
HAL Id: hal-00328512
https://hal.science/hal-00328512

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emission rate and chemical state estimation by
4-dimensional variational inversion
H. Elbern, A. Strunk, H. Schmidt, O. Talagrand

To cite this version:
H. Elbern, A. Strunk, H. Schmidt, O. Talagrand. Emission rate and chemical state estimation by
4-dimensional variational inversion. Atmospheric Chemistry and Physics, 2007, 7 (14), pp.3769. �hal-
00328512�

https://hal.science/hal-00328512
https://hal.archives-ouvertes.fr


Atmos. Chem. Phys., 7, 3749–3769, 2007
www.atmos-chem-phys.net/7/3749/2007/
© Author(s) 2007. This work is licensed
under a Creative Commons License.

Atmospheric
Chemistry

and Physics

Emission rate and chemical state estimation by 4-dimensional
variational inversion

H. Elbern1, A. Strunk1, H. Schmidt1,*, and O. Talagrand2

1Rhenish Institute for Environmental Research at the University of Cologne, Köln, Germany
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Abstract. This study aims to assess the potential and limits
of an advanced inversion method to estimate pollutant pre-
cursor sources mainly from observations. Ozone, sulphur
dioxide, and partly nitrogen oxides observations are taken
to infer source strength estimates. As methodology, the four-
dimensional variational data assimilation technique has been
generalised and employed to include emission rate optimisa-
tion, in addition to chemical state estimates as usual objective
of data assimilation. To this end, the optimisation space of
the variational assimilation system has been complemented
by emission rate correction factors of 19 emitted species at
each emitting grid point, involving the University of Cologne
mesoscale EURAD model. For validation, predictive skills
were assessed for an August 1997 ozone episode, comparing
forecast performances of pure initial value optimisation, pure
emission rate optimisation, and joint emission rate/initial
value optimisation.

Validation procedures rest on both measurements withheld
from data assimilation and prediction skill evaluation of fore-
casts after the inversion procedures. Results show that excel-
lent improvements can be claimed for sulphur dioxide fore-
casts, after emission rate optimisation. Significant improve-
ments can be claimed for ozone forecasts after initial value
and joint emission rate/initial value optimisation of precursor
constituents. The additional benefits applying joint emission
rate/initial value optimisation are moderate, and very useful
in typical cases, where upwind emission rate optimisation is
essential. In consequence of the coarse horizontal model grid
resolution of 54 km, applied in this study, comparisons indi-
cate that the inversion improvements can rest on assimilat-
ing ozone observations only, as the inclusion of NOx obser-
vations does not provide additional forecast skill. Emission
estimates were found to be largely independent from initial
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guesses from emission inventories, demonstrating the poten-
tial of the 4D-var method to infer emission rate improve-
ments. The study also points to the need for improved hori-
zontal model resolution to more efficient use of NOx obser-
vations.

1 Introduction

The last decade has seen increasing efforts to introduce ad-
vanced spatio–temporal data assimilation methods in atmo-
spheric chemistry. An abundance of new earth observation
data and progress in modelling skills are driving incentives
to engender more reliable and comprehensive pictures of the
chemical evolution of the atmosphere, analysed on regular
grids. In view of the variety of information sources as given
by observations, with all their heterogeneity in terms of ac-
curacy, spatial representativeness, spatial observation density
and temporal frequency, and various retrieval techniques on
the one hand, and model results on the other hand, advanced
data assimilation and inverse modelling techniques provide
the appropriate data fusion and analysis technique. Early at-
tempts to analyse tracer fields were based on monovariate
kriging techniques in the troposphere (e.g., Fedorov, 1998),
and other purely spatial methods in the stratosphere (e.g.,
Stajner et al., 2001; Struthers et al., 2002). These methods
produce chemical state estimates, frequently referred to as
analyses, after assimilation of observations in model simu-
lated fields as background.

Remote sensing earth observation data from space are
mostly scattered in space and time, giving only very little
information at a single time. Prerequisite for a full exploita-
tion of these sensors is therefore some application of numer-
ical models for spatio-temporal interpolation by assimilation
of data. Attempting to combine observations of different

Published by Copernicus Publications on behalf of the European Geosciences Union.



3750 H. Elbern et al.: Variational emission rate estimation

times, intermittently applied spatial data assimilation proce-
dures cannot make use of the known physical and chemical
laws as a most useful constraint. In contrast, ability to do so,
would not only enlarge the observational data base per assim-
ilation procedure by measurements over a full time interval,
but also enforce some chemical consistency, dependent on
the model design.

To achieve this goal, a first successful demonstration by
a stratospheric chemical box model with a small number of
constituents had been provided by Fisher and Lary (1995),
assessing the applicability of a variational data assimilation
method. Eskes et al. (1999) applied the variational method to
a two dimensional model for the assimilation of total satel-
lite columns. For the troposphere the usefulness of the vari-
ational method has been shown by Elbern et al. (1997), ap-
plying the box model version of the chemistry mechanism
RADM (Regional Acid Deposition Model) (Stockwell et al.,
1990). Further, the successful extension to a full chemical
4-dimensional variational (4D-var) data assimilation system
could be demonstrated in the context of identical twin experi-
mentation (Elbern and Schmidt, 1999), and for an ozone case
study (Elbern and Schmidt, 2001), using the University of
Cologne EURAD regional chemistry–transport model. Ad-
ditional chemistry applications of the 4D-var technique were
provided for both the troposphere (e.g., Chai et al., 2006)
and the stratosphere (Errera and Fonteyn, 2001; Elbern et al.,
2005).

In atmospheric chemistry, as is in meteorology, the param-
eters to be optimised by data assimilation are usually the ini-
tial state variables of the model. Hence, these initial values
are implicitly assumed to be the least well known parame-
ters and, at the same time, a critical factor for an improved
analysis or forecast skill.

As chemistry transport models solve an initial-boundary
value problem with strong dependencies on surface parame-
ters, the restriction to initial value optimization is no longer
justified, at least in tropospheric chemistry. For example, it
is well known that, under favouring conditions, freshly emit-
ted surface pollutants can easily enter the free and upper tro-
posphere. In this case, better knowledge of the emission
strength and meteorological stability conditions appear to be
at least as important as of initial values.

A thorough assessment of uncertainties and sensitivities of
ozone prediction due to uncertainties of various input param-
eters has been provided by various studies, e.g.,Hanna et al.
(1998, 2001) or Schmidt and Martin (2003). While param-
eters like photolysis rates and meteorological conditions are
of importance, emissions still figure prominently as control
parameters. At the same time, emission rates are not suffi-
ciently well known. Especially in areas exposed to air qual-
ity problems, the errors in the emission rate estimates can be
considered as among the primary causes for prediction defi-
ciencies of pollution levels.

Independent from activities termed “data assimilation”, re-
search on the solution of inversion problems aiming at source

and sink estimates is well established over the last decades.
In most cases inversion with respect to quasi–passive tracers
has been performed. Newsam and Enting (1988) and Enting
and Newsam (1990) addressed the global problem of the dis-
tribution of sources and sinks of carbon dioxide by the inver-
sion of a diffusion equation, formally solved by associated
Legendre functions.

In the sequel a variety of other studies were made, all
based on a very limited number of flask measurements
(Bousquet et al., 1999a,b; Enting et al., 1995; Fan et al.,
1998; Gloor et al., 1999; Gurney, 2002). The variational ap-
proach too has been adopted for source and sink estimates
aiming to contribute to better specification of greenhouse gas
budgets (Kaminski et al., 1999a,b; Houweling et al., 1999).

In order to optimise model parameters, Kaminski et al.
(2002) assimilated 41 CO2 measurement data in a simplified
terrestrial biosphere model by the 4D-var technique, achiev-
ing more realistic flux simulations. Attempting to overcome
the limitations of CO2 in situ observations, satellite data from
the Atmospheric Infrared Sounder (AIRS) has been assimi-
lated into the ECMWF model using the 4D-var technique by
Engelen et al. (2004). As the results were satisfying only in
tropical regions, improved global source and sink estimates
cannot be expected with the present data base and assimila-
tion system configuration.

On the mesoscale, Robertson and Langner (1992) used
variational data assimilation for source estimation in the
frame of the ETEX experiment. By adjoint modelling, Is-
sartel (2003) applied the concept of retroplumes for source
identification and estimates within the framework of “illumi-
nation”. A similar approach was studied by Hourdin and Ta-
lagrand (2006) and Hourdin et al. (2006). And a distinctly
different approach, where the maximum entropy principle
has been invoked to estimate position, time, and strengths
of emission sources, has been selected by Bocquet (2005a,b)

So far, all emission source studies cited above remained
focused on source or sink estimates of a single passive tracer,
which is observed in some way, without modelling reactive
chemistry. Only few attempts have been made to address the
general feasibility to solve the source inversion problem for
reactive chemistry, ideally estimating precursor sources by
observational data from product pollutants.

