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Abstract. This paper presents an inverse method for in-
ferring trace gas fluxes at high temporal (daily) and spatial
(model grid) resolution from continuous atmospheric con-
centration measurements. The method is designed for re-
gional applications and for use in intensive campaigns. We
apply the method to a one month inversion of fluxes over Eu-
rope. We show that the information added by the measure-
ments depends critically on the smoothness constraint as-
sumed among the source components. We show that the ini-
tial condition affects the inversion for 20 days, provided one
has enough observing sites to constrain regional fluxes. We
show that the impact of the far-field fluxes grows through-
out the inversion and hence a reasonable global flux field is a
prerequisite for a regional inversion.

1 Introduction

The task of determining the space-time structure of carbon
fluxes to the atmosphere is one step in any attempt to monitor
and possibly manage the carbon cycle. The task has gener-
ally been performed via two complementary approaches. In
the so-called bottom-up methods, small-scale flux estimates
are aggregated together to form regional totals. If the mea-
surements are not spatially dense, the approach uses some
kind of statistical or physical model to fill gaps. Spatially
dense measurements are never of carbon fluxes directly (e.g.
land cover) so a different kind of model (e.g.Potter et al.,
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2003) is used to relate these measurements to carbon fluxes
on some time and space scale.

The other approach, the so-called top-down or inverse ap-
proach, infers the space-time flux distribution from concen-
tration signatures in the atmosphere. The approach faces
many of the usual difficulties of inverse problems, princi-
pally a lack of concentration observations and reliance on
uncertain atmospheric transport. A detailed explanation of
the underlying principles is given inEnting(2002) and espe-
cially of the “matrix approach” used in this study.

The two approaches have different characteristics in al-
most all respects. Most importantly they give rise to different
kinds of uncertainty. For example, if the bottom-up approach
must use some kind of extrapolation, then any error in a point
measurement will be propagated by the extrapolator and bias
large-scale estimates. This is even clearer if some kind of
physical model is used to relate the measurements to the car-
bon fluxes we seek; errors in the model are not random and
so will not disappear as we move to larger and larger regions.

The case for the inverse approach is quite different. Here
the sparsity of concentration data limits the resolution of the
inverse procedure, so that estimates are more certain at large
scales. In fact the ability of the method to resolve small
scales is limited and most studies employ some form of reg-
ularization method. Regularization imposes some extra con-
straint on the solution to limit its sensitivity to individual data
points and hence limit error amplification. Bayesian meth-
ods, in which prior estimates of fluxes are inserted as ex-
tra data into the problem, have been the norm (e.g.Enting
et al., 1995; Rayner et al., 1999; Bousquet et al., 2000; Gur-
ney et al., 2002) but some studies have employed other forms
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of regularization or have studied the impact of a choice of
regularization methods, e.g.Fan et al.(1999); Baker(2001).

A crude alternative to regularization is to solve for fluxes
only in a greatly reduced solution space. This is normally
accomplished by solving only for broad-scale integrals of
fluxes (i.e. large regions), with smaller scale structure being
prescribed as part of the problem set-up. This was the ap-
proach chosen in the important study ofFan et al.(1998).
Trampert and Snieder(1996) and Kaminski et al.(2001)
demonstrated the pitfalls in this approach andGurney et al.
(2002) andBaker(2001) demonstrated the dependence of the
results inFan et al.(1998) on the choice.

Behind all these problems with regularization methods lies
the lack of atmospheric concentration data. The most com-
mon source of data is a network of approximately 120 sta-
tions globally at which flask samples are taken at frequen-
cies from weekly to monthly. The data is usually used in the
consolidated form provided byGLOBALVIEW-CO2 (2002),
smoothed at roughly monthly frequencies although reported
as weekly values. The network has a strong bias to the ma-
rine boundary layer or the free troposphere, reflecting both
the historical motivation for the measurements and the diffi-
culties of interpreting samples with strong continental influ-
ence. This dilutes the capacity of the measurements to con-
strain continental fluxes. Also the temporal smoothing of the
data removes much of the signal tying concentration signa-
tures to their antecedent fluxes. This information is contained
in the tracer labels of individual air masses and varies on syn-
optic rather than monthly frequencies. It is this more detailed
tracer information we intend to use in this study.

In a recent series of studies,Law et al.(2002, 2003, 2004)
have pointed out the potential power of using data measured
at higher time frequencies. The resolving power of the data
is improved not merely because monthly mean concentration
is better sampled but more importantly because the synoptic
variation in flow acts as a differential sampling tool; a fixed
sampling location constrains fluxes from several surrounding
regions depending on flow characteristics. We note that this
requires that variations in fluxes be predictable on timescales
longer than the synoptic.

Law et al.(2002), in their observation system simulation
experiment, showed that known fluxes could be recovered
with reasonable biases and uncertainties provided firstly that
the transport was well-known and secondly that the solu-
tion space for fluxes was detailed enough to represent the
true fluxes reasonably.Law et al. (2003) showed, perhaps
surprisingly, that the requirement for perfect transport could
be considerably relaxed provided the data were smoothed to
synoptic frequencies.

The main recommendation from these two studies was fu-
ture deployment of instruments capable of making and re-
porting these high frequency measurements. There is, how-
ever, a considerable body of existing data from such instru-
ments stretching back several decades. Some attempt has al-
ready been made to use this data to recover flux information.

The most common technique (e.g.Biraud et al., 2000, 2002)
has been to use a so-called ratio or fingerprint approach in
which an ancillary tracer is used to provide information on
the synoptic transport and the ratio of signals at an observ-
ing site is used to solve for the unknown flux distribution.
The requirements for such a method are stringent. Firstly the
ancillary tracer must have a well-known distribution and sec-
ondly the distributions of the known and target fluxes must
be very similar.

