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We define and solve Volterra equations driven by an irregular signal, by means of a variant of the rough path theory allowing to handle generalized integrals weighted by an exponential coefficient. The results are applied to the fractional Brownian motion with Hurst coefficient H > 1/3.

Introduction

Let x be a general n-dimensional Hölder continuous path with Hölder exponent γ > 0, an initial condition a ∈ R d , and σ : R + × R + × R d → R d,n a smooth enough function. Then a general form of stochastic Volterra equation driven by x (considered as a noisy input) can be written as:

y t = a + t 0 σ(t, u, y u ) dx u , for s ∈ [0, T ], (1) 
where T an arbitrary positive constant. This kind of system being widely used in the physical and biological literature, its noisy version has also been intensively studied when the driving motion x is a Brownian motion [START_REF] Berger | Volterra equations with Itô integrals[END_REF][START_REF] Berger | Volterra equations with Itô integrals II[END_REF][START_REF] Lewin | On a stochastic Volterra equation[END_REF] or a general semi-martingale [START_REF] Protter | Volterra equations driven by semimartingales[END_REF].

If the coefficient σ is also considered as a random function, which is natural in many situations, some anticipative stochastic calculus techniques are required in order to solve equation ( 1), and we refer to [START_REF] Alòs | Anticipating stochastic Volterra equations[END_REF][START_REF] Cochran | Stochastic Volterra equations with singular kernels[END_REF][START_REF] Coutin | Stochastic Volterra equations with singular kernels[END_REF][START_REF] Øksendal | The stochastic Volterra equation[END_REF][START_REF] Nualart | Large deviations for stochastic Volterra equations[END_REF][START_REF] Pardoux | Stochastic Volterra equations with anticipating coefficients[END_REF] for the main results in this direction.

It should be mentioned at this point that the last of those references [START_REF] Pardoux | Stochastic Volterra equations with anticipating coefficients[END_REF] is motivated by financial models of capital growth rate, which goes beyond the classical physical or biological applications of Volterra equations.

It seems then quite natural to generalize the aforementioned results, and consider systems like [START_REF] Alòs | Anticipating stochastic Volterra equations[END_REF] driven by general continuous processes, whose prototype can be thought of as a n-dimensional fractional Brownian motion. In this case, and when one desires to go beyond the Young case γ > 1/2, rough paths type techniques must come into the picture. However, the classical rough path theory introduced by Terry Lyons [START_REF] Lyons | System control and rough paths[END_REF] (see also the nice introductions [START_REF] Friz | Multidimensional dimensional processes seen as rough paths[END_REF][START_REF] Lewin | On a stochastic Volterra equation[END_REF]) is mostly designed to handle the case of diffusion type equations, and there have been an intensive activity during the last couple of years in order to extend these semi-pathwise techniques to other systems, such as delay equations [START_REF] Neuenkirch | Delay equations driven by rough paths[END_REF] or PDEs [START_REF] Caruana | Partial differential equations driven by rough paths[END_REF][START_REF] Gubinelli | Rough evolution equations[END_REF]. The current article fits then into this global project, and we shall see how to perturb the original rough path setting in order to handle systems like [START_REF] Alòs | Anticipating stochastic Volterra equations[END_REF].

Before we come to a description of our main results, let us mention a few choices we have made for this paper: (i) Like in [START_REF] Neuenkirch | Delay equations driven by rough paths[END_REF][START_REF] Gubinelli | Rough evolution equations[END_REF], we have chosen to work with a variant of the rough path theory introduced by Gubinelli in [START_REF] Gubinelli | Controlling rough paths[END_REF], and called algebraic integration. This method is based on some simple enough algebraic considerations, and this relative simplicity makes it amenable to intuitions on possible generalizations of the original setting, beyond the diffusion case. In the case of Volterra equations handled here, we will see that, in spite of the huge amount of technical details involved in our proofs, the main ideas on which our constructions rely are quite natural.

(ii) We have specialized equation [START_REF] Alòs | Anticipating stochastic Volterra equations[END_REF] in the following manner: instead of considering a general coefficient of the form σ(t, u, y u ), we have assumed that the coefficient σ can be decomposed under the form φ(tu) σ(x), for a given kernel φ : R + → R and a matrixvalued function σ defined on R d . Furthermore, an additional hypothesis is made on the kernel φ: we assume that it can be written as the Laplace transform of a certain function φ, namely that φ(v) = ∞ 0 e -vξ φ(ξ) dξ, and

∞ 0 (1 + ξ) β | φ(ξ)| dξ < ∞, (2) 
for a certain β > 0. This additional assumption is made in order to take advantage of the multiplicative property of the exponential function, and it should be noticed here that the same kind of results could have been obtained by means of Fourier (instead of Laplace) transforms. The integrability hypothesis on φ(ξ) is morally equivalent to a regularity condition on our kernel φ. Once these assumptions are made, and up to a an application of Fubini's theorem which can be justified easily in case of a smooth driving process x, our Volterra system can be written as:

y t = a + ∞ 0 dξ φ(ξ)
t 0 e -ξ(t-u) σ(y u ) dx u .

(iii) An additional cosmetic change is the following: in order to ease some of our future expansions, we transpose the matrix notations given before and set y t ≡ y * t . With this little change in the usual notations, one is left with the following system:

y t = a + ∞ 0 dξ φ(ξ) t 0 e -ξ(t-u) dx u σ(y u ). ( 4 
)
This is the general form under which we shall solve our Volterra problem. With these preliminaries in hand, the main results contained in this paper can be roughly summarized as follows (see Theorem 4.16 below for a precise statement): Theorem 1.1. Let x be a n-dimensional fractional Brownian motion with Hurst parameter H > 1/3. Assume that φ can be decomposed as [START_REF] Berger | Volterra equations with Itô integrals[END_REF], with β = 2, and that σ is a C 3,b -function. Then equation ( 4) admits a unique solution on any arbitrary interval [0, T ], in a class of paths called convolutional controlled processes, and where the integral with respect to x has to be interpreted as in Proposition 4.7.

Let us now say a few words about the methodology we have adopted in order to solve our equation: as mentioned before, it consists in an elaboration of the tools introduced in [START_REF] Gubinelli | Controlling rough paths[END_REF]. Let us recall that these latter reference relies on the definition of an elementary operator δ, which transforms for instance a function f of one variable t ∈ [0, T ] into a function of two variables as (δf ) ts = f tf s . Under some algebraic and analytic conditions, this operator δ can be inverted, its inverse is called Λ, and this inverse allows to construct a generalized integral of Young type. If one wants to solve an equation of the form dy t = dx t σ(y t ), a possible strategy is then the following: remark first that the a priori increments of y can be decomposed as:

(δy) ts = (δx) ts ζ s + r ts , with ζ s = σ(y s ), and r ts = t s dx u [σ(y u )σ(y s )] . [START_REF] Cochran | Stochastic Volterra equations with singular kernels[END_REF] Furthermore, if x is a γ-Hölder process, one also expects y to be γ-Hölder continuous. Thus, if σ is regular enough, ζ will inherit the same regularity, and it is also easily conceived that r should have the double regularity, namely 2γ-Hölder. This is precisely the structure asked in [START_REF] Gubinelli | Controlling rough paths[END_REF] for the solution to the diffusion-type equation dy t = dx t σ(y t ), and a process admitting the decomposition ( 5) is called a weakly controlled processes. The second important point in the theory is to notice that a reasonable definition of the integral t s dx u [σ(y u )σ(y s )] can be given for a controlled process, provided that the socalled Levy area associated to x (formally defined as dxdx) can be constructed, and thanks to the operator Λ mentioned above. This integration step transforms a weakly controlled process into a weakly controlled process, and allows to settle a fixed point argument for the resolution of the diffusion equation driven by x.

Let us try to explain now what has to be changed to the original algebraic integration setting in order to handle the case of a Volterra equations:

(i) Observe first that in order to solve equation [START_REF] Caruana | Partial differential equations driven by rough paths[END_REF], the main step is to define accurately the rough integral ỹt (ξ) ≡ t 0 e -ξ(t-u) dx u σ(y u ) for all t, ξ ∈ R + . As will be explained at Section 3.1, an important step in this direction is to note that, in order to get some increments of ỹ involving only integrals of the form t s , one has to introduce some twisted increments of the form δ ỹts (ξ) ≡ δỹ ts (ξ) -(e -ξ(t-s) -1)ỹ s (ξ). Then it is easily checked, in case of smooth paths y and x, that the a priori twisted increments of the solution ỹ to equation ( 4) can be expressed as δ ỹts (ξ) = t s e -ξ(t-v) dx v σ(y v ).

The operator δ will thus play a central role in our computations, a fact which is reminiscent from the calculations contained in [START_REF] Gubinelli | Rough evolution equations[END_REF] for the definition of rough PDEs. It turns out that the operator δ can also be inverted under some algebraic and analytic conditions. This inverse gives then raise to a generalized convolutional Young integral, which is at the core of our definition of the integral t 0 e -ξ(t-u) dx u σ(y u ).

(ii) The notion of controlled paths has also to be changed for the resolution of equation ( 4), and we shall introduce a notion of convolutional controlled path, which will be detailed at Section 4.1. They are basically defined as in equation [START_REF] Cochran | Stochastic Volterra equations with singular kernels[END_REF], except that δx is replaced by an increment of the form x 1 , with x 1 ts = t s φ(tv) dx v , which is assumed to exist once and for all. Then as in the diffusion case, we are able to define a natural extension of the notion of integral for those convolutional controlled processes, provided that some double iterated integrals based on x can be defined. More specifically, the equivalent of the notion of Levy area in our Volterra context is an increment indexed by the Laplace variable, of the form:

x2 ts (ξ) = ∞ 0 dη φ(η) t s e -ξ(t-v 1 ) dx v 1 v 1 s e -η(v 1 -v 2 ) dx v 2 . (6) 
Here again, this definition is only formal in case of a Hölder path x, but once it is assumed to exist and to satisfy suitable analytic and algebraic hypotheses, a good notion of integral can be constructed for convolutional controlled processes. This allows again a fixed point procedure in order to solve our Volterra equation. A quick glimpse at the proof of Theorem 4. [START_REF] Nualart | Stochastic calculus with respect to the fractional Brownian motion and applications[END_REF] will show however that this fixed point procedure is trickier than in the diffusion case.

(iii) An essential step in our approach is thus a good definition of the double integral [START_REF] Coutin | Stochastic Volterra equations with singular kernels[END_REF], and the study of its regularity in (s, t). This can be done quite easily (up to some Garsia type regularity theorems which have to be proven) when x is taken as a Brownian motion, and when the integrals with respect to x are interpreted in the Itô sense. However, an important part of the current article will be devoted to the definition of (6) when x is a fractional Brownian motion with 1/3 < H < 1/2. Here again, the path we have followed in order to obtain this definition is not completely standard, and let us say a few words about it. Indeed, the usual way to define a double integral like [START_REF] Coutin | Stochastic Volterra equations with singular kernels[END_REF] in case of a fBm is to use Stratonovich integrals, in the sense of the Malliavin calculus as explained in [START_REF] Nualart | Stochastic calculus with respect to the fractional Brownian motion and applications[END_REF]. However, this way to compute our iterated integrals involves a decomposition of the Stratonovich integral into a Skorokhod type term plus a trace term, which is hard (though not impossible) to analyze in case of an exponentially weighted integral like ours. We have thus decided to adopt another strategy, and have resorted to an analytical approximation of the fractional Brownian motion introduced in [START_REF] Unterberger | Stochastic calculus for fractional Brownian motion with Hurst exponent H larger than 1/4: a rough path method by analytic extension[END_REF]. This latter approximation, which will be recalled at Section 5, has the advantage to yield almost explicit and elementary computations, based on the analysis of singularities for some locally analytic functions defined on the complex plane. In our opinion, the calculations we obtain are thus more elegant than in the Malliavin calculus setting.

As we mentioned before, the resolution of rough Volterra equations relies thus on a few simple ideas. These ideas are however long to formalize when one wishes to give most of the details of the calculations, which explains the bulk of the current article. It should also be mentioned at this point that we could have tried to solve equation [START_REF] Alòs | Anticipating stochastic Volterra equations[END_REF], in its general form, without recurring to twisted convolutional increments as we did, by just following the standard algebraic integration formalism. This is in fact what we have done in the companion paper [START_REF] Deya | Rough Volterra equations 1: the algebraic integration setting[END_REF], and this idea works fine for the Young case, namely for a Hölder coefficient γ > 1/2. However, this first method fails to give a global existence result in the case 1/3 < γ < 1/2, mainly because the Picard iterations don't lead to a contraction property (we refer the reader to [START_REF] Deya | Rough Volterra equations 1: the algebraic integration setting[END_REF] for a more detailed argument). This important drawback justifies the introduction of the convolutional generalized integration we have used in the current paper.

Here is how our article is organized: we recall some basic definitions of algebraic integration at Section 2. Section 3 is devoted to the simpler case of Young equations, which allows to explain our method with less technical apparatus. Then at Section 4 we move to the rough case of our Volterra equation, and explain all the details of the method we have chosen in order to solve it. Finally, we apply our theory to the fractional Brownian motion case at Section 5.

Algebraic integration

This section is devoted to recall the very basic elements of the algebraic integration theory introduced in [START_REF] Gubinelli | Controlling rough paths[END_REF], in order to fix notations for the remainder of the paper. We also include a proof of the existence of the so-called sewing map Λ which is simpler than the one contained in the original paper [START_REF] Gubinelli | Controlling rough paths[END_REF], and is even a further simplification of the proof proposed in [START_REF] Gubinelli | Rough evolution equations[END_REF].

2.1. Increments. As mentioned in the introduction, the extended integral we deal with is based on the notion of increment, together with an elementary operator δ acting on them. The notion of increment can be introduced in the following way: for two arbitrary real numbers ℓ 2 > ℓ 1 ≥ 0, a vector space V , and an integer k ≥ 1, we denote by C k (V ) the set of continuous functions g :

[ℓ 1 , ℓ 2 ] k → V such that g t 1 •••t k = 0 whenever t i = t i+1
for some i ≤ k -1. Such a function will be called a (k -1)-increment, and we will set

C * (V ) = ∪ k≥1 C k (V )
. The operator δ alluded to above can be seen as an operator acting on k-increments, and is defined as follows on C k (V ):

δ : C k (V ) → C k+1 (V ) (δg) t 1 •••t k+1 = k+1 i=1 (-1) i g t 1 ••• ti •••t k+1 , (7) 
where ti means that this particular argument is omitted. Then a fundamental property of δ, which is easily verified, is that δδ = 0, where δδ is considered as an operator from

C k (V ) to C k+2 (V ). We will denote ZC k (V ) = C k (V ) ∩ Kerδ and BC k (V ) = C k (V ) ∩ Imδ.
Some simple examples of actions of δ, which will be the ones we will really use throughout the paper, are obtained by letting g ∈ C 1 and h ∈ C 2 . Then, for any t, u, s ∈ [ℓ 1 , ℓ 2 ], we have (δg) ts = g tg s , and (δh

) tus = h ts -h tu -h us . (8) 
Furthermore, it is readily checked that the complex (C * , δ) is acyclic, i.e. ZC k+1 (V ) = BC k (V ) for any k ≥ 1. In particular, the following basic property, which we label for further use, holds true:

Lemma 2.1. Let k ≥ 1 and h ∈ ZC k+1 (V ). Then there exists a (non unique) f ∈ C k (V ) such that h = δf .
Observe that Lemma 2.1 implies that all the elements h ∈ C 2 (V ) such that δh = 0 can be written as h = δf for some (non unique) f ∈ C 1 (V ). Thus we get a heuristic interpretation of δ| C 2 (V ) : it measures how much a given 1-increment is far from being an exact increment of a function (i.e. a finite difference). Notice that our future discussions will mainly rely on k-increments with k ≤ 2, for which we will use some analytical assumptions. Namely, we measure the size of these increments by Hölder norms defined in the following way: for f ∈ C 2 (V ) let

f µ ≡ sup s,t∈[ℓ 1 ,ℓ 2 ] f ts V |t -s| µ , and C µ 1 (V ) = {f ∈ C 2 (V ); f µ < ∞} .
In the same way, for h ∈ C 3 (V ), set

h γ,ρ = sup s,u,t∈[ℓ 1 ,ℓ 2 ] h tus V |u -s| γ |t -u| ρ (9) h µ ≡ inf i h i ρ i ,µ-ρ i ; h = i h i , 0 < ρ i < µ ,
where the last infimum is taken over all sequences {h i ∈ C 3 (V )} such that h = i h i and for all choices of the numbers ρ i ∈ (0, z). Then • µ is easily seen to be a norm on C 3 (V ), and we set

C µ 3 (V ) := {h ∈ C 3 (V ); h µ < ∞} . Eventually, let C 1+ 3 (V ) = ∪ µ>1 C µ 3 (V )
, and remark that the same kind of norms can be considered on the spaces ZC 3 (V ), leading to the definition of some spaces ZC µ 3 (V ) and ZC 1+ 3 (V ). In order to avoid ambiguities, we shall denote by N [f ; C κ j ] the κ-Hölder norm on the space C j , for j = 1, 2, 3. For ζ ∈ C j (V ), we also set

N [ζ; C 0 j (V )] = sup s∈[ℓ 1 ;ℓ 2 ] j ζ s V
. With these notations in mind, the following proposition is a basic result which is at the core of our approach to path-wise integration:

Theorem 2.2 (The sewing map). Let µ > 1. For any h ∈ ZC µ 3 ([0, 1]; V ), there exists a unique Λh ∈ C µ 2 ([0, 1]; V ) such that δ(Λh) = h. Furthermore, Λh µ ≤ c µ N [h; C µ 3 (V )], ( 10 
)
with c µ = 2+2 µ ∞ k=1 k -µ .
This gives rise to a linear continuous map Λ :

ZC µ 3 ([0, 1]; V ) → C µ 2 ([0, 1]; V ) such that δΛ = Id ZC µ 3 ([0,1];V ) . Proof.
The original proof of the existence of Λ (with a somewhat different constant C µ ) can be found in [START_REF] Gubinelli | Controlling rough paths[END_REF] and has been simplified in [START_REF] Gubinelli | Rough evolution equations[END_REF]. We give here a more elementary proof, which will be easy to adapt to the pertubated incremental operator δ (see Section 3.2). Uniqueness. Let M, M ′ ∈ C µ 2 such that δM = δM ′ = h. In particular, δ(M -M ′ ) = 0, and thus, according to 2.1, M -M ′ = δq, with q ∈ C 1 . But then q ∈ C µ 1 with µ > 1, hence q is constant, and as a consequence, M = M ′ .

