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Abstract. We briefly present in this short paper a new
SIze REsolved Aerosol Model (SIREAM) which simu-
lates the evolution of atmospheric aerosol by solving the
General Dynamic Equation (GDE). SIREAM segregates
the aerosol size distribution into sections and solves the
GDE by splitting coagulation and condensation/evaporation-
nucleation. A quasi-stationary sectional approach is used
to describe the size distribution change due to condensa-
tion/evaporation, and a hybrid equilibrium/dynamical mass-
transfer method has been developed to lower the computa-
tional burden. SIREAM uses the same physical parameter-
izations as those used in the Modal Aerosol Model, MAM
Sartelet et al. (2006). It is hosted in the modeling system
POLYPHEMUS Mallet et al., 2007, but can be linked to any
other three-dimensional Chemistry-Transport Model.

1 Introduction

Atmospheric particulate matter (PM) has been negatively
linked to a number of undesirable phenomena ranging from
visibility reduction to adverse health effects. It also has a
strong influence on the earth’s energy balance Seinfeld and
Pandis (1998). As a result, many governing bodies, es-
pecially in North America and Europe, have imposed in-
creasingly stringent standards for PM. As an exemple the
1999/30/CE European Directive has imposed a daily PM10
concentration limit of 50µg/m3 since January 2005.

Atmospheric aerosol is a complex mixture of inorganic
and organic components, with composition varying over the
size range of a few nanometers to several micrometers. These
particles can be emitted directly from various anthropogenic
and biogenic sources or can be formed in the atmosphere by
organic or inorganic precursor gases.

Given the complexity of PM, its negative effects, and
the desire to control atmospheric PM concentrations, mod-
els that accurately describe the important processes that
affect the aerosol size/composition distribution are there-
fore crucial. Three-dimensional Chemistry-Transport Mod-
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els (CTMs) provide the necessary tools to develop not only
a better understanding of the formation and the distribution
of PM but also sound strategies to control it. Historically,
CTMs focused on ozone formation or acid deposition and did
not include a detailed treatment of aerosol. Several models
have been developed that include a very thorough treatment
of aerosol processes Gong et al. (2003); Adams and Sein-
feld (2002); Spracklen et al. (2005), but there are still many
limitations Seigneur (2001).

In detailed models that seek to describe the time and spa-
tial evolution of atmospheric PM, it is necessary to include
those processes described in the General Dynamic Equa-
tion for aerosols (condensation/evaporation, coagulation, nu-
cleation, inorganic and organic thermodynamics). These
and additional processes like heterogeneous reactions at the
aerosol surface, mass transfer between aerosol and cloud
droplets, and aqueous-phase chemistry inside cloud droplets
represent some of the most important mechanisms for alter-
ing the aerosol size/composition distribution.

Among the aerosol models, one usually distinguishes be-
tweenmodal modelsWhitby and McMurry (1997) andsize
resolved or sectional models Gelbard et al. (1980). We refer
for instance to the modal model of Binkowski and Roselle
(2003) and the sectional model of Zhang et al. (2004) for
a description of state-of-the-science aerosol models, hosted
by the Chemistry-Transport Model, CMAQ Byun and Schere
(2004).

Here we present the development of a new SIze RE-
solved Aerosol Model (SIREAM). SIREAM is the size-
resolved alternative to the modal model, MAM Modal
Aerosol Model, Sartelet et al. (2006). Both models use the
same physical parameterizations through the library for at-
mospheric physics and chemistry ATMODATA Mallet and
Sportisse (2005). Both have a modular approach and rely
on different model configurations. They are hosted in the
modeling system POLYPHEMUS Mallet et al., 2007 and used
in several global, regional and local eulerian applications. A
detailed description of SIREAM and MAM can be found in
Sportisse et al. (2006) (available at http://www.enpc.fr/cerea/
polyphemus). A key feature of SIREAM is its modular de-
sign, as opposed to an all-in-one model. SIREAM can be
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used in many configurations and is intended for ensemble
modeling (similar to Mallet and Sportisse (2006)).

This paper is structured as follows. The model formula-
tion and main parameterizations included in SIREAM are
described in Sect. 2. The numerical algorithms used for solv-
ing the GDE are given in Sect. 3. A specific focus is devoted
to condensation/evaporation, which is by far the most chal-
lenging issue.

2 Model formulation

In this section we focus on aerosol dynamics, i.e. on the
nucleation, condensation/evaporation, and coagulation pro-
cesses. In addition, we briefly describe some processes that
are strongly related to aerosols (heterogeneous reactions at
the aerosol surface, mass transfer between the aerosols and
the cloud droplets and aqueous-phase chemistry in cloud
droplets). We also include the parameterizations for Semi-
Volatile Organic Compounds (SVOCs).

In order to deal with different parameterizations and to
avoid the development of an “all-in-one” model, the parame-
terizations have been implemented as functions of the library
ATMODATA (Mallet and Sportisse (2005)), a package for at-
mospheric physics. As such, they can be used by other mod-
els.

2.1 Composition

The particles are assumed to beinternally mixed, i.e., that
there is a unique chemical composition for a given size. Each
aerosol may be composed of the following components :

– liquid water;

– inert species : mineral dust, elemental carbon and, in
some applications, heavy trace metals (lead, cadmium)
or radionuclides bound to aerosols;

– inorganic species : Na+, SO2−
4 , NH4+, NO−

3 and Cl−;

– organic species : one species forPrimary Organic
Aerosol (POA), 8 species for Secondary Organic
Aerosol (see below for more details).

