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Abstract. Temperature trends in the UTLS region are
under-reported, particularly in the Southern Hemisphere, and
yet temperature is one of the most important indicators of
changes in dynamical and radiative processes in the atmo-
sphere. Here radiosonde data from Durban, South Africa
(30.0◦ S, 30.9◦ E) over the period 1980 to 2001 (22 years)
between 250 and 20 hPa are used to derive a mean tempera-
ture climatology and to determine trends. The seasonal cycle
at the 250-hPa level is anti-correlated with the seasonal cy-
cles at the 150-hPa and 100-hPa heights. The 100-hPa level
(local tropopause) exhibits a minimum temperature in late
summer and a maximum in winter, and closely corresponds
to previous results for tropical regions. Based on a Fourier
analysis, both the annual cycle (AO) and the semi-annual cy-
cle (SAO) are dominant, although the former is about 4 times
stronger. The AO is strongest at the 100-hPa height. A trend
analysis reveals a cooling trend at almost all heights in the
UTLS region, with a maximum cooling rate of 1.09±0.41 K
per decade, at 70-hPa. Cooling rates are in good agreement
with other studies and are slightly higher in summer than in
winter.

1 Introduction

Temperature controls the rates of chemical reactions and thus
ozone abundance (and vice versa), and is one of the most im-
portant parameters in terms of its influence on dynamical and
radiative processes in the terrestrial atmosphere, particularly
in the upper troposphere – lower stratosphere (UTLS) region.
The UTLS is a region where significant changes are taking
place that have the potential to perturb the Earth’s climate in
the coming decades.

Correspondence to:H. Bencherif
(hassan.bencherif@univ-reunion.fr)

Since dynamical activity is closely linked to temperature,
temperature trends are a useful indicator of changes in dy-
namical processes and can contribute to a better understand-
ing thereof. Indeed, any change in activity of gravity waves,
equatorial Kelvin waves and Rossby planetary waves may
have a consequent effect on mass and energy fluxes, includ-
ing stratosphere-troposphere exchanges as well as tropical-
midlatitude exchanges.

Relatively few studies of trends in temperature in the
UTLS region have been undertaken. One of the most com-
plete studies is that of Oort and Liu (1993). Their study is
based on the global rawinsonde network of more than 700
stations, of which 70% are in the NH and about 50 % in the
30–60◦ N latitude band. Only slightly more than 15% of the
stations are situated in the Southern Hemisphere (SH).

Most of the temperature trend studies that have been per-
formed for the 25–70 km altitude range, have used Indian,
American, Japanese and Russian rocket-sondes (Mohanaku-
mar, 1994; Keckhut et al., 1999a, b; Kokin and Lysenko,
1994), and French lidar measurements (Hauchecorne et al.,
1991; Keckhut et al., 1995). Some authors have performed
trend analyses from the large ozonesonde databases (Logan,
1994; Harris et al., 1997; Bodeker et al., 1998), but again,
these are predominantly available for the NH.

Within this context, this study focuses on a climatologi-
cal and trend analysis of temperature, in a subtropical region
where data are sparse. Regular upper-air radiosonde data
recorded by the South African Weather Service (SAWS) over
Durban (30.0◦ S, 30.9◦ E), situated on the east coast of South
Africa, are used as the basis of the temperature climatology
and trend analysis.

Theoretical studies, transport models and in situ observa-
tions have shown that at subtropical latitudes, vertical and
horizontal exchange processes are expected and have been
observed (Grant et al., 1994; Holon et al., 1995; Vaughan
and Timmis, 1998; O’Connor et al., 1999). Furthermore, re-
cent observational studies have shown that in the southern
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Fig. 1. Time-height section of temperature over Durban, South
Africa, obtained with data from January 1980 to December 2001.

subtropics, within the UTLS region, many dynamical pro-
cesses, such as subtropical tropopause breaks (Baray et al.,
1998), planetary-scale tropopause fold events (Baray et al.,
2000) and isentropic horizontal exchanges in the low strato-
sphere through the southern subtropical barrier (Bencherif et
al., 2003; Portafaix et al., 2003) take place. These processes
play an important role in the transfer of energy, mass and
tracers between the tropics and the mid-latitudes.