¿From a theoretical viewpoint, only spatio–temporal data
assimilation or inversion techniques are candidates for solu-
tion, which are able to combine model information with data
in a consistent way, while, at the same time, are able to pro-
vide for a Best Linear Unbiased Estimate (BLUE). Given all
requested assumptions are satisfied, this property is provided
by the four-dimensional variational data assimilation tech-
nique and the Kalman filter, including appropriate variants
thereof.

Within the scope of an identical twin set-up, a first im-
plementation of the 4D-variational technique for emission
optimisation including reactive chemistry is described in El-
bern et al. (2000). A first real world application with the
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EURAD model is given in Elbern and Schmidt (2002), along
with a technical description. By including all emitted species
at each surface grid point, the typical optimisation space of
initial values by atmospheric chemical state constituents is
replaced by a scaled emission rate space. A practical appli-
cation on the microscale has been presented by Quélo et al.
(2005) for NOx emissions and their diurnal profile, using the
Polair3D model. Adopting the variational inversion tech-
nique on the global scale, Muller and Stavrakou (2005) as-
similated tropospheric column retrievals of CO and NO2, to
assess emission rates of continental scales.

Related Kalman filter implementations with sophisticated
complexity reduction techniques are presented by van Loon
et al. (2000), where a reduced rank square-root approach was
selected to factorise covariance matrices by a few principal
components (Verlaan and Heemink, 1995). Further elab-
oration on this technique by combination with an ensem-
ble Kalman filter method resulted in additional skill (Hanea
et al., 2004). Optimisation parameters include emission
rates, photolysis rates, and deposition rates, the correction
quantities of which are formally introduced as “noise” pa-
rameters in the Kalman filter formulation.

As a step toward a more comprehensive system inversion,
the present study seeks to exploit the flexibility of the varia-
tional inversion technique and to combine, for the first time,
emission rate and chemical state optimisation. Acknowl-
edging the fact that area emission rates are not directly ob-
servable, inversion success can best be validated by forecast
skills, ideally by data from sites permanently withheld from
assimilation. Neither for the variational approach, nor for the
Kalman filter method, a systematic assessment of this kind
has been provided.

Hence, it is the objective of the present paper, to

– explore the feasibility and assess the benefits of emis-
sion rate optimisation of all gaseous species emitted in
a comprehensive chemistry-transport model, and

– to gain insight into the limitations, be it due to system
set-up or of more fundamental nature.

As independent success criteria, assimilation analyses are
validated with observations withheld from the assimilation
procedure and by forecast improvements.

The paper is organised as follows: Sect. 2 exposes the un-
derlying theory, and Sect. 3 presents the implementation of
the variational assimilation system. In Sect. 4 the observa-
tion data base is given. The results of the case study are
delineated in Sect. 5. Section 6 presents the conclusions.

2 Variational model inversion

The problem of finding the most probable model parameter
values can be treated as a generalisation of the 4D-var ap-
proach, which is usually applied to estimate the state space

variables as parameters of interest. In practical forecast
applications these then serve as best known initial values
(Daley, 1991; Lorenc, 1986, 1988; Talagrand and Courtier,
1987). As explained above, the focus of this paper is the
inclusion of further parameters. For a review of variational
parameter optimisation studies, which also consider parame-
ters other than initial values, see for example Navon (1997).
In the case of the present study, it is the emission rates which
are also taken to be subject to optimisation, in addition to and
joint with the initial values of the chemical constituents.

This section presents a brief outline of the theoretical
background, resting on Elbern et al. (2000). The notational
convention here follows as closely as possible the sugges-
tions given in Ide et al. (1997).

We are given an a priori or first guess estimate of the chem-
ical state vectorxb ∈ R

N , also termed background field, with
N the dimension of the phase space portion for the chemical
constituents, and the emission rateseb ∈ R

E , with E the
dimension of partial phase space of the emission rates. The
background field is frequently obtained from a short range
forecast, as in this study, or from some climatological files.
The background emission rates are usually taken from emis-
sion inventories. In addition,M(t) observationsy0(t) will be
available at timet , scattered in a time interval[t0, tT ]. The in-
novation vector, that is the difference between observations,
available at timet , and the corresponding model equivalent
statexb(t), which evolved from the background initial value
xb(t0) and emission rateseb(t), is denoted

d(t) = y0(t) − H(t)xb(t). (1)

The forward observation operatorH maps from model space
to observation space, producing the model equivalents of
oberservations, given at the timet .

The innovation vectord, the deviations from the back-
ground chemical stateδx(t0):=x(t0)−xb(t0), and a suit-
ably defined perturbation function of emissionsδu=u(e, eb),
scaling the deviation of modified emissionse from back-
ground emission rate valueseb, are combined in a quadratic
form to define an incremental formulation of a cost func-
tion, objective function or distance functionJ as follows
(Courtier et al., 1994):

J (δx(t0), δu) =
1

2
(δx(t0))

T B−1δx(t0) +
1

2
(δu)T K−1δu+

1

2

N
∑

i=0

(d(ti) − H(ti)δx(ti))
T R−1(d(ti) − H(ti)δx(ti)), (2)

J is a scalar functional defined on the time interval
t0≤t≤tN dependent on the vector valued state variablex(t).
H(t)∈R

M(t)×N is a linearised approximation of the forward
observation operatorH. The error covariance matrix of the
first guess or background valuesxb is denotedB ∈ R

N×N ,
while error covariance matrices of emission perturbation
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functionsδu and of observationsy(t) are denotedK∈R
E×E

andR∈R
M(t)×M(t), respectively.

Chemical tendencies as prescribed by a chemistry trans-
port model (CTM) and by emissions, are given by

dx

dt
= M(x) + e(t), (3)

whereM acts as a generally nonlinear model operator. Both
x(t0) and e(τ ), τ∈[t0, t] control the state variablex(t) at
time t . For a chemistry-transport model as the EURAD
model applied in this study, the differential equation can be
written as (Elbern and Schmidt, 2001):

∂ci

∂t
+ ∇ · (vci) − ∇ · (ρG∇

ci

ρ
) −

R
∑

r=1
(

k(r) (si(r+) − si(r−))

U
∏

j=1

c
sj (r−)

j

)

= Ei + Di (4)

whereci is the concentration of speciesi, v is the wind veloc-
ity, s∈IN0 is the stoichiometric coefficient,k(r) is the reaction
rate of reactionr, either being productive (r+) or destructive
(r−) for speciesi, U is the number of species in the mecha-
nism,Ei is the emission rate of speciesi, Di deposition rate
of speciesi, the air density is denoted byρ, andG is the
symmetric eddy diffusivity tensor.

Now let M ′ be the tangent linear model operator ofM.
The evolution of perturbationδx from xb(t) ande(t) follows
from the tangent linear form of (3)

dδx

dt
= M ′δx(t) + δe(t). (5)

Aiming to optimise initial valuesxb(t0) and emission rates
δe(t) jointly, both parameters must be combined in a com-
mon vector by suitable scaling. This will be accomplished
by introducing a functionu=u(e). The relation between per-
turbationδu and the perturbation of emission ratesδe(t) is
implementation dependent and will be specified later. The
composit vectorδz:=(δxT (t0), δuT )T is the full control pa-
rameter of the model evolution.

For the related integration operator or resolvent, perform-
ing a model integration from timet0 to time t , we can refor-
mulate

δx(t) = M̃(t, t0) δz, (6)

whereM̃(t, t0) is the integration operator from timet0 to t .
In order to minimiseJ by gradient descent or quasi-Newton
methods efficiently, we want to determine the gradient ofJ

with respect to the joint chemical state and emission rate vari-
ableδz, that is∂J /∂δz. The gradient of the cost functionJ
then reads

∂J /∂z = B−1δx(t0) + K−1δu

−
tN
∑

ti=t0

HT (ti)MT (t0, ti)R−1 (d(ti) − H(ti)δx(ti)) . (7)

Here,HT andMT denote the adjoint of the tangent-linear
observation operatorH and modelM ′. With the costsJ , the
perturbation fieldsδz, and∂J /∂δz once calculated, the min-
imisation routine can be processed, resulting in a further step
toward a better estimateδza :=(δxT

a (t0), δuT
a )T , expected to

converge to the best linear unbiased chemical state of the at-
mosphere and emission rate, provided that the tangent linear
approximation is sufficiently valid.

The adjoint formulation of (4) then reads, after application
of the variational calculus

−
∂δc∗

i

∂t
− v∇δc∗

i −
1

ρ
∇ · (ρK∇δc∗

i ) +
R
∑

r=1
(

k(r)
si(r−)

ci

U
∏

j=1

cj
sj (r−)

U
∑

n=1

(sn(r+) − sn(r−)) δc∗
n

)

= 0

(8)

with δc∗
i being the adjoint variable ofci , while Di is held

fixed.