A typical version of the model (trace metals or radionuclides
are not included) tracks the evolution of 17 chemical species
for a given size bin (1+2+5+1+8). These species (external
species) should be distinguished from the species that are ac-
tually inside one aerosol in different forms (ionic, dissolved,
solid). Letne be the number of external species.

The internal composition for inorganic species is deter-
mined by thermodynamic equilibrium, solved by ISOR-
ROPIA V.1.7 Nenes et al. (1998). Water is assumed
to quickly reach equilibrium between the gas and aerosol
phases. Its concentration is given by the thermodynamic
model (through the Zdanovskii-Stokes-Robinson relation).

The organic composition is given by the SORGAM model
Schell et al. (2001b) which we detail in Sect. 2.2.5.

Hereafter, the particle massm refers to thedry mass. In
order to reduce the wide range of magnitude over the particle
size distribution and to better represent small particles, the
particle distribution is described with respect to the logarith-
mic massx = ln m Wexler et al. (1994); Meng et al. (1998);
Gaydos et al. (2003).

The particles are described by a number distribution,
n(x, t) (in m−3), and by the mass distributions for species Xi ,
{qi(x, t)}i=1,ne (in µg.m−3). The mass distributions satisfy
∑i=ne

i=1 qi = m n. We also define the massmi(x, t) = qi (x,t)
n(x,t)

of species Xi in the particle of logarithmic massx. It satisfies
∑i=ne

i=1 mi(x, t) = ex .

2.2 Processes and parameterizations for the GDE

2.2.1 Nucleation

The formation of the smallest particles is given by the ag-
gregation of gaseous molecules leading to thermodynami-
cally stableclusters. The mechanism is poorly known and
most models assume homogeneous binary nucleation of sul-
fate and water to be the major mechanism in the formation
of new particles. Binary schemes tend to underpredict nucle-
ation rates in comparison with observed values. Korhonen
et al. (2003) has indicated that for the conditions typical in
the lower troposphere ternary nucleation of sulfate, ammo-
nium and water may be the only relevant mechanism.

SIREAM offers two options for nucleation: the H2O-
H2O4 binary nucleation scheme ofVehkamki et al. (2002)
and the H2O-H2O4-NH3 ternary nucleation scheme of Na-
pari et al. (2002).

The output is a nucleation rate,J0, a nucleation diameter,
and chemical composition for the nucleated particles. The
new particles are added to the smallest bin.

2.2.2 Coagulation

Atmospheric particles may collide with one another due to
their Brownian motion or due to other forces (e.g., hydro-
dynamic, electrical or gravitational). SIREAM includes a
description of Brownian coagulation, the dominant mecha-
nism in the atmosphere. There may be a limited effect on
the particle mass distribution and this process is usually ne-
glected Zhang et al. (2004). However coagulation may have
substantial impact on the number size distribution for ultra-
fine particles.

The coagulation kernelK(x, y) (in unit of volume per unit
of time) describes the rate of coagulation between two par-
ticles of dry logarithmic massesx andy. K has different
expressions depending on the relevant regime Seinfeld and
Pandis (1998).
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2.2.3 Condensation/evaporation

Some gas-phase species with a low saturation vapor pressure
may condense on existing particles while some species in the
particle phase may evaporate. The mass transfer is governed
by the gradient between the gas-phase concentration and the
concentration at the surface of the particle. The mass flux for
volatile species Xi between the gas phase and one particle of
logarithmic massx is computed by:

dmi

dt
= Ii = 2πD

g
i dpfFS(Kni

, αi)

(

c
g
i − cs

i (x, t)

)

(1)

dp is the particle wet diameter (see Sect. 2.2.6 for the relation
to mass).Dg

i andc
g
i are the molecular diffusivity in the air

and the gas-phase concentration of species Xi , respectively.
The concentrationcs

i at the particle surface is assumed to be
at local thermodynamic equilibrium with the particle compo-
sition:

cs
i (x, t) = η(dp) c

eq
i (q1(x, t), . . . , qne (x, t), RH, T ) (2)

T is the temperature andRH is the relative humidity.

η(dp) = exp

(

4σvp

RT dp

)

is a correction for the Kelvin effect,

with σ the surface tension,R the gas constant andvp the
particle molar volume. In practice,c

eq
i is computed by there-

verse mode of a thermodynamics package like ISORROPIA
Nenes et al. (1998) in the case of kinetic mass transfer.

The Fuchs-Sutugin function,fFS , describes the non-
continuous effects (Dahneke (1983)). It depends on the
Knudsen number of species Xi , Kni

= 2λi

dp
(with λi the air

mean free path), and on the accommodation coefficientαi

(default value is 0.5):

fFS(Kni
, αi) =

1 + Kni

1 + 2Kni
(1 + Kni

)/αi

(3)

When particles are in a liquid state, the condensation of an
acidic component may free hydrogen ions and the conden-
sation of a basic component may consume hydrogen ions.
Thus the condensation/evaporation (c/e hereafter) process
may have an effect on the particlepH . The hydrogen ion
flux induced by mass transfer is:

JH+ = 2JH2O4 + JHCl + JHNO3 − JNH3 (4)

with Ji the molar flux in species Xi . ThepH evolution due
to c/e can be very stiff and cause instabilities, due to the very
small quantitynH+ of hydrogen ions inside the particle. The
hydrogen ion flux is then limited to a given fractionA of the
hydrogen ion concentration following Pilinis et al. (2000) :
|JH+ | ≤ AnH+ , whereA is usually chosen arbitrarily be-
tween 0.01 and 0.1. A is a numerical parameter that has no
physical meaning and does not influence the final state of
mass transfer. It just modifies the numerical path to reach
this state. We refer to Pilinis et al. (2000) for a deeper under-
standing.