Temperature trend analyses in tropical regions based on
rocket data (Keckhut et al., 1999) have revealed a signif-
icant long-term cooling (1 to 3 K per decade), greater by
a factor of 2, than model predictions. In general, Strato-
spheric Temperature Trend Assessments performed as part
of the SPARC/WCRP project (Ramaswamy et al., 1999) and
the WMO (1999) assessment have noted that numerical mod-
els predict a smaller cooling in the stratosphere than that de-
tected in observed data series.

The outline of this paper is as follows. Details on the data
and data analysis are presented in the next section. Section 3
presents the variability and trends of temperature and its cli-
matology over Durban. In the last section our results are dis-
cussed and compared with previous observational analyses.

2 Data set

The data used in this study are daily radiosonde tempera-
ture measurements recorded at the Durban international air-
port (30.0◦ S, 30.9◦ E) by the SAWS for the 22-year period
from January 1980 to December 2001. The study focuses
on temperature time series recorded at 8 pressure levels, i.e.,
250, 200, 150, 100, 70, 50, 30 and 20 hPa, corresponding
approximately to the heights of 10, 12, 14, 16, 18, 20, 23
and 26 km, respectively. Hereafter we will refer to levels
250, 200 and 150 hPa as tropospheric, and levels with pres-
sure less than 100 hPa as stratospheric. According to Randel
et al. (2000), based on ECMWF, UKMO and NCEP data,

the 100-hPa height tracks nearly identically the tropopause
height. Hence the 100-hPa level will be referred to as the
tropopause level.

The SAWS undertakes regular radiosonde launches twice
a day, at approximately the same time (within±15 min),
in the early morning and afternoon, i.e.,∼=01:00 and
∼=12:35 LT, respectively. In order to limit tidal biases, morn-
ing and afternoon data are used separately. Moreover, data
quality checks were performed and all unrealistic readings
were removed. As expected, the percentage of reliable af-
ternoon data decreases with increasing height, and is 96.6%,
96.3%, 95.9%, 94.7%, 91.3%, 86.1%, 73.1%, 54.8%, at 250,
200, 150, 100, 70, 50, 30 and 20 hPa levels, respectively. No
adjustments or interpolations were made.

Many authors have emphasised that changes in instru-
ments may lead to apparent discontinuities in temperature
records with magnitudes that can be as large as the observed
upper-air trends, notably in the tropics and SH (Angell, 1988;
Gaffen, 1994). The introduction of new types of radioson-
des is one of the potential sources of data heterogeneity, and
should be taken into account. For the studied location of Dur-
ban, no instrumental change was reported during the 1980–
2001 period according to the SAWS archives. The Väis̈alä
RS80-15 model was used throughout the period.

3 Results

3.1 Climatological temperatures

For both climatology and trend assessments data have been
reduced to monthly averages at each of the pressure levels
(see Fig. 1). Mean monthly climatological temperature val-
ues, as depicted in Figs. 2a and b, were calculated from more
than 520 daily values. All the mean monthly climatologi-
cal temperatures and corresponding standard deviations are
given in Table 1.

Figure 2 shows that the seasonal variations of tempera-
ture at the 150-hPa and local tropopause (100-hPa) heights
are quite similar, but are anti-correlated (−0.93 and−0.97,
respectively) with the 250-hPa temperature variations. The
minimum temperature at the tropopause is about 199 K, and
appears during austral summer in February; while the max-
imum temperature (about 208 K) at the tropopause is ob-
tained during austral winter (June–August). Even though
Durban is a subtropical site, the observed annual cycle at the
tropopause level is very similar to results obtained by Ran-
del et al. (2000) for tropical regions. Based on radiosonde
and NCEP data they found that the tropical tropopause ex-
hibited a minimum temperature during austral summer and a
maximum during austral winter.