3 Implementation of the EURAD 4D-var system

The description of the components of the EURAD 4D–var
system follows the algorithms exposed in the previous sec-
tion. It includes (i) the EURAD modelM and its adjoint
MT , (ii) the formulation of both background error covari-
ance matricesB and K for the initial states and the emis-
sion factors, respectively, and their treatment to precondition
the minimisation problem, (iii) the observational basis and
its related error covariance matrix, and (iv) the minimisation
including the transformation for preconditioning.

3.1 The EURAD forward model CTM2 and its adjoint

The chemistry transport model from which the adjoint ver-
sion is developed is the University of Cologne EURopean
Air pollution Dispersion model (EURAD) (Hass et al., 1995;
Elbern and Schmidt, 2001), which is an early offspring of
the Regional Acid Deposition Model RADM2 (Chang et al.,
1987).

The chemistry transport model calculates the transport,
diffusion, and gas phase transformation of 60 chemical
species with 158 reactions. These processes are calculated
sequentially by a symmetric operator splitting technique,
when stepping fromt to t+1t (Yanenko, 1971; McRae et al.,
1982). This approach is shown to minimise systematic biases
as introduced by a fixed sequence in the splitting technique.
In the present configuration the following operator sequence
is implemented:

xt+1t = ThTzDzADzTzThx
t , (9)

whereT , D denote transport and diffusion operators in hor-
izontal (h) or vertical (z) direction, respectively. The pa-
rameterisation of the emission sources and deposition pro-
cesses are included in the gas phase chemistry moduleA
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and vertical diffusionDz, respectively. While the dynamic
time step1t of the advection operators is 10 min, transport
and diffusion operators are consequently performed by half
time steps. The Bott (1989) upstream algorithm is chosen
to calculate the horizontal and vertical advection. The verti-
cal diffusion is semi-implicitly discretised following Crank-
Nicholson, with the Thomas algorithm used as solver.

In the present configuration a semi-implicit and quasi
steady state approximation method (QSSA) is applied for
the numerical solution of the gas phase chemistry stiff ordi-
nary differential equation system, following Hesstvedt et al.
(1978). The chemistry time step1tc of the stiff ordinary dif-
ferential equation solver is highly variable in time, the calcu-
lation of which follows McRae et al. (1982), with a limited
set of species selected to determine the time step. By prac-
tical reasons a lower bound is defined at 1/50 min, while the
upper bound is given by the dynamic time step of 10 min.

In this study the radiative transfer equation solver of
Madronich (1987) is applied as preprocessor to the CTM and
its adjoint.

The integration domain applies the Lambert conformal
projection centered at 50◦ N latitude, 10◦ E longitude. A
horizontal resolution of 54 km with 77 grid points in the
x-direction and 67 grid points in the y-direction is em-
ployed. The model’s horizontal grid structure is defined
by the “Arakawa C” grid stencil. In the vertical 15 lev-
els with terrain-followingσ coordinates of Lorenz type are
used, with refinements at the lowest levels. The lowest model
half layer, where concentrations, temperature and winds are
given, is chosen to represent 38 m height. The isobaric level
of 100 hPa which defines the top of the model, is taken as a
material surface. Grid size and number of species result in a
state space dimension dim(δx)≈4.6×106.

The initial model state, that is, the initial values prior to the
spin-up run at the onset of a case study, includes a seasonal
mean concentration of longer lived species dependent on lat-
itude and height for the first forward model run, covering
1–2 August, while serving as model spin-up period. Inflow
boundary values are defined in the same way as the initial
model state. All later model runs start with the simulated
final model state of the preceding run.

The emission module includes 19 emitted species, for-
mally available at each emitting grid-point. Emissions into
other layers than the lowest are simulating injections due to
stack overshooting (Briggs, 1975). Emission rates are dis-
tributed over typical diurnal cycles for working days, satur-
days, and sundays. Predefined diurnal cycles are taken as a
priori knowledge, shaping the emission rates over the day.
Examples of working day diurnal cycles of six species are
given in Fig. 1. With this configuration, a phase space di-
mension of the emission rates of dim(δe)=O(105) results.

The emission data in this study are taken from EMEP (co-
operative programme for monitoring and evaluation of the
long range transmission of air pollutants in Europe) and fur-
ther processed as presented in Memmesheimer et al. (1995).

Fig. 1. Example diurnal profiles applied in the emission module for
six of the 19 emitted species. Given are profiles for working day
conditions of NO, NO2, lower alkanes, SO2, CO, and ammonia, as
indicated.

Processing includes also the seasonal and diurnal redistribu-
tion, as well as attributions to working days, saturdays, and
sundays. Therefore, emission correction factors inferred in
this study by a 3 week case study cannot serve as any valida-
tion of the EMEP inventory for the year 1997. The deposition
modelling follows the method proposed by Wesely (1989).

The adjoint of the EURAD model can be developed from
the adjoint differential Eq. (8), from the adjoint of the nu-
merical solvers of the forward model (4), or from the forward
code. In this study the latter approach is adopted, which com-
prises the coding and implementation of the adjoint operators
of Th, Tz, A andDz given in (9). The adjoint chemistry was
coded by hand, while for the advection and diffusion routines
the AMC adjoint model compiler (Giering and Kaminski,
1998) and O∂ysśee differentiation system (Rostaing et al.,
1993; Faure and Papegay, 1998) has been used. The correct-
ness of the adjoint code was checked by the method proposed
by Chao and Chang (1992). For the gas phase chemistry
solver and the implicit vertical diffusion operator, which ap-
ply adaptive time step techniques, the same time steps are
taken for backward integration as determined by the forward
integration.

As meteorological driver the Penn State/NCAR mesoscale
model MM5 is applied. For a comprehensive description
of the model see Anthes et al. (1987) for the precursor ver-
sion MM4 and for an extended update description see Grell
et al. (1993). MM5 is a primitive equation model, used in
this study with an integration domain encompassing the area
from the Mediterranean Sea to North Norway and from the
East Atlantic to European Russia. For the presented simula-
tions the hydrostatic mode of MM5 is taken. The horizon-
tally staggered grid for surface pressure, temperature, wa-
ter vapour, and horizontal velocity is based on the Arakawa
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B-grid scheme with a resolution of 54 km. Key parame-
terisations for the simulation of air mass transport include
Blackadar mixing-layer parameterisations, Kuo cumulus pa-
rameterisation, fourth order horizontal diffusion, and K-
theory vertical diffusion with Richardson number dependent-
coefficientGzz above the mixed layer.

A detailed application of MM5 as part of the EURAD
model configuration is given in Jakobs et al. (1995).

3.2 Preconditioning of the cost function

According to (2), the present implementation requires in-
formation about the background error covariances of both
the system state variables (=“tracer concentrations”) and the
emission rates. While it is obvious that there are correlations
between concentration levels of emitted species and their
emission rates in the vicinity of sources, as well as further
correlations after the action of chemical transformation and
transport processes, the implementation does not yet include
cross-covariances between the initial state and the emission
rates. This is evident from the formulation of (2). This is
due to the facts that even the numerical treatment ofB is
computationally challenging, given a space state dimension
of 4.6×106, that the cross–correlations are highly dependent
on weather conditions, and that sufficient information on this
can hardly be compiled within a limited case study.

In Elbern and Schmidt (2001) a first implementation of
chemical 4D-variational data assimilation by singular value
decomposition was presented, whereB has been furnished
with off-diagonal elements for spatial correlations. It is also
pointed out, that the condition number ofB becomes sen-
sibly unfavourable for efficient minimisation with extending
radius of influence and smoothness of the structure functions.
As a consequence, preconditioning the minimisation prob-
lem becomes increasingly difficult. An effective procedure
to introduce preconditioning is by transformation of the opti-
misation parameters by square roots ofB andK . With square
root factoriszationsB=B1/2BT/2 andK=K1/2KT/2 follow-
ing Courtier (1997), we define new variablesv andw by

v := B−1/2δx, w := K−1/2δu, (10)

leading to a minimisation problem equivalent to Eq. (2).

Omitting the time dependency of the observation operator
H(ti) for notational convenience, the cost function then reads

J (v, w) =
1

2
vTv +

1

2
wTw+

1

2

tN
∑

ti=t0

(d(ti) − Hδx(ti))
T R−1 (d(ti) − Hδx(ti)) . (11)

The gradient ofJ with respect to(v, w)T can be shown to

be

∇(v,w)T J =
(

v

w

)

−
(

B1/2 0
0 K1/2

)

×

N
∑

i=0

MT (t0, ti)HT R−1(d(ti) − Hδx(ti)), (12)

The transformation (10) efficiently compensates for the spe-
cific part of ill-conditioning introduced by any formulation
of B andK .