Existence. By definition of ZC µ 3 , we know that there exists B ∈ C 2 such that δB = h. Consider now the sequence (π n ) n of dyadic partitions of [0, 1], that is

π n = {0 = t n 0 ≤ t n 1 ≤ • • • ≤ t n 2 n = 1}, with t n i = i 2 n
, and set, for all s, t ∈ [0, 1],

M n ts =      0 if π n ∩ (s, t) = ∅, B ts -B t n j s -B tt n j if π n ∩ (s, t) = {t n j }, B ts -B t n j s -B tt n l -l-1 i=j B t n i+1 t n i if π n ∩ (s, t) = {t n j ≤ • • • ≤ t n l }. It is readily checked that the mapping M n : s, t → M n ts is continuous on [0, 1] 2 .
We are now going to show that the sequence (M n ) n∈N converges in the space C([0, 1] 2 ; V ) of continuous functions on [0, 1] 2 , endowed with the norm

N [• ; C 0 2 (V )]. Let then s, t ∈ [0, 1], n ∈ N, and denote π n ∩ (s, t) = {t n j ≤ t n j+1 ≤ • • • ≤ t n l } = {t n+1 2j ≤ t n+1 2j+2 ≤ • • • ≤ t n+1 2l-2 ≤ t n+1 2l }, with j ≤ l ≤ 2 n . If s < t n+1 2j-1 and t ≤ t n+1 2l+1 , then π n+1 ∩ (s, t) = {t n+1 2j-1 ≤ t n+1 2j ≤ t n+1 2j+1 ≤ • • • ≤ t n+1 2l-1 ≤ t n+1
2l }, and in that case

M n+1 ts -M n ts = (δB) t n+1 2j t n+1 2j-1 s + l-1 i=j (δB) t n+1 2i+2 t n+1 2i+1 t n+1 2i ,
which, since δB = h, leads to

M n+1 ts -M n ts V ≤ N [h; C µ 3 (V )] 1 2 n+1 µ (1 + l -j).
We proceed likewise for the cases (s

≥ t n+1 2j-1 , t > t n+1 2l+1 ), (s < t n+1 2j-1 , t > t n+1 2l+1 ) and (s ≥ t n+1 2j-1 , t ≤ t n+1 2l+1 ), to finally get M n+1 ts -M n ts V ≤ N [h; C µ 3 (V )] 1 2 µ n+1 (2 + l -j) ≤ N [h; C µ 3 (V )] 2 µ 2 1 2 µ n + 1 2 µ-1 n ,
and thus

N [M n+1 -M n ; C 0 2 (V )] ≤ N [h; C µ 3 (V )] 2 µ 2 1 2 µ n + 1 2 µ-1 n . Since we have considered µ > 1, this proves that the series n N [M n+1 -M n ; C 0 2 (V )] converges, and thus n (M n+1 -M n ) converges in C([0, 1] 2 ; V ) endowed with the norm N [• ; C 0 2 (V )]
, the latter space being complete. But, invoking the fact that M 0 = 0, we have M N = N -1 n=0 (M n+1 -M n ), which entails the uniform convergence of M N towards an element M ∈ C([0, 1] 2 ; V ). We can already notice that for all n, M n tt = 0, which yields the same property for M, so that M ∈ C 2 .

Take now

0 ≤ s ≤ u ≤ t ≤ 1 and denote π n ∩ (s, u) = {t n j , . . . , t n l }, π n ∩ [u, t) = {t n j ′ , . . . , t n l ′ }, hence π n ∩ (s, t) = {t n j , . . . , t n l } ∪ {t n j ′ , . . . , t n l ′ }. Thus, M n ts = B ts -B t n j s -B tt n l ′ - l-1 i=j B t n i+1 t n i - l ′ -1 i=j ′ B t n i+1 t n i -B t n j ′ t n l .
We will assume that t n j ′ > u, the case t n j ′ = u leading to the same relation [START_REF] Gubinelli | Rough evolution equations[END_REF]. Then

M n ts = B ts + B us -B t n j s -B ut n l - l-1 i=j B t n i+1 t n i + B tu -B t n j ′ u -B tt n l ′ - l ′ -1 i=j ′ B t n i+1 t n i + B ut n n + B t n j ′ u -B us -B tu -B t n j ′ t n
l , which can be written as

M n ts = M n us + M n tu + h tus -h t n j ′ ut n l , (11) 
Since h ∈ C µ 3 , lim n→∞ h t n j ′ ut n l = 0, so that, by letting n tend to infinity in the previous relation, we get δM = h.

Finally, let us show that for any s, t ∈ [0, 1] and n ∈ N,

M n ts V ≤ c µ N [h; C µ 3 (V )] |t -s| µ , (12) 
which will prove inequality [START_REF] Gubinelli | Controlling rough paths[END_REF] and as a consequence, the Hölder regularity of M. To this end, fix s, t

∈ [0, 1], n ∈ N. If π n ∩ (s, t) = ∅, the result is obvious. If π n ∩ (s, t) = {t n j }, M n ts = (δB) tt n j s = h tt n j s , hence M n ts V ≤ N [h; C µ 3 (V )] |t -s| µ ≤ c µ N [h; C µ 3 (V )] |t -s| µ . If π n ∩ (s, t) = {t n j , . . . , t n l }, pick k ∈ {j + 1, . . . , l -1} such that |t n k+1 -t n k-1 | ≤ 2 l -j -1 |t -s| .
At this point, the previous relation does not seem very relevant insofar as the distances between two successive points of π n are equal. In fact, this relation will make sense when we iterate the scheme. Consider indeed the new partition π = {t n j , . . . , t n k-1 , t n k+1 , . . . , t n l } and define Mn ts according to the same principle as M n ts , using π instead of π n ∩ (s, t). Then

M n ts -Mn ts = B t n k+1 t n k-1 -B t n k t n k-1 -B t n k+1 t n k = h t n k+1 t n k t n k-1
, and as a result

M n ts -Mn ts V ≤ N [h; C µ 3 (V )] 2 µ (l -j -1) µ |t -s| µ .
We iterate the procedure until the partition reduces to the empty set, to get

M n ts V ≤ N [h; C µ 3 (V )] |t -s| µ 2 + 2 µ l-j-1 k=1 1 k µ ≤ c µ N [h; C µ 3 (V )] |t -s| µ .
The following corollary gives a first relation between the structures we have just introduced and generalized integrals, in the sense that it connects the operators δ and Λ with Riemann sums.

Corollary 2.3 (Integration of small increments). For any 1-increment

g ∈ C 2 (V ), such that δg ∈ C 1+ 3 , set δf = (Id -Λδ)g. Then (δf ) ts = lim |Πts|→0 n i=0 g t i+1 t i ,
where the limit is over any partition Π ts = {t 0 = t, . . . , t n = s} of [t, s] whose mesh tends to zero. The 1-increment δf is the indefinite integral of the 1-increment g.

Proof. For any partition Π

t = {s = t 0 < t 1 < ... < t n = t} of [s, t], write (δf ) ts = n i=0 (δf ) t i+1 t i = n i=0 g t i+1 t i - n i=0 Λ t i+1 t i (δg).
Observe now that for some µ > 1 such that δg 

∈ C µ 3 , n i=0 Λ t i+1 t i (δg) V ≤ n i=0 Λ t i+1 t i (δg) V ≤ N [Λ(δg); C µ 2 (V )] |Π ts | µ-1 |t -
In this context, we have the following useful properties.

Proposition 2.4. The following differentiation rules hold true:

(1) Let g, h be two elements of C 1 . Then

δ(gh) = δg h + g δh. (14) 
(2) Let g ∈ C 1 and h ∈ C 2 . Then δ(gh) = δg h + g δh, δ(hg) = δh gh δg.

Proof. We will just prove [START_REF] Neuenkirch | Delay equations driven by rough paths[END_REF], the other relations being equally trivial:

if g, h ∈ C 1 , then [δ(gh)] ts = g t h t -g s h s = g t (h t -h s ) + (g t -g s ) h s = g t (δh) ts + (δg) ts h s ,
which proves our claim.

The iterated integrals of smooth functions on [ℓ 1 , ℓ 2 ] are obviously particular cases of elements of C which will be of interest for us, and let us recall some basic rules for these objects: consider f, g ∈ C ∞ 1 , where C ∞ 1 is the set of smooth functions from [ℓ 1 , ℓ 2 ] to R. Then the integral dg f , which will be denoted by J (dg f ), can be considered as an element of C ∞ 2 . That is, for s, t ∈ [ℓ 1 , ℓ 2 ], we set

J ts (dg f ) dgf ts = t s dg u f u .
The multiple integrals can also be defined in the following way: given a smooth element h ∈ C ∞ 2 and s, t ∈ [ℓ 1 , ℓ 2 ], we set

J ts (dg h) ≡ dgh ts = t s dg u h us .
In particular, the double integral J ts (df

3 df 2 f 1 ) is defined, for f 1 , f 2 , f 3 ∈ C ∞ 1 , as J ts (df 3 df 2 f 1 ) = df 3 df 2 f 1 ts = t s df 3 u J us df 2 f 1 .
Now, suppose that the nth order iterated integral of

df n • • • df 2 f 1 , still denoted by J (df n • • • df 2 f 1 ), has been defined for f 1 , f 2 . . . , f n ∈ C ∞ 1 . Then, if f n+1 ∈ C ∞ 1 , we set J ts (df n+1 df n • • • df 2 f 1 ) t s df n+1 u J us df n • • • df 2 f 1 , (15) 
which defines the iterated integrals of smooth functions recursively. Observe that a nth order integral J (df n • • • df 2 df 1 ) could be defined along the same lines.

The following relations between multiple integrals and the operator δ will also be useful in the remainder of the paper (see e.g. [START_REF] Gubinelli | Rough evolution equations[END_REF] for a proof of these elementary facts): Proposition 2.5. Let f, g be two elements of C ∞ 1 . Then, recalling the convention (13), it holds that

δf = J (df ), δ (J (dgf )) = 0, δ (J (dgdf )) = (δg)(δf ) = J (dg)J (df ),
and, in general,

δ J (df n • • • df 1 ) = n-1 i=1 J df n • • • df i+1 J df i • • • df 1 .

Volterra equations in the Young setting

Recall that we wish to solve equation ( 4), and we start this program by studying the Young case, i.e. the case of a driving process x which is assumed to be γ-Hölder continuous with γ > 1/2. This allows us to introduce most of the general tools used in the sequel, and this section is thus conceived as an introduction to the rough case which will be treated later on. In order to get a feeling of the kind of structure needed in order to deal with Volterra equations, we will start with some heuristic considerations, which are basically justified in case of a smooth driving noise x. Then we shall proceed to define rigorously the equation, and solve it in a suitable class of functions.

3.1. Heuristic considerations. Assume for the moment that x is a smooth process, in which case equation ( 4) is well defined and solvable when σ is a regular coefficient. In order to get an intuition of the natural operators associated to our equation, let us recast it, in quite a redundant way, as a system:

y t = a + ∞ 0 ỹt (ξ) φ(ξ) dξ ỹt (ξ) = t 0 e -ξ(t-v) dx v σ(y v ). ( 16 
)
Notice that the first relation above is not sufficient in order to determine ỹ as a function of y. However, the second one defines ỹ without ambiguity.

As we already mentioned in the introduction, if one wants to generalize the system we have just written to a non smooth signal x, it is now easily seen that the main step is to give a rigorous meaning to the integral t 0 e -ξ(t-v) dx v σ(y v ) defining ỹt (ξ). To this purpose, and having introduced the main tools of algebraic integration in the last section, the first idea one may have in mind is to get a suitable expression of the increments (δỹ(ξ)) ts ≡ ỹ(ξ) tỹ(ξ) s for a given ξ. And indeed in case of a smooth driving process x, invoking equation [START_REF] Nualart | Stochastic calculus with respect to the fractional Brownian motion and applications[END_REF], those increments can be written as:

(δỹ(ξ)) ts = t s e -ξ(t-v) dx v σ(y v ) + a ts (ξ) s 0 e -ξ(s-v) dx v σ(y v ) = t s e -ξ(t-v) dx v σ(y v ) + a ts (ξ)ỹ s (ξ),
where we have set a ts (ξ) = e -ξ(t-s) -1. Notice now that the first term t s e -ξ(t-v) dx v σ(y v ) above is really similar to what one obtains in the diffusion case, namely an integral of the form t s . However, the second term a ts (ξ)ỹ s (ξ) is a little clumsy for further expansions. Hence, a straightforward idea is to make it disappear by just setting ( δỹ) ts (ξ) = (δỹ) ts (ξ)a ts (ξ)ỹ s (ξ). Then the last equation can be read as ( δỹ) ts (ξ) = t s e -ξ(t-v) dx v σ(y v ), and the system (16) becomes

y t = a + ∞ 0 ỹt (ξ) φ(ξ) dξ ( δỹ) ts (ξ) = t s e -ξ(t-v) dx v σ(y v ), (17) 
with the initial condition ỹ0 ≡ 0. This very simple fact, together with the nice algebraic properties which will be seen below, converts the elementary operator δ into the central object in order to solve our Volterra system. These preliminaries being admitted, we shall essentially focus in the sequel on the process ỹ, by merging the two equations of the last system into a single one:

( δỹ) ts (ξ) = t s e -ξ(t-v) dx v σ a + ∞ 0 dη φ(η)ỹ v (η) . ( 18 
)
The original solution process y can then be recovered in an obvious way, and we shall solve the Volterra equation under the form (18).

Convolutional increments.

Let us turn now to the main concern of this section, that is the definition of a complex ( C * , δ) which behaves nicely for the definition of our Volterra problem.

Notice that, due to the fact that e -ξ(t 1 -t 2 ) is nicely bounded only for t 1 > t 2 , our integration domains will be of the form S n = S n ([ℓ 1 , ℓ 2 ]), where S n stands for the nsimplex

S n = {(t 1 , . . . , t n ) : ℓ 2 ≥ t 1 ≥ t 2 ≥ • • • ≥ t n ≥ ℓ 1 }.
Let then V be a separable Banach space. In order to define the basic family of continuous increments we will work with, we first need to specify the (Banach) functional space each ỹts (•) will belong to, with a special emphasis on the Laplace coordinate. In fact, the calculations to come (see for example Lemma 3.9) incite us to consider the L 1 -type space induced by the norm

N [g; L β (V )] := N [g; L β, φ(V )] = ∞ 0 dξ| φ(ξ)|(1 + ξ β ) g(ξ) V ,
where β > 0 is fixed. Then, we define Cn,β as the space of continuous applications from S n to L β (V ). Observe that an operator δ : Cn,β (V ) → Cn+1,β (V ) can be defined just like in [START_REF] Deya | Rough Volterra equations 1: the algebraic integration setting[END_REF]. In particular, if à ∈ C1,β (V ) and B ∈ C2,β (V ), the relation ( 8) is still valid. As we have seen at Section 3.1, a suitable family of operators related to our Volterra equation is given by δ : Cn,β (V ) → Cn+1,β (V ), defined for any positive ξ by

[ δ Ã] t 1 ...t n+1 (ξ) = [δ Ã] t 1 ...t n+1 (ξ) -a t 1 t 2 (ξ) Ãt 2 ...t n+1 (ξ), for à ∈ Cn,β (V ), (19) 
where (t 1 . . . t n+1 ) ∈ S n+1 . In the remainder of the paper, we will explicitly write the variable ξ down only when there might be a confusion. Thus, we simply write δ Ã = δ Ãa Ã, where we made use of the convention [START_REF] Lyons | System control and rough paths[END_REF]. As in Section 2.1, one can define, for n ≥ 1,

Z Cn,β (V ) = Cn,β (V ) ∩ ker( δ), and B Cn,β (V ) = Cn,β (V ) ∩ Im( δ)
In fact, when

V = R k or V = R k,d
, endowed with their natural Euclidian norms, the convention (13) can be extended according to the following principle:

Lemma 3.1. Let M ∈ Cn,β (R k,l ) and L ∈ C m (R l ).
Then ML, defined by the relation

( M L) t 1 ...t m+n-1 (ξ) = Mt 1 ...tn (ξ) L tn...t m+n-1 ,
belongs to Cm+n-1,β (R k ). Moreover, when n = 2, the following algebraic relations hold true:

δ( M L) = δ M L -M δL, and δ( M L) = δ M L -M δL.
Proof. The first part of our claim is an obvious consequence of Mt

1 ...tn (ξ) L tn...t m+n-1 R k ≤ Mt 1 ...tn (ξ) R k,l L tn...t m+n-1 R n .
As for the algebraic relations, the first one follows from Proposition 2.4, while δ( ML) With these preliminaries in hand, it is now easily shown that the perturbed operators δ preserve some important properties of the original coboundary δ:

Proposition 3.2. δδ = 0. More precisely, the couple ( C * ,β (V ), δ) satisfies Z Cn,β (V ) = B Cn,β (V ) for all n ≥ 0.
Proof. This proof is borrowed from [11, Proposition 3.1] and is included here for sake of completeness. If F ∈ Cn,β (V ), according to the fact that δδ = 0 and thanks to Lemma 3.1, we have δδ

F = (δ -a) [(δ -a) F ] = δδ F -δ(a F ) -a δ F + a a F = -δa F + a δ F -a δ F + a a F = a a F -δa F .
Furthermore, it is readily checked that (δa) tus = a tu a us , (t, u, s) ∈ S 3 , which gives δδ F = 0.