As suggested visually by the temperature time-height
cross-section shown in Fig. 1, Fourier analysis, performed
at different heights, highlights two dominant seasonal os-
cillations: an annual oscillation (AO) and a semi-annual
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Table 1. Mean monthly temperature (K) and corresponding standard deviations derived from Durban-SAWS data covering the period from
January 1980 to December 2001.

height
(hPa) Jan Feb March April May June July Aug Sep Oct Nov Dec

250 234.5 235.3 233.2 230.1 228.6 228.3 228.2 228.8 228.9 229.7 231.4 232.6
2.6 2.8 2.4 2.3 2.6 2.7 2.8 3.3 2.6 2.2 2.1 2.2

200 219.4 220.5 218.8 217.3 217.1 218.2 219.0 219.1 218.1 217.6 217.3 218.0
2.6 2.7 2.6 2.9 3.4 3.8 3.9 3.7 3.7 3.2 2.8 2.4

150 208.9 209.2 209.7 211.1 212.6 213.8 214.1 213.9 213.1 212.6 210.9 209.8
2.3 2.2 2.5 3.0 3.5 3.4 3.3 3.4 3.6 3.1 2.7 2.8

100 200.1 199.7 201.6 204.5 206.8 207.6 207.9 207.9 207.4 206.7 204.1 202.4
2.8 2.7 3.2 3.3 3.2 3.1 3.3 3.7 3.6 3.2 2.8 2.7

70 202.1 201.9 203.8 205.8 207.6 208.3 208.6 209.2 209.7 208.3 205.9 203.4
3.1 2.7 2.9 2.8 2.9 3.4 3.4 3.2 3.0 2.8 2.6 2.9

50 209.9 209.5 210.5 211.0 212.1 212.6 213.0 213.8 214.3 213.0 211.2 210.2
2.8 2.5 2.4 2.3 2.5 2.7 3.0 2.8 2.9 2.4 2.3 2.8

30 218.5 218.8 219.5 219.1 219.0 219.0 219.2 219.4 219.4 218.5 217.4 218.1
2.2 2.2 2.1 2.1 2.2 2.5 3.2 2.7 2.6 2.6 2.2 2.6

20 224.4 224.8 225.3 224.3 223.5 223.2 222.9 222.7 222.6 222.1 221.5 223.1
2.3 2.2 2.0 2.1 2.5 2.8 3.2 2.9 2.6 2.8 2.3 2.7

oscillation (SAO). The corresponding vertical profiles of the
AO and SAO in the subtropical UTLS region under consider-
ation are depicted in Fig. 3. In general, the subtropical UTLS
is dominated by the AO, with the AO amplitudes about 4
times stronger than the SAO amplitudes. It is noted that in
the lower stratosphere (70-hPa), the SAO shows weaker am-
plitudes than in the upper troposphere (200-hPa).

The SAO has its maximum amplitude at 250-hPa where
the AO shows its minimum (Fig. 3). The seasonal variation
of temperature at 200-hPa appears to be driven by the SAO
cycle. Thus, it is evident in Fig. 2a that the coldest temper-
atures at 200-hPa appear in May and November, during the
autumn and spring equinoxes respectively, while the highest
temperatures are observed in February and August.

The AO shows a maximum-amplitude at the tropopause
height, and is dominant in the lower stratosphere, at the 70-
and 50-hPa levels (Fig. 3). At the 30- and 20-hPa heights
both the SAO and AO show weak amplitudes.