3.3 Background error covariance matrixB

Due to its size, formally comprisingO(1012) entries, the
background error covariance matrixB has to be limited to
a few principal components only, like leading singular vec-
tors (e.g., Elbern and Schmidt, 2001). The generalisation of
B to anisotropic and inhomogeneous radii of influence by
an explicit covariance matrix model without relaxing the re-
quired property of positive definiteness is not straightforward
(Hölzemann et al., 2001). In that paper an explicit inver-
sion in observation space is chosen, which is hardly practi-
cal in three dimensions. In addition, in the context of vari-
ational data assimilation, the preconditioning of the minimi-
sation procedure requires the square root of the covariance
matrix. For optimisation problems with a dimension as high
as the problem at hand, both requirements can only be met
by choosing a proper covariance model operator, rather than
a full matrix. Hence, in contrast to the prior studies, and
following Weaver and Courtier (2001) with the promise of
higher flexibility in designing anisotropic and heterogeneous
influence radii, the latter option is implemented in this work.
We need to defineB as an operator, which can be easily fac-
torised asB1/2BT/2, to account for the preconditioning re-
quirements. Weaver and Courtier (2001) show that the dif-
fusion equation serves as a valid operator for square-root co-
variance operator modelling, with flexibility to account for
inhomogeneous and anisotropic correlation length, by suit-
able adjustments of local diffusion coefficients. Additionally,
the diffusion equation is self-adjoint. Therefore, the operator
can be easily split intoB1/2BT/2 by applying only half the
integration time of the diffusion equation.

The following operator splitting scheme is implemented
as covariance filter, the single elements of which will be de-
scribed in detail later:

B = 6 C 6 (13)

C1/2 = 3L1/2
v L1/2

h W−1/2 (14)

δx = 63L1/2
v L1/2

h W−1/2v (15)

6 is the diagonal matrix of background-error standard de-
viations,C is the covariance filter, with3 a normalisation
operator andLh,v the horizontal and vertical diffusion op-
erators, respectively. The diagonal matrixW includes cor-
rection factors needed for the grid, which accounts for the

Atmos. Chem. Phys., 7, 3749–3769, 2007 www.atmos-chem-phys.net/7/3749/2007/



H. Elbern et al.: Variational emission rate estimation 3755

Table 1. Selected minimal background errorsǫabs(l) for species in
the RADM mechanism.

SO2 H2SO4 O3 NH3

20 ppb 5 ppb 15 ppb 2 ppb

CO HCHO, TOL NOx others

800 ppb 10 ppb 5 ppb 1 ppb

changing heights of the grid cells due to the application of
σ -coordinates.

3.3.1 Background error standard deviations

In 4D-var, the background errors of the chemical species, that
is the standard deviations

√

diag(B), must be selected a pri-
ori, but are amenable to posteriori byχ2-validation following
Talagrand (1998). After several test runs, the standard devi-
ations are assumed to be dependent of species and height,
the former accounting for the different degree of variability
of the individual constituents, and the latter reflecting the de-
creasing confidence in knowledge on the chemical states with
height. Introducing a height levelk dependent relative error
ǫrel(k) and a speciesl dependent absolute errorǫabs(l), the
following formulation is selected, with the double indices in-
dicating height and species dependence for the square roots
of diagonal elements. Here
√

(Bl,l,k,k) = max(xb(l, k) · ǫrel(k), ǫabs(l)) (16)

where the relative error is modelled as

ǫrel(k) = 1/2 · exp

(

ln(2)
1 − k

1 − kmax

)

= 2(
kmax−k
1−kmax

)
, (17)

with kmax being the number of model levels. Equation (17)
implies that the relative background error is increasing expo-
nentially with model height from 50% to 100% and provides
the exponential interpolation. The absolute background er-
rors ǫabs(l) for the different species taken are given in Ta-
ble 1.

3.3.2 Radii of influence

While the diffusion approach for covariance modelling al-
lows for highly anisotropic and inhomogeneous radii of in-
fluence or (de-)correlation lengthL, the related information
requested is not available in 4D-var, and must be estimated
in some way. In Elbern and Schmidt (2001), assimilation
performance dependencies have been investigated for differ-
ent influence radii of up to more than 150 km, but the result
was found to be of moderate sensitivity only. This is due to
the fact that the adjoint backward integration over a longer
time span gains properties to disperse information spatially
as well, which easily overrides formally introduced small
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Fig. 2. Horizontal influence radius as a function of model height.

radii of influence, that is, a few grid cell units. This situation
is given, where radii no larger than 3 grid cells (L=162 km)
are selected.

The horizontal radii of influence are defined to be increas-
ing with height. Figure 2 shows height-dependent influence
radii for calculation of the corresponding diffusion parame-
ters. The procedure to infer the diffusion coefficientsκh(i, j)

andκv(k) and the corresponding number of time steps has
to comply with the following conditions: As demonstrated
in Weaver and Courtier (2001),L is related to the pseudo-
diffusion coefficientκ and integration timeT by

L =
√

2κT . (18)

On the other hand, the stability condition for explicit solvers
of diffusion equations as parabolic differential equations, re-
quires time stepping constrained by

1th ≤
(1x)2

2 maxi,j (κh(i, j))
, 1tv ≤

min1σ(k)(1σ(k))2

2 maxk(κv(k))
(19)

for horizontal and vertical pseudo-diffusion, respectively.
1x and1σ(k) denote horizontal and levelk dependent verti-
cal grid spacing. For the uppermost level, a horizontal corre-
lation length ofLtop=250 km is estimated, while for the sur-
face layerLbot=54 km are taken. The vertical interpolation
rule is chosen to be linear on the bi-sectionedσ -level height
scale, taking the planetary boundary heightσpbl as inner limit
and the corresponding correlation length isLpbl=80 km.

In contrast to the horizontal correlation length, the ver-
tical variability of the vertical correlation lengthLv is in-
ferred from the vertical diffusion coefficientκv, as provided
by the preprocessed MM5 run. This ensures features like
well mixed boundary layers and related heights being well
reflected by vertical correlation lengths. Therefore, a dynam-
ical control of the vertical correlation length is provided at no
additional computational costs.
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3.3.3 Normalisation matrix

The normalisation operator3 is a diagonal matrix counter-
acting the flattening due to the action of the diffusion opera-
torsL . It is ensured that the background errors on the main
diagonal ofB are those given by6.

Following Weaver and Courtier (2001), the normalisation
matrix has to be calculated for each grid cell at analysis time
t0, since vertical diffusion depends on varying meteorologi-
cal conditions. The present application accomplishes this by
two options:

– Applying the diffusion filter consisting of hor-
izontal and vertical diffusion to input vectors
el=(0, . . ., 0, 1, 0, . . ., 0)T, the entry equal to one
being located at grid pointl. For each grid pointl the
normalisation factor then reads:

(3)ll =
1

√
tl

with (20)

tl = eT
l Lv

1/2L1/2
h W−1LT/2

h LT/2
v el . (21)

– Alternatively, a randomisation method (Weaver and
Courtier, 2001) can be applied, where a set ofQ

Gaussian random vectorsvq∈R
N are generated, with

the statistical expectationsE(vq)=0 and E(vqvT
q )=I ,

q=1, . . ., Q. With the square root of the covariance
filter vq=L1/2

v L1/2
h W−1/2vq we then obtain

t−2
i ≈ diagi

(

1

Q − 1

Q
∑

q=1

vqvT
q

)

. (22)

The estimated randomisation error is then=1/
√

2Q.

3.3.4 Emission parametrisation and covariance matrix

Formally, emission rates can vary for each speciesl at each
emitting grid cell(i, j, k) and at each time stepti . Allowing
for stepwise emission variations results in an extremely ill-
posed inversion problem. Therefore, the degree of freedom
of the emission rate space state can be drastically reduced by
taking the diurnal profile shape as strong constraint, as this is
comparatively well known. By this adherence to diurnal cy-
cle shapes, given a priori, only the amplitudes can be taken
as control parameter subject to optimisation. Further, posi-
tive definiteness of emissions must be enforced. Preservation
of both, diurnal cycle shape and positive definiteness define
the functionδu=u(e, eb) as

δu := ln (e) − ln (eb), (23)

where the logarithms are taken componentwise at
each location and for each emitted species, that is
δu(i, j, k, l)= ln (e(i, j, k, l)/eb(i, j, k, l))= const. through-
out the assimilation interval.

We setδe(t)=:e(t)−eb(t). For notational convenience,
grid and species indices are temporarily mapped on vec-
tor index (i, j, k, l) → s. Then, with the diagonal ma-
trix diag(U)s := exp(δus)−1, Eq. (5) can be reformulated in
terms of the emission parametrisation

dδx

dt
= M ′δx(t) + Ueb(t). (24)

Hence, optimisation ofδu results in a correction factor
f (i, j, k, l)=e(i, j, k, l)/eb(i, j, k, l), which is location and
species dependent, yet time independent.