The fact that Im δ| Cn+1,β (V ) = ker δ| Cn+1,β (V ) can be proved along the same lines as for the (C * , δ) complex [START_REF] Gubinelli | Controlling rough paths[END_REF]: pick à ∈ Cn+1,β (V ) such that δ à = 0, and set Bt Thus, setting C = (-1) n+1 B, we get δ C = Ã.

The cochain complex ( C * ,β (V ), δ) will be the structure at the base of all the constructions in this paper. Let us also mention at this point that, when the meaning is obvious, we will transpose the notations of Section 2.1 to our convolutional setting. Furthermore, whenever this doesn't lead to an ambiguous situation, we will write Cn,β instead of Cn,β (V ).

We will now define an equivalent of the iterated integrals of Section 2.2 in our convolution context: for two smooth functions f, g, ℓ 1 ≤ s < t ≤ ℓ 2 and ξ ≥ 0, define

J ts ( dg f )(ξ) = t s e -ξ(t-v) dg v f v , and for h ∈ C ∞ 2 , J ts ( dg h)(ξ) = t s e -ξ(t-v) dg v h vs .
Once these elementary blocks have been defined, the iterated integrals

J ( dg 1 . . . dg n f ) for g 1 , . . . , g n , f ∈ C ∞ 1 , (20) 
should be defined as functions of several variables, according to the same recursive principle as in Section 2.2:

J ts ( dg 1 . . . dg n f )(ξ 1 , . . . , ξ n ) = t s e -ξ 1 (t-v) dg 1 v J vs ( dg 2 . . . dg n f )(ξ 2 , . . . , ξ n ).
In particular, J ts ( dx dx)(ξ, η) = t s e -ξ(t-v) dx v v s e -η(v-w) dx w . The following relations between δ and these integrals will be useful for our purposes:

Proposition 3.3. Let f, g ∈ C ∞ 1 . Then δ J ( dg f ) = 0 δ J ( dg δf ) = J ( dg) δf.
Proof. Straightforward.

3.3.

Hölder spaces and Λ-map. In the Young setting, it will be enough to let our solution live in some Hölder-type spaces. Indeed, one expects the solution y to [START_REF] Nualart | Large deviations for stochastic Volterra equations[END_REF] to belong to a space of the form C β 1 (as defined at Section 2.1) for any 1γ < β < γ, where γ is the Hölder regularity exponent of the noise x. Since β + γ > 1 in this case, the exponentially weighted integrals with respect to x can be interpreted in the Young sense, as will be explained below.

As far as the path ỹ alluded to in ( 17) is concerned, we also expect his increments δỹ to be regular enough. Thus, we shall resort to the following natural Hölder spaces:

Cµ 2,β := {ỹ ∈ C2,β : N [ỹ; Cµ 2,β ] := sup 0≤s<t≤T N [ỹ ts ; L β ] |t -s| µ < ∞}, Cµ 1,β := {ỹ ∈ C1,β : δỹ ∈ Cµ 2,β }.

Notice that our definition of the space Cµ

1,β is based on the twisted operator δ instead of δ. For any h ∈ C3,β , set, just as in the standard case,

N [ h; C(γ,ρ) 3,β ] := sup 0≤s<u<t≤T N [ htus ; L β ] |t -u| γ |u -s| ρ , N [ h; Cµ 3,β ] := inf i N [h i ; C(ρ i ,µ-ρ i ) 3,β ]; h = i h i , 0 < ρ i < µ ,
where the last infimum is taken over all sequences { h ∈ C3,β } such that h = i h i and for all choices of the numbers ρ i ∈ (0, µ). Denote also Z Cµ k,β := Im( δ) ∩ Cµ k,β and observe that the property ZC µ 2 = {0} if µ > 1 remains true for δ:

Lemma 3.4. If µ > 1, then Z Cµ 2,β = {0}. Proof. Let M = δ f ∈ Z Cµ 2,β . Consider the telescopic sum ( δ f ) ts = n i=0 e -. (t-t i+1 ) ( δ f ) t i+1 t i with respect to the partition Π ts = {s = t 0 < t 1 < ... < t n = t} of the interval [s, t]. Then N [ Mts ; L β ] ≤ n i=0 N [( δ f ) t i+1 t i ; L β ] ≤ N [ M; Cµ 2,β ] |t -s| |Π ts | µ-1 ,
which tends to 0 as the mesh |Π ts | of the partition decreases to 0.

As we already mentioned, an essential tool in order to define generalized convolutional integrals is the following inverse of the operator δ:

Proposition 3.5 (The convolutional sewing map). Let µ > 1, β > 0. For any h ∈ Z Cµ 3,β , there exists a unique Λh ∈ Cµ 2,β such that δ( Λh ) = h. Furthermore, N [ Λh ; Cµ 2,κ ] ≤ c µ N [ h; Cµ 3,κ ], (21) 
with c µ = 2 + 2 µ ∞ k=1 1 k µ .
This gives rise to a linear continuous map Λ :

Z Cµ 3,β → Cµ 2,β such that δ Λ = Id Z Cµ 3,β .
Proof. It follows the same line as the proof of Proposition 2.2.

Uniqueness. Let M , M′ ∈ Cµ 2,β such that δ M = δ M′ = h. In particular, δ( M -M′ ) = 0, hence M -M′ ∈ Z Cµ 2,β .
Thanks to lemma 3.4, we deduce M = M′ . Existence. As in the standard case, consider B ∈ C2,β such that δ B = h and construct

Mn ts = 0 if π n ∩ (s, t) = ∅ ( δ B) tt n j s if π n ∩ (s, t) = {t n j } and if π n ∩ (s, t) = {t n j ≤ ... ≤ t n l }, Mn ts = Bts -Btt n l - l-1 i=j e -. (t-t n i+1 ) Bt i+1 t i -e -. (t-t n j ) Bt n j s ,
where π n stands for the n-dyadic partition of [0

, 1]. It is readily checked that Mn is continuous from [0, 1] 2 to L β . Moreover, if for instance π n ∩ (s, t) = {t n+1 2j ≤ t n+1 2j+2 ≤ ... ≤ t n+1 2l }, with s < t n+1 2j-1 and t > t n+1 2l+1 , then Mn+1 ts -Mn ts = ( δ B) tt n+1 2l+1 t n+1 2l + e -. (t-t n+1 2j ) ( δ B) t n+1 2j t n+1 2j-1 s + l-1 i=j e -. (t-t n+1 2i+2 ) ( δ B) t n+1 2i+2 t n+1 2i+1 t n+1 2i ,
and since δ B = h, this yields:

N [ Mn+1 ts -Mn ts ; L β ] ≤ N [ h; Cµ 3,β ] 2 µ 2 1 2 µ n + 1 2 µ-1 n .
This estimation remains true for the other cases of intersection of π n with (s, t). Using the same arguments as with Λ, we thus get the existence of a limit M of Mn in C2,β .

The fact that δ M = h can be proved just as in Proposition 2.2, and it is the same for the estimation

N [ Mn ts ; L β ] ≤ c µ N [ h; Cµ 3,β ] |t -s| µ .
We also have the following equivalent of Corollary 2.3, which links Λ with convolutional Riemann sums, at our disposal:

Corollary 3.6. For any 1-increment g ∈ C2,β such that δg ∈ Cµ 3,β (µ > 1), set δ f = (Id -Λδ )g. Then ( δ f) ts = lim |Πts|→0 n i=0 e -.(t-t i+1 ) gt i+1 t i in L β ,
where the limit is over any partition Π ts = {t 0 = t, . . . , t n = s} of [t, s] whose mesh tends to zero.

Proof. We use the same arguments as in the standard case, starting from ( δ f ) ts = i e -.(t-t i+1 ) ( δ f ) t i+1 t i .

3.4.

Young convolution integral. Recall that, according to the notations of Section 3.2, the Volterra equation [START_REF] Øksendal | The stochastic Volterra equation[END_REF] we are interested in can be read as

ỹ0 ≡ 0, δ ỹ = J dx σ a + ∞ 0 dη φ(η)ỹ(η) . ( 22 
)
We will now define integrals of the form J ( dx z), such as the one appearing in the right hand side of equation ( 22), when x, z are only γ-Hölder with γ > 1/2. This will rely on the following assumption, which is trivially met when x is a smooth path:

Hypothesis 1. Assume that, for some γ ∈ (1/2, 1), x is a path in C γ 1 (R 1,d ), allowing to define an increment x1 ∈ Cγ 2,γ (R 1,d ) which satisfies δx 1 = 0.
Remark 3.7. The increment x1 represents morally the integral J ( dx), which will be defined as a Wiener integral in the fractional Brownian case (see Section 3.6). Furthermore, under Hypothesis 1, the increment x 1 ts ≡ ∞ 0 x1 ts (ξ) φ(ξ) dξ is well defined as an element of C γ 2 . The fact that x1 (•) ∈ L γ will be simply ensured by the condition

∞ 0 (1+ξ γ )| φ(ξ)| dξ < ∞. Theorem 3.8. Let x be a path from [0, T ] to R 1,d satisfying Hypothesis 1, for a given γ ∈ (1/2, 1). Let z ∈ C γ 1 , and for ξ ∈ R + , set J ( dx z)(ξ) = x1 (ξ) z + Λ[x 1 δz](ξ) = (Id -Λδ )[x 1 z](ξ). (23) 

Then

(1) J ( dx z) is well defined as an element of Cγ 2,γ , and coincides with the usual Riemann integral

t s e -ξ(t-v) dx v z v when γ = 1. (2) For a constant c x > 0, we have, for all ℓ 1 < ℓ 2 , N [J ( dx z); Cγ 2,γ ([ℓ 1 , ℓ 2 ])] ≤ c x N [z; C 0 1 ([ℓ 1 , ℓ 2 ])] + ε γ N [z; C γ 1 ([ℓ 1 , ℓ 2 ])] ,
where the norms N have been defined at Section 3.3,

N [z; C0 1 ] := sup ℓ 1 ≤s≤ℓ 2 z s and ε = |ℓ 2 -ℓ 1 |. (3) It holds that, for any ℓ 1 ≤ s < t ≤ ℓ 2 , J ts ( dx z) = lim |Πts|→0 n i=0 e -.(t-t i+1 ) x1 t i+1 ,t i z t i in L γ ,
where the limit is over all partitions Π ts = {t 0 = t, . . . , t n = s} of [s, t] as the mesh of the partition goes to zero.

Proof.

(1) In the regular case, the integral J ts ( dx z)(ξ) ≡ t s e -ξ(t-v) dx v z v is defined in the Riemann sense, and it is readily checked that

J ts ( dx z) = x1 ts z s + J ts ( dx δz), (24) 
and hence J ts ( dx δz) = J ts ( dx z) -x1 ts z s . Applying δ to both sides of this last relation and taking into account Proposition 3.3, Lemma 3.1 and Hypothesis 1, we obtain:

δ J ( dx δz) = -δ x1 z + x1 δz = x1 δz.
Now, if x1 and z are γ-Hölder continuous with γ > 1/2, Λ can be applied to the relation above, and one can write J ts ( dx δz) = Λ(x 1 δz). Plugging this equality into (24), we obtain the expression [START_REF] Unterberger | Stochastic calculus for fractional Brownian motion with Hurst exponent H larger than 1/4: a rough path method by analytic extension[END_REF]. Thus our integral coincides with the usual one in case of a regular process x.

Since 2γ > 1, the item ( 2) is a direct consequence of the contraction property (21) of Λ. As for (3), it stems from Corollary 3.6.

Volterra equations.

We are now ready to solve equation [START_REF] Stroock | Probability theory, an analytic view[END_REF], by interpreting the integral J ( dx σ(a + ∞ 0 dη φ(η)ỹ(η))) as in Theorem 3.8. Before stating the main theorem in this direction, let us introduce the subspace C0,γ 1,γ of Cγ 1,γ induced by the norm

N [ỹ; C0,γ 1,γ ] = N [ỹ; C0 1,γ ] + N [ỹ; Cγ 1,γ ],
where

N [ỹ; C0 1,γ ] := sup 0≤s≤T N [ỹ s ; L γ ].
With this new space in hand, we can prove the following elementary lemma, which will be used throughout the proof of the theorem:

Lemma 3.9. Let σ ∈ C 2 b and for any ỹ ∈ C0,γ 1,γ , set y = a + ∞ 0 dη φ(η)ỹ(η). Then σ(y) ∈ C γ 1 and N [σ(y); C γ 1 ] ≤ c σ N [ỹ; C0,γ 1,γ ]. Moreover, if ỹ(1) , ỹ(2) ∈ C0,γ 1,γ ([ℓ 1 , ℓ 2 ]) are such that ỹ(1) ℓ 1 = ỹ(2) ℓ 1 , then N [σ(y (1) ) -σ(y (2) ); C 0 1 ([ℓ 1 , ℓ 2 ])] ≤ c σ ε γ N [ỹ (1) -ỹ(2) ; C0,γ 1,γ ([ℓ 1 , ℓ 2 ])],
N [σ(y (1) )-σ(y (2) );

C γ 1 ([ℓ 1 , ℓ 2 ])] ≤ c σ 1 + N [ỹ (2) ; C0,γ 1,γ ([ℓ 1 , ℓ 2 ])] N [ỹ (1) -ỹ(2) ; C0,γ 1,γ ([ℓ 1 , ℓ 2 ])], with ε = |ℓ 1 -ℓ 2 |.
Proof. The three inequalities are mostly due to the obvious estimation

|a ts (ξ)| = e -ξ(t-s) -1 = e -ξ(t-s) -1 1-γ e -ξ(t-s) -1 γ ≤ |t -s| γ ξ γ .
Indeed, we have for instance

N [δ(σ(y)) ts ] V ≤ σ ′ ∞ ∞ 0 dξ| φ(ξ)| |(δỹ) ts (ξ)| ≤ σ ′ ∞ ∞ 0 dξ| φ(ξ)||( δỹ) ts (ξ)| + ∞ 0 dξ| φ(ξ)| |a ts (ξ)| |ỹ s (ξ)| ≤ σ ′ ∞ |t -s| γ N [ỹ; Cγ 1,γ ] + N [ỹ; C0 1,γ ] ,
and therefore

N [σ(y); C γ 1 ] ≤ σ ′ ∞ N [ỹ; C0,γ 1,γ ].
The second inequality can be obtained in the same way, after noticing that, for all

s ∈ [ℓ 1 , ℓ 2 ], σ(y (1) s ) -σ(y (2) s ) V ≤ σ ′ ∞ ∞ 0 dξ| φ(ξ)| δ(ỹ (1) -ỹ(2) ) sℓ 1 (ξ) V .
As far as the third inequality is concerned, we can invoke the classical estimation

δ(σ(y (1) ) -σ(y (2) )) ts V ≤ σ ′ ∞ δ(y (1) -y (2) ) ts V + σ ′′ ∞ δ(y (2) ) ts V y (1) t -y (2) t V + y (1) s -y (2) s V .
We are now in position to prove the Theorem 3.10. Assume Hypothesis 1 holds true for some γ > 1/2, and that σ ∈ C 2,b . Then equation ( 22) admits a unique solution in C0,γ 1,γ , where the integral J ( dx σ(a

+ ∞ 0 dη φ(η)ỹ(η))
) stands for the Young convolutional integral introduced in Theorem 3.8. Proof. Let ε > 0 (we shall fix this constant retrospectively), l ∈ N, and suppose that we have already constructed a solution ỹl ∈ C0,γ 1,γ ([0, lε]). If l = 0, then ỹ0 = ỹ0 0 = 0. We mean to extend ỹl into a solution ỹl+1 ∈ C0,γ 1,γ ([0, (l + 1)ε]), by resorting to a fixed point argument.

Step 1: Existence of invariant balls. Let ỹ ∈ C0,γ 1,γ ([0, (l + 1)ε]) such that ỹ|[0,lε] = ỹl and set z = Γ(ỹ) the element of C1,γ ([0, (l+1)ε]) defined by z|[0,lε] = ỹl and for all s, t ∈ [0, (l+1)ε],

( δz) ts = J ts dx σ(y) , where, as in Lemma 3.9, y = a + ∞ 0 dη φ(η)ỹ(η).