3.2 Trend estimation

In the present study, temperature trends from 22 years of
upper-air data over Durban, have been investigated using
a statistical trend model adapted from the AMOUNT and
AMOUNT-O3 models for ozone and temperature trend as-
sessment (Hauchecorne et al., 1991; Mohanakumar, 1994;
Keckhut et al., 1995; Guirlet et al., 2000). It is based on
a multivariate least-squares method and takes into account
seasonal variations, i.e., annual and semi-annual cycles, and
uses parametric functions in order to consider the QBO, the
ENSO, and the 11-years solar cycles. The solar cycle is de-

fined as a linear function and is correlated with the solar flux
at 10.7 cm.

In the trend model, temperatureT at timet and heightz is
represented by the equation:

T (t, z) =

p∑
k=1

a (z, k) × c (t, k) + T ′ (t, z) (1)

where c(t ,k) describes the temporal evolution of the forcing
k; a(z,k) is a coefficient computed by the model for the
forcing k; andT ′ (t ,z) is the residual term. A least squares
method computes the coefficients a(z,k) in order to minimise
the quantity:

χ2 (z) =

[∑
t

T (t, z) −

∑
k

a (z, k) × c (t, z)

]2

(2)

Prior to trend error computation the autocorrelation of the
residuals must be considered in order to examine data inde-
pendency. In the present work, temperature measurements
are derived from daily systematic sampling and have been
reduced to monthly means, per pressure level. With such
sampling the autocorrelation of the residuals should be low,
following Tiao et al. (1990) finding: the precision of trend
estimates depends critically on the magnitude of autocorrela-
tions in the monthly observations, but it is not sensitive to the
temporal sampling rates of daily measurements under sys-
tematic sampling.

Taking into account the autocorrelation coefficientϕ, the
trend uncertainty is thus given, as shown in the Appendix of

www.atmos-chem-phys.net/6/5121/2006/ Atmos. Chem. Phys., 6, 5121–5128, 2006
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Fig. 2. Time evolution of monthly averaged temperatures per
height: (a) in the upper troposphere and(b) in the lower strato-
sphere over Durban (see legends).

Logan (1994), through the variance formula of the residual
term :

σ 2
r (z) =

χ2 (z)

n − p
×

√
1 + ϕ

1 − ϕ
(3)

wheren andp represent measurement and forcing numbers,
respectively.

One of the most significant factors that influence temper-
ature trends, notably in the lower stratosphere, is the large
aerosol enhancement following a volcanic eruption (WMO,
1995). Due to solar radiation and terrestrial infrared radiation
increases caused by major eruptions, aerosol loading results
in a warming in the stratosphere, particularly in the tropical
and subtropical regions (Labitzke and McCormick, 1992).

Taking into account the temporal coverage of the dataset
used in the present study, trend analyses may be biased if
post-Pinatubo data are not removed or adjusted for volcanic
influence. Pinatubo erupted in June 1991 and has injected
a large quantity of gases and aerosols into the stratosphere
up to a height of 30 km, with most of the volcanic clouds in

Figure 3 
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Fig. 3. Vertical profiles of the annual and the semi-annual oscilla-
tions as derived from SAWS data recorded over Durban (see leg-
end).

the 20–25 km altitude range (McCormick and Viega, 1992;
Nardi et al., 1993). Bencherif et al. (2003) have shown from
SAGE II data that the aerosol amounts in the southern sub-
tropical UTLS decreased gradually to return to normal levels
by late 1995 and early 1996.

Once post-Pinatubo data (June 1991–December 1995)
were removed, linear trends in temperature at all UTLS pres-
sure levels were estimated. Figure 4a shows the vertical dis-
tribution of the linear trend in temperature per decade as de-
rived from Durban morning data. A cooling trend is observed
at almost all heights in the UTLS region (250–20 hPa). The
maximum cooling rate is 1.09±0.41 K per decade, and is ob-
served in the lower stratosphere, at 70-hPa.