2.2.4 Inorganic thermodynamics

There are a range of packages available to solve thermody-
namics for inorganic species Zhang et al. (1998). ISOR-
ROPIA Nenes et al. (1998) was shown to be a computation-
ally efficient model that is also numerically accurate and sta-
ble and provides both aclosed mode (for global equilibrium,
a.k.a. forward mode) andopen mode (for local equilibrium
and kinetic mass transfer, a.k.a.reverse mode). Particles can
be solid, liquid, both or in a metastable state, where particles
are always in aqueous solution.

Moreover, the inclusion of sea salt (NaCl) in the computa-
tion of thermodynamics is also an option in SIREAM.

When the particles are solid, fluxes of inorganic species
are governed by gas/solid reactions at the particle surface.
In this case, thermodynamic models are not able to compute
gas equilibrium concentrations. For solid particle, SIREAM
calculations are based on the solutions proposed in Pilinis
et al. (2000).

2.2.5 Secondary Organic Aerosols

The oxidation of VOCs leads to species (SVOCs) that have
increasingly complicated chemical functions, high polariza-
tions, and lower saturation vapor pressure.

There are many uncertainties surrounding the formation of
secondary organic aerosol. Due to the lack of knowledge and
the sheer number and complexity of organic species, most
chemical reaction schemes for organics are very crude repre-
sentations of the “true” mechanism. These typically include
the lumping of “representative” organic species and highly
simplified reaction mechanisms.

The default gas-phase chemical mechanism for SIREAM
is RACM Stockwell et al. (1997). Notice that the gas-phase
mechanism and the related SVOCs are parameterized and
can be easily modified.

The low volatility SOA precursors and the partitioning be-
tween the gas and particle phases are based on the empiri-
cal SORGAM model (Schell et al. (2001a); Schell (2000)).
Eight SOA classes are taken into account (4 anthropogenic
and 4 biogenic). Anthropogenic species include two from
aromatic precursors (ARO 1 and ARO 2), one from higher
alkanes (OLE 1) and one from higher alkenes (ALK 1).
The biogenic species represent two classes fromα-pinene
(API 1 and API 2) and two from limonene (LIM 1 and
LIM 2) degradation. Some oxidation reactions of the form
VOC + Ox → P where Ox is OH, O3, or NO3 have been
modified to VOC+ Ox → P+ α1 P1 + α2 P2 with P1 and
P2 representing SVOCs among the eight classes. Updated
values of these parameters have also been defined in other
versions of the mechanism (not reported here).

The partitioning between the gas phase and the particle
phase is performed in the following way. LetnOM be the
number of organic species in the particle mixture (this in-
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cludes primary and secondary species) which are assumed to
constitute anideal mixture:

(qi)g = γi (xi)a qsat
i (5)

For species Xi , qsat
i is the saturation mass concentration in a

pure mixture,(xi)a is the molar fraction in the organic mix-
ture andγi is the activity coefficient in the organic mixture
(a default value of 1 is assumed).(xi)a is computed through:

(xi)a =

(qi)a

Mi
qOM

MOM

=

(qi)a

Mi

j=nOM∑

j=1

(qj )a

Mj

+
(qPOA)a

MPOA

(6)

qOM is the total concentration of organic matter (primary and
secondary) in the particle phase. The molar massMi of com-
ponenti is expressed inµg/mol (in the same unit as the mass
concentrationsqi); MOM is the average molar mass for or-
ganic matter inµg/mol. POA stands for the primary organic
matter, assumed not to evaporate.

qsat
i is computed from the saturation vapor pressure with

qsat
i = Mi

RT
psat

i . A similar way to proceed is to define the

partitioning coefficientKi = (qi )a
qOM (qi )g

(in m3/µg). Ki can
be computed from the thermodynamic conditions and the sat-
uration vapor pressure through:

Ki =
RT

psat
i γi(MOM)

(7)

The saturation vapor pressurepsat
i (T ) is given by the

Clausius-Clapeyron law:

psat
i (T ) = psat

i (298K) exp

(

−
1Hvap

R
(

1

T
−

1

298
)

)

(8)

with 1Hvap the vaporization enthalpy (in the default version,
a constant value 156 kJ/mol).

The mass concentration of a gas at local equilibrium with
the particle mixture is given by Eq. (5). The global equi-
librium between a gas and the particle mixture is given by
Eq. (5) and mass conservation for speciesXi :

(qi)a + (qi)g = (qi)tot (9)

with (qj )tot representing the total mass concentration (for
both phases) to be partitioned. This with Eq. (6) leads to
a system ofnOM algebraic equations of second degree:

− ai ((qi)a)
2 + bi(qi)a + ci = 0 (10)

where the coefficients depend on concentrations{(qj )a}j 6=i

throughai = 1
Mi

, bi = qsat
i

Mi
− 6i , ci = qsat

i 6i and

6i =
j=nOM∑

j=1,j 6=i

(qj )a

Mj

+
(qPOA)a

MPOA

.

The resulting system is solved by an iterative approach
with a fixed point algorithm. Each second degree equation
is solved in an exact way: the only positive root is computed
for each equation of type (10).