We know from Theorem 3.8 that

N [z; Cγ 1,γ ([lε, (l + 1)ε])] ≤ c x N [σ(y); C 0 1 ([0, (l + 1)ε])] + ε γ N [σ(y); C γ 1 ([0, (l + 1)ε])] ,
which, together with Lemma 3.9, gives

N [z; Cγ 1,γ ([lε, (l + 1)ε])] ≤ c 1 x,σ 1 + ε γ N [ỹ; C0,γ 1,γ ([0, (l + 1)ε])] . If 0 ≤ s ≤ lε ≤ t ≤ (l + 1
)ε, we use the relation δδ = 0 to deduce 0 = ( δδ z) t,lε,s = ( δz) ts -( δz) t,lεe -ξ(t-lε) ( δz) lε,s , and hence

N [( δz) ts ; L γ ] ≤ N [( δz) t,lε ; L γ ] + N [( δz) lε,s ; L γ ] ≤ 2 max N [z; Cγ 1,γ ([lε, (l + 1)ε]), N [ỹ l ; Cγ 1,γ ([0, lε])] |t -s| γ .
Furthermore, for all s, t ∈ [0, (l + 1)ε], zs = ( δz) s0 , and thus

N [z; C0 1,γ ([0, (l + 1)ε])] ≤ N [z; C0,γ 1,γ ([0, (l + 1)ε])]T γ . We are therefore incited to set ε = 4c 1 x,σ (1 + T γ ) -1/γ N l+1 = max 2(1 + T γ )N [ỹ l ; Cγ 1,γ ([0, lε])], 4c 1 x,σ (1 + T γ ) . Indeed, for such values, it is readily checked that if N [ỹ; C0,γ 1,γ ([0, (l + 1)ε])] ≤ N l+1 , then N [z; Cγ 1,γ ([0, (l + 1)ε])] ≤ N l+1 1+T γ and N [z; C0 1,γ ([0, (l + 1)ε])] ≤ N l+1 1+T γ T γ , which gives N [z; C0,γ 1,γ ([0, (l + 1)ε])] ≤ N l+1 .
In other words, the ball

Q N l+1 ỹl ,(l+1)ε = {ỹ ∈ C0,γ 1,γ ([0, (l + 1)ε]) : ỹ|[0,lε] = ỹl , N [ỹ; C0,γ 1,γ ([0, (l + 1)ε])] ≤ N l+1 } is left invariant by Γ.
The independance of ε with respect to the initial condition ỹl allows to repeat the scheme with the same ε and thus to get a sequence of radii (N k ) k≥1 such that the sets Q N k ỹk ,kε are invariant by Γ. Of course, the definition of the latter mapping has to be adapted (in the natural way) to each of those sets.

Step 2: Contraction property. We will now search for a division of the previous intervals [lε, (l + 1)ε] into subintervals [lε, lε + η], [lε + η, lε + 2η], . . . of the same lenght η (possibly depending on ε, l), on which a contraction relation holds.

For i ∈ {1, 2}, let ỹ(i) ∈ C0,γ 1,γ ([0, lε + η]) such that ỹ(i) |[0,lε] = ỹl , N [ỹ (i) ; C0,γ 1,γ ([0, lε + η])] ≤ N l+1 , and denote z(i) = Γ(ỹ (i) ), where Γ is defined as in Step 1, but restricted to C0,γ 1,γ ([0, lε + η]). According to Theorem 3.8, N [z (1) -z(2) ; Cγ 1,γ ([lε, lε + η]) ≤ c γ,x N [σ(y (1) ) -σ(y (2) ); C 0 1 ([lε, lε + η])] + η γ N [σ(y (1) ) -σ(y (2) ); C γ 1 ([lε, lε + η])] ,
which, together with Lemma 3.9, implies

N [z (1) -z(2) ; Cγ 1,γ ([lε, lε + η])] ≤ c 2 x,σ {1 + N l+1 } η γ N [ỹ (1) -ỹ(2) ; C0,γ 1,γ ([lε, lε + η])].
Since the processes ỹ(1)ỹ(2) , z(1)z(2) vanish on [0, lε], we can more simply write

N [z (1) -z(2) ; Cγ 1,γ ([0, lε + η])] ≤ c 2 x,σ {1 + N l+1 } η γ N [ỹ (1) -ỹ(2) ; Cγ 1,γ ([0, lε + η])].
Besides, (z (1) z( 2)

) s = δ(z (1) -z(2) ) s,lε , so that N [z (1) -z(2) ; C0 1,γ ([0, lε + η])] ≤ N [z (1) - z(2) ; C0,γ 1,γ ([0, lε + η])]η γ . Finally, we get N [z (1) -z(2) ; C0,γ 1,γ ([0, lε + η])] ≤ c 2 x,σ {1 + N l+1 } (1 + T γ )η γ N [ỹ (1) -ỹ(2) ; C0,γ 1,γ ([0, lε + η])]. Fix then η = inf ε, (2c 2 x,σ {1 + N l+1 } (1 + T γ )) -1/γ .
In this case, Γ becomes a strict contraction on the set

{ỹ ∈ C0,γ 1,γ ([0, lε + η]) : ỹ|[0,lε] = ỹl , N [ỹ; C0,γ 1,γ ([0, lε + η])] ≤ N l+1 }. Using the stability of Q N l+1
ỹl ,(l+1)ε , we can easily show that the latter set is invariant by Γ too (cf Lemma 3.11 below). Consequently, there exists a unique fixed point in this set, which we denote by ỹl,η . Since η does not depend on ỹl , the same calculation then remains true on the (invariant) set

{ỹ ∈ C0,γ 1,γ ([0, lε + 2η]) : ỹ|[0,lε+η] = ỹl,η , N [ỹ; C0,γ 1,γ ([0, lε + 2η])] ≤ N l+1 }.
Thus, ỹl,η can be extended in a solution ỹl,2η defined on [0, lε + 2η] and proceeding so until the whole interval [lε, (l + 1)ε] is covered, we get the expected extension ỹl+1 . Lemma 3.11. With the notations of the preceding proof, the set

{ỹ ∈ C0,γ 1,γ ([0, lε + η]) : ỹ|[0,lε] = ỹl , N [ỹ; C0,γ 1,γ ([0, lε + η])] ≤ N l+1 } is invariant by Γ.
Proof. Let ỹ an element of this set and z = Γ(ỹ). Set

ŷt = ỹt if t ≤ lε + η e -.(t-(lε+η)) ỹlε+η if t ∈ [lε + η, (l + 1)ε].
Then ŷ is easily shown to be continuous, that is ŷ ∈ C1,γ ([0, (l + 1)ε]). Moreover, if s, t ∈ [lε + η, (l + 1)ε], ( δ ỹ) ts = 0, whereas if s ≤ lε + η ≤ t, ( δŷ) ts = e -.(t-(lε+η)) ( δ ỹ) lε+η,s , so that

N [ŷ; Cγ 1,γ ([0, (l + 1)ε])] ≤ N [ỹ; Cγ 1,γ ([0, lε + η])]. Since N [ŷ; C0 1,γ ([0, (l + 1)ε])] ≤ N [ỹ; C0 1,γ ([0, lε + η])], we deduce N [ŷ; C0,γ 1,γ ([0, (l + 1)ε])] ≤ N [ỹ; C0,γ 1,γ ([0, lε + η])] ≤ N l+1 , which means that ŷ ∈ Q N l+1
ỹl ,(l+1)ε . But we know from the first step of the preceding proof that Q

N l+1 ỹl ,(l+1)ε is invariant by Γ, and so, if ẑ = Γ(ŷ), N [ẑ; C0,γ 1,γ ([0, (l + 1)ε])] ≤ N l+1 . It is now clear that z = ẑ|[0,lε+η] , which finally leads to N [z; C0,γ 1,γ ([0, lε + η])] ≤ N [ẑ; C0,γ 1,γ ([0, (l + 1)ε])] ≤ N l+1 .
3.6. Application to fBm. We now aim at proving that the previous results can be applied to a fractional brownian motion X = (X (1) , . . . , X (n) ) with Hurst parameter H > 1/2. Before we start with this program, let us recall what we mean by fBm in this paper (we refer to [START_REF] Nualart | Stochastic calculus with respect to the fractional Brownian motion and applications[END_REF] for further details on this process): for computational sake for the case 1/3 < H < 1/2, we will consider X as a centered Gaussian process indexed by R (even if our equation is indexed by [0, T ]), with covariance

R H (t, s) i,j = E(X (i) s X (j) t ) = 1 2 δ i,j (|s| 2H + |t| 2H -|t -s| 2H ), s, t ∈ R.
We assume that the underlying probability space (Ω, F , P ) on which X is defined is such that Ω is the Banach space of all the continuous funtions C 0 (R; R n ), which vanish at time 0, endowed with the supremum norm on compact sets. P is the only probability measure such that the canonical process {X t ; t ∈ R} is a n-dimensional fBm with parameter H and the σ-algebra F is the completion of the Borel σ-algebra of Ω with respect to P . In order to apply our general results to the fBm, we need to define Wiener integrals with respect to X. To this purpose, denote by H the completion of the R d -valued step functions E with respect to the inner product

(1 [0,t 1 ] , . . . , 1 [0,tn] ), (1 [0,s 1 ] , . . . , 1 [0,sn] ) = n i=1 R H (s i , t i ), s i , t i ∈ R.
When H > 1/2, it can be checked that this inner product can be expressed as:

f, g H = c H n i=1 R R f (i) u g (i) v |u -v| 2H-2 dudv, with c H = H(2H -1). ( 25 
)
for all f, g ∈ H. It can then be shown that the family of Wiener integrals {X(h); h ∈ H} with respect to X forms an isonormal Gaussian process, with

E[X(h 1 ) X(h 2 )] = h 1 , h 2 H .
With these notations and facts in hand, a natural definition of X1 is as follows: for ξ, s, t ∈ R + and i ≤ n, set X1,(i)

ts (ξ) = t s e -ξ(t-v) dX (i) v := X(h(t, s; ξ)), with h v (t, s; ξ) = e -ξ(t-v) 1 [s,t] (v) e i , (26) 
where e i denotes the i th vector of the canonical basis in R n . We will now show that this process satisfies Hypothesis 1, under some integrability assumptions on φ. First, it is readily checked that δ X1 = 0. In order to prove that X1 ∈ Cγ 1,γ a.s, we shall use a Garsia-Rodemich-Rumsey (GRR in short in the sequel) type result, which is an extension of the original paper [START_REF] Garsia | A real variable lemma and the continuity of paths of some Gaussian processes[END_REF] in 3 directions: (i) Like in [START_REF] Gubinelli | Controlling rough paths[END_REF], we will get a regularity result for a general function R defined on S 2 , which is not necessarily the increment of a function f ∈ C 1 . (ii) The conditions on R involve δR instead of δR (iii) R also depends on the Laplace variable ξ. It should be noticed at this point that, for the remainder of the section, S 2 stands for S 2 ([0, T ]). Proposition 3.12. Let (V, . ) a Banach space and fix ξ ≥ 0. Let R :

S 2 × R + → V such that R.. (ξ) ∈ C 2 (V ) and define Ũ (ξ) = 0<v<w<T ψ Rwv (ξ) φ(|w -v|) dvdw,
where ψ, φ : R + → R + are strictly increasing functions and φ(0) = 0. Assume now that there exists some C(ξ) ≥ 0 such that, for all s < t in [0, T ],

sup s≤u≤t ( δ R) tus (ξ) ≤ ψ -1 4 C(ξ) |t -s| 2 φ(t -s). (27) 
Then, for all 0 ≤ s ≤ t ≤ T ,

Rts (ξ) ≤ 8 |t-s| 0 ψ -1 4 Ũ(ξ) r 2 dφ(r) + 9 |t-s| 0 ψ -1 4 C(ξ) r 2 dφ(r).
Proof. See Appendix.

A preliminary step, before we prove the desired continuity result for X1 , is to show that this process is at least an element of C 2 (R 1,d ) for any fixed ξ. This is achieved in the following lemma: Lemma 3.13. The process X1 defined by formula (26) admits a modification X1, * such that, almost surely, X1, * .. (ξ) ∈ C 2 ([0, T ]) for any ξ ≥ 0. Proof. Let us lean on the following version of the Kolmogorov continuity criterion: consider a process { Zts (ξ), s, t ∈ [0, T ], ξ ∈ R + } living in any of the Wiener chaos associated to X, and assume that for all N ∈ N and all (s

1 , t 1 , ξ 1 ), (s 2 , t 2 , ξ 2 ) ∈ [0, T ] 2 × [0, N], E Zt 1 s 1 (ξ 1 ) -Zt 2 s 2 (ξ 2 ) 2 ≤ c N {|s 1 -s 2 | α 1 + |t 1 -t 2 | α 2 + |ξ 1 -ξ 2 | α 3 } , (28) 
for some α 1 , α 2 , α 3 > 0. Then Z admits a modication Z * such that, almost surely, Z * .. (ξ) is continuous for any ξ ≥ 0.

To show that X1 actually satisfies (28), suppose for instance

s 2 < s 1 < t 2 < t 1 . Then X1 t 1 s 1 (ξ 1 ) -X1 t 2 s 2 (ξ 2 ) = t 1 s 1 [e -ξ 1 (t 1 -u) -e -ξ 2 (t 2 -u) ] dX u + t 1 t 2 e -ξ 1 (t 1 -u) dX u - s 1 s 2 e -ξ 2 (t 2 -u) dX u .
But, on the one hand, relation (25) yields

E t 1 t 2 e -ξ 1 (t 1 -u) dX u 2 = c H t 1 t 2 du t 1 t 2 dv e -ξ 1 (t 1 -u) e -ξ 1 (t 1 -v) |u -v| 2H-2 ≤ c |t 1 -t 2 | 2H
and likewise

E s 1 s 2 e -ξ 2 (t 2 -u) dX u 2 ≤ c |s 1 -s 2 | 2H .
On the other hand, still evoking relation (25), we have

E t 2 s 1 [e -ξ 1 (t 1 -u) -e -ξ 2 (t 2 -u) ] dX u 2 ≤ c t 1 s 1 du t 1 s 1 dv e -ξ 1 (t 1 -u) -e -ξ 2 (t 2 -u) |u -v| 2H-2 e -ξ 1 (t 1 -v) -e -ξ 2 (t 2 -v) ,
which, together with the estimation

e -ξ 1 (t 1 -u) -e -ξ 2 (t 2 -u) ≤ e -ξ 1 (t 1 -u) -e -ξ 1 (t 2 -u) + e -ξ 1 (t 2 -u) -e -ξ 2 (t 2 -u) ≤ ξ 1 |t 1 -t 2 | + |t 2 -u| |ξ 1 -ξ 2 | ≤ N |t 1 -t 2 | + T |ξ 1 -ξ 2 | , leads to E t 2 s 1 [e -ξ 1 (t 1 -u) -e -ξ 2 (t 2 -u) ] dX u 2 ≤ c N {|t 1 -t 2 | + |ξ 1 -ξ 2 |} 2 .
We are thus in position to apply our general results to the fBm case:

Theorem 3.14. Let X be a fBm with Hurst parameter H > 1/2 and γ ∈ (1/2, H) such that

∞ 0 dξ | φ(ξ)|(1 + ξ γ ) < ∞.
Then the process X1 defined by the Wiener integral (26) satisfies Hypothesis 1 for γ a.s. Consequently, if in addition, σ ∈ C 2,b , the system

( δ Ỹ ) ts = J ts dX σ a + ∞ 0 dξ φ(ξ) Ỹ (ξ) Ỹ0 = 0 admits a unique solution in C0,γ
1,γ a.s.

Proof. As mentioned before, we just need to check that X1 ∈ C γ 2,γ (R 1,d ). Furthermore, with Lemma 3.13 in hand, and thanks to the fact that δ X1 = 0, we can apply Proposition 3.12 to X1 , with ψ(x) = x 2p and φ(x) = x γ+1/p , to obtain X1 ts (ξ) ≤ c |t -s| γ ( Ũγ,2p (ξ)) 1/2p , where p is an arbitrary strictly positive number and

Ũγ,2p (ξ) = T ×T X1 wv (ξ) 2p |w -v| 2γp+2 dvdw, (29) 
Therefore, we just have to prove that

N [ Ũ1/2p γ,2p ; L γ ] = ∞ 0 dξ φ(ξ)(1+ξ γ )( Ũγ,2p (ξ)) 1/2p < ∞ a.s, since in this case, X1 ∈ C2,γ and N [ X1 ; Cγ 2,γ ] ≤ c N [ Ũ1/2p γ,2p ; L γ ] < ∞ a.s. In fact, we are going to show that E[N [ Ũ1/2p γ,2p ; L γ ]] < ∞.

Let us start with the Jensen inequality

E[N [ Ũ1/2p γ,2p ; L γ ]] ≤ ∞ 0 dξ| φ(ξ)|(1 + ξ γ )E[ Ũγ,2p (ξ)] 1/2p .
Notice then that, as we already mentioned in the proof of Lemma 3.13,

E[ X1 wv (ξ) 2p ] ≤ c |w -v| 2Hp , (30) 
which leads to E[ Ũγ,2p (ξ)] ≤ c T ×T |w -v| 2Hp-2γp+2 dwdv. This means that if we take γ ∈ (1/2, H) and p > 1/(Hγ), E[ Ũγ,2p (ξ)] ≤ M for some constant M independent of ξ, and as a consequence,

E[N [ Ũ1/2p γ,2p ; L γ ]] ≤ M 1/2p ∞ 0 dξ | φ(ξ)|(1 + ξ γ ).
The proof is now easily finished.

