. For example, some patterns of strong desesulfate, OC and BC aerosols exclusively to the fine mode,
dust emissions in the Western Sahara do not appear correctglong with minor fractions of desert dust and sea salt. Fig-
in the retrieved emission field. In this case, thgs(0.55) ure 15a—d illustrates the results of the test where modeled
observations do not sufficiently constrain the retrieval overtine(0.55) was set to the sum of the optical thicknesses of
the areas where the strongest desert dust sources are esdlfate, BC and OC aerosols simulated using original GO-
pected (Ginoux et al., 2001), because MODIS does not proCART model. Then the modeletine(0.55) were inverted
vide aerosol retrievals over bright desert surfaces (Kaufmarassuming a single fine mode aerosol. As before, aerosol
etal. 1997, Remer et al., 2005; Hsu et al., 2004). As a resultmass was converted to optical thickness assuming a generic
the prescribed and retrieved desert dust emissions produd@C component, and we used the same aerosol removal pro-
virtually identical rgys{0.55) (see Fig. 14c—d), despite some cess parameterization as GOCART uses for BC. Note that the
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Fig. 15. Inversion test for for retrieving daily emissions of a three-component fine-mode aerosol distribution using a single, fine-mode
aerosol model. Results are shown here for the two-week average of retrieved daily emissions (August 18-30, 2000). (a) Two week average
of the assumed three-component fine-mode aerosol source distribution, from GOCART model simulations (emissiong tgitday)0

(b) Two week average of the retrieved single-component fine-mode aerosol source distribution for the same period. (c) Two week average
of initial daily global aerosol optical depth distribution of three-component fine-mode ael@55)=gc(0.55)+roc(0.55)+rsyifated0.55).

(d) Two week average daily global aerosol optical depth distribution, simulated from retrieved daily sources of the retrieved single-component
fine-mode aerosol.

data were not sub-sampled for these tests, because such dataAnother test (not illustrated here) was performed for evalu-
have higher redundancy, making the inversion more sensitivating the behavior of under-constrained retrievals using a ver-
to model simplification. As can be seen in Fig. 15a—d, thesion of the algorithm that includes all the GOCART chemi-
results of using a simplified single-fine-mode aerosol lookcal processes and retrieves emissions for hydrophilic and hy-
encouraging. For example, the retrieved fine mode aerosalrophobic BC and OC aerosols simultaneously. As stated
source retains all the major features of the original BC, OCabove, such retrievals represent an alternative to using the
and sulfate sources (Fig. 15a—b). Because sulfate is formedimplified single component aerosol model. However, an
in the atmosphere via photochemical oxidation of its precur-under-constrained retrieval does not yield a unique solution,
sor gases, the sulfate source is not confined to land. Theo the value of such retrievals is limited. The numerical test
differences between the assumed and retrieved source maghowed that if the “synthetic measurements”zgfs(0.55)
nitudes and shapes arise because the algorithm attempted weere composed of BC and OC only, this retrieval provides
reproduce the combination of BC, OC and sulfates with op-a better fit than the retrieval based on a single fine mode
tical properties for a single BC aerosol component. Never-aerosol. The fitting errors were,;ps0.005 andber215%,
theless, as Fig. 15c—d shows, the simplified aerosol modelvhereas the retrieval with a single fine mode aerosol pro-
performs well; the fitting errors for this test asgys~0.02 duced fitting errorsrap0.01 andoe~20%. However, as
(andoe~25%). expected, the partitioning between BC and OC emissions
These values are higher than in previous tests, but stilwas strongly dependent on the initial guess, so this approach
below the expected accuracy of aerosol optical thicknesss not clearly preferred to the retrieval based on the single
provided by MODIS retrievals. This suggests that even acomponent aerosol. Thus, these results show that if discrim-
simplified transport model using a single fine mode aerosoination by particle type is required, the retrieval must include
with no further aerosol type discrimination can reproduce thesubstantial a priori constraints in additionpe(0.55) mea-
global observations ofiine(0.55) at the accuracy level of the surements.
MODIS observations. Note that the calculation of residu- Retrieving coarse mode aerosol emissions is simpler, as,
als (as well as the entire retrieval) was based on the distriin the GOCART model, only desert dust and sea salt aerosol
bution of zine Only, and the presence of a significant coarsetypes are involved, and dust is emitted exclusively over land
mode fraction could not mask the possible difficulties in fit- whereas sea salt is emitted over water. These properties can
ting fine- be used as natural constraints. Tests show that sea salt and
desert dust emissions can be reasonably well discriminated
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Fig. 16. Inversion of MODIS fine-mode optical deptly,e(0.55) measured during August 18-30 2000. Results are shown here for the
two week average of retrieved daily emissions (August 18-30, 2000). (a) Two week average of retrieved aerosol source distribution with
emissions constrained to land only. (b) Two week average of retrieved aerosol source distribution with emissions allowed over both land and
water (emissions units: 1Gkg/day). (c) Two week average of MODIS global measurements;f0.55) observed during August 18-30,

2000. (d) Two week average @fine(0.55) simulated using retrieved daily emissions retrieved over both land and water, assuming a single
fine-mode aerosol model.

even if a single coarse mode aerosol is assumed. HoweveB.4.1 Retrieval emissions of fine mode aerosol

the sea salt retrieval appears very sensitive to uncertainties in

the inverted data (e.g. the random noise) because the typic&ligure 16a—-d shows the results of the retrieval assuming a
optical thickness of sea salt is very low. single fine mode aerosotine(0.55)); the BC aerosol model