For comparison, daily morning data from an additional
South-African subtropical site, Upington (28.5◦ S, 21.3◦ E),
has been examined for the January 1980–March 1999 period.
Upington temperature trends are shown with star symbols on
Fig. 4a. Both sites show nearly similar trend values, notably
in the stratosphere. In the troposphere, unlike the Durban
trends (slightly negative:−0.10 K/decade), those estimated
for Upington are almost equal to zero (−0.02 K/decade). The
small tropospheric discrepancy can be related to the site lo-
cations and indeed to the associated tropospheric regimes.
Indeed, Durban is a coastal site, while Upington is a conti-
nental one. Moreover, the highest cooling rate over Upington
is obtained in the lower stratosphere (−1.12±0.53 K/decade)
at the same pressure level as for Durban (70 hPa).

Figure 4b depicts the time evolution of mean monthly tem-
peratures in the lower stratosphere (at 70-hPa) over Durban,
with the cooling trend line superimposed.

Atmos. Chem. Phys., 6, 5121–5128, 2006 www.atmos-chem-phys.net/6/5121/2006/
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Fig. 4. (a)Linear temperature trend (in Kelvin per decade) height
profile framed with the 95% confidence profiles, derived from
Durban: DBN (30.0◦ S, 30.9◦ E) morning data. Upington (UPN:
28.5◦ S, 21.3◦ E) trends retrieved from during January 1980–March
1999 period are shown with star symbols.(b) Time evolution of
the monthly averaged temperature values in the lower stratosphere
(at 70 hPa), over Durban. The superimposed red line indicates the
obtained linear trend, i.e.,−1.09±0.41 K per decade.

As mentioned above, morning and afternoon data have
been used separately. In order to examine how do atmo-
spheric tides affect the diurnal cycle of temperature trends
at different altitudes, Fig. 5 shows the linear trend profiles as
derived from morning and afternoon Durban datasets. The
differences between morning and afternoon trends are super-
imposed (see legend). Both morning and afternoon trends
show globally the same shape. However, the afternoon cool-
ing rate is more stressed in the UTLS. The maximum cooling
rate from afternoon dataset is obtained in the lower strato-
sphere (−1.88 K/decade, at 50 hPa).

Figure 5 
 

 
 

Figure 6 
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Fig. 5. Morning and afternoon linear trends and differences, as de-
rived from Durban datasets (see legend).

Besides, the trend absolute difference between morning
and afternoon datasets is almost constant in the troposphere
(including at the tropopause, i.e., 100 hPa), and is increasing
in the stratosphere. This result suggests that the trend differ-
ence may be associated to ozone (O3) change in the strato-
sphere. Indeed, the stratospheric O3 is photo-chemically
active, and shows a negative trend (−6%), (UNEP/WMO,
2002). Moreover, atmospheric tides are global-scale oscilla-
tions that are primarily induced by the diurnal variation of
solar radiation absorption, mainly by water vapour (H2O)
in the troposphere (∼1/3) and O3 in the stratosphere (∼2/3)
(Strobel, 1978). Any change in H2O and/or O3 concentra-
tions may induce a change on tidal structures, as reported
by Morel et al. (2004). In fact, Morel et al. examined, in a
3-D Dynamics-chemistry-transport model, the sensitivity of
the tidal amplitudes to decadal changes of the thermal source
distributions, notably changes in O3 and H2O distributions;
and found that the largest changes occur at tropical and sub-
tropical latitudes.

Yet, despite their weak amplitudes in the stratosphere (less
than 1 K), and because of their mode of generation, tide vari-
ations seem to affect the trend of temperature diurnal cycle
at different heights and exacerbate, as shown on Fig. 5, the
stratospheric cooling.

It comes out from Durban morning dataset that the
mean tropospheric (400–100 hPa) and stratospheric
(70–20 hPa) temperature trends are 0.10±0.18 and
−0.76±0.32 K/decade, respectively. The cooling rate
in the lower stratosphere is indeed significant and higher
than in the upper troposphere. It is noted that for tropo-
spheric heights below the 200-hPa height, temperature trend
rates are found to be positive but not significant.

www.atmos-chem-phys.net/6/5121/2006/ Atmos. Chem. Phys., 6, 5121–5128, 2006
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Table 2. Upper troposphere and lower stratosphere temperature trends (K per decade) from published studies and from the current study.