2.2.6 Wet diameter

Parameterizations of coagulation, condensation/evaporation,
dry deposition and wet scavenging depend on the particle
“wet” diameterdp. Two methods have been implemented
in SIREAM to compute it, one based on thermodynamics,
another on the Gerber’s Formula.

The thermodynamic method consists in using the particle
internal composition{mi} provided by the thermodynamic
model ISORROPIA. Many of aerosol models use a constant
specific particle massρp Wexler et al. (1994); Pilinis and

Seinfeld (1988) supposed to satisfyρp
πd3

p

6 =
∑ne

i=1 mi . In
SIREAM, following Jacobson (2002), the particle volume is

split into a solid part and a liquid part:
πd3

p

6 = Vliq + Vsol. As
each solid represents one single phase, the total solid particle
volume is the sum of each solid volume :Vsol =

∑

is

mis

ρ∗
is

,

with ρ∗
is

the specific mass of pure componentXis . The liquid
particle phase is a concentrated mixing of inorganic species,
whose volume is a non linear function of its inorganic in-
ternal composition :Vliq =

∑

il
Vilnil whereVil is the par-

tial molar volume of ionic or dissolved speciesXil andnil is
the molar quantity inXil . Due to some molecular processes
within the mixture (e.g. volume exclusion), the partial molar
volume is a function of the internal composition. However,
we assume thatVil ≃ Mi

ρ∗
il

whereMi andρ∗
il

are the molar

mass of Xi and the specific mass of a pure liquid solution
of X i , respectively. This method is well suited for condensa-
tion/evaporation for which thermodynamic computation can-
not be avoided.

For other processes (coagulation, dry deposition and scav-
enging) the particle “wet” diameter is computed through a
faster method, the Gerber’s Formula (Gerber (1985)). This
one is a parameterization of the “wet” radius as a function of
the dry one :

rw =
[

C1(rd)C2

C3(rd)C4 − logRH
+ (rd)3

] 1
3

(11)

whererw andrd are respectively the wet and dry particle ra-
dius in centimeters,RH is the atmospheric relative humidity
within [0, 1]. Coefficients(Ci)i=1,4 depend on the particle
type (urban, rural or marine). TheC3 coefficient is tempera-
ture dependent (T) through the Kelvin effect:

C3(T ) = C3[1 + C5(298− T )] (12)

We have actually modified the coefficients given by Gerber
through a minimization method so that the Gerber’s Formula
give results as close as possible to the “wet” diameters given
by the thermodynamic method Sportisse et al. (2006):

C1 = 0.4989, C2 = 3.0262, C3=0.5372 10−12

C4 = −1.3711, C5=0.3942 10−02 (13)

The choice of which method to use (thermodynamics or
Gerber’s Formula) is up to the user.
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2.2.7 Logarithmic formulation for the GDE

On the basis of the parameterizations described above, the
evolution of the number and mass distributions is governed
by the GDE :

∂n

∂t
(x, t) =

∫ x̃

x0

K(y, z)n(y, t)n(z, t) dy

−n(x, t)

∫ ∞

x0

K(x, y)n(y, t) dy

−
∂(H0n)

∂x
(14)

∂qi

∂t
(x, t) =

∫ x̃

x0

K(y, z)[qi(y, t)n(z, t) + n(y, t)qi(z, t)] dy

−qi(x, t)

∫ ∞

x0

K(x, y)n(y, t) dy

−
∂(H0qi)

∂x
+ (Iin)(x, t) (15)

H0 = I0
m

(in s−1) is the logarithmic growth rate. The nucle-
ation threshold isx0= ln m0. Moreover,x̃ = ln(ex −ex0) and
z = ln(ex − ey) in the above formula.

At the nucleation threshold, the nucleation rate determines
the boundary condition :

(H0n)(x0, t) = J0(t) , (H0qi)(x0, t) = mi(x0, t)J0(t) (16)

The evolution of the gaseous concentration for the semi-
volatile species Xi is given by:

dc
g
i

dt
(t) = −mi(x0, t)J0(t) −

∫ ∞

x0

(Iin)(x, t) dx (17)

or by mass conservation :cg
i (t) +

∫ ∞
x0

qi(x, t) dx = Ki .

2.3 Other processes related to aerosols

The following processes are not directly part of SIREAM.
As such, the core of SIREAM (the parameterizations and the
algorithms for the GDE) is independent. As for SOA, other
parameterizations can be used. For the sake of completeness,
we have chosen to include a brief description of the default
current parameterizations.

2.3.1 Mass transfer and aqueous-phase chemistry for cloud
droplets

For cells with a liquid water content exceeding a critical
value (the default value is 0.05 g/m3), the grid cell is as-
sumed to contain a cloud and the aqueous-phase module is
called instead of the SIREAM module. A part of the parti-
cle distribution is activated for particles that exceed a critical
dry diameter the default value isdactiv = 0.7µm Strader
et al. (1998). The microphysical processes that govern the

evolution of cloud droplets are parameterized and not explic-
itly described. Cloud droplets form on activated particles and
evaporate instantaneously (during one numerical timestep) in
order to take into account the impact of aqueous-phase chem-
istry for the activated part of the particle distribution Fahey
(2003); Fahey and Pandis (2001).

The activated particle fraction is then incorporated into the
cloud droplet distribution. The VSRM model can simulate
a size-resolved droplet distribution, but we use only a bulk
approach in order to decrease the computational. In this case
the average droplet diameter is fixed at 20µm. The chemical
composition of the cloud droplet is then given by the acti-
vated particle fraction.