In this work we make a first attempt to use some of this
high-frequency data directly in a “matrix” inversion. The
work should be regarded as an exploration of some of the
problems which will arise in the use of such data. The usual
approach in such a preliminary study is to use synthetic data,
that is data generated from a model and usually perturbed
by some random noise. It is likely that the major problems
in this kind of inversion will revolve around the veracity of
the transport model and the diagnostics of quality we use for
the inversion. Both of these will only become apparent with
the use of real data and this is the approach taken here. The
data density we use is not high enough yet to make confident
statements about the flux distributions we infer.

There are computational, operational and conceptual is-
sues which arise as we begin to use high-frequency concen-
tration data. First we must address the problem of the spatial
and temporal domain and resolution of our solution. The
number of parameters (flux components) for which we can
solve is limited by computational constraints. Often we wish
to extract as much detail as possible over a target region. The
problem arises of how to treat the rest of the world. Restrict-
ing our domain at all requires us to specify lateral boundary
fluxes. In their study of the Mauna Loa site,Vukićevíc and
Hess(2000) noted the high sensitivity of concentrations mea-
sured at the observing sites to fluxes at the lateral boundaries,
as also pointed out inChevillard et al.(2002). An inversion
which neglects much of the world must deal with this prob-
lem in some way. Here we use the alternative approach of
reducing the resolution of the solution far from the target re-
gion but retaining the global domain.

Often the high-frequency measurements we use in an in-
version are gathered during intensive campaigns. Unlike
the more usual concentration measurements from monitor-
ing stations, these campaigns are usually too short to allow a
spin-up of the concentration field. Thus the structure of the
initial concentration field is important and we must include
it in our problem somehow (see for instanceGerbig et al.,
2003).

At a more conceptual level is the relationship between res-
olution (spatial and temporal) of the fluxes and the measured
concentrations. Part of the power of the high-frequency mea-
surements relies on ascribing high-frequency concentration
variations to the impact of somewhat “well-known” high-
frequency variations in transport convolved with slowly vary-
ing fluxes. More strictly, we require that time variations in
fluxes be well-known on the time-scale of the concentration
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measurements. The difference between “well-known” and
“constant” in the above sentence is important. For example
we do not need to solve for hourly fluxes just because there
is a large diurnal cycle, but we must take the cycle into ac-
count somehow if we wish to use diurnally varying concen-
trations. However the use of source patterns (usually called
basis functions) with large extent in the time domain runs the
same risk of aggregation errors (Peylin et al., 1999), as noted
for the space domain byKaminski et al.(2001). Here we are
faced with a serious trade-off. The higher the time resolution
of the fluxes for which we solve, the less information will be
available from the concentration field to constrain each com-
ponent. However the more we average our flux components
in advance, the more likely we are to suffer from aggrega-
tion errors in time. The problem has been studied recently
by Law et al.(2004). They used an identical twin experiment
with fluxes with high time variations and monthly mean ba-
sis functions. They concluded that one should account for
the diurnal cycle if one wished to use concentrations at reso-
lution higher than one day but that other sub-monthly varia-
tions were not a major problem. Here we use daily averaged
concentrations and so hope to avoid the problems of the di-
urnal cycle. In order to explore the impact of varying time
resolution of sources, we solve for fluxes at daily resolution
and produce averages after the fact.

We cannot completely avoid the impact of the diurnal cy-
cle. The covariance between diurnal cycles of vertical trans-
port and CO2 fluxes gives rise to nonzero average concentra-
tions. This is the diurnal equivalent (Denning et al., 1996)
of the well-known rectifier effect much studied on seasonal
timescales (Keeling et al., 1989; Denning et al., 1995). We
will not include such an effect in this first theoretical study
(which is perhaps justified for November where the diurnal
cycle is quite small) and the associated errors will be consid-
ered as part of the data uncertainties.

Our experimental design, then, requires us to calculate the
relationship of fluxes from every pixel in the model domain
and every day to daily averaged concentrations at six stations.
In the normal forward model framework, this would require
several hundred thousand model runs, which is obviously in-
feasible. The use of an adjoint model, however, requires only
one run per datum rather than per unknown. This is feasi-
ble in this case. The construction of adjoint transport mod-
els can be a long task andHourdin and Issartel(2000) have
shown that an other approach, using the “retro-transport”
tracer equation, is equivalent to the adjoint derivation (for an
air-mass weighted scalar product) and can be constructed by
changing the sign of some expressions in the forward model.
In this study, we use such a “retro-transport” approach with
the LMDZ global transport model (Hourdin et al., 2005a) to
calculate the required response functions.

The outline of the paper is as follows. In Sect.2, we de-
scribe the various special characteristics of our formulation,
including the details of the use of LMDZ, treatment of the
initial condition, and the imposition of spatial correlations

among increments in fluxes. Section3 describes the fit to
the data, the contributions of the various components of the
space of unknowns to the fit and the reduction of uncertainty
and change in fluxes produced in such an inversion. Section4
discusses the relevance of these findings to various applica-
tions of such inversions.