We also performed tests verifying the improved results ob-#2S used, as was done in the numerical tests). The re-
tained using a priori constraints in the retrieval. However, thelli€ved daily emissions shown in Fig. 16a—b were averaged
accuracy of the results depends upon the quality of the a pri®V€' the entire time period considered. Figure 16c-d com-
ori estimates. Tests showed that constraints on emission timBa'€s averaged MODI&ine(0.55) observations with the re-

and space variability can be useful for inverting data that havd/€ved values. 'Irhe global |nstantane|ou§ observation fitting
coverage gaps. Some illustrations are given in next Section 2ccuracy, resca ed to GOCART resolution, vags~0.04

andoe~48% after 40 iterations. Thusgne(0.55) simulated
) _ from the retrieved sources reproduces most of the spatial and

3.4 Inverting MODIS observations temporal tendency in the MODIS observations. It is also im-

portant to note than even when the retrieved emissions are not
We applied the inversion algorithm to global MODIS mea- restricted to the land surface, the distribution of main aerosol
surements of fine mode aerosol optical thicknggg(0.55) sources does not significantly change (compare Fig. 16a and
between 18 and 30 August 2000. This is a period of highb). The retrieved emissions (Fig. 16a—b) may be attributed
biomass burning activity, so performing the inversion waslargely to BC, OC and Sulfates. They may also include some
expected to illustrate how this approach can constrain BCfine mode component dust and possibly sea salt emissions,
and OC emissions, that are currently rather uncertain (Satalthough these sources are likely to be small, and have rather
et al., 2003). For the test, the MODIS Level 3, Collection 4 predictable spatial distributions. Indeed, emissions retrieved
ziine(0.55) global 2 by 1° data was rescaled to the By 2.5° over oceans have relatively small magnitudes and are most
GOCART horizontal resolution. Where MODIS retrievals likely sea salt. (Figure 13 also suggests that random noise
were available for the same day over more than 90% ¢f a 2 can produce small magnitude sources.)
by 2.5 GOCART grid cell, the average value of available  The separation of BC, OC and Sulfate sources is particu-
7ine(0.55) was assigned to the entireldy 2.5 cell. Where larly difficult because the emissions of these species are com-
MODIS data were available for less than 90% of a GOCART parable in magnitude, and are often associated with the same
grid cell, the MODIS data in that cell were not used in the biomass burning, fuel combustion and industrial sources
inversion. (Chin et al., 2002). Therefore, to help in interpreting the
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Fig. 17. GOCART simulated fine-mode components, averaged over August 18-30, 2000. (a) BC + OC emissions. (b) Sulfate emissions +
atmospheric production. (c) BC + OC + sulfate sources (emissions un?tkgm)ay).

retrieval result, we display in Fig. 17 the BC, OC and Sulfate further discussion of our approach limitation in Sect. 3.5).
sources assumed in GOCART for August of 2000. In addi-This assumption is recognized in the modeling community
tion, Fig. 18 shows the total carbon emission, obtained from(e.g. Kinne et al., 2003), and many efforts are being made
a combination of satellite data and biogeochemical modest using observations to improve emissions modeling accu-
by van der Werf et al. (2004), the same data upon which theacy. However, the satellite observations used contain infor-
default BC and OC sources in the GOCART model (shownmation only about monthly variability, whereas the emission
at upper panel of Fig. 17) are based. Comparing Fig. 16a+etrieval approach considered here could be used to derive
b with Figs. 17-18, the global placement of the major fine emission on daily time scales. For example, standard output
aerosol sources in the retrieved emission field is in generabf the GOCART model, when the standard emission fields of
agreement with known sources of carbon and sulfates. ABC, OC and sulfates are used, produces much higher residu-
the same time, the exact shapes and magnitudes of the maals (Eaps~0.12 andoe~170%)) than the output of the sim-
retrieved emission patterns (Fig. 16a—b) differ from those asplified single-fine-mode-aerosol GOCART version retrieval
sumed in the GOCART model (Fig. 17). According to the (o4p0.04 andbe~48%).

main assumption of our approach, these differences should

reflect primarily the mismatch between the global aerosol3.4.2 Coarse mode aerosol emissions retrievals

emissions used in modeling and the more realistic emissions

distribution that is needed for better agreement with satel+igure 19a—d show the results obtained from the MODIS
lite observations, though other factors, including limitations coarse mode aerosol optical thicknegs,s0.55) inversion.

of both measurements and modeling, may be involved (seqhe retrievals were performed assuming a single aerosol
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50

Fig. 18. Monthly carbon emissions @/2) for August 2000 obtained by combining satellite hotspots and burned area with a biogeochemical
model (Van der Werf et al., 2003).
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Fig. 19. Inversion of MODIS coarse-mode optical deptigdarsé0.55)) measured during August 18-30 2000. Results are shown here for

the two week average of retrieved daily emissions (August 18-30, 2000). (a) Two week average of retrieved aerosol source distribution with
emissions constrained to land only. (b) Two week average of retrieved aerosol source distribution with emissions allowed over both land and
water (emissions units: §0(g/day). (c) Two week average of MODIS global measurementsdafs0.55) observed during August 18-30,

2000. (d) Two week average @foarsé0.55) simulated using retrieved daily emissions retrieved assuming a single coarse-mode aerosol
model.