Aqueous-phase chemistry and mass transfer between the
gaseous phase and the cloud droplets (bulk solution) are then
solved. The aqueous-phase model is based on the chem-
ical mechanism developed at Carnegie Mellon University
Strader et al. (1998). It contains 18 gas-phase species and
28 aqueous-phase species. Aqueous-phase chemistry is mod-
eled by a chemical mechanism of 99 chemical reactions and
17 equilibria (for ionic dissociation).

Mass transfer is solved dynamically only for “slow”1

species, while “fast” species are assumed to be described by
Henry’s equilibrium, we refer to Sportisse et al. (2006) for a
detailed list of species and their status.

The radical chemistry is not taken into account. The com-
putation of H+ is made with the electroneutrality relation
written asfelectroneutrality(H

+) = 0. This nonlinear algebraic
equation is solved with the bisection method. If no conver-
gence occurs, we take a default valuepH=4.5 as observed
droplet pH often ranges between 4.0 en 5.0 Seinfeld and Pan-
dis (1998); Pruppacher and Klett (1998).

After one timestep, the new mass generated from aqueous
chemistry is redistributed onto aerosol bins that were acti-
vated. To do so the initial aerosol distribution is assumed
to have a bimodal shape (log-normal distributions) that gives
weighting factors for each aerosol bin. Median diameter and
variance for each mode are respectively 0.4µm and 1.8 for
first one, 2.5µm and 2.15 for second one. The tests in Fahey
(2003) illustrate the low impact of the choice made for this
assumption.

We use a splitting method, the gas-phase chemistry being
solved elsewhere (in the gas-phase module of the Chemistry-
Transport Model). Aqueous-phase chemistry and mass trans-
fer are solved with VODE Brown et al. (1989).

2.3.2 Heterogeneous reactions

The heterogeneous reactions at the surface of condensed mat-
ter (particles and cloud or fog droplets) may significantly im-
pact gas-phase photochemistry and particles. This process is
solved together with gas-phase chemistry. Following Jacob

1“slow” and “fast” refer to the time for given species to reach
equilibrium
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(2000), these processes are described by the first-order reac-
tions:

HO2
PM→ 0.5 H2O2

NO2
PM→ 0.5 HONO+ 0.5 HNO3

NO3
PM→ HNO3

N2O5
PM,clouds−→ 2 HNO3

The heterogeneous reactions for HO2, NO2 and NO3 at the
surface of cloud droplets are assumed to be taken into ac-
count in the aqueous-phase model and are considered sepa-
rately.

The first-order kinetic rate is computed for gas-phase

species Xi with ki =
(

a

D
g
i

+ 4
c̄
g
i γ

)−1

Sa wherea is the par-

ticle radius,c̄g
i the thermal velocity in the air,γ the reaction

probability andSa the available surface for condensed matter
per air volume.

γ strongly depends on the chemical composition and
on the particle size. We have decided to keep the varia-
tion ranges from Jacob (2000) for these parameters in or-
der to evaluate the resulting uncertainties:γHO2 ∈ [0.1-
1], γNO2 ∈ [10−6-10−3], γNO3 ∈ [2.10−4-10−2] and
γN2O5 ∈ [0.01-1]. The default values are the lowest val-
ues. For numerical stability requirements, these reactions are
coupled to the gas-phase mechanism.

3 Numerical simulation

3.1 Numerical strategy

On the basis of a comprehensive benchmark of algorithms
Debry (2004), the numerical strategy relies on methods that
ensure stability with a low CPU cost. First, we use a split-
ting approach for coagulation and condensation/evaporation.
Second, the discretization is performed with sectional meth-
ods which remain stable even with a few discretization
points, contrary to spectral methods Sandu and Borden
(2003); Debry and Sportisse (2005b). Third, condensa-
tion/evaporation is solved with a Lagrangian method, the
quasistationary method of Jacobson Jacobson (1997) is em-
ployed to reduce the numerical diffusion associated with Eu-
lerian schemes in the case of a small number of discretization
points (typically the case in 3D models).

The splitting sequence goes from the slowest pro-
cess to the fastest one (first coagulation and then
condensation/evaporation-nucleation). The nucleation pro-
cess is not a numerical issue and is solved simultaneously
with condensation/evaporation. In the following, we present
the numerical algorithm used for each process.

The particle mass distribution is discretized intonb bins
[xj , xj+1]. We define the integrated quantities over the bin

j for the number distribution and the mass distributions for
species Xi :

N j (t) =
∫ xj+1

xj

n(x, t) dx , Q
j
i =

∫ xj+1

xj

qi(x, t) dx (18)

m̃
j
i = Q

j
i

Nj is the average mass per particle inside binj for
species Xi .

We use a Method of Lines by first performing size dis-
cretization and then time integration. After discretization, the
resulting system of Ordinary Differential Equations (ODEs)
has the generic form:

dc

dt
= f (c, t) (19)

where the state vectorc is specific for each process.cn is the
numerical approximation ofc(tn) at timetn, with a timestep
1tn = tn+1 − tn. A second-order solver is specified for
each case with a first-order approximationc̃n+1. The vari-
able timestep1tn is adjusted by:

1tn+1 = 1tn

√

εr‖cn+1‖2

‖c̃n+1 − cn+1‖2
(20)

whereεr is a user parameter, usually between 0.01 and 0.5.
The higherεr is, the faster1tn increases.‖.‖2 is the Eu-
clidean norm.