2 Inverse method

2.1 Inverse framework and atmospheric data

We describe in this section the overall inverse set up that is
used to assimilate continuous data in a limited space-time
domain. Our domain is roughly Europe for November 1998,
and we use 6 continuous sites. The inverse process involves a
preliminary independent step, in which we perform a global
inversion for one year using monthly data at 64 surface sites
but no continuous measurements. In this step, we estimate
the monthly magnitudes of surface fluxes for large regions.
These fluxes are hence compatible with the global atmo-
spheric record given our transport model. We then perform
the inversion of the continuous records themselves, using the
previous flux estimates as prior fluxes. We will mainly cor-
rect these values and their spatial and temporal distribution
for the regions that directly influence our six continuous mea-
surement sites, i.e. Europe and the eastern North Atlantic.
For these regions we greatly refine the spatial and temporal
resolutions of the inversion compared to the preliminary step.
Both inverse steps are based on a “matrix” approach (Enting
et al., 1995) and use the Bayesian formalism to regularize the
inverse problem.

The preliminary monthly inversion is based on the clas-
sical approach (Gurney et al., 2002, e.g.) in which we di-
vide the land and ocean into a few large regions. The set-
up follows directly fromBousquet et al.(2000) andPeylin
et al. (1999) with 18 land and 14 ocean regions and prior
spatial and temporal patterns from the TURC model (Ruimy
et al., 1996) for the land biosphere and fromTakahashi et al.
(2002) for the ocean (Fig.1). The response at each station
to each separate flux is computed by direct integration of the
LMDZ zoomed transport model (see Sect.2.2). Note that
fossil emissions are set to fixed monthly values (Andres et al.,
1996; Marland et al., 2001). We use atmospheric data from
64 sites (excluding the 6 continuous European sites) taken
from GLOBALVIEW-CO2 (2002). Sites are shown in Fig.1.
The data uncertainties are derived followingBousquet et al.
(2000). We will not discuss the results of this “classical” in-
version.

It is important to avoid double-counting of information,
so for the major inverse step we use only the six continu-
ous records for November 1998 obtained within the AERO-
CARB European project (name, longitude, latitude, altitude
in meters): Schauinsland (SCH, 7.9◦, 47.9◦, 1205), Mace
Head (MHD,−9.8◦, 53.3◦, 25), Hegyhatsal tower (HUN,
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Fig. 1. Upper map: contoured regions used for the preliminary monthly inversion and grey regions where fluxes are solved at the model
resolution in the second step. The position of the stations are shown: circles for all stations of the preliminary step and stars for the continuous
European sites. Lower map: zoomed mesh of the LMDZ model.
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16.6◦, 46.9◦, 82), Westerland (WES, 8.0◦, 55.0◦, 8), Monte
Cimone (CMN, 10.7◦, 44.2◦, 2165), and Plateau Rosa (PRS,
7.7◦, 45.9◦, 3480). These sites are shown in Fig.1.

In this test of methodology, we neglect diurnal variations
in both concentration and flux. This overlooks two important
complexities. First it assumes that concentrations from all
times are equally well simulated in transport models. This
choice might be critical in the case of low elevation conti-
nental towers (like HUN) where the day-to-day variability
of the mean concentration might be primarily driven by the
variability of stability of the nocturnal boundary layer rather
than by advective effects. Such variability is still poorly rep-
resented in current transport models at this resolution, includ-
ing LMDZ (see Geels et al., 20051), which could potentially
bias the flux estimates. We also calculate the sensitivities of
these dirunally averaged concentrations with respect to diur-
nally averaged fluxes. Hence we cannot include the impact
of the diurnal rectifier inside the inversion framework. We
could account for this by precalculating the diurnal rectifier
and removing its signal from the data prior to inversion (a
so-called presubtraction) but this relies on a very good sim-
ulation of the diurnal cycle by TURC of which we were not
confident. Extensions of both the sampling and flux distribu-
tions will be considered in a future study.

The uncertainty on the daily average is defined as the stan-
dard deviation of the hourly concentration averages. This
choice is rather crude, but still captures the general feature
that model data mismatch is likely to be large for sites and
days with large hourly concentration variations. For exam-
ple, the magnitude of the diurnal rectifier is likely to be larger
for larger diurnal cycles. A more rigorous approach will be
investigated in a following paper.

As discussed in the introduction, we need to adjust the
spatial and temporal resolutions of the flux field in order to
make proper use of the daily variations of CO2 concentra-
tions (Law et al., 2003). There is no consensus about which
resolution should be used for a particular data frequency, so
we choose the conservative option of high spatial resolution
for regions with strong impact on our observing sites. We di-
vide the western European and north-eastern Atlantic regions
(Fig.1, dark regions) to the pixel level of our transport model
and solve for daily fluxes in each pixel. With the LMDZ
zoom grid that we use (centred over Europe, Fig.1), this
generates of order 200 000 unknown flux components. Such
a choice imposes a strong constraint on the numerical for-
mulation of the inverse problem, especially for the inclusion
of the prior spatial correlations between the “pixel fluxes”
to regularise the problem (see Sect.2.4). For the rest of the

1Geels, C., Bousquet, P., Ciais, P., Gloor, M., Peylin, P., Ver-
meulen, A. T., Dargaville, R., Brandt, J., Christensen, J. H., Frohn,
L. M., Heimann, M., Karstens, U., R̈odenbeck, C., and Rivier, L.:
Comparing Atmospheric Transport Models for Regional Inversions
over Europe. Part 1 : Mapping the CO2 Atmospheric Signals, Tel-
lus, submitted, 2005.

globe, we keep the same regions and monthly time resolution
as for the first inversion step. To compute the solution (flux
valuesX and uncertaintiesPa), we thus use a matrix formu-
lation (Tarantola, 1987, Eqs. 4.5 and 4.6) that only needs the
inversion of a matrix of the size of the observation vector
(180),

X = Xb
+ PbHT (HPbHT

+ R0)−1(Y 0
− HXb) (1)

Pa
= Pb

− PbHT (HPbHT
+ R0)−1HPb (2)

with H the model response functions,Y 0 the observations,
Xb the prior unknowns (fluxes and initial conditions),R0,
Pb andPa the error covariance matrices on the observations,
the prior unknowns and the posterior unknowns, respectively.