Angel (1988)
1959–1988

Oort and Liu (1993)
1964–1988

Parker et al. (1997)
1979–1996

Current study
1980–2001

Upper Troposphere −0.16±0.11 −0.11±0.11 −0.11 −0.10±0.18

Lower Stratosphere −0.64±0.29 −0.43±0.16 −0.73 −0.76±0.32

Figure 5 
 

 
 

Figure 6 
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Fig. 6. Monthly seasonal decomposition of temperature trends (in
Kelvin per year) at 200-, 100- and 70-hPa pressure levels (see leg-
end).

Using a global rawinsonde network Oort and Liu (1993)
considered the latitudinal structure of long-term trends for
the 1968–1988 period. They obtained cooling trends in the
SH UTLS region that increased with latitude from the tropics
to the South Pole. More recently, Parker et al. (1997) have
combined the rawinsonde data from the Australian region
with the satellite-based Microwave Sounding Unit (MSU)
retrievals, to calculate temperature trends over the period
1979–1996. They also found cooling trends in the southern
UTLS, notably at subtropical latitudes.

Stratospheric and tropospheric temperature trends as de-
rived by Angell (1988), Oort and Liu (1993) and Parker et
al. (1997) are compared with values obtained in this study in
Table 2. The cooling rate obtained in the lower stratosphere
appears to be the most important. It is in good agreement
with the other results, taking into account that the periods of
analysed datasets are not identical.

A study on the variance and standard deviation (STD) of
the mean temperature over a region is considered important
for climatological use. Variability is defined as the STD of all
temperature observations relevant to a given month. Monthly
average temperature variability (STD) obtained for Durban is
reported in Table 1. From March to October STD values are

found to be relatively higher in the troposphere, including
at the tropopause level (100 hPa), in comparison with strato-
spheric levels. Yet, at all pressure levels, STD shows a maxi-
mum during austral winter, i.e., during July and August. The
highest temperature STD value over Durban is obtained at
200 hPa in July; while the highest STD in the lower strato-
sphere is recorded during the June–July period, at 70 hPa.
This is most likely related to temperature variations caused
by the development of synoptic disturbances in the tropo-
sphere in winter. Indeed, such wave disturbances propagate
vertically through to the stratospheric layers in the winter
hemisphere when the zonal winds are westerly (Charney and
Drazin, 1961). Hauchecorne et al. (1987) have also drawn
attention to the role of wintertime propagations of planetary
and gravity waves as the causes of increases in temperature
variability.

In order to understand the seasonal characteristics of tem-
perature trends, knowledge of trends in dynamical activity is
needed. Dynamical trends in the UTLS may be induced by
changes in concentrations of radiatively active gases or by
any tropospheric changes.

In the present study, having separated the initial dataset
into monthly time-series, the least-squares model (introduced
above) was applied separately to the 12-month time-series in
order to derive the seasonality of temperature trends. Fig-
ure 6 shows monthly trend estimates as derived at tropo-
spheric and stratospheric levels (200-, 100- and 70-hPa).
Taking into account the reduction in size of the datasets, the
derived seasonal trends may be used qualitatively, but should
not be used as a precise quantitative result.

In the troposphere, monthly trends are almost equal
to zero, except for September and October when the
cooling rates are similar to stratospheric values (about
−0.8 K/decade). At the tropopause, seasonal trends show the
same variations as obtained in the stratosphere. However, the
maximum cooling at the tropopause (obtained by June–July
period) does not coincide with the maximum cooling in the
stratosphere (obtained by March). With regard to the mini-
mum cooling rate in the stratosphere, it occurs by May and
September (by early and late winter, respectively).