component, corresponding to the desert dust aerosol modethan expected. As discussed earlier, the main cause of these
The desert dust and sea salt emission distributions used byncertainties is the lack of MODIS observations over deserts
GOCART for the same time period are shown in Fig. 20. (see Fig. 19c). Therefore, even though theyrs£0.55) fit-
Comparing Figs. 19a—b and 20, the major expected deseting criteria have low valuesofp,0.04 andoe~48% af-

dust sources can be identified in the retrieved emission fieldter 40 iterations), the desert dust retrieval is less robust than
However, the most intense sources (e.g. over the Saharathe 7¢0ar540.55) inversion. Also, some likely false sources
Desert) seem to be underestimated, and are more spread cappear over the Atlantic Ocean near the western coast of
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Fig. 20. Averaged (August 18-30, 2000) aerosol sources of desert dust and sea salt (emissions%htj;‘hiaw assumed in the GOCART
model: Upper panel shows desert dust emissions; Middle panel shows sea salt emissions; Lower panel shows total desert dust + sea sa
sources.

Africa. These sources show highoars{0.55) concentra-  show pronounced sea salt emissions over the roaring forties
tions that cannot be explained by desert dust transport frommegion in the Southern Hemisphere.

Saharan sources. At the same time, high biomass burn- We also note that the retrieved emission patterns in
ing aerosol concentrations were transported from Africa, agrig. 19b exhibits unrealistically high variability. Indeed, the
can be seen in Fig. 16. Given the bulk mode treatment ofcoarse mode aerosol emission variability is usually related to
biomass burning aerosols by GOCART, one can speculat&ind speed variations (e.g. see Ginoux et al., 2001). Never-
that 7¢oars0.55) observed over that area could be at leasttheless, it is clear that the emissions shown in Fig. 19b are
partially attributed to coarse mode biomass burning aerosolmuch more heterogeneous than those assumed in the GO-
The apparent agreement between the retrieved sea salt sour€ART model (Fig. 20). We therefore tested the possibility
(we attribute all coarse mode aerosol emissions over ocean tof constraining emission timing and horizontal variability by
sea salt) and that assumed by the GOCART model (Fig. 20applying a priori limitations on the second derivatives of the
is rather dubious. It probably can be explained by typically retrieved emissions with respect to time horizontal coordi-
low marine aerosol loading (Smirnov et al., 2003), that is of- natesx and y (the formulation is given in Sect. 2.6). Fig-
ten at the level of MODIS retrieval uncertainty. Also, any ure 21 shows that applying such a priori constraints, espe-
cloud contamination in the MODIS data is falsely identified cially on spatial variability, helps to eliminate some unreal-
by our retrieval as aerosol. Such contamination is commoristically strong emissions over ocean. However, the fitting
over the tropical oceans. At the same time, both the reresiduals are highet§p,0.06 andbe~61% after 40 itera-
trieval (Fig. 16b) and the GOCART assumptions (Fig. 20) tions) when the a priori constraints are applied.
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Fig. 21. Effects of time and horizontal continuity smoothness constraints on global coarse-mode source réajdRatilts when only the
time continuity constraints were appligd) Results when only the horizontal (xy) aerosol emission variability smoothness constraints were
applied.(c) Results when both the time and horizontal variability constraints were applied (emissions uhkg/ddy).

3.5 Issues and perspectives analyzed only two weeks of observations, the algorithm can
easily be applied to longer sets of observations. We illustrate

We have shown through numerical tests and applicationdhis with 6 months ofzfne(0.55) MODIS data from 2001.

to real satellite data that the algorithm developed here carfigure 22 shows the global distribution of fine mode aerosol

retrieve useful information about the global distribution of missions for February, May and July of that year. The dy-

aerosol emissions without applying excessive a priori con-Namics of global aerosol emissions are apparent, for exam-
straints on the location and strength of aerosol sources. FuR!€, as higher Central and Southern African emissions dur-
ther, one can expect that applying the algorithm to longing February and July, compared to May. This is a mani-

time series of satellite observations should provide a globaféstation of biomass burning seasonality. Also, the retrievals
aerosol emissions climatology that can help to improve ourshow high emission over the Indian sub-continent in Febru-

understanding of aerosol climate forcing. Although we have@ry: in agreement with known high levels of pollution in this
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Fig. 22. Monthly averages of retrieved, daily fine-mode global aerosol soufagsebruary 2001(b) May 2001.(c) July 2001 (emissions
units: 10 kg/day).

region during winter (e.g., DiGirolamo et al., 2004). The re- trieval in Fig. 13 (lower panel). This suggests that, in addi-

trievals in Fig. 22 are mainly illustrative; analysis of longer tion to a component of more heterogeneous random noise,
time series, and refinements to the algorithm, are planned. significant systematic differences between MODIS observa-
tions and GOCART modeling results exist (see also Sec-
tion 3.5). Our numerical tests indicate that errors of this size

Obviously the quality of these global emissions retrievalswf)uld n(_)t allow us to benef!t fully from a_tmospherlc mod-_
eling refinements. Indeed, in the numerical tests shown in