2.2 Atmospheric transport

We use the general circulation model of Laboratoire de
Mét́eorologie Dynamique, LMDZ (Hourdin and Armengaud,
1999), that can be zoomed over a particular region of the
globe. For this study, the grid is stretched as illustrated in
Fig. 1, with a mean horizontal resolution over Europe of
50×50 km and 19 sigma-pressure layers up to 3 hPa. This
corresponds to a vertical resolution of about 150, 180, 350,
and 460 m for the first four levels, respectively, and to a res-
olution of about 2 km a the tropopause. In order to stay as
close as possible to the observed synoptic events, we relax
the simulated winds and temperature toward the analysed
fields of ECMWF with a time constant of 2.5 h (“nudging”
mode). The advection of tracers is calculated with the finite-
volume, second-order scheme, proposed byVan-Leer(1977)
as described inHourdin and Armengaud(1999). Deep con-
vection is parameterized according to the scheme ofTiedke
(1989) and the turbulent mixing in the planetary boundary
layer is based on a local second-order closure formalism
(Hourdin and Armengaud, 1999). The high horizontal res-
olution and the “nudging” capabilities of LMDZ are cru-
cial to simulate the large spatio-temporal variability of the
CO2 concentrations observed at continental sites (Geels et
al., 20051). Note, finally, that with a 50-km grid, high al-
titude stations (PRS, CMN, SCH) are located a few levels
above ground in the model. This choice is important espe-
cially if we consider the diurnal cycle (Geels et al., 20051).

As mentioned in the introduction, we use the “retro-
transport” approach implemented in LMDZ to compute the
response functions at all sites (as inCosme et al., 2005). Let
us denote a measurement performed at a given station by,

M =

∫
�×τ

ρµc dxdt (3)

with ρ being the density of the air,µ(x, t) the distribution of
the measurement (uniform over a day and within the station
mesh in our case),c the tracer concentration per unit mass
of air, � the spatial domain, andτ the time domain. It was
shown byHourdin et al.(2005a) thatM could be explicitly
expressed as a function of the initial condition att0 (c|t0

), and
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of the tracer emissions, using the “retro-tracer” concentra-
tion c∗:

M =

∫
�

ρc∗c|t0
dx +

∫
�×τ

ρc∗s dxdt

= Initial condition term+ Source term (4)

This equation corresponds to Eq. (16) ofHourdin et al.
(2005a) with a null inflow term as is the case with a global
model. The “retro-tracer”c∗ is the solution of the adjoint
of the tracer transport equation with respect to the air-mass
weighted scalar product and its distribution can be sim-
ply computed by reversing the sign of the different advec-
tion terms and keeping the sign of the unresolved diffusion
terms2. These properties rely on the fundamental time sym-
metry of fluid transport. Note, however, that in the numeri-
cal world the symmetry is not necessarily preserved with the
spatial and temporal discretisation of the transport equations.
The introduction of slope limiters in theVan-Leer(1977) ad-
vection scheme used in LMDZ is one example. The “retro-
transport” in this case differs from the adjoint of the direct
numerical model. The choice between the two approaches to
represent the transport characteristics is not straightforward
as it depends on the use that will be made of the results. In
the case of LMDZ,Hourdin et al.(2005b) have shown a very
good agreement between the forward and the backward cal-
culations, in the context of the European Transport Experi-
ment (see their Figs. 2 and 3).

The backward simulation directly provides the sensitivity
of a given measurement to all past surface sources (up to one
month in this study) and to the concentration of all 3-D grid
boxes att0 (the initial condition). Using the same matrix
notation as for the expression of the solution (Eq.1), we can
simply write:

M = H0C|t0
+ HsS (5)

with H0 andHs being the sensitivity of the model concentra-
tion to the initial conditionsC|t0

and to the sourcesS, respec-
tively. Note that the vector of unknownsX defined in Eq. (1)
gathers the two components,[C|t0

, S].
In practice, we perform a forward meteorological simu-

lation nudged by ECMWF winds and store on a 3-h time
step all large scale mass fluxes as well as convective detrain-
ments and entrainments. We then run the transport model
backward in time using the previously stored quantities and
inject a pulse of “retro-tracer” for each day in November and
each site. Each pulse is run back separately from the others.
Because we did not consider any selection criteria for the ob-
servations (we averaged all hourly data across the full 24 h),
we injected the “retro-tracer” uniformly in time each day (µ

is uniform). Note that a daytime sampling selection criteria
could be simply implemented with the injection of the “retro-
tracer” during daytime only. The backward simulations for

2SeeHourdin et al.(2005b) for a complete description of the
treatment of the different subgrid-scale processes.

all “retro-tracers” are performed back to the first of Novem-
ber at 00:00 h. We then average the simulated “retro-tracer”
concentrations for each day at the surface pixels to get the
sensitivity of the measurement to all daily sources. Again,
we can use a weighting time-average to account for a time
distribution of the CO2 sources, like the diurnal cycle of the
biospheric fluxes. In this study, we assume constant daily
sources and thus neglect the diurnal variation in biospheric
fluxes in November. Finally, we also take the “retro-tracer”
3-D fields at the first November – 00:00 h (t0) to obtain the
sensitivities to the initial conditions.