Rough Volterra equations

Our aim is still to solve equation ( 17) or [START_REF] Stroock | Probability theory, an analytic view[END_REF], in a case where x satisfies Hypothesis 1, but where we replace the condition γ > 1/2 by γ > 1/3 only. Like in the Young case, our first task is thus to give a suitable interpretation to the integral in [START_REF] Stroock | Probability theory, an analytic view[END_REF], which goes beyond the Young case. We will see that the key to this improvement is to introduce a new class of processes. 4.1. Convolutional controlled paths. As in the Young case, let us start with some heuristic considerations: let us go back for a moment to the Volterra equation under the form

y t = a + t 0 φ(t -v) dx v σ(y v ),
and assume that x is a smooth path in C ∞ 1 and σ, φ are regular coefficients. Then the equation above admits a unique solution y, whose increments can be decomposed into:

(δy) ts = t s φ(t -v) dx v σ(y v ) + s 0 [φ(t -v) -φ(t -v)] dx v σ(y v ) = x 1 ts σ(y s ) + r ts , with x 1 ts = t s φ(t -v) dx v r ts = t s φ(t -v) dx v (δσ(y)) vs + s 0 [φ(t -v) -φ(t -v)] dx v σ(y v ) := r 1 ts + r 2 ts .
This is exactly the structure which will be imposed for the solution to our equation, and let us analyze it a little further: if we assume now that x has only a regularity of the form C γ 1 with γ > 1/3 and that y is C κ 1 for any κ < γ, then we expect x 1 to be an element of C γ 2 , under some regularity conditions on φ (which will in fact be assumed to be a differentiable kernel). As far as the remainder term r is concerned, we expect it to inherit the Hölder regularity of y and x for r 1 , and the regularity of φ for r 2 . Hence, the remainder term r should be an element of C 2κ 2 . It is also worth recalling from Remark 3.7 that, if x is a path allowing to apply Fubini's theorem, then x 1 should satisfy:

x 1 ts = ∞ 0 x1 ts (ξ) φ(ξ) dξ. (31) 
It is thus natural to formulate the following assumption on our driving process x:

Hypothesis 2. Assume that, for some γ ∈ (1/3, 1/2) and β > 0, x allows to define a process x1 ∈ Cγ 2,β (R 1,n ) such that δx 1 = 0. Set then

x 1 ts = ∞ 0 x1 ts (ξ) φ(ξ)dξ.
Remark 4.1. Notice that, contrary to Hypothesis 1, the index β and the exponent γ may be different here. In fact, for some computational reasons that will arise in the proof of Theorem 4.16, we shall be prompted to take β = 1. Therefore, from now on, let us only focus on the spaces Cγ i,1 (R 1,n ) (i ∈ {1, 2, 3}), that we more simply denote by Cγ

i (R 1,n ). Fix an interval I = [a, b] ⊂ [0, T ] and denote ε = |I| = b -a.
With the above considerations in mind, the natural spaces to work with in order to solve equation ( 17) can be defined as follows: Definition 4.2. A path y ∈ C 1 (I; R k ) is said to be a convolutional process controlled by x 1 (with regularity κ) if δy can be decomposed into:

(δy) ts = (x 1 ts ζ s ) * + r ts , with ζ ∈ C κ 1 (I; R n,k ), and r ∈ C 2κ 2 (I; R k ). ( 32 
)
Denote the space of such controlled paths by Q κ (I; R k ) and for any

h ∈ R k , write Q κ h (I; R k ) = {y ∈ Q(I; R k ) : y a = h} . Then the norm associated to Q κ (I; R k ) is N [y; Q κ ] = N [y; C κ 1 ] + N [ζ; C 0 1 ] + N [ζ; C κ 1 ] + N [r; C 2κ 2 ]. Notice that if 1/3 < κ < γ, Q κ ⊂ C γ 1 and N [y; C κ 1 (I)] ≤ c x ε γ-κ N [y; Q κ (I)].
In fact, as in the Young case, we shall focus on the form (18) of the original equation which also involves a process ỹ indexed by the Laplace variable ξ. In this setting, the same reasoning as above applied to ỹ leads to the introduction of the following spaces: 

I; R k ) is N [ỹ; Qκ ] = N [ỹ; Cκ 1 ] + N [ζ; C 0 1 ] + N [ζ; C κ 1 ] + N [r; C2κ 2 ].
It is then readily shown that the space of controlled processes is stable by composition with a smooth enough function:

Proposition 4.4. Let z ∈ Q κ (I; R k ) with decomposition (32), σ ∈ C 2,b (R k ; R l ) and set ẑ = σ(z). Then ẑ ∈ Q κ (I; R l )
, and it can be decomposed into

δẑ = (x 1 ζ) * + r, with ζs = ζ s (Dσ(z s )) * , rts = Dσ(z s ) r ts + [δ(σ(z)) ts -Dσ(z s )(δz) ts ] ,
where Dσ stands for the matrix-valued coefficient ( ∂σ i ∂x j ) 1≤i≤l,1≤j≤k , and the norm of ẑ as a convolutional controlled process can be bounded as:

N [ẑ; Q κ (I; R l )] ≤ c σ 1 + N [z; Q κ (I; R k )] 2 . ( 33 
)
Furthermore, if z (1) , z (2) ∈ Q κ (I) are such that z

(1)

a = z (2) 
a , then N [σ(z (1) )σ(z (2) );

Q κ (I; R l )] ≤ c σ,z (1) ,z (2) N [z (1) -z (2) ; Q κ (I; R k )], ( 34 
)
where c σ,z (1) ,z (2) ≤ c σ 1 + N [z (1) ; Q κ (I; R k )] + N [z (2) ; Q κ (I; R k )] 2 .
Proof. It is exactly the same as the proof of [10, Proposition 4], replacing δX with x 1 .

Finally, let us mention that, in the remainder of the article, we will write Q κ (I) and Qκ β (I) instead of Q κ (I; V ) and Qκ β (I; V ) whenever this does not lead to an ambiguous situation.

4.2.

Integration of controlled processes. We now aim at giving a precise sense to the integral J ts ( dx σ(y)) which appears in [START_REF] Stroock | Probability theory, an analytic view[END_REF] and stands for t s e -.(t-u) dx u σ(y u ) in case of smooth processes. As γ < 1/2, we can no longer resort to Young's interpretation. In fact, in order to define this integral, we will rely, as usual in the rough path theory, on the a priori existence of some Levy area type process adapted to our problem (notice that the following hypothesis covers Hypothesis 2): Hypothesis 3. Assume that, for some γ ∈ (1/3, 1/2), x allows to define three processes

x1 ∈ Cγ 1 (R 1,n ), x2 ∈ C2γ 2 (R n,n ) and x3 ∈ C3γ 3 (R n,n ) satisfying δx 1 = 0 and ( δx 2 ) tus = x1 tu ⊗ x 1 us + x3 ts .
Remark 4.5. In case of a smooth process x, the increment x2 represents now the double iterated integral t s e -ξ(t-v) dx v ⊗ x 1 vs , which can also be written, with a slight adaptation of the notations of Section 3.2, as the (partially) integrated Levy area

x2 ts (ξ) = ∞ 0 dη φ(η)J ts ( dx ⊗ dx)(ξ, η).
As for x3 , it is given in this case by

x3 tus (ξ) = t u e -ξ(t-v) dx v ⊗ (δx 1 ) vus = t u e -ξ(t-v) dx v ⊗ u s [φ(v -w) -φ(u -w)]dx w .
The last ingredient we need before we can integrate convolutional controlled processes with respect to the increment dx is a matrix equivalent of Lemma 3.

1: if A, B ∈ R k,l , denote A • B = Tr(AB * ). Obviously, |A • B| ≤ A B ,
and hence:

Lemma 4.6. If M ∈ C2 (R k,l ) and L ∈ C m (R k,l ), then M • L ∈ Cm+1 (R) and δ( M • L) = δ M • L -M • δL.
Here is now the natural way to integrate convolutional controlled processes in our context: Proposition 4.7. For two given coefficients γ, κ such that 1/3 < κ < γ, let x be a process satisfying Hypothesis 3. Furthermore, let z ∈ Q κ (I; R n ) with decomposition

(δz) ts = (x 1 ts ζ s ) * + r ts , where ζ ∈ C κ 1 (I; R n,n ), r ∈ C 2κ 2 (I; R n ). ( 35 
)
Define à by Ã0 = h (where h ∈ L 1 ) and

( δ Ã) ts = x1 z + x2 • ζ * + Λ(x 1 r + x2 • (δζ) * -x3 • ζ * ). ( 36 
)
Finally, set J ( dx z) = δ Ã.

Then:

(1) Ã is well-defined as an element of Qκ (I; R), and J ts ( dx z)(ξ) coincides with the integral t s e -ξ(t-v) dx v z v in case of two smooth functions x and z.

(2) The semi-norm of à in Qκ (I; R) can be estimated as

N [ Ã; Qκ (I; R)] ≤ c x (N [z; C 0 1 (I; R n )] + ε γ-κ N [z; Q κ (I; R n )] , (37) 
for a positive constant c x depending only on x. (3) It holds

J ts ( dx z) = lim |Πts|→0 n i=0 x1 t i+1 ,t i z t i + x2 t i+1 ,t i • ζ * t i in L 1 , (38) 
for any ℓ 1 ≤ s < t ≤ ℓ 2 , where the limit is over all partitions Π ts = {t 0 = t, . . . , t n = s} of [s, t] as the mesh of the partition goes to zero.

Remark 4.8. It is certainly possible to state and prove continuity results for our extended integral in terms of a sequence x n converging to x in the sense of convolutional controlled processes. We did not go into these considerations for sake of conciseness.

Proof of Proposition 4.7. (1) If z, x are two smooth functions, then J ( dx z) can be defined as a Riemann integral, and as in the Young case, one can write:

J ts ( dx z)(ξ) = t s e -ξ(t-v) dx v z v = x1 (ξ) z s + t s e -ξ(t-v) dx v (δz) vs .
Plugging the decomposition (35) for (δz) vs into this last expression, and observing that, thanks to some elementary matrix manipulations, we have

dx v (x 1 vs ζ s ) * = (dx v ⊗ x 1 vs ) • ζ *
s , we end up with:

J ts ( dx z)(ξ) = x1 (ξ) z s + t s e -ξ(t-v) dx v (x 1 vs ζ s ) * + r vs = x1 ts (ξ) z s + t s e -ξ(t-v) dx v ⊗ x 1 vs • ζ * s + t s e -ξ(t-v) dx v r vs = x1 ts (ξ) z s + x2 ts (ξ) • ζ * s + t s e -ξ(t-v) dx v r vs ,
or otherwise stated:

J ts ( dx r) = J ts ( dx z) -x1 ts z s -x2 ts • ζ * s . (39) 
In order to analyze the term J ts ( dx r), let us apply, like in the Young case, δ to both members of the equality above. This gives, owing to Proposition 3.3, Lemma 4.6, Hypothesis 3, and using the decomposition (35):

δ J ( dx r) = x1 δz -δx 2 • ζ * + x2 • (δζ) * = x1 r + x2 • (δζ) * -x3 • ζ *
When all these terms have a Hölder regularity greater than 1, we are now in a shape to apply the operator Λ, which gives:

J ( dx r) = Λ x1 r + x2 • (δζ) * -x3 • ζ * .
Plugging this equality back into (39), we have proved the relation

J ( dx z) = x1 z + x2 • ζ * + Λ x1 r + x2 • (δζ) * -x3 • ζ * ,
in case of some regular functions x and z.

(2) Let us analyze the two terms of the remainder R of à defined by (36), namely:

R = x2 ζ + Λ(x 1 r + x2 • (δζ) * -x3 • ζ * ).
For the first term, we have

N [x 2 • ζ * ; C2κ 2 (I)] ≤ ε 2(γ-κ) N [x 2 ; C2γ 2 (I)] N [ζ; C 0 1 (I)].
As for the second term, we use the contraction property (21) of Λ to deduce:

N [ Λ(x 1 r + x2 • (δζ) * -x3 • ζ * ); C2κ 2 (I)] ≤ ε γ N [ Λ(x 1 r + x2 • (δζ) * -x3 • ζ * ); C2κ+γ 2 (I)] ≤ Cε γ (I + II + III) , with I = N [x 1 r; C2κ+γ 2 (I)] ≤ N [x 1 ; Cγ 2 (I)] N [r; C 2κ 2 (I)], II = N [x 2 • (δζ) * ; C2κ+γ 2 (I)] ≤ ε γ-κ N [x 2 ; C2γ 2 (I)] N [ζ; C κ 1 (I)], III = N [x 3 • ζ * ; C2κ+γ 2 (I)] ≤ ε 2(γ-κ) N [x 3 ; C3γ 2 (I)] N [ζ; C 0 1 (I)].
Thus, we get N [ R; C2κ

2 (I)] ≤ ε 2(γ-κ) N [z; Q κ (I)]. Besides, we already mentioned that N [z; C κ 1 (I)] ≤ c x ε γ-κ N [z; Q κ (I)].
The estimation (37) easily follows.

(3) Remark that δ Ã = (Id -Λδ )(x 1 z + x2 • ζ * ).
The result then stems from Corollary 3.6.

In order to define the term J ( dx σ(y)) in our Volterra equation, we need the following multidimensional version of the previous proposition: Definition 4.9. We say that z ∈ C 1 (R k,l ) is controlled by x 1 (with regularity κ) if z = (z (1) , . . . , z (l) ), with

z (i) ∈ Q κ (R k ). Denote Q κ (R k,l
) this set of controlled processes, and define, for any

z ∈ Q κ (R k,l ), N [z; Q κ (R k,l )] = l i=1 N [z (i) ; Q κ (R k )] 2 1/2 .
Let us also introduce the set Qκ (R k,l ) along the same principle, together with the norm

N [z; Qκ (R k,l )] = l i=1 N [z (i) ; Qκ (R k )] 2 1/2 . Corollary 4.10. If z ∈ Q κ (R n,l ), the process J ( dx z) (with values in R l ) defined by J ( dx z) (i) = J ( dx z (i)
) for all i ∈ {1, . . . , l}, belongs to Qκ (R l ). Moreover, the conclusions of Proposition 4.7 still hold in this context. In particular,

N [J ( dx z); Qκ ([ℓ 1 , ℓ 2 ]; R l )] ≤ c x (N [z; C 0 1 ([ℓ 1 , ℓ 2 ]; R n,l )] + |ℓ 2 -ℓ 1 | γ-κ N [z; Q κ ([ℓ 1 , ℓ 2 ]; R n,l )] . 4.3.
Localized controlled processes. In order to get a global solution for our rough Volterra system, we still have to perform a technical step. Indeed, like in the Young case, we will solve the equation by patching solutions defined on small intervals, and this patching procedure will involve a localization of some convolutional paths around a certain smooth increment f , which represents in general an initial condition. The current section is thus devoted to adapt our previous definitions and propositions to this localized setting. Notice that we assume, throughout the section, that x satisfies Hypothesis 3.

Fix thus an interval I = [a, b] and denote ε = ba. The following subsets of Q κ (I; R k ) will come into play:

Definition 4.11. Let f ∈ C 1 2 (I; R k ). A process y ∈ C γ 1 (I; R k ) is said to be κ-weakly controlled around f if (δy) ts -f ts = (x 1 ts ζ y s ) * + r y ts , with ζ y ∈ C κ 1 (I; R n,k ) and r y ∈ C 2κ 2 (I; R k ). ( 40 
)
Denote A κ f,h (I; R k ) the set of κ-weakly controlled around f processes such that z a = h, and for any y ∈ A κ f,h (I; R k ), define its semi-norm by:

M[y; A κ f,h (I; R k )] = N [ζ y ; C 0 1 (I)] + N [ζ y ; C κ 1 (I)] + N [r y ; C 2κ 2 (I)] + N [y; C κ 1 (I)].
The following elementary facts are worth noticing: obviously,

A κ 0,h (I) = Q κ h (I), the norm M[.; A κ 0,h (I; R k )] coincides with N [.; Q κ (I; R k )] and for any f ∈ C 1 2 (I; R k ), A κ f,h (I) ⊂ Q κ h (I).
The important point in our localization around f is precisely that this latter increment does not play any role in the computation of M[y; A κ f,h (I; R k )] (thus the new notation M, instead of N , for the norm of y).