In the progression of the case study, the emission inven-
tory values are taken as backgroundeb only for the first as-
similated day. For later days background valueseb are taken
from the optimised emission correction factors of the preced-
ing assimilation cycle.

The background emission rate covariance matrixK
is specified as block diagonal matrix by sub-matrices
K̃(i, i, j, j) for each surface grid cell(i, j), describing emis-
sion rate covariances between emitted species at each loca-
tion. The construction is implemented by first estimating
K̃1/2. The information used is a table of the annual emit-
ted amount of NOx, SOx and volatile organic compounds
(VOC), splitted into different polluter groups as provided
by the EMEP inventory: http://www.emep.int. Emission
error correlations have been estimated based on the emis-
sion inventory for polluter groups and statistics of emission
strengths broken down into different sources. Coding of
emission error correlations has been performed by squaring
K̃1/2 and composing the fullK , granting positive definiteness
of K and enabling transformation (10). The upper triangle
sub-matrix entries are presented in Fig. 3.

Background emission standard deviations are assumed to
be Gaussian distributed in logarithmic scale. The follow-
ing relative standard deviations have been applied (personal
communication by Michael Memmesheimer):

SO2 ln (1.7) = 0.53
NH3 ln (1.7) = 0.53
NO ln(1.3) = 0.26

others ln(2.0) = 0.69

Hence, for most emitted species a factor of 2.0 is assumed
(this means that factors 2.0 and 0.5 define the error bar).
Only SO2, NH3 and NO are defined to be better known.

The chemical correlation follows the ad hoc approach as
described in Elbern and Schmidt (1999).

3.4 The minimisation procedure

The minimization procedure follows the forward model run,
based on a prior or updated initial state and emission rates,
followed by the adjoint (backward) integration. The input
for the iterative minimisation procedure are the total costs
J , deviationδx from the background statexb, and the gradi-
ent∂J /∂(δx(t0), δu)T , due after each backward integration

Atmos. Chem. Phys., 7, 3749–3769, 2007 www.atmos-chem-phys.net/7/3749/2007/
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Fig. 3. Implemented background emission rate correlation matrix.
All correlation values are given in percent.

and resulting in an updated deviation from the background
state and emission correction factor. Taking the first guess
identical to the background statexb andeb avoids the need
to calculate neither any inverse ofB andK nor square root
thereof, and allows for the straightforward application of the
pseudo-diffusion approach.

The following sequence performs the minimisation and as-
sociated preconditioning with transformations:

1. Calculate the transformed gradient (12) by executing
vertical diffusion and horizontal diffusion, both with
half the number of time steps as inferred from (18) and
(19). Finally, the normalisation is applied.

2. Run minimisation routine withδz saved from the last
minimisation output, (orδz=0 for the first iteration).

3. Saveδz for next iteration.

4. Apply transformation (15) tov to calculateδx = B1/2v.

5. Add first guessxb to δx to obtain improved initial state
values for the next iteration, and likewise forδu .

The quasi-newton limited memory L-BFGS algorithm de-
scribed inNocedal (1980) and Liu and Nocedal (1989) is
applied for the minimisation, after modification to a parallel
version. The assimilation procedure is taken as successfully
finished after the minimum is attained, while the a posteriori
validation (see Sect. 5) is passed.

4 Observational data basis

4.1 Available data

Surface in situ observations assimilated for this study stem
from the archives of the European Environmental agency
(EEA) as compiled at the time of study (see AirBase – EEA’s
public European Air quality data base http://air-climate.
eionet.europa.eu/databases/airbase, and from some national
and regional environmental agencies. The EEA database
covers geographically all countries from the European
Union, the EEA member countries and some EEA can-
didate countries. EEA files contain information submit-
ted by the participating countries throughout Europe. For
some countries, for whom national and regional data sources
with higher observation density were available, EEA data
has been replaced by original sources. These include: the
environmental protection agencies from the German states
(LUA) and the federal state (UBA), Switzerland, Austria,
The Netherlands, Denmark, and the United Kingdom. Mea-
surement sites are operated routinely under the auspices of
government authorities. A partly dense, partly very coarse
coverage of Europe by observation sites is provided by this
configuration (see Fig. 4). Including all types of stations,
a typical day consists of about 130 000 observations, with
about 13% observations of SO2, 37% observations of NO2,
20% observations of NO, and 30% observations of O3. In
most cases, NOx data are available with a half-hourly fre-
quency, while other data with hourly frequency.

The air quality database consists of air quality measure-
ment data and their statistics for a representative selec-
tion of stations and for a number of pollutants, also meta-
information on the involved monitoring networks, their sta-
tions, and measurments. Observations of SO2, O3, NO, NO2,
and CO are assimilated. Due to its small number, and there-
fore lack of statistical representativeness, CO assimilation re-
sults are not presented in this study. Emerging troposperic
satellite retrievals for gas phase species are mostly available
as tropospheric columns. First assessments on usefulness
in the troposphere for NO2 tropospheric columns from EN-
VISAT/SCIAMACHY retrievals were included in Lahoz et
al. (2007) and indicate as yet modest results. In this study,
these data are not considered.

4.2 Observation error covariance matrix

In the cases presented here, observation errors are not pro-
vided with the data. Experiences from the BERLIOZ ex-
periments are now used to determine the measurement and
representativeness errors of the observation. The measure-
ment error is chosen following a scheme exposed inMohnen
(1999), defining a relative error and a minimal absolute error
for each species:

rmeas= max(eabs
min, e

rel × yo) (25)

www.atmos-chem-phys.net/7/3749/2007/ Atmos. Chem. Phys., 7, 3749–3769, 2007

http://air-climate.eionet.europa.eu/databases/airbase
http://air-climate.eionet.europa.eu/databases/airbase


3758 H. Elbern et al.: Variational emission rate estimation

Fig. 4. The EURAD integration domain resolved with 54 km res-
olution and locations of available surface measurement stations for
9 August 1997. Contributions from the European Environmental
Agency (EEA, grey⋆), environmental protection agencies from the
German states (LUA, black+) and the federal state (UBA, black⋆),
Switzerland (CH, grey�), Austria (AT, black♦), The Netherlands
(NL, black△), Denmark (DAN, grey+), and the United Kingdom
(UK, grey×).

Table 2. Charateristic error portion used to calculate the represen-
tativeness error for a ground based observation.

ǫabs
Species

[ppbV]

SO2 0.4
NO2 1.4
NO 3.0
O3 1.2
CO 15.0

The representativeness of an observation is depending on
the grid resolution and the characteristics of the location.
Most of the European organisations provide characteristics
of their measurement locations. This information has been
translated to this scheme.

The representativeness errors are encoded in the current
study as a characteristic absolut errorǫabs (see Table 2) por-
tion for each species, scaled by a factor depending on the grid
resolution1x and a characteristic representativeness length
Lrepr, given for the measurement station characteristics in Ta-
ble 3:

rrepr =
√

1x

Lrepr
× ǫabs (26)

Table 3. Radii of influence associated with each type of ground
based in-situ observation.

LreprStation Type
[km]

Remote 20.0
Rural 10.0
Suburban 4.0
Urban 2.0
Traffic 1.0
Unknown 3.0

The observation error covariance matrix is here assumed to
be diagonal, that is, the observation errors are not correlated.
The diagonal elements ofR are thus given by the sum of the
measurement and representativeness errors,

Rii = ri,meas+ ri,repr, i = 1, . . . , nobs. (27)

5 Case study and results

5.1 Case study period and meteorological conditions

From 3 to 20 August 1997, a long lasting episode of elevated
ozone levels over central Europe took place. The mesoscale
meteorological simulations of this time span performed by
MM5 has been restarted every 48 h, beginning with 1 Au-
gust 00:00 GMT until 20 August 24:00 GMT. Meteorolog-
ical initial and boundary values were taken from ECMWF
analyses. The meteorological and chemistry-transport sim-
ulation of the first two days of the episode serve to attain a
chemically balanced initial state by 3 August.

The ozone episode started with a shallow ridge with south-
western to north-eastern tilt, extending from the Alps to
southern Finland at 3 August. The centres of shallow ad-
jacent depressions were situated south-west of the British
isles in the west and over the west coast of the Black Sea in
the east. During the following days the ridge moved slightly
westward, attaining a more north-south alignment. At 7 Au-
gust, a flat Scandinavian high pressure system evolved from
the ridge with a saddle point over central Europe. Regional
weather conditions in that area were mostly sunny with lo-
cal thunderstorms. After weakening of the high, a blocking
ridge still prevailed with small variations of its longitudinal
position until 17 August, when a shallow summerly depres-
sion developed over the river Rhine area. This low moved
slightly eastbound while filling up in the flat but increasing
blocking ridge until 20 August. Surface weather conditions
were characterised by weak varying winds and occasional lo-
cal thunderstorms over central Europe during these last days
of the episode. After 21 August 1997, unsettled conditions
resumed over central Europe and enforced the end of this
episode with elevated ozone levels.