2.3 Treatment of initial conditions

We see from Eqs. (4) and (5) that there is a contribution to the
observed concentrations by the initial concentration field as
well as the flux field. Normally we choose a study period so
long that we can afford a spinup period. The diffusive nature
of atmospheric transport means that, provided this period is
longer than about one year, the spatial structure of the ini-
tial condition will have dissipated to a more or less uniform
background value. Hence we can specify all we need for the
impact of the initial condition on the inversion by setting this
value. Normally we include it as an extra unknown in the
solution. With our short study period, we cannot afford such
a spin-up so we must solve for the initial condition directly.
At first sight this is daunting since the full three-dimensional
field of LMDZ contains more than 5×105 grid boxes. How-
ever, almost all combinations of these values are unobserv-
able by our chosen network, since it takes observations only
over one month and a limited domain. For example, it is un-
likely a perturbation in the southern polar stratosphere will be
observed at all. It is computationally extravagant to attempt
to solve for all these unobserved components.

The task then is to define a subspace of the possible initial
conditions which is important for the inverse problem and
solve only for elements of that subspace. Fortunately this
subspace is easy to define. Let us rewrite the contribution of
the initial concentration field to the model station concentra-
tion: H0C|t0

(Eq.5). Using the usual Singular Value Decom-
position, we can reform the Jacobian (or mapping) matrix
H0,

H0 = U · 3 · VT

(180, 532608) (180, 180) (180, 180) (180, 532608)
(6)

WhereU andV are orthonormal and3 is diagonal with rank
of the number of observations (180). Numbers in parenthesis
indicate the size of the different matrices after dropping the
null parts for3 (and the corresponding part ofV). U spans
the space of observations and, importantlyV spans the ob-
servable subspace of possible initial conditions. If we now
projectC|t0

onto this subspaceV, we get the new unknowns
C∗

|t0
,

C∗
|t0

= VT
· C|t0

(180) (180, 532608) (532608)
(7)
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and a simpler expression for the JacobianH∗

0,

H∗

0 = U · 3

(180, 180) (180, 180) (180, 180)
(8)

Most important is the reduction in the dimension of the un-
knowns from more than 5×105 to 180. The new unknowns
are the multipliers ofH∗

0, and we can simply rewrite the
model station concentration as,

M = H∗

0C
∗
|t0

+ HsS (9)

The overall vector of unknownsX thus becomes[C∗
|t0

, S].

It remains to find the initial uncertainty forC∗
|t0

. By the

usual rule for error propagation, the variance-covariance ma-
trix, Cov(C∗

|t0
), onC∗

|t0
is calculated by

Cov(C∗
|t0

) = VT Cov(C|t0
) V (10)

In the case where the variance-covariance matrix on the
initial unknowns is uniform and diagonal,Cov(C|t0

)=σ 2I ,
(i.e.σ being the prior uncertainty), we see that the orthonor-
mality of V yields

Cov(C∗
|t0

) = σ 2I (11)

where the identity matrix here has the dimension of the num-
ber of observations. Any other form ofCov(C|t0

) will yield
a much more complicated structure forCov(C∗

|t0
). We use

the diagonal simplification throughout this paper. Finally,
note thatCov(C∗

|t0
) is one part of the covariance matrix of all

prior unknowns,Pb.
In the above simplification we neglect any correlations be-

tween the errors on the initial concentration field. However,
the direct simulation used to define the initial field at 00:00 h
of November 1st will contain positively and negatively cor-
related errors. Among the main reason for these errors is
the coarse resolution of the fluxes from the first inversion
step. As an example, consider a region of 500 km×500 km
containing all levels in the troposphere (10 grid cells verti-
cally). Assume a uniform uncertaintyσ for the concentra-
tions in this region and an uncertainty correlationr. Further
assume that our observing set-up can see only the average of
these pixels: one value ofC∗

|t0
notedx0. The eigen-vector of

H0 corresponding to this set-up will be uniform with values
1/

√
N , whereN is the number of pixels in the region. Ap-

plying the rule for error propagation it can be shown (with a
little algebra) that the prior variance of the coefficientx0 in
our transformed basis is

Cov(x0) =
Nσ 2

+ (N2
− N)rσ 2

N

= [(N − 1)r + 1] σ 2 (12)

With r=0.5 andN=1000 we see that positive correlation in-
creases the uncertainty on the coefficient in the reduced sub-
space by a factor 22.4. We assume uncorrelated prior un-
certainties on the values of the initial condition so we must

inflate the uncertainty to account for this correlation, other-
wise the uncertainty in our reduced subspace will be artifi-
cially low. On the other hand, negative correlation would
decrease the uncertainty. Given these considerations and to
keep a conservative choice of uncertainty, we have prescribed
an initial uncertainty on each element in the initial condition
of 10 ppm×20=200 ppm. This appears large, but recall that
the initial condition is a nuisance variable in this problem and
that a conservative choice is preferable to a wrong answer.

2.4 Prior flux covariance

Increasing the number of independent regions allows us to
recover more information from the atmospheric data and to
be less sensitive to the a priori spatial structure of the fluxes
(Kaminski et al., 2001). However, the inverse problem be-
comes highly under-constrained and hence the reduction of
the estimated error on each pixel remains small. One can
replace the hard constraint of fixed patterns within large re-
gions by a soft constraint of correlated fluxes defined at the
resolution of the transport model.