Let us now see how the spaces A κ f,h (I) pop out naturally when one integrates a convolutional controlled process. Proposition 4.12. Let ỹ ∈ Qκ h(I ; R k ) with decomposition δỹ = (x

1 ζ ỹ) * + rỹ . Set y = a 0 + ∞ 0 dξ φ(ξ) ỹ(ξ). Then y ∈ A κ f,h (I; R k ), with f ts = ∞ 0 dξ φ(ξ) a ts (ξ)e -ξ(s-a) h(ξ) and h = a 0 + ∞ 0 dξ φ(ξ) h(ξ). Moreover, M[y; A κ f,h (I)] ≤ c x N [ỹ; Qκ (I)] + ε 1-κ N [ h; L 1 ] . ( 41 
) Proof. If s < t ∈ I, write (δy) ts = ∞ 0 dξ φ(ξ)(δỹ) ts (ξ) = ∞ 0 dξ φ(ξ)( δỹ) ts (ξ) + ∞ 0 dξ φ(ξ)a ts (ξ)ỹ s (ξ) = (x 1 ts ζ ỹ s ) * + ∞ 0 dξ φ(ξ)r ỹ ts (ξ) + ∞ 0 dξ φ(ξ)a ts (ξ)( δỹ) sa (ξ) + f ts . Set ζ y s = ζ ỹ s , r y ts = ∞ 0 dξ φ(ξ) rỹ ts (ξ) + a ts (ξ)( δỹ) sa (ξ) . Then N [r y ; C 2κ 2 ] ≤ c N [r ỹ; C2κ 2 ] + N [ỹ; Cκ 1 ] ≤ c N [ỹ; Qκ ],
and (δy 

) ts ≤ f ts + |t -s| γ N [x 1 ; C γ 2 ]N [ζ ỹ; C 0 1 ] + |t -s| 2κ N [r y ; C 2κ 2 ]. But f ts ≤ |t -s| N [ h; L 1 ], hence N [y; C κ 1 ] ≤ ε 1-κ N [ h; L 1 ] + c x N [ỹ; Qκ ],
M[σ(y); A κ Dσ(h)f,σ(h) (I)] ≤ c x,σ 1 + M[y; A κ f,h (I)] 2 + ε 1-κ M[y; A κ f,h (I)]N [f ; C 1 2 (I)] + ε 1-κ N [f ; C 1 2 (I)] . (42)
Moreover, if y (1) , y (2) ∈ A κ f,h (I), (1) ; C κ 1 (I)] + N [y (2) ; C κ 1 (I)]) . By standard computations,

N [σ(y (1) ) -σ(y (2) ); Q κ (I)] ≤ c x,σ N [y (1) -y (2) ; Q κ (I)] 1 + M[y (1) ; A κ f,h (I)] 2 + M[y (2) ; A κ f,h (I)] 2 + ε 1-κ N [f ; C 1 2 (I)](1 + N [y
N [ζ σ(y) ; C 0 1 ] + N [ζ σ(y) ; C κ 1 ] + N [r σ(y),1 ; C 2κ 2 ] ≤ c x,σ 1 + M[y; A κ f,h ] 2 . Besides, r σ(y),2 ts ≤ D 2 σ ∞ N [y; C κ 1 ]N [f ; C 1 2 ] |t -s| 1+κ + |s -a| κ |t -s| , and hence N [r σ(y),2 ; C 2κ 2 ] ≤ c σ M[y; A κ f,h ]N [f ; C 1 2 ]ε 1-κ .
Finally, going back to decomposition (44), we obtain:

δ(σ(y)) ts ≤ Dσ ∞ |t -s| N [f ; C 1 2 ] + |t -s| κ N [x 1 ; C γ 2 ]M[y; A κ f,h ] Dσ ∞ + |t -s| 2κ N [r σ(y) ; C 2κ 2 ], so that N [σ(y); C κ 1 ] ≤ c σ,x ε 1-κ N [f ; C 1 2 ] + M[y; A κ f,h ] + N [r σ(y) ; C 2κ 2 ]
, which achieves the proof of (42).

As for (43), we have, with the notations (44), δ(σ(y (1) )σ(y (2) )

) ts = (x 1 ts [ζ σ(y (1) ) s -ζ σ(y (2) ) s ]) * + [r σ(y (1) ),1 ts -r σ(y (2) ),1 ts ] + [r σ(y (1) ),2 ts -r σ(y (2) ),2 ts 
].

If we refer now to the proof of [10, Proposition 4], we effortlessly get

N [ζ σ(y (1) ) -ζ σ(y (2) ) ; C 0 1 (I)] + N [ζ σ(y (1) ) -ζ σ(y (2) ) ; C κ 1 (I)] + N [r σ(y (1) ),1 -r σ(y (2) ),1 ; C 2κ 2 (I)] ≤ c x,σ 1 + M[y (1) ; A κ f,h (I)] 2 + M[y (2) ; A κ f,h (I)] 2 N [y (1) -y (2) ; Q κ (I)]. As far as r σ(y (1) ),2 -r σ(y (2) ),2 is concerned, notice that r σ(y (1) ),2 ts -r σ(y (2) ),2 ts ≤ |t -s| N [f ; C 1 2 (I)] 1 0
dλ Dσ(y (1) s + λ(δy (1) ) ts ) -Dσ(y (1) s ) -Dσ(y (2) s + λ(δy (2) ) ts ) + Dσ(y (2) s )

+ Dσ(y (1) s ) -Dσ(y (1) a ) -Dσ(y (2) s ) + Dσ(y (2) a ) .

Some standard computations (see e.g. [21, Lemma 3.1] for further details), using differentiations along the path a(µ, ν) = y (1) s + µ(y

ty (1) s ) + ν(y (2) sy (1) s ) + µν(y

ty (2) sy

t + y (1) s ) defined for µ, ν ∈ [0, 1], then lead to (1) ; C κ 1 (I)] + N [y (2) ; C κ 1 (I)] N [y (1) y (2) ; C κ 1 (I)]. Inequality (43) easily follows.

N [r σ(y (1) ),2 -r σ(y (2) ),2 ; C 2κ 2 (I)] ≤ c σ ε 1-κ N [f ; C 1 2 (I)] 1 + N [y
Observe again that A κ f,h is a subset of Q κ , which means that, for any path z ∈ A κ f,h , the integral J ( dx z) is defined thanks to Proposition 4.7. In the particular context of a process z ∈ A κ f,h , the bounds on this generalized integral can be improved as follows:

Proposition 4.14. If z ∈ A κ f,h (I; R n ), then the semi-norm of the process z in Qκ (I; R) defined by za = h ∈ L 1 and δz = J ( dx z) can be estimated as

N [z; Qκ (I)] ≤ c x N [z; C 0 1 (I)] + ε γ-κ M[z; A κ f,h (I)] + ε 1-κ N [f ; C 1 2 (I)] . (45) 
Proof. According to Proposition 4.7, z can be decomposed as a controlled process, with ζ z = z and rz = rz,1 + rz,2 , where

rz,1 = x2 • ζ z and rz,2 = Λ(x 1 r z + x2 • δζ z -x3 • ζ z + x1 f ).
First, since (δz

) ts = f ts + x 1 ts ζ z s + r z ts , N [ζ z; C κ 1 (I)] = N [z; C κ 1 (I)] ≤ c x ε 1-κ N [f ; C 1 2 (I)] + ε γ-κ M[z; A κ f,h (I)] . As for the remainder term, we have N [r z,1 ; C2κ 2 ] ≤ c x ε 2(γ-κ) M[z; A κ f,h (I)],
while, thanks to the contraction property [START_REF] Gubinelli | Controlling rough paths[END_REF],

N [r z,2 ; C2κ 2 (I)] ≤ c x ε γ M[z; A κ f,h (I)] + ε 1+γ-2κ N [f ; C 1 2 (I)] . Finally, N [( δz) ts ; L 1 ] ≤ c x |t -s| γ M[z; A κ f,h (I)] + |t -s| 1+γ N [f ; C 1 2 (I)] , hence N [z; Cκ 1 (I)] ≤ c x ε γ-κ M[z; A κ f,h (I)] + ε 1+γ-κ N [f ; C 1 2 (I)]
, which achieves the proof of (45).

Remark 4.15. If f ∈ C 1 2 (I; R k,l ) and h ∈ R k,l , we can define A κ f,h (I; R k,l ) along the same lines as Q κ (I; R k,l ). If z ∈ A κ f,h (I; R n,l ), inequality (45) remains true, that is N [z; Qκ (I; R l )] ≤ c x N [z; C 0 1 (I; R n,l )] + ε γ-κ M[z; A κ f,h (I; R n,l )] + ε 1-κ N [f ; C 1 2 (I; R n,l )] , (46) 
where z is defined analogously to Proposition 4.14.

Rough Volterra equations.

We are now in position to prove the main result of this section: Theorem 4.16. Let γ ∈ (1/3, 1/2) and 1/3 < κ < γ. Assume x satisfies Hypothesis 3 and σ ∈ C 3,b (R 1,d ; R n,d ). Then Equation ( 22) admits a unique solution in Qκ 0 ([0, T ]; R d ). Proof. As in the Young case, the solution we are looking for is seen as a fixed point of some naturally defined application Γ. The fixed point argument is then divided into two steps: we first establish the invariance of some well-chosen balls of Qκ 1 , and then show a contraction property on these balls. 1) . But remember that we have assumed α 1 -1 > α 2γ, so that if N is large enough, the last equivalent yields

It remains to analyze the condition (H). But ỹl

N n+1 = e -. εn ỹl N n + ( δỹ) l N n+1 l N n , so that N [ỹ l N n+1 ; L 1 ] ≤ (N + n) α 1 + N [ỹ; Cγ 1 (I N n )] 1 (N + n) γ ≤ (N + n) α 1 + c 2 x (N + n) α 2 -γ . Now notice that, when m → ∞, we have c 2 x m α 2 -γ (m+1) α 1 -m α 1 ∼ c 2 x α 1 m α 2 -γ-(α 1 -
c 2 x (N +n) α 2 -γ (N +n+1) α 1 -(N +n) α 1 ≤ 1 for any n ≥ 0. Hence N [ỹ l N n+1 ; L 1 ] ≤ (N + n + 1) α 1
, which achieves the first step.

Step 2: contraction property. The contraction argument is now easy to settle. Indeed, if ỹ(i) ∈ B hn n and z(i) = Γ(ỹ (i) ), then, owing to relation (46), we have

N [z (1) -z(2) ; Qκ 1 (I N n )] ≤ c N [σ(y (1) ) -σ(y (2) ); C 0 1 (I N n )] + ε γ-κ n N [σ(y (1) ) -σ(y (2) ); Q κ (I N n )] . But N [σ(y (1) ) -σ(y (2) ); C 0 1 (I N n )] ≤ ε γ n N [σ(y (1) ) -σ(y (2) ); Q κ (I N n )]
, and the previous relation, together with (43) and (41), gives N [ỹ (1) ỹ(2) ; Qκ (

I N n )] ≤ c σ,x J N +n N [ỹ (1) - ỹ(2) ; Qκ 1 (I N n )], with J n = n -(γ-κ) 1 + n 2α 2 + n -2(1-κ) n 2α 1 + n -(1-κ) n α 1 1 + n α 2 + n -(1-κ) n α 1 .
It is finally readily checked that the two conditions 2α 2 -(γ -κ) < 0 and α 1 < α 2 +1-κ entail lim N →∞ J N = 0. Therefore, here again, we just have to take N sufficiently large for the contraction argument to work on the balls B hn n , n ≥ 0. 

N T n=0 ỹn t 1 I N n (t) , ζ ỹ t = N T n=0 ζ ỹn t 1 I N n (t),
where N T stands for the lowest integer such that

N T n=0 |I N n | ≥ T . If l N k-1 < s ≤ l N k < . . . < l N k ′ ≤ t < l N k ′ +1 , use the relation ( δỹ) ts = e -•(t-l N k ) ( δỹ) l N k s + ( δ ỹ) tl N k ′ + k ′ -1 i=k e -•(t-l N i+1 ) ( δỹ) l N i+1 l N i , (49) 
together with δx 

= x1 tl N k ζ ỹk l N k -ζ ỹk-1 s + k ′ i=k+1 x1 tl N i ζ ỹi l N i -ζ ỹi-1 l N i-1 , rỹ,2 ts = e -•(t-l N k ) rỹ k-1 l N k s + rỹ k ′ tl N k ′ + k ′ -1 i=k e -•(t-l N i+1 ) rỹ i l n i+1 l N i .
Owing to the regularity of each ζ ỹk , this proves that (ỹ, ζ ỹ) actually belongs to Qκ 0 ([0, T ]).

Finally, let us go back to the decomposition (49) to deduce

( δỹ) ts = e -•(t-l N k ) J l N k s ( dx σ(y)) + J tl N k ′ ( dx σ(y)) + k ′ -1 i=k e -•(t-l N i+1 ) J l N i+1 l N i ( dx σ(y)).
Furthermore, invoking the fact that δ J ( dx z) = 0, we obtain:

J tl N k ′ -1 ( dx σ(y)) = J tl N k ′ ( dx σ(y)) + e -•(t-l N k ′ ) J l N k ′ l N k ′ -1 ( dx σ(y)),
and hence

( δ ỹ) ts = e -•(t-l N k ) J l N k s ( dx σ(y)) + J tl N k ′ -1 ( dx σ(y)) + k ′ -2 i=k e -•(t-l N i+1 ) J l N i+1 l N i ( dx σ(y)).
Iterating this procedure, we end up with the relation ( δỹ) ts = J ts ( dx σ(y)) for all s, t ∈ [0, T ], which proves that y is a global solution to equation ( 22).

4.5. Application to the Brownian case. We now intend to show that the previous results can be applied to a (classical) brownian motion X = (X (1) , . . . , X (n) ) with values in R 1,n . In other words, we shall consider the processes X1 , X2 , X3 defined in a natural way, according to Remark 4.5, by

X1 ts = t s e -.(t-v) dX v , X2 ts = t s e -.(t-v) dX v ⊗ X 1 vs , X3 tus = t u e -.(t-v) dX v ⊗ (δX 1 ) vus ,
where

X 1 ts = t s φ(t -v) dX v
, and where all the stochastic integrals above are understood in the Itô sense. We thus have to prove that those processes satisfy the required regularity conditions.

As far as X1 is concerned, we can use the same proof as in the Young case, and the following regularity result is easily shown:

Lemma 4.17. If φ is such that ∞ 0 dξ | φ(ξ)|(1 + ξ) < ∞, then, for any γ ∈ (1/3, 1/2), X1 ∈ Cγ 1 ([0, T ]; R 1,n ) a.s. Proof.
The same trick as in the proof of Lemma 3.13 leads to the existence of a continuous version of X1 (ξ) for any fixed ξ. Now, just as in the Young case (see the proof of Theorem 3.14), it is readily checked that δ X1 = 0, and thus one is allowed to write, for any p > 0,

X1 ts (ξ) ≤ C |t -s| γ ( Ũγ,2p (ξ)) 1/2p , where Ũγ,2p (ξ) = 0<s<t<T X1 wv (ξ) 2p |w -v| 2γp+2 dvdw. ( 50 
)
Our claim is thus easily proved by replacing (30) with the usual Itô isometry property.

Consider now X3 , and notice that, up to a Fubini-type theorem, this process can be written for all ξ ≥ 0 as

X3 tus (ξ) = ∞ 0 dη φ(η) £ £ X 4 tu (ξ, η) ⊗ X1 us (η), ( 51 
) with £ £ X 4 tu (ξ, η) = t u e -ξ(t-v) a vu (η)dX v .
The issue then consists in studying the regularity of £ £ X 4 . To this end, we shall resort to a GRR-type argument, which requires the introduction of a new incremental operator £ £ δ acting on the space £ £ C 2 of applications on S 2 with values in the space of two-variables functions. This operator should send £ £ C 2 into the space £ £ C 3 of applications on S 3 with values in the space of two-variables functions.

In order to define £ £ δ, observe that for all ξ, η ≥ 0,

£ £ X 4 ts (ξ, η) -£ £ X 4 tu (ξ, η)e -η(u-s) -e -ξ(t-u) X4 us (ξ, η) = t u e -ξ(t-v) a vs (η) -a vu (η)e -η(u-s) dX v = X1 tu (ξ)a us (η), ( 52 
)
the regularity of which is known. This simple relation yields naturally the following:

Definition 4.18. If £ £ R ∈ £ £ C 2 , let £ £ δ £ £ R the element of £ £ C 3 defined by the relation ( £ £ δ £ £ R) tus (ξ, η) = (δ £ £ R) tus (ξ, η) -a tu (ξ) £ £ R us (ξ, η) -£ £ R tu (ξ, η)a us (η)
for any ξ, η ≥ 0.