Atmos. Chem. Phys., 7, 3749–3769, 2007 www.atmos-chem-phys.net/7/3749/2007/
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5.2 Assimilation runs set-up

To estimate the success gained by the 4D-var assimilation
process, a suite of experiments has been conducted, which
differ in various ways. The assimilation window is selected
to comprise 24 h, from midnight to midnight. The assimi-
lation window has been chosen as a full day, because this
is the length of the diurnal profile of emissions, taken as
strong constraint. While in meteorological practice assimila-
tion windows mostly span 6 h to 12 h, the design here is mo-
tivated by the inversion problem for diurnal emission cycles.
While it is surely desirable to have long assimilation inter-
vals, a couple of time limiting factors are to be considered: (i)
The errors of the underlying models, both the driving MM5
and the CTM, must stay small enough during the assimilation
interval for correct observation signal interpretation. As an
example, slight shifts in wind direction and boundary layer
height change due to phase errors of advected synoptic pat-
terns clearly jeopardise correct processing of innovation sig-
nals in the critical regions. (ii) With increasing assimilation
interval length the tangent-linear approximation underlying
the variational approach looses validity, as a consequence of
the highly nonlinear chemistry under photochemical condi-
tions. (iii) With increasing assimilation interval length, the
preconditioning of the minimisation problem becomes more
challenging, as for example discussed in Chao and Chang,
1992. (iv) The computational burden quickly increases prob-
ably, to an unaffordable extent, without gaining a reasonable
improvement of predictive skills. Tests with reduced assim-
ilation interval lengths of 14 h, which were confined to a 2
days period, indicate no substantial difference in emission
rate factor estimates. The optimal assimilation lengths is an
issue of future experience.

An ensuing forecasted second day only serves for success
control by improved predictions, stated by reduced model-
minus-observation discrepancies. Hence, the study period
consists of a sequence of assimilation days and forecast days.
In each sequence, the background chemical state field is
taken from the 2 day forecast, resting on the related assim-
ilation result. Likewise, the new background emissions are
taken from the preceding analysis result for the emission fac-
tors.

The case study comprises assimilation procedures in three
different modes:

1. only initial value optimisation (IV),

2. only emission rate optimisation (ER), and

3. joined initial value/emission rate optimisation (IE).

All initial assimilation runs of the case study, that is those
starting with 3 August after 2 days spin-up time, have been
performed with background emission rates taken from the
EMEP emission inventory. The only exception is an assim-
ilation sequence in order to verify the analysed correction

factors of the emission rates. In this case, a second suite
of assimilation runs has been performed with significantly
different emission rates, aiming to approximate the analysis
result of the first suite. Further, the value of NOx measure-
ments is assessed by omitting these data, and comparing the
analysis results with the NOx-observation augmented case.

5.3 A posteriori validation

The validity of the assimilation results can only be shown sat-
isfactorily by independent observations. Retaining observa-
tions from assimilation and preserving them for quality check
is the usual way to demonstrate assimilation improvements.
Given the task to ameliorate forecasts, an improved predic-
tion skill also provides a means of validation, when chemical
state forecasts with and without data assimilation are com-
pared. Both modes are presented in this study.

Given properly defined background and observation error
covariance matrices, and further given a statistically repre-
sentative and unbiased innovation vectord=y−Hx, the ex-
pected minimumJmin of a quadratic objective function of
the form (2) is equal to

E(Jmin) = 1
2E

(

trace
(

(

HBHT + R
)−1 (

ddT
)

))

= 1
2trace

(

(

HBHT + R
)−1

E
(

ddT
)

)

= 1
2trace(IM) = M/2, (28)

whereIM is the unit matrix in observation space. The gen-
eralisation for the spatio-temporal case is straightforward.
Hence, it is easy to check whether this condition (often
called theχ2-condition) is satisfied (Talagrand, 1998, 2004;
Ménard et al., 2000).

With the error estimates described in section 2.4 and aver-
aged over all eight assimilation days, mean costs of 50×103

are inferred, with a halfed number of observations of 67×103

. This indicates a moderate overestimation of presumably
observation errors, as both types of background costs remain
too low to be effective in modifying the total costs. Rather,
given the coarse resolution of the grid, the error of repre-
sentativeness is suspected to contribute most to the deficit
from the optimal cost value. In the case of nitrogen (di)oxide
measurements, the high error of representativeness attributed
may be a specific reason. While modifying error estimates is
simple in technical terms, only long and continuous opera-
tional applications, comprising different weather conditions,
can give aid to better estimate the error statistics involved in
the cost function.

As an example for a single assimilation run with joint ini-
tial value/emission rate optimisation, Fig. 5 exhibits iteration
dependent decreases of cost results for 9 August 1997, with
absolute costs broken down in terms of species and observa-
tion types. The minimisation of the partial costs of ozone,
which contributes the highest portions in most cases, then
virtually determines minimisation progress. Minimisation of
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Fig. 5. Iterative decrease of partial and total costs of the joint emission rate/initial value optimisation for the 24 h assimilation interval of 9
August 1997. Left panel with partial costs of observed species. Right panel with cost types, where GD: surface in situ observations, BG:
background costs of initial values, EM: background costs of emission rates, TO: total costs.

SO2 shows a similar reduction, however on a much smaller
absolute basis. Further, NOx species show nearly no min-
imisation effect. This is an indication that the 54 km grid
cells are not suited to resolve emission patterns and surface
fields of NOx. The costs emerging from the iterative digres-
sion from background values of both initial values and emis-
sion rates, remain low. Nevertheless, the background term is
indispensable for both reasons, to formally pose an overde-
termined optimisation problem and practically to enforce an
analysis result complying with model and observations.

5.4 Forecast improvements

The relative importance of emission rate optimisation com-
pared to initial value optimisation must be expected to
be highly dependent on conditions like emission strengths,
boundary layer height and stability, and chemical life time.
Therefore, in order to provide a representative example il-
lustrating typical difficulties, local conditions should be se-
lected which are influenced by both rural and urban condi-
tions inside a model grid box. With the dates 9 and 10 August
1997, this case is just in the middle of the then mature ozone
episode. Figure 6 presents an example case, which is amidst
the central European region, where the small to medium size
cities of Wetzlar, Gießen, and Linden are surrounded by rural
conditions. While the former stations are classified as sites
“traffic”, Linden is attributed the “rural” type. Nevertheless,
visual inspection of the observed time series clearly indicates
a strong diurnal cycle also for this station. It must be con-
cluded, that the available measurements, at least for NO and
NO2, may be of limited representativeness for the model grid
cell.

In the case of SO2, only a short measurement sequence of
a few hours duration is available for each day. Observed val-

ues of about 3 to 7 ppbV are strongly overpredicted without
any data assimilation, except during the last 12 h of the 2-day
simulation cycle. Pure emission rate optimisation, building
on inversion for the preceding days 3, 5, and 7 August, is suc-
cessful to predict the 10 August levels, after marginal over-
prediction of the assimilated measurements available during
the morning hours of 9 August. Pure initial value optimi-
sation is able to better simulate the assimilated observations.
However, in contrast to emission rate optimisation, strong re-
laxation toward the simulation without data assimilation oc-
curs in the course of the forecasted second day. For SO2, it
can be concluded that emission rates are more likely to be the
right optimisation parameter. It can be corroborated by visual
inspection of forecast improvements in this special grid cell,
that combined emission rate-initial value optimisation does
not provide for a better performance than in the case of pure
emission rate optimisation.

It has been stated above, that the representativeness of rou-
tinely operated NO and NO2 observations in typical central
European areas is poor. The vicinity of streets and the prac-
tice of environmental agencies to deploy observation sites
mostly in populated areas renders assimilation of these data
critical. In this study, this fact has been taken into account
by increasing the error of representativeness and hence the
overall observation error as described in Sect. 3, thereby re-
ducing the effect of assimilation of these observations. Con-
sequently, deviations from the free simulation of all assimi-
lation based simulated NO und NO2 times series are hardly
visible in Fig.6. Further, simulated concentration levels of
NO und NO2 remain significantly lower than observed levels,
but still inside the error margins. This is a direct consequence
from the unequal distribution of observation sites, favouring
densely habitated areas with enhanced emission levels.
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Fig. 6. Modelled and observed 48 h time series starting 9 August 00:00 UTC for a central European model grid box covering the 3 urban
influenced measurement stations Gießen, Wetzlar, and Linden, with values given by red dots with error bars. The assimilation window
covers the first 24 h within the grey shaded area. Later observations of 10 August serve for quality control only. Top left panel SO2, top right:
NO2, bottom left NO, and bottom right O3. Green dotted line: initial value optimisation, blue solid line: emission rate optimisation, pink
dash-dotted line: combined initial value-emission rate optimisation. For comparison black dahed line: run without any data assimilation on
this and prior days, started with spin-up background values of the spin-up period 1–2 August.