In this study, the parameter space (unknowns) comprises
the fluxes for the European land model pixels (2853), the
Northeast Atlantic ocean model pixels (4377), and 26 large
regions (rest of the world) and the initial concentration field.
Recall that the time resolution is monthly for the large re-
gions and daily for the pixels. We define a prior vari-
ance/covariance matrixPb on all those unknowns. For
the large regions, we use the estimated variances from the
first inversion step, but neglect covariances. The case of
the initial conditions has been treated in the previous sec-
tion. For model-pixels’ fluxes, we spread a summed uncer-
tainty of 1/

√
12 GtC/month (≈0.29) over the land pixels and

0.5/
√

12 GtC/month (≈0.14) over the ocean pixels. This is
equivalent to an uncertainty of 1 GtC/yr and 0.5 GtC/yr, re-
spectively, for the traditional approach of solving for inde-
pendent monthly fluxes. We apply the following recipe to
distribute this uncertainty in space (pixels) and time (days)

1. We assume no covariances and aportion the total vari-
ance uniformly in time and according to the area of the
pixels.

2. We define spatial correlations within (but not between)
land and ocean regions and convert them into covari-
ances by scaling with the variances from step 1 in order
to get the matrixPb. We use no temporal correlations.

3. The positive covariances defined in step 2 inflate the
variance of the area-integrated flux, so we rescalePb

to return to the original a priori estimates (0.29 and
0.14 GtC/month).

We are now left with the problem of defining the error corre-
lations. We should in principle account for the different pro-
cesses and driving factors that control the carbon sources and
sinks at larger scales than model resolution (i.e. land cover
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type, climatic variables, fertilization etc). If the inversion re-
quires a flux correction along the path of the “retro-plume”,
it is likely that the correction should affect the neighbouring
pixels, or at least the pixels with the same climate and the
same cover type. Defining such correlation is difficult. Sen-
sitivity analysis of models that produce these fluxes can yield
covariance matrices suitable for this task (Kaminski et al.,
2002, e.g.) but these are under construction for most of the
key processes. As a first approach in this study, we use the
distance as the main criterion and define exponentially de-
caying error correlations cori,j between model pixelsi and
j , according to: cori,j= exp(−di,j/L) with L being a cor-
relation length anddi,j the distance between the two pixels.
Rödenbeck et al.(2003) used this approach at monthly reso-
lution. They determined correlation lengths of 1275 km and
1912 km over land and ocean, respectively, from an analysis
of autocorrelation and cross-correlation functions of monthly
CO2 fluxes calculated by a set of land and ocean biogeo-
chemical models. On a daily time step, the value ofL is
probably smaller, as daily flux patterns are usually less ho-
mogeneous than monthly flux patterns. In this study, we in-
vestigate two different cases withL set to 500 km or 2000 km
for the land pixels. For the ocean pixels, we doubled the cor-
relation length to account for the lower spatial variability as
in Rödenbeck et al.(2003).

The size ofPb (217 106×217 106) makes it impossible to
store in memory. However, given the form we use for the
inverse solution (Eqs.1, 2), we only need to perform ma-
trix multiplications and to invert a small matrix that has the
size of the number of observations and not the number of
sources. Such an approach is thus extensible to many more
stations and even to hourly observations. We can also project
both sides of Eq. (2) onto a subspace of interest, e.g. groups
of pixels (line by line projection) and hence avoid the need
for calculations with the flux covariance as a whole. Finally
note that in the particular case of no temporal correlation (this
paper) the block form ofPb simplifies the above multiplica-
tions.

3 Results

We performed a series of inversions to investigate the sen-
sitivity of the estimated fluxes and initial conditions to the
critical parameters described above. The purpose of this pa-
per is to validate the inverse method for a particular month
using some statistical diagnostics and to identify the critical
aspects of the inversion, like the sensitivity to the correlation
lengths. In the following, we nevertheless mainly refer to a
standard case with correlations of 500 km and 1000 km for
land and ocean pixels, respectively.

3.1 Model-data fit

Figure2 displays the a priori and the estimated model con-
centrations together with the daily data and their uncertain-
ties for the six sites in November. As a general feature, op-
timised model concentrations capture most of the daily vari-
ations at all sites, except for day 24 at SCH and day 26 at
CMN. The reduced chi-square diagnostic (χ2; i.e., twice the
cost function at its minimum divided by the number of ob-
servations) is much lower than one, 0.09, which attest for the
quality of the fit. Given the data uncertainties that we choose
and the prior flux uncertainties of the standard configuration,
there is enough freedom to fit all daily observations. Note
that the model-data fit is significantly better at the beginning
of the month than at the end (the daily reducedχ2 values
increase from 0.01 to 0.2 during the month). This results
from the optimisation of the initial conditions, since there
are more degrees of freedom available to fit data near the
start of the period. We also note that the fit degrades in the
case with higher correlation lengths (2000 km and 4000 km
for land and ocean, respectively) with a reducedχ2 of 0.6.
At the other extreme, an inversion with no correlation pro-
duces a perfect model-data fit. Finally, one should mention
that the optimized fluxes do not degrade the fit to the station
used in the first inversion so that our two-step procedure has
not introduce an inconsistency.

More important is the good agreement between the prior
modelled concentrations (dashed lines) and the data, espe-
cially if we consider the phase of the different synoptic
events. At high-altitude stations like CMN, PRS, and even
SCH, the events are already well captured in the prior. This
reflects the ability of the model to satisfactorily reproduce the
major features of the transport over Europe during Novem-
ber 1998. At MHD and WES coastal sites, the phase of the
synoptic events, that usually last for a few days, is also well
captured in the prior fit but the model amplitude is too small.
For these stations, the inversion will correct the nearby fluxes
assuming that the transport and more importantly the verti-
cal mixing close to the surface is correctly modelled. At the
Hegyhatsal tower (HUN), the prior model misses the large
synoptic event at the end of the month. Such a deficiency is
also present at WES. Great care should thus be taken in the
interpretation of the inverse estimates around those sites at
the end of the month. Overall, we stress the importance of
the prior model-data fit. Strong a priori inconsistency should
always be screened before the inversion and checked for po-
tential transport errors. In the case of LMDZ, we are confi-
dent that the transport model is able to reproduce most of the
daily concentration variations, at least for the phase of the
events, a prerequisite in this approach.