MODI | dat lity. ificall ) .
depends on MODIS aerosol data quality. Specifically, asFlg. 15a—dziine(0.55) composed of BC, OC and sulfates in

discussed earlier, MODIS data do not provide information . . ; . .
about aerosol property vertical variation, and do not distin-1€ GOCART model simulation was fitted with noticeably

guish aerosol types by chemical composition (e.g. BC, OCFIgher 3ccuracyo|(3bg%0.02 andgrewZISO/? wfgﬁndgﬁsmgle .
and sulfates). The lack of MODIS retrieval reliability over IN€ Mode aerosol was assumed, negiecting tne diflerences in

bright surfaces seriously limits the outcome of desert dustaeroso: ch$m||c§1I C(t)r:npo&utop. tNote tlhat :hethqu;)tte? M?DIS
emission retrievals. The accuracy of MODIS optical depth airoso optica dep uncertainty applies Ob € tota c;o(;xmﬂ,
retrievals overall also imposes limitations on global emission'/1€7€aS SOME decréase In accuracy may be expected when

retrievals. For example, the inversion®@fe(0.55) produced T‘Ota'(o_'55) s di\_/ided into_thercoarsd0.55) andiine(0.55)
measurement fitting erore{,e0.04 ando,e~48%) that guantities used in the present study (Remer et al., 2005; An-

are as large as MODIS data accuracy, and random measungJsarson et al.,_2005). Fortunately, a numper of improvements
ment noise is not the only limitation. Indeed, the emissions' the operational MODIS aerosol algorithm are under de-

obtained from actual MODIS data (Fig. 16) look significantly ;/gloplrlﬂent (F\l’)e.mﬁtr et ?l" 20(3_'5)’ m::lt:dggorzore reliable re-
more spatially homogeneous than the results of the test red 1€VaIS OVer bright surfaces (Hsuetal., )-

3.5.1 Limitations of the satellite observations
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The global emission retrieval can also be applied to data3.5.2 Modeling accuracy limitations
from other aerosol satellite sensors, such as, MISR (Diner et
al., 1998; Kahn et al., 2005), POLDER (Deschamps et al. As discussed in Sect. 2, our inversion approach finds an op-
1994; Deuze et al., 2001), APS (Mishchenko et al., 2004 timal solution using known measurement error statistics, un-
2007), and CALIPSO (Poole et al., 2003). For example,der the assumption that the model errors are much smaller
the MISR sensor has multi-angle measurement capabilitthan those of the measurements, so the effect of the model
that generally allows a larger number of aerosol propertiesrrors can be neglected. This assumption is employed in
to be retrieved, including some information about aerosolmost inverse methodologies, and it can easily be justified in
size and shape, and also produces more robust optical thicknany applications. However, it is not yet possible to per-
ness retrievals over bright surfaces (e.g. Kahn et al., 2005form global transport modeling with the same level of cer-
Martonchik et al., 1998). Moreover, satellite instruments tainty as radiative modeling, for example, so the effects of the
with multi-angular polarimetric capabilities have additional transport modeling uncertainties on the retrievals may not be
sensitivity to particle size distribution and the real part of negligible. Many factors may contribute to transport model-
the refractive index (Mishchenko et al., 2004, 2007). Soing uncertainty. For example, the atmospheric temperature,
satellite multi-angle polarimeters may provide aerosol sourcepressure, wind distributions, and other meteorological fields
chemical composition discrimination to hope constrain theinputed to the models are known with limited accuracy. Sig-
global retrieval. For example, the Aerosol Polarimetry Sen-nificant uncertainty in the four-dimensional distribution of
sor (APS), which is part of currently planned Glory mission clouds affects the aerosol modeling, e.g. via uncertainties in
(Mishchenko et al., 2007) will perform sensitive polarimet- aerosol transport by cloud convection. The aerosol removal
ric measurements (over a wide spectral range and with higlprocesses employed by the models are also known with only
angular resolution), and is expected to provide such detailedimited accuracy, and aerosol-cloud interactions can be de-
information as fine and coarse mode aerosol refractive inscribed only qualitatively at present. The temporal and spa-
dex and particle shape. The data provided by space borntal resolution achieved by models such as GOCART are in-
lidar on CLAIPSO satellite (Poole et al., 2003) constrain sufficient to reproduce some local details of aerosol dynam-
aerosol vertical distribution. Note, however that unlike theics. In addition, all models suffer from numerical instabil-
MODIS, MISR and POLDER passive imagers that provide ities that can produce negative aerosol mass, failure to con-
two-dimensional global coverage, CLAIPSO and APS areserve aerosol mass in transport simulations, etc. All these un-
limited to extremely narrow cross-track swaths only a singlecertainties limit the accuracy of global aerosol modeling, as
pixel wide, often referred to as jail-bar coverage. demonstrated in recent model inter-comparison studies (e.g.,

To maximize the benefits from available satellite aerosolKinne et al., 2003, 2006; Textor et al., 2006).
measurements, the global inversion should utilize both the However, a number of efforts aim at addressing many of
detailed aerosol information provided by CLAIPSO and APS these modeling uncertainties in the near future. For exam-
together with less accurate but more extensive observationgle, four-dimensional meteorological wind fields and cloud
by satellite imagers. Using data from multiple satellite sen-distributions will probably be improved by assimilation of
sors as input to the global inversion should provide betterobservations from multiple sources. There is also hope that
spatial and temporal data coverage compared to the covemodel aerosol optical properties can be improved by re-
age of any single sensor. For example, the MODIS instru-mote sensing data. Like most models, GOCART assumes
ments on the Terra and Aqua satellites (Remer et al., 20063l coarse aerosols are either dust or sea salt. Satellite re-
observe the same geographic locations in the late morningrieval algorithms (e.g. Kaufman et al., 1997; Tarat al.,
and early afternoon, offering the global inversion some in-1997; Remer et al., 2005, etc.) rely on aerosol type clima-
formation about aerosol emission diurnal variability. tologies obtained from other remote sensing measurements.