Ozone data assimilation results for the selected sites show
clearly a different performance. Observations exhibit distinct
diurnal cycles with peak values between 60 and 70 ppbV dur-
ing the afternoon hours and massive ozone depletion after
midnight, which is a typical behaviour for strong anthro-
pogenic emissions. The free simulation predicts too high
concentration levels by 20 to 30 ppbV, exceeding error mar-
gins. Further, the observed strong nighttime concentration
drop is only weakly featured by the model.

The data assimilation procedure with optimisation of only
initial values shows a good agreement with observations of
the first day, that is the assimilation window, including a
much better, though not perfect simulation of the nighttime
depletion. During the ensuing forecast of the second sim-
ulation day, the initial value optimisation based simulation
slowly relaxes toward the free run, indicating the beneficial,

yet short and ceasing impact of initial value modification, as
was assessed in Elbern and Schmidt (2001).

The pure emission rate optimisation case shows nearly
a coincidence with the free simulation during the first day,
but significant improvements for the second, forecasted day.
This demonstrates that (i) this specific model area has not
yet benefitted from data assimilation of preceding days of
the case study, and that (ii) emission optimisation of emit-
ted precursor species requires a latency time prior to observ-
ing beneficial effects for photooxidant products like ozone.
While obviously emission rates need to be optimised, the ini-
tial values of ozone remain poor.

Generally, for a satisfying inversion procedure, benefits
from both procedures are expected. This can be observed
from the case of combined emission rate-initial value optimi-
sation. Here, the results approximate the initial value optimi-

www.atmos-chem-phys.net/7/3749/2007/ Atmos. Chem. Phys., 7, 3749–3769, 2007



3762 H. Elbern et al.: Variational emission rate estimation

Fig. 7. Mean observation-minus-model differences (top) and RMS
differences (bottom) of all 8 two-day simulations for sulfur diox-
ide. Observations assimilated the first 24 h, with hours 25–48 dis-
played for quality control only. Green stippled line: only initial
value optimisation, blue full line: only emission rate optimisation,
pink dash-dotted line: combined initial value/emission rate optimi-
sation. Dashed line: control run without any data assimilation in the
case study, for reference only.

sation case during the first day and the emission rate optimi-
sation case during the second day. In addition, the nightime
ozone depletion is better forecasted than in either homoge-
neous case.

To present representative results, the relative benefits of
data assimilation procedures with and without emission rate
optimisation will be discussed by examining biases and root
mean square errors (RMS) of ensuing forecasts, resting on
data assimilation in a variety of configurations.

For sulfur dioxide Fig.7 presents mean bias and RMS time
series for two day forecasts, averaged over eight consecutive
48 hour simulations from 3 to 18 August 1997. The first 24 h
cover the assimilation interval. The extension to forecasts for
the second day are displayed for quality control only.

Without any data assimilation the observation-minus-
model bias (OmM) gives an average of 8 ppbV too high sim-
ulated values and a root mean square error (RMS) of about
10 ppbV. During the two day simulation the performance is
poorer at hours centred around 07:00 UTC, which means
09:00 local summer time in most European countries, where
observations were available. The possible reasons for this are
still speculative, where poor vertical exchange due to a sur-
face layer modelled too cold, poor vertical resolution, inexact
diurnal emission profiles, and combinations thereof might be
the reason. While these possible reasons point toward a vio-
lation of the “perfect model assumption” commonly made
in 4D-var data asimilation, errors appear not to be strong
enough to degrade later simulation severely, as the onset

Fig. 8. Plotting conventions as for Fig. 7, except for ozone.

of vertical mixing during the following morning relaxes the
problem. However, future investigation will focus on possi-
ble causes for the intermittent model performance drops at
the surface layer.

Data assimilation with respect to optimisation of initial
values only (IV case) shows a slight positive bias at initial
time, which is a compensation for later relaxation toward the
free simulation within the assimilation window. Later during
the forecast period (that is, the second day), bias values ap-
proximates the reference run, providing a time scale for the
memory for initial values in the system. A similar bevaviour
is visible for the RMS error, which starts with an average of
5 ppbV and ends after 48 h with 15 ppbV only 1 ppbV less
than that of the free simulation. From these error features it
must be concluded that a severe bias prevails. As mentioned
above, this study adopts the hypothesis that one principal part
of the bias stems from erroneous emission rates, apart from
initial values.

Pure emission rate optimisation results in a dramatical re-
duction of the bias down to values lower than 20%. Likewise,
the RMS errors are reduced to levels between 30 and 50%.
However, the initial RMS error of the initial value optimisa-
tion is smaller during the first five hours, clearly indicating
an example of “over-optimisation” due to the optimisation of
the less influential parameter, as this assimilation result is not
sustainable over 48 h.

The data assimilation performance after joint optimisation
of emission rates and initial values shows a further improve-
ment for both bias and RMS error. It combines the improved
features from initial value optimisation with those from emis-
sion rates, exhibiting the expected sustainability throughout
the forecasted second day.

Figure 8, which has the same format as Fig. 7, shows re-
sults relative to ozone estimation. In the control run, the
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bias and standard deviation have values of about 10 ppbV
and 22 ppbV, respectively. The early morning degradations
are visible as for SO2, indicating that the problem is not
dominantly caused by chemical transformation. On the other
hand, it is known that the coarse resolution of 54 km is not
sufficient to resolve point and line sources of emitted ozone
precursors correctly, leading to NOx levels, which are too
low to reduce ozone levels as observed at sites, mostly de-
ployed close to NOx emission sources.

Initial value optimisation reduces the bias mostly, inside
the assimilation interval a bias is even slightly reversed. A
tendency for relaxation toward the free simulation can be ob-
served for the second, forecasted day. As in the correspond-
ing case of SO2, the averaged RMS errors are reduced during
the assimilation window, with later relaxation toward the free
run average.

The pure emission optimisation based assimilation pro-
vides a substantial bias reduction of more than 50%, without
attaining the success achieved for SO2 however. In contrast,
the RMS average values are only marginally better than ex-
hibited for the free run. It can be concluded that emission rate
optimisation gives a smooth control over the concentration
levels, while initial value optimisation accounts for smaller
scale variations, which are more suitable to fit to observed
temporal variations.

The combined emission rate and initial value optimisation
gives the best results, however only with modest improve-
ments in comparison with the initial value optimisation. The
assimilation interval bias is smallest and there is less relax-
ation of the bias toward the free run during the final hours of
the forecasted second day. Also RMS errors are only slightly
smaller than in the case of initial value optimisation.

While there is a clearly visible benefit for optimising
both initial value and emission rates of precursors for ozone
jointly, there is only a moderate improvement with respect to
initial value only optimisation. The reason for this is presum-
ably the coarse resolution and the effect, that gross biases of
emission rates are reduced during the first two-day cycles of
the case study, leaving the remaining discrepancies to initial
value optimisation.

Validation of results can also be undertaken by observa-
tions withheld from the assimilation algorithm, in addition to
assessing increments in prediction skills after data assimila-
tion. In the sequel, a combination of both methods is pre-
sented, where observations of quasi-randomly selected mea-
surement sites were not assimilated, but taken for validation
of assimilation and forecast results. Figure 9 presents the av-
erage results for SO2 and O3, again by bias and RMS. For
clarity only the joint emission rate-initial value optimisation
option is selected. The free simulation results of the stations
withheld are included for comparison only.

In addition to the initial value/emission rate optimisation
based simulation, the first guess based simulation is included,
to assess possible accumulated benefits from earlier data as-
similation runs, made in two days steps. It can be seen that

Fig. 9. Mean observation-minus-model differences (left panels)
and RMS differences (right panels) of all 8 two-day simulations for
sulfur dioxide (top panels) and ozone (bottom panels) for 25% ran-
domly selected observation sites. Green stippled line: first guess
performance at locations at randomly selected sites, the data of
which is not assimilated. Blue full line: performance at selected
sites, withheld from assimilation. Dashed line: control run without
any data assimilation in the case study, for reference only. Observa-
tions assimilated the first 24 h in the joint initial value/emission rate
optimisation mode, with hours 25–48 displayed for quality control
only.

there is a drastic improvement for SO2, with nearly no dis-
tinction from the actual assimilation based simulation. In
contrast, for ozone a significant improvement for the perfor-
mance at the locations of withheld stations can be claimed,
when compared with the free run. Improvements with re-
spect to the first guess based line indicate information gain
achieved from the other 75% observation sites.