3.2 Contributions to the model concentration output

We now analyse the contribution from the different compo-
nents, i.e. the sum of European land pixels, the sum of North
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Fig. 2. Model prior (dashed lines) and posterior (solid lines) concentration together with the data and their uncertainties, for the six continuous
sites used in this study. Data with no error bar were not used in the inversion (missing values).

Atlantic pixels, the sum of all “big regions”, and the initial
conditions to the total modelled concentration. Figure3 dis-
plays the prior and posterior contributions only at the Hegy-
hatsal tower HUN and the coastal site MHD. As expected, it
appears that

1. the contribution from the European land pixel domi-
nates,

2. the contribution from the distant regions increases over
time,

3. the contribution of the initial conditions decreases
through time toward a non-zero mean value.

Note that by “contribution” we implicitly refer to the day
to day variations induced by each component. We do not
consider here the mean value as it is directly adjusted with
an overall offset in the inverse procedure.

In November, the European land fluxes mostly control the
synoptic variations of the concentration at the six European
sites, the contribution from the North Atlantic being much
smaller. At the high-altitude stations (CMN, PRS, SCH) or

the western MHD site, the contribution from the rest of the
northern hemisphere (predominantly North America) is sig-
nificant and even dominates at the end of the month. At the
beginning of the month the air masses from North Amer-
ica have still not reached the European continent and their
contribution increases through time, whereas the influence
of the initial conditions is rather large in early November.
The large a priori model-data misfits at MHD between the 13
and the 20 of November and at HUN between the 24 and the
27 of November (too-low model concentrations, Fig.2) are
both adjusted through an increase of the European land pixel
fluxes.

The case of the initial conditions (IC) is very specific to
this study. As a first outcome, the IC appear to be rather im-
portant and to produce day to day concentration variations up
to 2 ppm (Fig.3). Although their contribution significantly
decreases with time, they still induce variations larger than
0.5 ppm after 20 days at most sites. Such variations are com-
parable for the coastal or high-altitude sites to the variations
induced by the other components. It is thus quite important
to account for an initial concentration field when doing an
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Fig. 3. Contribution of the different components, i.e. the sum of the European pixel based land fluxes (“Pixel-land”), the sum of the North
Atlantic pixel based fluxes (“Pixel-ocean”), the sum of the extra-European large regions (“big regions”), and the initial conditions, to the
model concentration at 2 stations, Mace Head (MHD) and the Hegyhatsal tower (HUN). Plain lines are for the posterior values and dotted
lines for the prior.

inversion over a short time period (i.e. a month). This result
is important when considering analysing continuous data ac-
quired during short campaigns. The optimisation of the ini-
tial conditions brings also another aspect. After inversion,
we obtain some concentration changes from the prior values
on the order of 0.5 ppm for the first 20 days and much less
afterward. Although not critical, these changes highlight a
potential source of uncertainty in an inversion where the IC
would not be optimised. In the case of an inversion with a
much smaller prior uncertainty on the initial field (20 ppm
instead of 200 ppm, see Sect.2.3), the concentration changes
from the prior become negligible. It is thus important to de-
fine the initial concentration field as accurately as possible,
especially if we can not solve for it. However, one should

note that these later conclusions probably depend on the size
and geometry of the network and we might anticipate that
with more stations (especially “upwind” of Europe) we might
produce a better initial condition and hence require smaller
changes from the prior.

3.3 Retrieved fluxes and uncertainties

This paper, with its short study period and low data density, is
intended as an exploration of the methodology for using con-
tinuous concentration observations. Thus we consider here
the information added by the observations to our prior es-
timate rather than the final values of the fluxes themselves.
A subsequent paper, with more stations and a longer study
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period, will examine the European carbon cycle in the light
of this new information. The information added by the ob-
servations is in two forms, an increment to the prior flux dis-
tribution and a reduction in its uncertainty.

Figure 4, upper panel, displays the flux changes (poste-
rior minus prior) for two correlation lengths, 500 km and
2000 km over land pixels. The largest changes occur around
the Baltic area, close to the WES station. Figure2 shows
a large underestimation of the concentration at WES from
the prior flux distribution. Hence, the inversion increases the
fluxes south and east of that station (the upwind direction
during November) by more than 70 gC/m2/month. Whether
these very large changes (more than 100% of the a priori val-
ues) are realistic or not is a difficult question to answer. There
are significant anthropogenic emissions in this area, so part
of the change may be a refinement of these estimates. It is
also possible that transport errors, especially ventilation of
the boundary layer, may result in incorrect amplitudes for
synoptic events. The impact of such transport errors, which
affect both the prior estimate of concentration and the re-
sponse to any increment in flux, is hard to determine. In
southern Europe around the Mediterranean, the fluxes are
decreased from the prior by about 20 gC/m2/month, a value
close to 80% of the initial field and also questionable. Fi-
nally, one should note that the flux changes over the ocean
are much lower than over land, hardly appearing on the scale
of Fig. 4.

If we now consider the difference between the two corre-
lation lengths, we notice a large change in the spatial extent
of the flux increment. With the 2000 km correlation length,
the flux increment impacts the whole of Europe more uni-
formly than with the 500 km length scale. This parameter
is critical in determining the spread of the information con-
tained in the continuous measurements. However, given the
lack of theoretical foundation for the correlation length, it is
difficult to choose a particular value. The 2000 km length
was chosen as an extreme case to emphasize the role of the
flux error covariance for an inversion with only a few sites.
The difference between these cases suggests that the use of
large regions in previous inversion studies might have over-
estimated the power of isolated concentration measurements
to constrain regional fluxes.