3.2 Size discretization

3.2.1 Coagulation

Coagulation is solved by the so-calledsize binning method
(Jacobson et al. (1994)). Equations (14) and (15) are inte-
grated over each bin, which gives:

dNk

dt
(t) =

1

2

k∑

j1=1

k∑

j2=1

f k
j1j2

Kj1j2N
j1N j2 − Nk

nb∑

j=1

KkjN
j

dQk
i

dt
(t) =

k∑

j1=1

k∑

j2=1

f k
j1j2

Kj1j2Q
j1
i N j2 − Qk

i

nb∑

j=1

KkjN
j(21)

Kj1j2 is an approximation of the coagulation kernel between
binsj1 andj2.

The key point is to compute the partition coefficientsf k
j1j2

that represent the fraction of particle combinations between
bins j1 andj2 falling into bin k. As these coefficients only
depend on the chosen discretization, they can be computed
in a preprocessed step. The computation depends on the
assumed shape of continuous densities inside each bin for
the closure scheme, see Debry and Sportisse (2005a). In
SIREAM, we use a closure scheme similar to Fernndez-Daz
et al. (2000).
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3.2.2 Condensation/evaporation-nucleation

Lagrangian formulation Let x̄j (t) be the logarithmic mass
of one particle at timet whose initial value corresponds to
point xj of the fixed discretization. The time evolution of
x̄j (t) is given by the equation of the characteristic curve :

dx̄j

dt
(t) = H0(x̄

j , t) , x̄j (0) = xj (22)

One crucial issue is to ensure that the characteristic curves
do not cross themselves. If this happens the Lagrangian for-
mulation is no longer valid. In real cases we have no proof
that this does not happen, even though we have not seen such
a situation up to now.

Provided that the characteristic curves do not cross, we
can define integrated quantitiesN j and Q

j
i for each La-

grangian bin[x̄j , x̄j+1] : N j (t) =
∫ x̄j+1

x̄j n(x, t) dx and

Q
j
i =

∫ x̄j+1

x̄j qi(x, t) dx.
Mass conservation can be easily written in the form :

c
g
i (t) +

∑nb

j=1 Q
j
i (t) = Ki .

The time derivation of integrated quantities leads to the
equations:

dN j

dt
= 0 ,

dQ
j
i

dt
= N j Ĩ

j
i (23)

Ĩ
j
i is an approximation of the mass transfer rate for species

Xi in bin j :

Ĩ
j
i = 2πDid

j
pf (K

j
ni

, αi)
︸ ︷︷ ︸

a
j
i

(

Ki −
nb∑

k=1

Qk
i − ηj (c

eq
i )j

)

(24)

with ηj = e

4σvp

RT d
j
p . (c

eq
i )j is computed at̃mj

i .
For the nucleation process, the first boundx1 is assumed

to correspond to the nucleation threshold, so that the La-
grangian bound̄x1 does not satisfy (22) but:

dx̄1

dt
= j (t) , x̄1(0) = x1 (25)

where j (t) is the growth law of the first bound due to
nucleation and given by the nucleation parameterization. The
equations for the first Lagrangian bin therefore are written as:

dN1

dt
= J0(t) ,

dQ1
i

dt
= N1Ĩ1

i + mi(x
1, t)J0(t) (26)

where[m1(x
1, t), . . . , mne (x

1, t)] is the chemical composi-
tion of the nucleated particles, also given by the nucleation
process.

The Lagrangian formulation consists in solving Eqs. (22),
(23) and (26). In the next section we detail the various
numerical strategies to perform the time integration , which
is by far the most challenging point in particle simulation.

Interpolation of Lagrangian boundaries One has to solve
the equations for the characteristic curves in order to know
the boundaries of each bin. Notice that the c/e equations for
boundaries are similar to those for integrated quantities. In-
deed, forj = 1, . . . , nb and x̃j = ln(m̃j ), one gets from
Eq. (23):

dx̃j

dt
= H̃

j

0 , H̃
j

0 =
Ĩ

j

0

m̃j
, (27)

In practice, in order to reduce the computational burden, one
tries to avoid solving boundary equations. An alternative is
to interpolate the bin boundaries from integrated quantities.

First method Koo et al. (2003) consists of utilizing the ge-
ometric mean of two adjacent bin :

for j = 2, . . . , nb , m̄j (t) =
√

m̃j−1(t)m̃j (t) (28)

This algorithm would have a physical meaning if Eqs. (22)
and (27) were conserving formula (28), which is not the case.
We have therefore developed another algorithm.

Equations (22) and (27) are similar and thereforex̃j and
x̄j evolve in the same proportion given byλj (t) (j ≥ 2):

λj (t) =
x̄j (t) − x̃j−1(t)

x̃j (t) − x̃j−1(t)
(29)

λj (0) is known becausēxj (0) = xj . The time integration
over[0, t] of Eqs. (22) and (27) gives forj ≥ 1:

x̄j (t) = xj + 1x̄j , 1x̄j =
∫ t

0
H

j

0 (t ′) dt ′

x̃j (t) = x̃j (0) + 1x̃j , 1x̃j =
∫ t

0
H̃

j

0 (t ′) dt ′ (30)

The variation of each boundarȳxj is then computed from
that of its two adjacent bins̃xj−1 andx̃j :

1x̄j ≃ (1 − λj (0))1x̃j−1 + λj (0)1x̃j (31)

where one assumes thatλj remains constant.