As suggested above, the seasonal dependence of tem-
perature trends may be related to trends in wave activity
in the southern UTLS. In fact, Using ECMWF-ERA40 re-
analyses and temperature profiles obtained with a Rayleigh

Atmos. Chem. Phys., 6, 5121–5128, 2006 www.atmos-chem-phys.net/6/5121/2006/
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Lidar operating at Durban, Bencherif et al. (2000) showed
that temperature variability increases by early winter (May),
when the transition of the stratospheric zonal-mean winds
to the westerly regime occurs and the planetary Rossby
waves propagate upward. Moreover, Bodeker and Scourfield
(1995), using TOMS data recorded over the period 1979–
1992 and an EOF analysis on the vertical component of
Eliassen-Palm flux, have reported an increasing trend in wave
activity during winter in the southern UTLS. This is consis-
tent with our seasonal analysis and shows that in the lower
stratosphere, trends in temperature should be examined in
conjunction with trends in dynamics.

4 Conclusion

Daily radiosonde data over Durban (30.0◦ S, 30.9◦ E), which
is situated on the east coast of South Africa, over the period
January 1980 to December 2001, i.e. 22 years, were used
to derive a mean temperature climatology and to determine
trends in temperature in the upper-troposphere and lower-
stratosphere (UTLS) region. Previous studies have high-
lighted the importance of this region because of the many
dynamical processes that occur here and their role in the ver-
tical and horizontal transfer of energy, mass and atmospheric
constituents.

The mean seasonal temperature climatology revealed dif-
ferences between the upper troposphere and the lower strato-
sphere. The seasonal cycle of temperature at the 250-hPa
height is anti-correlated with that at 150-hPa and 100-hPa.
The 100-hPa level (tropopause) exhibits a minimum temper-
ature in late summer (February) and a maximum in winter
(June to August), and closely corresponds to the results ob-
tained by Randel et al. (2000) for tropical regions.

A Fourier analysis performed at different heights high-
lighted two dominant seasonal oscillations: an annual (AO)
and a semi-annual oscillation (SAO). The former is dominant
(about 4 times stronger) in the UTLS region and maximises
at the 100-hPa height, whereas the SAO has its maximum
amplitude at 250-hPa, where the AO is at its minimum.

A trend analysis based on a multivariate least-squares
regression technique was undertaken. Seasonal variations
(both AO and SAO), the QBO, the ENSO and the 11-year
solar cycles were taken into account. Furthermore, the data
were adjusted for the influence of the Pinatubo eruption.
Cooling trends were observed at almost all heights in the
UTLS region (250–20 hPa), although cooling rates in the
lower stratosphere were higher than in the upper troposphere.
The maximum cooling rate of 1.09±0.41 K per decade was
observed at the 70-hPa height. For comparison, tempera-
ture trends from daily morning data obtained at Upington
(28.5◦ S, 21.3◦ E), show nearly similar trends as for Durban,
notably in the stratosphere.

Moreover, when comparing trends derived from Durban
morning and afternoon datasets, tide variations seem to af-

fect the trend of temperature diurnal cycle at different heights
and exacerbate the cooling rate in the lower stratosphere (see
Fig. 6). This may be related to the mode of generation of tidal
structures. Indeed, atmospheric tides are induced by the di-
urnal variation of solar radiation absorption, mainly by H2O
in the troposphere and O3 in the stratosphere.

It comes out from the seasonal trend decomposition that
reduction of the cooling rate in the lower stratosphere passes
by two maximums: early and late winter (May and Septem-
ber, respectively).

Temperature variability as indicated by the magnitude of
the standard deviation was found to be higher in the tro-
posphere than in the stratosphere and also to be greater in
winter. The higher temperature variations in winter were
attributed to the greater frequency of tropospheric synoptic
disturbances in winter and to the vertical propagation of such
wave disturbances through the stratosphere under westerly
zonal winds.
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