The lower panel of Fig.4 shows the percentage reduc-
tion of uncertainty in estimated flux (monthly average). This
quantity indirectly measures the information added by the
network regarding fluxes at each pixel. Note that the mean
values directly depend on the prior flux errors so that we will
mainly discuss the differences between pixels. The spatial
patterns of uncertainty reduction are rather independent of
the pattern of the flux increment. The increment depends
both on the connection of a given pixel with an observing site
as well as the mismatch of prior simulated concentrations.
The mismatch does not affect the uncertainty reduction. In
the 500 km case, the error reduction is maximum around each
station (except for the high-altitude sites, PRS and CMN, not

much influenced by regional pixels in November). The pat-
tern also reflects the major patterns of flow. For example, we
see a north-south component centred in Germany and East-
ern France, and a West-East component around MHD that is
visible on the ocean pixels. Over the central part of Europe,
the mean error reduction is of order 15–20%, with maximum
values at the stations up to 30% (values partly masked on
Fig. 4 by the station symbols). When we increase the cor-
relation length to 2000 km, the mean error reduction signif-
icantly increases both in magnitude and extent. As with the
flux changes, this behaviour reflects the propagation of the
information further from the main air flow paths.

Figure 5 displays the time evolution of the error reduc-
tion for some geographic regions, the Western, the Mediter-
ranean, the Balkan, and the North plus Central European re-
gions (see their contour in Fig.1). We clearly see that our net-
work of six sites strongly constrains Western Europe during
November but also the Balkan area at the end of the month.
The large day to day variations (up to 20%) reflect changes
both in the track of the retro-plumes and in the amplitude
of the convective mixing. The peak of reduction (49%) for
the Balkan region around the 23 of November is somewhat
anti-correlated with the error reduction over Western Europe,
reflecting a period with easterly winds at HUN, CMN, PRS
and SCH stations. Other anti-correlations, e.g. between the
North Atlantic and the North+Central Europe are also ap-
parent. With the increased correlation length (2000 km), the
results show similar patterns (not shown). All curves are
shifted towards larger error reductions (10–15% value) com-
pared to the 500 km correlation length and the differences
between the land regions decrease. If we increase the corre-
lation length up to 10 000 km, we tend towards the case of a
“big region” approach (“European pixels” being one region)
and the error reduction is then identical for each sub-region,
around 60%. This test suggests that the uncertainties might
be underestimated using large regions.

Overall the error reduction diagnostic is crucial; it allows
us not only to identify the regions that are relatively well
constrained, but also to discuss the pertinence of the esti-
mated fluxes. Before interpreting a large flux correction, one
should always verify that it occurred over a well constrained
area. Finally such a diagnostic helps to define the inverse
set-up, defining quantities like the correlation lengths. In the
2000 km case, the spatial pattern of the error reduction does
not reflect structures that can be related to the major air flow
path around the different sites, like in the 500 km case. The
pattern now reflects predominantly the distance from the sta-
tions, a feature that is probably oversimplified.

4 Summary and conclusions

This study makes use for the first time of continuous CO2
measurements over Europe for one month (six sites in
November 1998) in a full 3-D inverse approach specifically
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Fig. 4. Maps of the posterior minus prior monthly mean fluxes and of the monthly mean errors reduction (mean across all daily error
reductions, defined as posterior minus prior divided by the prior) expressed in percentage for two cases of correlation lengths, 500 km and
2000 km for land pixels (note that for ocean pixels the length is doubled). The stars represent the location of the six stations.

designed to infer daily surface fluxes. The major features of
this new inverse approach are

– to use both continuous data gathered on a daily time step
and monthly data,

– to optimise not only the surface fluxes at the model spa-
tial resolution over Europe but also the initial concen-
tration field,

– to use the “retro-plume” approach (Hourdin et al.,
2005a) within the LMDZ transport model to efficiently
compute the response functions.

This study is primarily methodological, although it makes
use of real data rather than the identical twin experiments of
previous studies. The major outcomes can be summarized as

– the LMDZ model is able to satisfactorily represent the
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Fig. 5. Time evolution of the error reduction for different re-
gions, Western Europe, Mediterannean Europe, Balkan Europe,
North+Central Europe, and North Atlantic (see their boundaries in
Fig. 1). Results correspond to the “500 km case” of the land error
correlation.

phase of the major synoptic events in the concentration
record for November over Europe. This is a necessary
condition for using these synoptic events as information
for inversions.

– The major adjustment to the flux and initial concentra-
tion field within the inversion is made to the pixels on
the back trajectory from each station.

– The choice of correlation length or, more generally,
prior covariance structure, strongly affects the patterns
of both uncertainty reduction and flux increment.

– For campaign-style inversion studies, shorter than about
20 days, it is necessary to use an accurate field of the
initial concentration and/or to include an optimization
of that field in the inversion. We provide an algorithm
for doing this feasibly.

Although preliminary, this work outlines the potential of con-
tinuous measurements in an inverse approach. There are,
however, many simplifications in the current work. We chose
to use complete diurnal averages, even though transport mod-
els have great difficulty simulating nocturnal boundary lay-
ers. We have made no special effort to deal with diurnal rec-
tification. We have not attempted a comparison of our inver-
sion results with independent bottom-up calculations, either
from models or flux measurements. These will be addressed
in developments of this work, once a sufficiently dense and
extended dataset is available. A study for the year 2001 is in
preparation.
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