The global inversion can also include ground-based netUnlike global models, such climatologies (e.g. Remer et al.,
work observations, such as those from the AERONET sun-1997; Dubovik, 2002) indicate the presence of coarse par-
photometer network (Holben et al., 1998), and the EAR-ticles in practically all types of aerosol including biomass
LINET lidar network (Boesenberg et al., 2003). Unlike satel- burning and urban pollution. Also, satellite retrievals usually
lite observations, these networks do not provide global cov-use complex indices of refraction derived from remote sens-
erage, but they offer more accurate, high-temporal-resolutioring observations to describe ambient aerosol, whereas mod-
information at a number of global locations that can be useckls tend to calculate radiative properties of aerosol based on
in the global inversion. The benefits of these data combi-chemical composition, using indices of refraction obtained
nations will probably be greatest when, unlike the exam-from in situ or laboratory measurements of each chemical
ples given here, global inversions having high temporal andcomponent. This difference may be another source of in-
spatial resolution are required. Thus, the global aerosotonsistency between remote sensing retrievals and models.
inversion can also be considered a tool for synthesizing in+or example, recent analysis of aerosol remote sensing re-
formation from multiple measurement types. trieval results (Kaufman et al., 2001; Dubovik et al., 2002)

showed that mineral dust is less absorbing than was previ-
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ously thought, and comparisons with aerosol transport modiarly, the steepest decent method may converge more slowly
els showed systematic differences with remote sensing obif the satellite retrieval is included as part of the inverse mod-

servations of aerosol absorption for situations dominated byeling (discussed in Sect. 2.7), due to the complexity of the

mineral dust (e.g. Takemura et al., 2002; Sato et al., 2003)radiative transfer equations.

One possible way to address this inconsistency is to include Using diverse a priori constrains is another direction re-

these aspects of the satellite retrieval as part of inverse modeguiting further exploration. In Sect. 2.6 we described the

ing. In this approach, the aerosol emissions will be retrievedmathematical techniques for using a priori emissions esti-
directly from atmospheric radiances (e.g. using the mathemates or a priori limitations on the derivatives of emissions

matical formalism described in Sect. 2.8). variability in time and space. Using these a priori constraints
S . can substantially extend the field of retrieved parameters. For
3.5.3 Limitations of the retrieval approach employed example, with an a priori estimate of emissions, MODIS

data can be used in an emissions retrieval that discriminates
The numerical inversion approach has some limitations in it-aerosol type, even though the MODIS data contain little in-
self. As explained in Sect. 2.5, the algorithm is based on arformation about aerosol type. As discussed in Sect. 3.3, to
iterative, steepest descent method that in general convergeshhance the sensitivity of our retrieval to the satellite obser-
very slowly (e.g. Tarantolla, 1987). However, the fitting vations, we decided not to constrain the retrieval with a priori
residual can decrease to a value much smaller than the exmissions estimates. However, to produce a unique retrieval
pected noise level of inverted satellite data after 40 iterationsyithout such a priori information, we eliminated the aerosol
(see Sects. 3.3-3.4), because the transport operdferit-  chemical composition discrimination in our retrieval. As a
ten in matrix form) is sparse. Since each iteration involvesresult, the retrieval provided by this algorithm has high sen-
two GOCART model runs (forward and backward), invert- sitivity to spatial and temporal emission features that were
ing global data takes about 80 times longer than a GOCARTobserved by satellites, but were unexpected from a model-
forward simulation of the aerosol fields covering same timeing viewpoint. However the retrieved emission fields are
period. Nevertheless, taking into account the global nature obf limited value for modeling activities that require aerosol
the problem and the increasing speed of modern computersype discrimination. Future efforts to improve this approach
these requirements are probably acceptable. For this studwill aim at including in the retrieval a priori constraints that
which used only moderately powerful computers, we triedretain aerosol type discrimination without over-constraining
to identify ways to reduce the number of iterations (e.g. Gill retrieved emission spatial and temporal variability.
etal., 1982; Tarantolla, 1987). Theoretically, the method of Tis advance is imperative for the future development of
conjugated gradients can accelerate convergence compargghpal emission retrievals, because even the most advanced
to steepest descents; it also uses only gradient vectors anghoso| satellite sensors will not constrain all the parameters

can therefore be implemented with transport model adjointyseq to describe aerosol emission in chemical transport mod-
operators (see Appendix C). However, in practice, round-g|s For example, we will attempt to constrain a priori only

ing errors often cause the computed directions t0 100se CoNg|ative contributions from different aerosol components to

jugacy rapidly, and the method behaves more like an iteryng total aerosol optical thickness, without constraining its
ative method, making converge much slower than theoretiyagnitudes of the emissions.

ically predicted (Gill et al., 1982). To test the possibility
of acceleratmg_mversmn convergence, we u_nplemente_d th?ions on the emission variability time and space derivatives,
method of conjugated gradients described in Appendix C.