With such a definition, the above relation ( 52) can be written as:

( £ £ δ £ £ X 4 )(ξ, η) = X1
tu (ξ)a us (η). Furthermore, we have the following equivalent of Proposition 3.12, whose proof is postponed to the appendix for sake of readability:

Proposition 4.19. Let (V, . ) a Banach space and fix ξ, η ≥ 0. Let £ £ R ∈ £ £ C 2 (T ; E) such that £ £ R .. (ξ, η) ∈ C 2 (V ), and set £ £ U (ξ, η) = 0<s<t<T ψ £ £ R ts (ξ, η) φ(|t -s|) dtds,
where ψ, φ : R + → R + are strictly increasing functions and φ(0) = 0. Assume now that there exists some £ £ C(ξ, η) ≥ 0 such that, for all

ℓ 1 < ℓ 2 ∈ [0, T ],
sup

ℓ 1 ≤u≤ℓ 2 ( £ £ δ £ £ R) ℓ 2 uℓ 1 (ξ, η) ≤ ψ -1 4 £ £ C(ξ, η) |ℓ 2 -ℓ 1 | 2 φ (|ℓ 2 -ℓ 1 |) .
Then, for all s, t ∈ T ,

£ £ R ts (ξ, η) ≤ c |t-s| 0 ψ -1 4 £ £ U(ξ, η) r 2 + ψ -1 4 £ £ C(ξ, η) r 2 dφ(r).
It is now possible to give some regularity results for the increment X3 :

Lemma 4.20. If φ is such that ∞ 0 dξ | φ(ξ)|(1 + ξ) < ∞, then, for any γ ∈ (1/3, 1/2), X3 ∈ C3γ 3 ([0, T ]; R n,n ) a.s.
Proof. We will apply of course Proposition 4.19 to £ £ X

4

, with ψ(x) = x 2p ′ and φ(x) = x 2γ+1/p ′ . The same arguments as in the proof of Lemma 3.13 enable to assert that, a.s., £ £ X

4 .. (ξ, η) ∈ C 2 (R 1,n ) for all ξ, η ≥ 0. To find out what £ £ C(ξ, η) should be, remember that ( £ £ δ £ £ X 4 ) ℓ 2 uℓ 1 (ξ, η) = X1 ℓ 2 u (ξ)a ul 1 (η).
Hence, according to (50),

( £ £ δ £ £ X 4 ) ℓ 2 uℓ 1 (ξ, η) ≤ c |l 2 -u| γ ( Ũγ,2p (ξ)) 1/2p η γ |u -ℓ 1 | γ ≤ c |ℓ 1 -ℓ 2 | 2γ ( Ũγ,2p (ξ)) 1/2p η γ .
Therefore, set

£ £ C γ,2p,2p ′ (ξ, η) = ( Ũγ,2p (ξ)) 2p ′ /2p η 2p ′ γ , £ £ U 2γ,2p ′ (ξ, η) = 0<v<w<T £ £ X 4 wv (ξ, η) 2p ′ |w -v| 4p ′ γ+2 dvdw
(53) and with these notations,

£ £ X 4 ts (ξ, η) ≤ c |t -s| 2γ ( £ £ U γ,2p ′ (ξ, η)) 1/2p ′ + ( £ £ C γ,2p,2p ′ (ξ, η)) 1/2p ′ .
Going back to (51) and estimating X1 us (η) with X1 us (η) ≤ c |u -s| γ ( Ũγ,2p ′′ (η)) 1/2p ′′ for some p ′′ > 0, we get

X3 tus (ξ) ≤ c |t -u| 2γ |u -s| γ Rγ,2p,2p ′ ,2p ′′ (ξ),
where

Rγ,2p,2p ′ ,2p ′′ (ξ) = ∞ 0 dη | φ(η)|( £ £ U 2γ,2p ′ (ξ, η)) 1/2p ′ ( Ũγ,2p ′′ (η)) 1/2p ′′ + ∞ 0 dη | φ(η)|( £ £ C γ,2p,2p ′ (ξ, η)) 1/2p ′ ( Ũγ,2p ′′ (η)) 1/2p ′′ = R1 γ,2p ′ ,2p ′′ (ξ) + R2 γ,2p,2p ′ ,2p ′′ (ξ). ( 54 
)
To prove that X3 ∈ C3γ 1 a.s, it is now sufficient to show that N [ Rγ,2p,2p ′ ,2p ′′ ; L 1 ] < ∞ a.s, which will be seen as a consequence of

E[N [ Rγ,2p,2p ′ ,2p ′′ ; L 1 ]] < ∞.
In order to prove this latter relation, use first succesively Schwarz and Jensen inequalities to obtain

E[( £ £ U 2γ,2p ′ (ξ, η)) 1/2p ′ ( Ũγ,2p ′′ (η)) 1/2p ′′ ] ≤ E[ £ £ U 2γ,2p ′ (ξ, η)] 1/2p ′ E[ Ũγ,2p ′′ (η)] 1/2p ′′ . ( 55 
)
To estimate the first term in the right hand side above, we resort to the fact that

E[ £ £ X 4 wv (ξ, η) 2 ] = w v e -2ξ(w-u) a 2 uv (η)du ≤ η 2 |w -v| 2 .
Furthermore, £ £ X 4 wv (ξ, η) is a random variable in the second chaos of the Brownian motion, on which all the L p -norms are equivalent. Thus

E[ £ £ X 4 wv (ξ, η) 2p ′ ] ≤ η 2p ′ |w -v| 2p ′ for any p ′ ≥ 1, which yields: E[ £ £ U 2γ,2p ′ (ξ, η)] 1/2p ′ ≤ c η 0<v<w<T |w -v| 2p ′ -4γp ′ -2 dvdw 1/2p ′ . Hence, if we take p ′ such that p ′ -2γp ′ -1 > 0, that is p ′ > 1/(1 -2γ), then the quantity £ £ U 2γ,2p ′ (ξ, η) can be bounded as E[ £ £ U 2γ,2p ′ (ξ, η)] 1/2p ′ ≤ C η.
As for the second term of (55), we have (remember that n stands for the dimension of X1 )

E[ X1 wv (η) 2 ] = n w v e -2η(w-u) du ≤ n |w -v| ,
so that the same kind of arguments as for X4 yield

E[ Ũγ,2p ′′ (η)] ≤ C 0<v<w<T |w -v| p ′′ -2γp ′′ -2 dvdw.
By choosing p ′′ > 2/(1 -2γ), we get E[ Ũγ,2p ′′ (η)] ≤ c. Consequently , recalling that R1 is defined at equation ( 54), one gets:

E[N [ R1 γ,2p ′ ,2p ′′ ; L 1 ]] ≤ c ∞ 0 dξ | φ(ξ)|(1 + ξ) ∞ 0 dη | φ(η)| η ≤ c ∞ 0 dξ | φ(ξ)|(1 + ξ) 2 . ( 56 
)
As far as R2 γ,2p,2p ′ ,2p ′′ is concerned, we use the definition of £ £ C γ,2p,2p ′ , together with the previous estimation of E[ Ũγ,2p ′′ (η)], to assert that, if p > 2/(1 -2γ),

E[ £ £ C γ,2p,2p ′ (ξ, η) 1/2p ′ Ũγ,2p ′′ (η) 1/2p ′′ ] = η γ E[ Ũγ,2p (ξ) 1/2p Ũγ,2p ′′ (η) 1/2p ′′ ] ≤ η γ E[ Ũγ,2p (ξ)] 1/2p E[ Ũγ,2p ′′ (η)] 1/2p ′′ ≤ C η γ .
Hence,

E[N [ R2 γ,2p,2p ′ ,2p ′′ ; L 1 ]] ≤ c ∞ 0 dξ | φ(ξ)|(1 + ξ) ∞ 0 dη | φ(η)| η γ ≤ c ∞ 0 dξ | φ(ξ)|(1 + ξ) 2 . ( 57 
)
Putting together the estimates ( 56) and ( 57), we end up with

E[N [ Rγ,2p,2p ′ ,2p ′′ ; L 1 ]] < ∞,
which ends the proof.

It remains to analyze the regularity of X2 . To this purpose, we will apply Proposition 3.12 again, which means that both the moments of X2 and δ X2 = X1 X 1 + X3 have to be controlled. We first have to check the following property:

Lemma 4.21. If ∞ 0 dη | φ(η)| < ∞, then, a.s., X2 .. (ξ) ∈ C 2 (R n,n
) for any ξ ≥ 0. Proof. This is the same Kolmogorov-type argument as the one used in Lemma 3. [START_REF] Lyons | System control and rough paths[END_REF]. The details are left to the reader.

Let us state now the regularity result for X2 :

Lemma 4.22. If φ is such that ∞ 0 dξ | φ(ξ)|(1 + ξ) < ∞, then, for any γ ∈ (1/3, 1/2), X2 ∈ C2γ 2 ([0, T ]; R n,n ) a.s. Proof.
Invoking the fact that δ X2 = X1 X 1 + X3 and the previous estimations of X1 and X3 , we deduce ( δ X2 )

ℓ 2 uℓ 1 (ξ) ≤ c |ℓ 2 -ℓ 1 | 2γ D(ξ) 1/4p 5 , with D(ξ) 1/4p 5 = Rγ,2p 0 ,2p 1 ,2p 2 (ξ) + ( Ũγ,2p 3 (ξ)) 1/2p 3 ∞ 0 dη | φ(η)|( Ũγ,2p 4 (η)) 1/2p 4 .
We are thus ready to apply Proposition 3.12 to X2 with ψ(x) = x 4p 5 and φ(x) = x 2γ+1/2p 5 to get X2 ts (ξ) ≤ c |t -s| 2γ Ṽ2γ,4p 5 (ξ) 1/4p 5 + D(ξ) 

] ≤ c N [ Ṽ 1/4p 5 2γ,4p 5 ; L 1 ] + N [ D1/4p 5 ; L 1 ] .
The fact that N [ D1/4p 5 ; L 1 ] < ∞ a.s has been shown while studying the regularities of X1 and X3 , for some well-chosen p 0 , p 1 , p 2 , p 3 , p 4 . 

To conclude with, let us prove that

E[N [ Ṽ 1/4p 5 2γ,4p 5 ; L 1 ]] < ∞: notice that E[N [ Ṽ 1/4p 5 2γ,4p 5 ; L 1 ]] ≤ ∞ 0 dξ | φ(ξ)|(1 + ξ)E[ Ṽ2γ,4p 5 (ξ)] 1/4p
E X2 wv (ξ) 4p 5 ≤ c E | X2,(1,1) wv (ξ)| 4p 5 + E | X2,(1,2) wv (ξ)| 4p 5 ,
where X2,(i,j) wv (ξ) is defined as

t s e -ξ(t-v) dX (i) v X 1,(j)
vs . But, thanks to the Burkholder-Davis-Gundy inequality, we know that

E[| X2,(1,1) wv (ξ)| 4p 5 ] ≤ cE w v (e -ξ(w-s) X 1,(1) sv ) 2 ds 2p 5 ≤ c |w -v| 2p 5 -1 w v E (X 1,(1) sv ) 4p 5 ds,
and

E[(X 1,(1) sv ) 2 ] = E ∞ 0 dη φ(η) s v e -η(s-t) dX (1) t 2 = s v ∞ 0 dη φ(η)e -η(s-t) 2 dt ≤ |s -v| ∞ 0 dη φ(η) 2 ,
which gives E[(X 

wv (ξ)) 4p 5 ] ≤ c |w -v| 4p 5 .
In fact, this reasoning remains true for E[(X 1,(1,2) sv

) 4p 5 ], so that finally E[ X2 wv (ξ) 4p 5 ] ≤ c |w -v| 4p 5 . If we take p 5 > 1/(1/2 -γ), then we get E[ Ṽ2γ,4p 5 (ξ)] ≤ 0<v<w<T |w -v| 4p 5 -8γp 5 -2 dwdv ≤ M < ∞, which leads to the announced claim E[N [ Ṽ 1/4p 5 2γ,4p 5 ; L 1 ]] < ∞, provided ∞ 0 dξ | φ(ξ)|(1 + ξ) < ∞.
We are now able to write Theorem 4.16 in the Brownian setting: Theorem 4.23. Let X = (X (1) , . . . , X (n) ) a standard Brownian motion on [0, T ] with values in R 1,n . Introduce coefficients γ ∈ (1/3, 1/2), κ ∈ (1/3, γ) and assume that

∞ 0 dξ | φ(ξ)|(1 + ξ) < ∞. If σ ∈ C 3,b (R 1,d ; R n,d ), then, a.s, the system Ỹ0 = 0 ( δ Ỹ ) ts = J ts dX σ a + ∞ 0 dη φ(η) Ỹ (η)
admits a unique solution in Qκ ([0, T ], R 1,d ).

Application to a fBm with Hurst parameter H

∈ (1/3, 1/2)
This section is devoted to prove that Hypothesis 3 is fulfilled for a n-dimensional fractional Brownian motion with Hurst parameter H ∈ (1/3, 1/2). More specifically, we will construct a stochastic vector

(X, X1 , X2 , X3 ) ∈ L 1 (Ω; C γ 1 (R 1,n ) × Cγ 2 (R 1,n ) × C2γ 2 (R n,n ) × C3γ 3 (R n,n
)) lying above X (in some rough path sense) such that:

• X is a fBm with Hurst parameter H,

• γ ∈ (1/3, H), • almost surely, ( X1 , X2 , X3 ) satisfies Hypothesis 3, that is δ X1 = 0, δ X2 = X1 ⊗ X 1 + X3 , where X 1 ts = ∞ 0 dξ φ(ξ) X1 ts (ξ).
As mentioned in the introduction, to this end, we shall resort to an approximation of the fBm introduced by Unterberger in [START_REF] Unterberger | Stochastic calculus for fractional Brownian motion with Hurst exponent H larger than 1/4: a rough path method by analytic extension[END_REF]. Let us recall first briefly the definition of this approximation in the one-dimensional case.

All the processes we deal with in the sequel are defined on the same complete probability space (Ω, F , P ). As shown in [START_REF] Unterberger | Stochastic calculus for fractional Brownian motion with Hurst exponent H larger than 1/4: a rough path method by analytic extension[END_REF], a simple explicit decomposition of the covariance of the fBm allows to introduce an analytic process X + ′ on the complex half-plane

Π + = {x + iy ∈ C : y > 0} such that, if X -′ is defined on Π -by X -′ w = X+ ′ w , then, for all z, w ∈ Π + , E X + ′ z X + ′ w = E X -′ z X -′ w = 0, E X + ′ z X -′ w = H(1 -2H) 2 cos(πH) (-i(z -w)) 2H-2 . ( 58 
)
The process X + ′ z has to be interpreted as an analytic approximation of the derivative of the fBm, and the simple expression (58) for its covariance function is at the core of our further calculations. If one desires to construct an approximation of the fBm itself, just pick, for t ∈ R and any ε > 0, a continuous path γ ε,t : [0, 1] → Π + such that γ ε,t (0) = iε and γ ε,t (1) = t + iε. Set then X +,ε t = γε,t X + ′ z dz. Likewise, a process X -,ε t can be defined as X -,ε t = γε,t X -′ z dz, where γε,t : [0, 1] → Π -is such that γε,t (0) = -iε and γε,t (1) = tiε. Of course, X -,ε t = X+,ε t , and the (real) approximation we shall work with is finally defined as

X ε t = 2 Re(X +,ε t ) = X +,ε t + X -,ε t . (59) 
The next proposition, borrowed from [START_REF] Unterberger | Stochastic calculus for fractional Brownian motion with Hurst exponent H larger than 1/4: a rough path method by analytic extension[END_REF], gives a first relation between the approximation we have just recalled and the usual fBm indexed by R:

Proposition 5.1. Let X ε be the process constructed above, given by relation (59). For all s, t ∈ R, we have

lim ε→0 E [X ε t X ε s ] = 1 2 |t| 2H + |s| 2H -|t -s| 2H .
This statement in law will be improved at Theorem 5.2. Just notice for the moment that, for any fixed ε > 0, {X ε t , t ∈ [0, T ]} is a smooth process and (X ε ) ′ t = X + ′ t+iε + X -′ t-iε . In a natural way, the n-dimensional analog of our analytic approximation is a process X ε := (X ε,(1) , . . . , X ε,(n) ), where the components X ε,(i) are constructed from independent copies of X + ′ . We can then introduce the following smooth integral (in the Riemann sense) processes associated to X ε :

X1,ε ts (ξ) = t s e -ξ(t-u) dX ε u , X 1,ε ts = ∞ 0 dξ φ(ξ) X1,ε ts (ξ), (60) 
X2,ε ts (ξ) = t s e -ξ(t-u) dX ε u ⊗ X 1,ε us , X3,ε tus (ξ) = t u e -ξ(t-v) dX ε v ⊗ (δX 1,ε ) vus .
The main result of this section, which entails in particular our Theorem 1.1, can be summarized as follows:

Theorem 5.2. Assume that φ is such that ∞ 0 dξ | φ(ξ)|(1 + ξ 2 ) < ∞. Then, for any γ ∈ (1/3, H), the sequence of processes (X ε , X1,ε , X2,ε , X3,ε ) converges in L 1 (Ω; C γ 1 × Cγ 2 × C2γ 2 × C3γ
3 ), as ε tends to 0, to a process (X, X1 , X2 , X3 ) . Furthermore, X has the same law as a fBm with Hurst parameter H and X1 , X2 , X3 satisfy Hypothesis 3.

The proof of this theorem will be carried out in the sections below, and the main step in this process will be to prove that (X ε , X1,ε , X2,ε , X3,ε ) is a Cauchy sequence. This is achieved once the following stronger statement is proved:

E N [X ε -X η ; C γ 1 ] + N [ X1,ε -X1,η ; Cγ 1 ] + N [ X2,ε -X2,η ; C2γ 2 ] + N [ X3,ε -X3,η ; C3γ 3 ] ≤ c ε α , (61) with α 
> 0. To do so, let us fix 0 < η < ε and follow the same lines as in the Brownian case (see Section 4.5), which means that the issue mainly consists in estimating the moments of any order of the processes at stake.

For the sake of clarity, the proofs of the lemmas to come are carried over to the appendix. Let us also introduce the notation

X ∆ = X ε -X η , Xi,∆ = Xi,ε -Xi,η , i ∈ {1, 2, 3} . (62) 
5.1. Estimation of the first order integrals. Our approximation results will stem from the association of Proposition 3.12 and the following lemma concerning Wiener integrals of analytic functions:

Lemma 5.3. Let 0 ≤ s < t ≤ T and f ts an analytic function in a neighbourhood of

Π (s,t) = {z = a + ib ∈ C : a ∈ [s, t], b ∈ [-(t -s), t -s]} such that the restriction f ts |[s,t] takes value in R. Suppose that f ts is bounded on Π (s,t) .
Then, for any α ∈ (0, 2H),

E t s f ts (u) dX ε u - t s f ts (u) dX η u 2 ≤ c α f 2 ∞,Π (s,t) |t -s| 2H-α |ε -η| α ,
where the constant c α does not depend on s, t, ε, η.

With this lemma in hand, our approximation result for the first order integrals based on X ε can be written as: Proposition 5.4. Let X ε and X1,ε be the increments defined by (60). Then there exists a constant α > 0 such that

E N [X ε -X η ; C γ 1 ] + N [ X1,ε -X1,η ; Cγ 2 ] ≤ c ε α ,
for any 0 < η < ε.