Redistribution on a fixed size gridUsing a Lagrangian ap-
proach for condensation/evaporation requires the redistribu-
tion or projection of number and mass concentrations onto
the fixed size grid required by a 3D model or for coagula-
tion.

Let N and(Qi)
ne

i=1 be the integrated quantities of one La-
grangian bin after condensation/evaporation. We assume that
this Lagrangian bin is covered by two adjacent fixed bins la-
belledj andj + 1.

The redistribution algorithm must be conservative for the
number and mass distribution of speciesXi :

N = N j + N j+1 , Qi = Q
j
i + Q

j+1
i (32)

Two algorithms have been developed:
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1. If x̄lo andx̄hi are the boundaries of the Lagrangian bin
after condensation/evaporation, the redistribution is per-
formed as follows for the number distribution and the
mass distribution of speciesXi :

N j =
x̄

j
hi − x̄lo

x̄hi − x̄lo

N , Q
j
i =

x̄
j
hi − x̄lo

x̄hi − x̄lo

Qi

N j+1 =
x̄hi − x̄

j+1
lo

x̄hi − x̄lo

N , Q
j+1
i =

x̄hi − x̄
j+1
lo

x̄hi − x̄lo

Qi (33)

The number and aerosol mass are redistributed in equal
proportions, depending upon the part of each fixed bins
covered by the Lagrangian one. Nevertheless this im-
plies that the average masses of fixed bins be equal to
the Lagrangian bin one (Q/N ) and may fall out of fixed
bin boundaries.

2. Another approach consists in conserving the average
mass. Letm̃ = Q/N be the averaged Lagrangian bin,
m̃j andm̃j+1 be respectively the centered mass of bins
j andj+1. The number distribution and the mass distri-
bution of speciesXi is redistributed ensuring conserva-
tion of relationsQj = m̃jN j andQj+1 = m̃j+1N j+1,
which together with (32) lead to the algorithm:

N j =
1 − m̃

m̃j+1

1 − m̃j

m̃j+1

N , Q
j
i =

m̃j+1

m̃
− 1

m̃j+1

m̃j − 1
Qi

N j+1 =
1 − m̃

m̃j

1 − m̃j+1

m̃j

N , Q
j+1
i =

1 − m̃j

m̃

1 − m̃j

m̃j+1

Qi (34)

This algorithm comes to the fitting method developed
by Jacobson in Jacobson (1997).

The first method takes advantage of the more sophisticated
computation of bound sections but does not conserve aver-
age mass. The second method conserves average mass but
may increase numerical diffusivity due to the lack of bound
section information.

Both schemes are available in SIREAM.

3.3 Time integration

3.3.1 Coagulation

As coagulation is not a stiff process, we solve it by the second
order explicit scheme ETR (Explicit Trapezoidal Rule) with
the sequence:

c̃n+1 = cn + 1tf (cn, tn)

cn+1 = cn +
1t

2

(

f (cn, tn) + f (c̃n+1, tn+1)

)

(35)

with c = (N1, . . . , Nnb , Q1
1, . . . ,Q

nb

1 , . . . ,Q1
ne

, . . . ,Q
nb
ne

).

3.3.2 Condensation/evaporation

Here,c = (Q1
1, . . . ,Q

1
ne

, . . . ,Q
nb

1 , . . . ,Q
nb
ne

)T . nc = ne ×
nb is the dimension ofc.

SIREAM offers three methods for solving conden-
sation/evaporation: a fully dynamic method that treats
dynamic mass transfer for each bin, a bulk equilibrium
approach, and a hybrid approach that combines the two
previous approaches.

Fully dynamic method Due to the wide range of timescales
related to mass transfer, the system is stiff and implicit al-
gorithms have to be used. The second-order Rosenbrock
scheme Verwer et al. (1999); Djouad et al. (2002), ROS2,
is applied for the time integration :

cn+1 = cn +
1tn

2
(3k1 + k2)

[I − γ1tnJ (f )]k1 = f (cn, tn)

[I − γ1tnJ (f )]k2 = f (c̃n+1, tn+1) − 2k1 (36)

wherec̃n+1 = cn + 1tnk1 andγ = 1 + 1√
2
.

This scheme requires the computation of the Jacobian ma-

trix of f (a matrixnc ×nc) defined by[J (f )]kl = ∂f k

∂cl . f k is

thekth component of functionf andcl is thelth component
of c.

Let us writek = (i − 1)nb + j andl = (i′ − 1)nb + j ′

wherei andi′ label the semi-volatile species whilej andj ′

label the bins. The(kl)th element of the Jacobian matrix may
then be written as

∂f k

∂cl
=

∂I
j
i

∂Q
j ′

i′

(37)

The derivation off k may be split into one linear part, due
to mass conservation, and one non-linear part related to the
coefficientaj

i , to the Kelvin effectηj , and to the gas equi-
librium concentration(ceq

i )j . The linear part is analytically
derived :
(

∂f k

∂cl

)

lin
= −a

j
i N j ′

(38)

The non-linear part has to be differentiated by numerical
methods, like the finite difference method :
(

∂f k

∂cl

)

non−lin
=

f k(. . . , cl(1 + εjac), . . .) − f k(. . . , cl, . . .)

clεjac

(39)

whereεjac is generally close to 10−8. During the numeri-
cal computation, the linear part is arbitrarily kept constant to
avoid deriving it twice.