C . 4 aft v 20 iterati th th done can retain emission fields with physically realistic time
onvergence improved. after only 24 [lerations, the method, , space continuity (with no sharp oscillations), even if the

of conjugated gradients achieved the same .reS|duaI SI2€ 48verted measurements do not provide sufficient constraints.
the steepest descent method after 40 iterations. Howeve|f_ll owever, we found that due to the relatively coarse time

als can tb? seer]c]tfrzom trt'ﬁ (Eljerlfvano_n mtAgpeng!x (f our |_m-%24 h) and space (2&2.5°) resolution used in this study,
piementation of the method of conjugated gradients requirey, oo -onstraints generally do not seem critical to our re-

running the GOCART model four times for a single itera- trievals. Nevertheless, in future studies that attempt retrievals

tion, lnsteqd of the wo runs neede.d for' steepest descent%t much higher resolutions, the importance of continuity con-
Therefore it took the same computing time to perform Zostraints will likely increase

iterations with method of conjugated gradients as 40 itera-
tions with steepest descents, so conjugated gradients did not

effectively accelerate the inversion. At the same time, imple-

menting the method of conjugated gradients required greate# Conclusions

effort, because the formal logic is significantly more com-

plex. Nevertheless, there may be a need to explore conveithis paper describes an algorithm that uses inverse model-
gence acceleration possibilities further, in anticipation of theing to retrieve global aerosol source emissions from satellite
inevitable increase in aerosol global model resolution. Simi-observations.

We also showed (Fig. 21) that by placing a priori limita-
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The numerical inversion in the algorithm was structured even for monthly and yearly averaged regional aerosol prop-
as a multi-term least-squares-type fit. This statistical opti-erties (Kinne et al., 2003; Sato et al., 2003).
mization scheme allows for high flexibility in constraining  Retrieving coarse mode aerosol emissions was less suc
the retrieval, such as using multiple constraints in a singlecessful, mainly because MODIS aerosol data over highly re-
inversion. We also discuss and demonstrate the possibilitflecting desert dust sources is lacking. This situation should
of applying a priori constraints on retrieved quantity par- be much improved by the most recent MODIS product ver-
tial derivatives, to improve retrieved global aerosol emissionsion (Collection 5), which includes aerosol retrievals over
time and space variability. This approach is widely used indeserts from the “deep blue” algorithm of Hsu et al. (2004).
atmospheric remote sensing, though rarely in inverse model- The efficiency of using a priori constraints on values of
ing. The similarities and differences of our inversion schemethe emissions or on their variability was also evaluated. The
with the standard Kalman filter and 4-D-var assimilation in- use of such a priori constraints is a clear alternative to a
verse modeling and Phillips-Tikhonov-Twomey constrainedstraightforward reduction of the number of retrieved param-
inversion remote sensing approaches are discussed. To siters characterizing the aerosol emission. For example, in
multaneously retrieve global aerosol fields over extended pespite of limitations in the MODIS data, if the algorithm uses
riods of time at the space and time resolution of the model GOCART emission fields as a priori estimates, it can be set
the fitting was expressed in terms of a variational approachto retrieve aerosol emissions in the same format as those used
using an adjoint of the aerosol transport in a convenient formin the GOCART model (i.e. fully discriminated by chemical
for practical implementation of the inversion. We also dis- composition and sizes). This strategy is usually employed
cuss the application of various a priori constraints in the ad-in assimilation methods. However, in that retrieval approach,
joint form of the retrieval algorithm. the derived emissions tend to be influenced by the a priori es-

The algorithm was implemented in a practical way with timates to an extent that may devaluate the satellite observa-
the GOCART aerosol transport model, retrieving global tions. Therefore, further effort is needed to minimize the pos-
aerosol emissions af 2 2.5° horizontal resolution from the sible effect of over-constraining the solution. In the present
global distribution of aerosol optical thickness. The numeri- paper, we did not use a priori estimates for inverting MODIS
cal tests conducted showed that the algorithm accurately desbservations; instead, we applied constraints that limit the
rives aerosol emissions when inverting the detailed, globalgeneral temporal and spatial variability of the emissions, and
aerosol mass distribution produced from a forward run ofdemonstrated that such general constraints were useful for
GOCART model. However, when MODIS data was used aseliminating some unrealistic features in underdetermined re-
input for the inversion, some extra constraints were neededrievals, such as coarse mode aerosol emission retrievals from
to produce a unique retrieval, due to limitations in coverageMODIS observations.
and information content of the MODIS data. Specifically, To illustrate algorithm performance when processing long
emission variability over the diurnal cycle was neglected, satellite observation records, we inverted the fine mode
and aerosol types were discriminated by particle size, buterosol optical thickness produced by MODIS, for the first
not by their chemical composition. Emissions of fine and six months of 2001. Realistic global aerosol emission ge-
coarse mode aerosols were retrieved from the MODIS fineographic distribution patterns, and their seasonal variations,
and coarse mode aerosol optical thickness data, respectivelyere derived.

From two weeks of daily MODIS observations during  Thus, the method developed can be a useful tool for im-
August 2000, the global placement of fine mode aerosolproving global aerosol source characterization in chemical
sources agreed with available independent knowledge, evetmransport models. Nevertheless, this paper describes only
though the inverse method did not use any a priori informa-the first phase of the effort, and further analysis is needed
tion about aerosol sources, and was initialized with a “zeroto realize the full potential of the method. Specifically, we
aerosol emission” assumption. The retrieval reproduced twglan to use MODIS data to generate climatological records
weeks of global, instantaneous MODIS observations, withof remote-sensing-driven aerosol emission fields; these are
an aerosol optical thickness standard deviation for the fitexpected to provide improved global aerosol source descrip-
of ~0.04. Aerosol optical thickness observations of 0.05tions as inputs to chemical transport models. We plan to re-
and higher were reproduced with a standard deviation offine and optimize the use of a priori constraints and the con-
~48%. Such agreement between global modeling and obvergence of the method. Also, at least some of the satellite
servation is quite encouraging, given that the coherence bemeasurement limitations are expected to be addressed in fu-
tween model and observations is limited by MODIS obser-ture studies, for example, by planned MODIS aerosol algo-
vation accuracy, aerosol variability that can be much higherithm improvements.
than the model resolution, uncertainties in the wind fields, Moreover, the global emission retrievals can incorporate
three-dimensional cloud distributions, and other meteorolog-a combination of aerosol products from other satellite sen-
ical data, the accuracy of assumptions made in modeling atsors, such as CALIPSO, MISR, PARASOL and APS, as well
mospheric processes, numerical instabilities, etc. As a resulias aerosol measurements from ground-based networks, such
model predictions can differ significantly from observations, as AERONET and EARLINET. Using data from multiple
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satellite sensors as input should improve spatial and tempo€orrespondingly, the mass transport fgrz1, . ..