In comparison with ozone and its precursors, it can be con-
cluded that the success of SO2 forecasts after assimilation is
due to the better representativeness of grid cells, less tempo-
ral and spatial variability, and considerably reduced chemical
dynamics on time scales of days. Consequently, a denser ob-
servational network is required as well, to significantly im-
prove performance in the realm of tropospheric photochem-
istry data assimilation. Further, basic assumptions of 4D-var,
like the tangent-linear approximation being sufficient and
prevalence of Gaussian error characteristics must be rendered
moot for this case. Nevertheless, both forecast improvements
and analysis improvements at stations withheld from assimi-
lation prove a beneficial impact from the assimilation proce-
dure.
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(a) (b)

(c) (d)

Fig. 10. Emission correction factors for(a) sulfur dioxide,(b) nitrogen dioxide,(c) terminal alkenes, and(d) isoprene at the surface layer,
analysed by joint initial value/emission rate optimisation with 24 h assimilation interval placed at 17 August 1997.

5.5 Emission optimisation results

Besides improved forecast skills, improved estimates of
emission rates can be expected from the 4D-var emission
rate inversion procedure. Correction factors should be, with
variable degree of confidence, provided for all 19 emitted
species. Formally, the 4D-var procedures performed over the
16 days result in independent analyses of emission rates. De-
spite its differentiation in terms of working days, saturdays
and sundays, there is surely an unknown day-to-day variabil-
ity in emissions, which the emission inventory may not fully
capture. Nevertheless, under conditions described here, and
taking note of the results described above, the emission in-
ventory must be assumed to be biased, with respect to real
emission rates including its margins of daily variations. The
possible presence of biases has been ignored in the assimila-
tion procedure. At least in cases of not too strong differences

it can be expected that the inversion procedures converge to-
ward less biased emission estimates, which may be manifest
in stabilising correction factors of emission rates. After in-
spection of the results, for the entire period the correction
factors of the emission rates exhibit a stable tendency.

Figure 10 displays the analysed correction factors for the
emission rates of sulfur dioxide, NO2, terminal alkenes, and
isoprene for the lowest model layer, based on joint emission
rate-initial values optimisation with a 24 h assimilation inter-
val. 17 August 1997 is the last day of the case study with
data assimilation. As most of the integration domain is void
of observations, interpretation is restriced to observed areas
as displayed in Fig.4. In the case of SO2 a general reduc-
tion by about 20 to 25% can be observed for England and the
central European area, except in occasional locations. For
the limited territory of the former German Democratic Re-
public, it can be concluded that the transition from older coal
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fueling power houses to fewer, but cleaner plants progressed
more rapidly than estimated by the emission inventory. The
correction factors for the Iberian peninsula are, not uniform,
yet mostly amplifying the emissions.

A similar picture as for SO2, though with less spread, can
be stated for NO2. In most observed areas, emission inven-
tory rates must be reduced by a percentage of 15 to 20%.
Nevertheless, various urban centres can be identified where
a small increment up to 15% is inferred.

As examples for VOCs Fig. 4 presents correction factors
for terminal alkene and isoprene. While the latter is purely
emitted by deciduous forests, the former includes anthro-
pogenically emitted alkenes and terpenes from coniferous
forests. In either case, and in contrast to SO2 and NO2,
there are major contiguous regions in eastern central Eu-
rope, where the emission parameterisation proved to provide
slightly too low values of about 10 to 15%. Probably, this
effect is due to an underestimation of biogenic VOC emis-
sions. Generally, for VOC emission rate optimisation correc-
tion factors excert a less significant deviation from unity.

As SO2 and NO2 emission rates from the EMEP emis-
sion inventory proved to be too high, the result comes under
scrutiny by starting with significantly too low emission rates,
expecting the result to converge toward the same analysed
absolute emission rates. Therefore, validation of emission
correction factors inferrerd from EMEP based initial back-
ground emission rates are contrasted with an analog inver-
sion procedure, based on halfed initial background emission
rates at the beginning of the case study.

Figure 11 exhibits the results for 17 August 1997, the same
day as in the exposition before, with initial emission rates re-
duced to 50%. As expected, most areas with former dras-
tic reduction are now characterised by amplified emission
rates. For SO2, mostly moderately amplifying factors are
visible, and still reducing factors in eastern Germany, point-
ing toward a drastic overestimation of emission in that area
by EMEP. This corroborates the former result, again indicat-
ing a faster reduction of lignite coal combustion and more
efficient SO2 filter techniques, following the change of eco-
nomic system after 1990 in that area.

In the case of NO2, stronger amplification factors are anal-
ysed over central Europe, reflecting a less strong misspecifi-
cation. Again, the approximation of emission rates from be-
low converges to an absolute result similar to that from above
in central Europe and England.

For terminal alkenes the correction factors remain small
and without clear correction signal. Given an analysis vir-
tually resting on ozone observations, and NOx observations
strongly devaluated by the error of representativeness, a plau-
sible and likely explanation for the NO2 and VOC correc-
tion scenario can be explained in the frame of the Empiri-
cal Kinetics Modelling Approach (EKMA). See for example
Kinosian (1982) for further explanations. It is known that
the coarse spatial resolution of the model and the strict con-
finement of NOx sources to point and line sources renders

(a)

(b)

Fig. 11. Emission correction factors for(a) sulfur dioxide and(b)
nitrogen dioxide as for Fig. 10, however with emission inventory
reduced by 50% throughout the case study, for convergence control.

the system to be biased toward the preference of “NOx con-
strained” states, where ozone formation is very sensitive to
variations in NOx emission rates and concentration levels,
and rather insensitive to VOC changes. This implies, that
under “NOx constrained” conditions, and without VOC ob-
servations available, the optimisation system is too ill-posed
to provide credible VOC correction factors.

In fact, the minimal impact gained from assimilation of
NO2 observations can be concluded from Fig. 12, where a
very similar pattern and absolute values for reduction factors
are exhibited as in Fig. 10. A closer inspection of earlier
assimilated days corroborates this finding.

6 Conclusions

In the chosen frame of continental scale air quality mod-
elling, the 4D-var method for inverse modelling of emission
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Fig. 12. Emission correction factors for nitrogen dioxide as for
Fig. 10, however without any assimilation of NOx observations
throughout the case study.

estimates has been shown to perform excellent for SO2. This
species may however serve as representative for slowly reac-
tive species, with emission patterns other than low level line
sources like streets. In fact, for the European areas featured
by the available observation sites, sulfur emission sources are
characterised by the predominance of single point sources
of power plants, rather than by a dense distribution of small
sources from, say, housekeeping. In this context, the pre-
sented 4D-var approach has been able to demonstrate the
outstanding importance of emission rate optimisation rather
than initial value optimisation. If only initial values were op-
timised, estimated initial states relax toward a mean 10 ppb
SO2 bias already after two days simulation, which is emis-
sion inventory induced. In contrast, emission rate optimisa-
tion reduces biases nearly perfectly and reduces RMS errors
by about 60%, which may delineate the observational and
representativeness accuracy of the set-up of model resolu-
tion and observational network. It could be analysed that the
emission inventory grossly overestimates sulfur emissions,
especially in areas of economic transition in Germany.

The optimisation of emission rates in the case of photolyt-
ically active species proved to be considerably more chal-
lenging. With ozone being a central constituent of interest,
the following conditions appear to exert a high influence on
the predictive skill:

– with 54 km horizontal resolution, the feasible model
grid resolution for continental scale regional model is
too coarse in urban and densely populated rural areas
with typical point and line source emission patterns,

– the observational network density of NOx as emitted
precursor species is biased toward populated regions,
measuring higher NOx levels than simulated on the

coarse domain and requiring elevated representative-
ness errors of the in situ measurements,

– in urban areas, simulated conditions suffer from a model
proclivity for NOx controlled conditions for ozone pro-
duction, rendering emission estimates of VOC uncer-
tain.

The following can be concluded: Despite the fact that, in
most cases, observed NOx levels are significantly higher than
modelled NOx levels, emission estimates indicate markedly
lower emission rates, to achieve better ozone forecasts. The
precision of analysed reductions of NOx emission may be
hampered by the above mentioned coarse model grid. How-
ever, in view of two additional assimilation validation exer-
cises, taking either emission rates halfed or without NOx ob-
servations, the general tendency must be considered as cor-
rect.

This statement is corroborated by performance assess-
ments of forecast skill, where the bias could be decreased
and the RMS error remains lower than for a forecast without
data assimilation longer than 48 h.

On the basis of this relative performance increment it can
be expected that further difficulties for forecast improve-
ments is most likely caused mainly by the coarse model res-
olution. There are indications that model grid refinements
achieved by adjoint nesting techniques are promising for ad-
ditional forecast skills (Elbern and Strunk, 2005). Accept-
ing the computational costs by selecting finer grids is the di-
rect measure to avoid the double problem of nearly invalu-
able NOx observations and the model proclivity to simulate
NOx constrained photochemical scenarios. Future work will
therefore focus on substantial grid refinement, with 4d-var
only feasible after introducing nesting techniques. Further to
this, preconditioning by empirical factors, now optimised for
the total model domain, must be refined to local conditions.
It can be expected, that these measures offer further avenues
for forecast skill improvements.
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