A default option, advocated for 3D applications, is to
approximate the Jacobian matrix by its diagonal. The
motivation here is to reduce the CPU time.
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Hybrid resolution Solving the c/e system, even with an
implicit scheme, can be computationally inefficient. In or-
der to lower the stiffness, hybrid methods for condensa-
tion/evaporation have been developed Capaldo et al. (2000).
The method consists in partitioning the state vectorc into its
fast components (cf ) and its slow components (cs) respec-
tively:

dcs

dt
= f s(cs, cf , t) , f f (cs, cf , t) = 0 (40)

The algebraic equation states that the fast part is a function
of the slow part,cf (t)=g(cs(t), t). The time evolution of the
slow part is now governed by :

dcs

dt
=f s

(

cs, g(cs(t), t), t

)

(41)

As cs gathers particle species and sizes which have a slow
c/e characteristic time, stiffness is substantially reduced.

The issue is now to determine whether particle sizes and
species are “slow” or “fast”. The spectral study of the c/e sys-
tem Debry and Sportisse (2006) indicates how to compute a
cutting diameterdc between “slow” and “fast” species/sizes,
such that the partitioning consists of cutting the particle dis-
tribution as follows: the smallest bins are at equilibrium
while the coarsest ones are governed by kinetic mass trans-
fer. The cutting diameter can be computed by QSSA criteria,
defined by :

QSSA
j
i =

c
g
i − η

j
i (c

eq
i )j

c
g
i + η

j
i (c

eq
i )j

(42)

for a given chemical speciesXi and one particle sizej . The
closer this ratio to unity, the closer the species and the size
are to equilibrium.

In practice all binsj for which(QSSA
j
i )

ne

i=1 is greater than
one, the user parameterεQSSA (close to unity) will be con-
sidered fast and solved by an equilibrium equation. In the
following we writejc as the bin corresponding to the cutting
diameter. Binjc is the largest fast bin and binjc + 1 is the
smallest slow bin.

In SIREAM (to be used in 3D modeling), the default
option is a fixed cutting diameter (1.25 or 2.5µm).

The thermodynamic equilibrium between the gas phase
and the fast particle bins is now written for speciesXi as:

K
f
i −

jc∑

j=1

Q
j
i − ηk

i c
eq
i (Qk

1, . . . ,Q
k
ne

) = 0 (43)

with K
f
i =Ki −

∑nb

j=jc+1 Q
j
i the total mass of speciesXi for

fast bins.
There are two approaches for solving this equilibrium: the

bulk equilibrium approach and the size-resolved particle ap-
proach. For the size-resolved approach, we refer to Jacobson

et al. (1996) (with the use of the fixed point algorithm) and to
Debry and Sportisse (2006) (with a minimization procedure).

In SIREAM, the bulk equilibrium has been implemented
(Pandis et al. (1993)). It consists in merging all fast bins
j ≤ jc into one bin, referred as the “bulk” aerosol phase :

1 ≤ i ≤ ne , Bi =
jc∑

j=1

Q
j
i (44)

The thermodynamic model ISORROPIA is then applied to
the “bulk” aerosol phase(Bi)

ne

i=1 and one gets equilibrium
“bulk” concentrations(Beq

i )
ne

i=1 with theforward mode of the
thermodynamics solver (global equilibrium).

The variation from initial to final “bulk” concentrations is
then redistributed among fast bins 1≤ k ≤ jc for speciesXi

Pandis et al. (1993):

(Qk
i )

eq = Qk
i + bk

i (B
eq
i − Bi) , bk

i =
ak
i N

k

∑jc

j=1 a
j
i N j

(45)

This redistribution scheme is exact provided that the particle
composition is uniform over fast bins and that the variation
of the particle diameter can be neglected for fast bins Debry
and Sportisse (2006).

Bulk approach It is a special case of the hybrid approach
with the cutting diameterjc = 1 (all bins are at equilibrium).

4 Implementation

The SIREAM module is written entirely in fortran 77.
Its external dependencies are the thermodynamic module
ISORROPIA (version 1.7 currently used)Nenes et al.
(1998) and the VODE solver from the ODEPACK ordinary
differential equation package (“double precision” version re-
quired). ISORROPIA is not distributed with SIREAM and
has to be retrieved by the user on the ISORROPIA web-
site (http://nenes.eas.gatech.edu/ISORROPIA/). The VODE
solver can be retrieved from http://www.llnl.gov/CASC/
software.html, but as this solver is in the public domain we
also freely ship it together with SIREAM.

5 Conclusions

We have summarized the main features of the aerosol model
SIREAM (SIze REsolved Aerosol Model). SIREAM sim-
ulates the GDE for atmospheric particles and can be easily
linked to a three-dimensional Chemistry-Transport-Model.
Moreover, the physical parameterizations used by SIREAM
can be easily modified. They are currently hosted by the
library ATMODATA and shared by another aerosol model
MAM, Sartelet et al. (2006).

The next development steps are related to the improvement
of the modeling of Secondary Organic Aerosol. The cur-
rent parameterization of SOA is limited because it does not
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take into account the hydrophilic behavior of organic species
Griffin et al. (2002b,a); Pun et al. (2002). Furthermore new
gas precursors such as isoprene and sesquiterpene should be
added.

The modularity of SIREAM will be also strengthened by
adding new alternative parameterizations (such as other ther-
modynamics models or simplified aqueous-phase chemical
mechanisms) and new numerical algorithms (especially for
time integration of condensation/evaporation).

A further step is also the extension toexternally mixed
aerosol.
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