ral constraints from the global emission retrievals, comparecexpressed as:

to using data exclusively from any single sensor. In addition

using data from multi-angle radiometers (MISR), polarime-
ters (PARASOL, APS), lidar (CALIPSO), and ground-based

networks (AERONET and EARLINET), may make it pos-

sible to discriminate between emissions of different aerosol;—,,_1

types in the retrievals. Thus, the global aerosol inversion
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.1, can be
i=n—1 k=n—1 [fi=n—1
Mn=(]"[ Ti)Mo+ > (1_[ T,~>Sk ., (B3)
i=0 k=0 i=k
where
T, =T,-1T,-2..T2T1To (B4)

can also be considered as a tool for integrating the informa- i=o

tion from models and remote sensing instruments, providingBased on Eq. (B3), the entire matrix Eq. (5) for mass distri-
aerosol information of enhanced value for climate research. pution during the time period from to 7, can be written as

Appendix A

The adjoint operator

According to its formal definition (e.g. Tarantola, 1987), the
adjoint of G, G*, is a linear operator defined by the equality
of scalar products:

<G, y>=<x,Gy>. (A1)
If scalar product is defined as follows:

<a,b>=a'b, (A2)
then the right side of Eq. (A1) is:

<x,Gy>=x"Gy. (A3)
The left side of Eq. (A1) is:

<G,y >=(G")Ty =x"G"y. (A4)

follows:
i=n—1 i=n—1 i=n—1 i=n—1
Tor [T T TI T JI T II T
M;‘; i=n—2 i=2 i=1 i=0
i=2 i=2
M; = 0 0 T2 1_[ T,‘ ]_[ T,'
M; i=1 g:g)
1=
My 0 0 0 T1 [IT:
i=0
0 0 0 0 To
i=n—1
T;
i=2
S2 + [1T: Mo, (B5)
sl
So [T
i=0
To

whereM de

notes the mass distribution of aerosols emitted

Thus, in order to achieve the equality between Egs. (A3) andiuring time period fromg to,: i.e.

(A4) we can write forG*:

G*=aG".

n—1
(as)  Mi=M, - <E>Ti) M.

(B6)

It should be noted that Tarantola (1987) gives a more generarhus, Eq. (B5) is equivalent to the generalized matrix expres-

definition of the adjoint operator that is not used here.

Appendix B

Derivation of Eq. (41)

sion:

M*=M —TMp=TS,

(B7)

This is a slightly modified form of Eq. (5). Similarly, for the
correction terrA S? of the steepest descent iterative solution
given by Eq. (40) can be written as:

. . . . . . Q T~—1 T
Equation (2) can be written in matrix form, for a single time AS” =T C,"AM? =T AP =

step, as follows:

M, = Tn—l(Mn—l + Sn—l)v (Bl)

where subscripts 2—1 “ and “ n “ are associated with
times steps,_1 ands,=t,_1+At, i.e. matrixT,_1 and vec-
torsS,_1, M,,_1 andM,, represent (¢,_1, x), s (t,—1, X),
m (t,—1, x) andm (t,—1+At, x), respectively. For time steps
t,—2, t,—1 ands, one can write:

My =T aMy_1+8,-1) =Ty 1(Tp—2Mp—2+ Sy-2) + Sy-1) =

= TnflTanMan + TnflTanSan + TnflsnfL (BZ)
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i=n—2 »
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whereAP:C,;lAMP, A{’ denotes the component of vector where the functiom? (z, x) is the continuous analog of the

AP corresponding to time step and the following identity ~ vector A”. It can be formulated via the weighting func-

for the transpose of the matrix multiplication product is used:tion C~1(z, x, x") (from covariance functiorC;(z, x, x")),
and performs a role analogous to that of ma(ti,;;il in the

i=n \ T i=0 . . .
(1—[ Ti) = (1T, 1. ToTiToT = TTITL. 77 7T =[] 77. (B9)  discrete representation, i.e.:

_ . (al) = |citamr] —
From Eg. (B8),AS” can be obtained as:

TT AP /// (tixjs yio zms X', ¥, ) AmP (1, x', y', 2 )dx'dy'dz.
n—17_n
T AP T TT AP 4
Tn—ZAn—l + Tn—ZTn—lA" o B15
AS? (B15)
ASP kn 1 [ i=k TTAP T#(t,x) is the transport adjoint operatdt (¢, x), and is
ASP — _ k;?’ i:gl i Tk composed of adjoint?i# (t, x) of the component processes
AS% kencd (s T; (¢, x):
AS T'A
ASé’ kz=:2 l'=ln_[—1 Pk T (%) = T{ 1515 T4 T (B16)
Ol =L If the observation errors are uncorrelated, i.e. the covari-
> [1 T.A
= oy K ance matrix of measuremen®;, is diagonal with the el-
TT Ap ements on diagonal equal @ (t;, x;, yk. zm), the ele-

P ) ments of vectoC,, L AM? relate to the continuous function
-1t o~ 2(t,x) AmP (¢, x) in a straightforward way (see Eq. 42

o (ay

(a2 + AS?) (B10) in body text). Then Eq. (B14) can be written:
3

(

- T
i Ap + ASP) p ¢ # P 2 p
AA R — T /’ AA /’ — /, A /’ —d i .
Tt (A”+Asp) & (1 x) / (%) (83 (1. %) +072 (1. x) Am? (1. x) ) (')
From this equation it can be seen tie§” can be calculated (B17)

via the following sequence starting fraren as follows: where

ASP =TI (AF +ASP). (B11) !

AmP (1,x) = m* (1. x) — / T (. x) (m (. x) + 7 ('.x))de'.  (B18)
The componennf’of vector A corresponding to time step o
t; can be easily formulated if observational errav87* are
not correlated with respect to time, though they may have
spatial correlations. In this cagg,, has the array structure:

The symbolsAs? (x, 1) and o2z, x) AmP (t,x) denote
functlon equivalents of the vectorsS”? andC,,*AMP, re-

spectively.
Cun, ... 0 O Thus, the steepest descent iterative solution written in the
form of matrix expression in Eq. (40) can be replaced by its
Cn = 0 ..Cpn, O |’ (B12) integral equivalent (Eqs. B17-B18). Further discussion is
0 ... 0 Cy given is Sect. 2.5.

andA” can be decomposed:

py [ 00 (87) - 303)

ar=|

A

Appendix C

~

A L . .
Application of the conjugated gradient method to
B13) the inversion, based on the adjoint transformation of
P\ _ * ( ’
Corz (M2 § M3 the forward transport model

Cot (M1 (87) - M3

=N

C1 Basic formulation of the conjugated gradient method
Thus, Eg. (B11) gives the relationship betweﬁﬁf_l for
time stepr;—1 and AS{’ for time stepr;=t;_1+At. As the
time step approaches zero, i%r—0, then Eq. (B11) canbe Ax = y*. (C1)
rewritten as its integral equivalent:

Let us formally write the linear system as follows:

Then, the solution of this system in the conjugated gradient
o . method is given by the following iterative process:
ASP (t,x):/T ¢, x) (ASP (¢, x) + AP (¥, x))(—dt), (Bl4
() (857 (x) 4 o7 (o cah, BUA) )

t
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where
T T
P Vk \'% Vk
o = Tk = Tk s (C3)
PiAPk P APk
and the gradienYty is:
V. (xb) = Axp = Axk — y*. (C4)
The vectorp; is determined as follows:
Pk = Vi + Bpr-1, (C5)
where
viv,
p=—Kk " | (C6)
Vi Vi1
The initial condition for the iterative process is:
po = Vo. (C7)

C2 Application of the forward transport model to inver-
sion, using adjoint operators

For inverting the aerosol mass transport moM&tT (S +
M) with the basic LSM, the following equation should be

solved:
(TTein) s=1Tctm, (C8)

whereM* = M™Me35T M.

Similarly, for applying the conjugated gradient method,

we can determine the matri and vectory* as:

A=TTCIT, (C9)
y* = TTCim*, (C10)
Vi =ASk —y* = (TTCIT)8$ — T'CIM*

=TTC LTS — M*) =T'C 1AM, (C11)
PiAPL = (Tp)T C X (Tpy) = p{T'C ' Tp; (C12)
Finally, we have the following procedure:
Pk = Vi + Br-1pi-1, (C13)
p-1=0andB_1=0 (C14)
Vi=T'Ct AMy, (C15)

where AM=TS;—M*. This equation can be used only for
the first iteration (whelv; can be calculated using Eq. C20).

\ZA %"
Br-1= W (C16)
Skl = §% — e pr, (C17)
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where
\ZA 7"

=k - c18
piTTC Ty (C18)

o
The vectorb,=T"C~1T p; can be calculated using adjoint
transformations:

1o
bi(t.x) = / 7% (1 x) (b () + 02 (1 x) Age (1 x) ) (=t

t

(C19)

where by (t,x) are the components of the vector
TT'C1Tpi, and Agi (1, x) are the components of the
vectorT pg.

In addition, we can use the following equation:

Vier = ASKHL — yf = ASK —agpr) — y* = ASK - y")

—a Api = Vi — o Apx. (C20)

Thus, for implementing this method, we need to run
the transport model twice to calcula®e’C~1Tp;: once
forward for Tp, and once backward@'C~1T p; (where
S=Tpr). A problem may appear if the transport opera-
tor does not allow use of negative sources; in this case we

should always carry two termsszpk:S,({+)+S,(:), and
TS=T(S{”+8, H=TS{V-T(=S 7).
Appendix D

List of acronyms and abbreviations

AERONET  Aerosol Robotic Network

APS Aerosol Polarimetry Sensor

BC Black Carbon

CALIPSO Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations

GEOS DAS Goddard Earth Observing System Datda
Assimilation System

GOCART Goddart Chemistry Aerosol Radiation and
Transport model

EARLINET European Lidar Network

LSM Least Squares Method

MISR Multiangle Imaging SpectroRadiometer

MML Method of Maximum Likelihood

MODIS Moderate Resolution Imaging Spectrometer

oC Organic Carbon

PDF Probabillity Density Function

POLDER Polarization and Directionality of the

Earth’s Reflectance
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