Proof. Recall our notation (62) for the differences of increments based on X. For the estimation of X ∆ , use the classical Garsia-Rumsey-Rodemich inequality to deduce (δX

∆ ) ts ≤ c |t -s| γ (U ∆ γ,2p ) 1/2p
, where

U ∆ γ,2p = 0<v<w<T (δX ∆ ) wv 2p |w -v| 2γp+2 dvdw, which leads to E N [X ∆ ; C γ 1 ] ≤ c E[U ∆ γ,2p ] 1/2p
. But, according to Lemma 5.3 (take f wv = 1), we have

E[ (δX ∆ ) wv 2 ] = E[ (X ε w -X ε v ) -(X η w -X η v ) 2 ] ≤ c |ε -η| α 1 |w -v| 2H-α 1 , for an arbitrary constant α 1 ∈ (0, 2H). Hence, since X + is a Gaussian process, we also obtain E[ (δX ∆ ) wv 2p ] ≤ c |ε -η| α 1 p |w -v| 2Hp-α 1 p , so that, if α 1 ∈ (2γ, 2H) and p > 2/(2H -2γ -α 1 ), E N [X ∆ ; C γ 1 ] ≤ c |ε -η| α 1 /2 . In order to estimate N [ X1,∆ ; Cγ 1,β ]
, notice that we obviously have δ X1,∆ = 0, which, thanks to Proposition 3.12, gives X1,∆

ts (ξ) ≤ c |t -s| γ ( Ũ∆ γ,2p (ξ)) 1/2p , where Ũ∆ γ,2p (ξ) = 0<v<w<T X1,∆ wv (ξ) 2p |w -v| 2γp+2 dvdw. Therefore E N [ X1,∆ ; Cγ 1 ] ≤ c ∞ 0 dξ | φ(ξ)|(1+ξ) E[ Ũ∆ γ,2p (ξ) 
] 1/2p , and invoking again Lemma 5.3 with f wv (u) = e -ξ(w-u) , we get E[ X1,∆ wv (ξ) 2p ] ≤ c |ε -η| α 1 p |w -v| 2Hp-α 1 p . Thus, just as in the case of X ∆ , we end up with

E N [ X1,∆ ; Cγ 1 ] ≤ c |ε -η| α 1 /2 ∞ 0 dξ | φ(ξ)|(1 + ξ) ≤ c |ε -η| α 1 /2 ,
which finishes the proof.

5.2.

Estimation of the second order integrals. We now proceed to the estimation of the increments X2,ε and X3,ε , starting with the second one:

Proposition 5.5. Let X3,ε be the increment defined at (60). Then there exists a constant

α > 0 such that E N [ X3,ε -X3,η ; C3γ 3 ] ≤ c ε α , for any 0 < η < ε.
Proof. As in the Brownian case, write X3,ε as

X3,ε tus (ξ) = ∞ 0 dµ φ(µ) £ £ X 4,ε tu (ξ, µ) ⊗ X1,ε us (µ), with £ £ X 4,ε tu (ξ, µ) = t u e -ξ(t-v) a vu (µ) dX ε v .
Then the increment X3,∆ defined at equation (62) satisfies:

X3,∆ tus (ξ) = ∞ 0 dµ φ(µ) £ £ X 4,∆ tu (ξ, µ) ⊗ X1,ε us (µ) + ∞ 0 dµ φ(µ) £ £ X 4,η tu (ξ, µ) ⊗ X1,∆ us (µ) := ♯ X3,∆ tus (ξ) + ♭ X3,∆ tus (ξ). (63) 
We will now bound these last two terms separately.

Let us start by controlling ♯ X3,∆ : notice that ( £ £ δ £ £ X

4,∆

)(ξ, µ) = X1,∆ (ξ)a(µ), and thus, using the same arguments and notations (53) as in the Brownian case, we get

£ £ X 4,∆ tu (ξ, µ) ≤ c |t -u| 2γ ( £ £ U ∆ 2γ,2p ′ (ξ, µ)) 1/2p ′ + ( £ £ C ∆ γ,2p,2p ′ (ξ, µ)) 1/2p ′ . As a consequence, £ £ X 4,∆ tu (ξ, µ) ⊗ X1,ε us (µ) ≤ c |t -u| 2γ |u -s| γ £ £ R ∆,ε γ,2p,2p ′ ,2p ′′ (ξ, µ), where £ £ R ∆,ε γ,2p,2p ′ ,2p ′′ (ξ, µ) = £ £ U ∆ 2γ,2p ′ (ξ, µ) 1/2p ′ Ũε γ,2p ′′ (µ) 1/2p ′′ + £ £ C ∆ γ,2p,2p ′ (ξ, µ) 1/2p ′ Ũε γ,2p ′′ (µ) 1/2p ′′ := 1£ £ R ∆,ε γ,2p ′ ,2p ′′ (ξ, µ) + 2 £ £ R ∆,ε γ,2p,2p ′ ,2p ′′ (ξ, µ), (64) 
which leads to

E N [ ♯ X3,∆ ; C3γ 3,β ] ≤ 2 i=1 ∞ 0 dξ | φ(ξ)|(1 + ξ β ) ∞ 0 dµ | φ(µ)| E i £ £ R ∆,ε γ,2p ′ ,2p ′′ (ξ, µ) .
In order to estimate the first term of the latter sum, start with

E[ £ £ U ∆ 2γ,2p ′ (ξ, µ) 1/2p ′ Ũε γ,2p ′′ (µ) 1/2p ′′ ] ≤ E[ £ £ U ∆ 2γ,2p ′ (ξ, µ)] 1/2p ′ E[ Ũε γ,2p ′′ (µ)] 1/2p ′′ . (65) 
Then use Lemma 5.3 to assert that, for any λ ∈ (0, 1) and any α ∈ (0, 2H),

E t s e -ξ(t-u) a us (µ) dX ε u - t s e -ξ(t-u) a us (µ) dX η u 2 ≤ c µ 2λ |ε -η| α |t -s| (2H-α)+2λ . Indeed, if z ∈ Π (s,t) , |a zs (µ)| = e -µ(z-s) -1 ≤ 2µ λ |z -s| λ ≤ 2µ λ |t + i(t -s) -s| λ ≤ c µ λ |t -s| λ . Accordingly, E[ £ £ X 4,∆ wv (ξ, µ) 2p ′ ] ≤ c µ 2p ′ λ 1 |ε -η| α 2 p ′ |w -v| (2H-α 2 +2λ 1 )
p ′ , and then, if we take (λ 1 , α 2 ) ∈ (0, 1) × (0, 2H) such that 2(H + λ 1 )α 2 -4γ > 0 and p ′ > 2/(2(H +

λ 1 ) -α 2 -4γ), we get E[ £ £ U ∆ 2γ,2p ′ (ξ, µ)] 1/2p ′ ≤ c µ λ 1 |ε -η| α 2 /2 . To deal with E[ Ũε γ,2p ′′ (µ)
] in (65), consider the following estimation (recall that the proofs of all the lemmas in this section are postponed to the appendix):

Lemma 5.6. Let 0 < s < t < T , µ ≥ 0. Then E t s e -µ(t-u) dX ε u 2 ≤ c |t -s| 2H ,
where the constant c does not depend on s, t, µ, ε.

Therefore, E[ X1,ε wv (µ) 2p ′′ ] ≤ c |w -v| 2Hp ′′ , which, by taking p ′′ > 1/(H -γ), gives E[ Ũε γ,2p ′′ (µ)] ≤ c. We can thus assert that E[ 1£ £ R ∆,ε γ,2p ′ ,2p ′′ (ξ, µ)] ≤ c µ λ 1 |ε -η| α 2 /2 . As far as E[ 2 £ £ R ∆,ε γ,2p ′ ,2p ′′ (ξ, µ)] in (64) is concerned, go back to the definition of £ £ C ∆ γ,2p,2p ′ , together with the previous estimations of E[ Ũ∆ γ,2p (ξ)] and E[ Ũε γ,2p ′′ (µ)], to deduce E 2 £ £ R ∆,ε γ,2p ′ ,2p ′′ (ξ, µ) ≤ µ γ E Ũ∆ γ,2p (ξ) 1/2p E Ũε γ,2p ′′ (µ) 1/2p ′′ ≤ c µ γ |ε -η| α 1 /2 .
Putting together the estimates on 1 £ £ R and 2 £ £ R, we thus have proved that

E N [ ♯ X3,∆ ; C3γ 3 ] ≤ ∞ 0 dξ | φ(ξ)|(1 + ξ) 2 |ε -η| α 1 /2 + |ε -η| α 2 /2 ≤ c |ε -η| α 1 /2 + |ε -η| α 2 /2 . ( 66 
)
Going back to equation ( 63), let us deal with the term

E[N [ ♭ X3,∆ ; C3γ 3 ]].
But in this latter case, it is readily checked that the previous reasoning and bound (66) remain true by inverting the roles of £ £ X 4 and X1 , thanks to Lemma 5.3 and invoking the following lemma:

Lemma 5.7. Let 0 < s < t < T , ξ, µ ≥ 0. Then, for any λ ∈ (0, 1),

E t s e -ξ(t-u) a us (µ) dX η u 2 ≤ c µ 2λ |t -s| 2H+2λ ,
where the constant c does not depend on s, t, ξ, µ, η. 63), and claim that the expected relation

This remark allows us to finally plug the bounds on

E[N [ ♭ X3,∆ ; C3γ 3 ]], E[N [ ♯ X3,∆ ; C3γ 3 ]] back into equation (
E N [ X3,∆ ; C3γ 3 ] ≤ c |ε -η| α for some α > 0 holds true.
The upper bound for X2,ε can be written in a similar way as for the previous cases: Proposition 5.8. Let X2,ε be the increment defined at (60). Then there exists a constant α > 0 such that E N [ X2,ε -X2,η ; C2γ 2 ] ≤ c ε α , for any 0 < η < ε.

Proof. Here again, we will proceed as in the Brownian case of Section 4.5, and we shall apply Proposition 3.12. This means that we must control both the regularity of δ X2,∆ and the moments of X2,∆ wv . However, δ X2,∆ = X1,∆ ⊗ X 1,ε + X1,η ⊗ X 1,∆ + X3,∆ , so that the previous estimations of Propositions 5.5 and 5.8 easily lead to ( δ X2,∆ ) tus (ξ) ≤ |t -s| 2γ D∆,ε,η (ξ), where D∆,ε,η satisfies

E[N [ D∆,ε,η ; L 1 ]] ≤ c |ε -η| α for some α > 0. We have thus obtained that X2,∆ ts (ξ) ≤ c |t -s| 2γ { Ṽ ∆ 2γ,4p (ξ) 1/4p + D∆,ε,η (ξ)}, with Ṽ ∆ 2γ,4p (ξ) = 0<v<w<T X2,∆ wv (ξ) 4p |w -v| 8γp+2 dvdw,
and hence E N [ X2,∆ ; C2γ 2 ] ≤ c{E N [( Ṽ ∆ 2γ,4p ) 1/4p ; L 1 ] + |ε -η| α }. To study E N [( Ṽ ∆ 2γ,4p ) 1/4p ; L 1 ] ,
we first give a bound on the second moments of the increment X2,∆ ts (ξ): Lemma 5.9. Let 0 < s < t < T , ξ ≥ 0. Then, for any λ ∈ (0, 2H), there exists κ > 0 such that

E[ X2,∆ ts (ξ) 2 ] ≤ c ε κ |t -s| 4H-λ (1 + ξ 2 )
, where the constant c does not depend on ξ, s, t, ε, η.

Since X2,∆

ts (ξ) is an element of the second chaos associated to the Gaussian process X + , we can easily deduce from the previous lemma that E[ X2,∆ wv (ξ) 4p ] ≤ c ε 2pκ (1 + ξ 2 ) 2p |w -v| 8Hp-2pλ . Thus, if we pick λ ∈ (0, 4(Hγ)) and p > 1/(4(Hγ)λ),

E N [( Ṽ ∆ 2γ,4p ) 1/4p ; L 1 ] ≤ ∞ 0 dξ | φ(ξ)|(1 + ξ) E[ Ṽ ∆ 2γ,4p (ξ)] 1/4p ≤ c ε κ/2 ∞ 0 dξ | φ(ξ)|(1 + ξ 2 ) ≤ c ε κ/2
and the expected result E[N [ X2,∆ ; C2γ 2 ]] ≤ c ε α holds true.

We can now conclude this section with the proof of our main theorem.

Proof of Theorem 5.2. Putting together Propositions 5.4, 5.5 and 5.8, it is readily checked that (X ε , X1,ε , X2,ε , X3,ε ) is a Cauchy sequence in the Banach space L 1 (Ω;

C γ 1 × Cγ 2 × C2γ 2 × C3γ 3 ).
The fact that the process {X t , t ∈ [0, T ]} has the same law as a fBm with Hurst parameter H is a direct consequence of Proposition 5.1.

Finally, it is readily checked that the algebraic relations δ X1,ε = 0 is preserved as ε tends to 0, by taking L 1 (Ω)-limits on both sides of the equality. The same kind of limit can be also taken for the relation δ X2,ε = X1,ε ⊗ X 1,ε + X3,ε , provided one can prove that X1,ε and X 1,ε are in fact Cauchy sequences in L 2 (Ω). But this is achieved by a slight elaboration of Proposition 5.4, thanks to the fact that X 1,ε and X1,ε are Gaussian processes.

6. Appendix 6.1. Proofs of the GRR type propositions. This section gathers the proofs of all the general results we need for the regularity of the stochastic processes handled in this article.

Proof of Proposition 3.12. This is an adaptation of Stroock's proof of the (classical) Garsia-Rodemich-Rumsey inequality (see [START_REF] Stroock | Probability theory, an analytic view[END_REF]).

Let s, t ∈ [0, T ] and notice that, for any sequence of decreasing times (s k ) ∈ (s, t),

( δ R) s k s k+1 s (ξ) = Rs k s (ξ) -Rs k s k+1 (ξ) -e -ξ(s k -s k+1 ) Rs k+1 s (ξ), (67) 
so that Rs k s (ξ) ≤ Rs k+1 s (ξ) + Rs k s k+1 (ξ) + ( δ R) s k s k+1 s (ξ) and by iteration,

Rs 0 s (ξ) ≤ Rs n+1 s (ξ) + n k=0 Rs k s k+1 (ξ) + ( δ R) s k s k+1 s (ξ) . (68) 
For all v ≥ s, set

I(v) = v s ψ Rv(ξ)| φ(v-u)
du, and define the sequence (s k ) as follows. First, fix s 0 ∈ (s, t) arbitrarily. Next, given s k ∈ (s, t), write s k = s + λ k (λ k ∈ (0, ts)) and define α k < λ k by the relation 2φ(α k ) = φ(λ k ). Then set s k+1 = s + λ k+1 , where λ k+1 ∈ (0, α k ) is such that

I(s + λ k+1 ) ≤ 2 Ũ(ξ) α k and ψ Rs k ,s+λ k+1 (ξ) φ(λ k -λ k+1 ) ≤ 2 I(s k ) α k . ( 69 
)
Such an element always exists since if we call A k (resp. B k ) ⊂ (0, α k ) the set on which the first (resp. the second) inequality fails, we have Ũ (ξ) ≥ A k I(s + u) du > 2 Ũ (ξ) α k µ(A k ), whereas

I(s k ) = λ k 0 ψ Rs k ,s+u (ξ) φ(λ k -u) du ≥ B k ψ Rs k ,s+u (ξ) φ(λ k -u) du > 2 I(s k ) α k µ(B k ).
The last two inequalities yield µ(A k ) < α k /2 and µ(B k ) < α k /2, and thus µ(A k ∪B k ) < α k .

It is then clear that (s k ) decreases to s.

Observe now that

φ(λ k -λ k+1 ) ≤ φ(λ k ) = 2φ(α k ) = 4 φ(α k ) - φ(α k ) 2 ≤ 4 φ(α k ) - φ(λ k+1 ) 2 = 4(φ(α k ) -φ(α k+1 )).
Plugging this observation into equation (69), we end up with:

Rs k s k+1 (ξ) ≤ φ(λ k -λ k+1 )ψ -1 2 I(s k ) α k ≤ 4(φ(α k ) -φ(α k+1 ))ψ -1 4 Ũ(ξ) α k α k-1 ≤ 4 α k α k+1 ψ -1 4 Ũ (ξ) r 2 dφ(r),
where we have used the fact that ψ -1 is an increasing function. Besides, condition (27) entails:

( δ R) s k s k+1 s (ξ) ≤ ψ -1 4 C(ξ) λ 2 k φ(λ k ) ≤ 4 ψ -1 4 C(ξ) λ 2 k (φ(α k ) -φ(α k+1 )) ≤ 4 α k α k+1 ψ -1 4 C(ξ) r 2 dφ(r).
As R (ξ) ∈ C 2 , we get, by letting n tend to infinity in (68),

Rs 0 s (ξ) ≤ 4 |t-s| 0 ψ -1 4 Ũ(ξ) r 2 + ψ -1 4 C(ξ) r 2 dφ(r).
In the same way, we find

Rts 0 (ξ) ≤ 4 |t-s| 0 ψ -1 4 Ũ(ξ) r 2 + ψ -1 4 C(ξ) r 2 dφ(r).
Write now Rts (ξ) = Rts 0 (ξ) + e -ξ(t-s 0 ) Rs 0 s (ξ) + ( δ R) ts 0 s (70) to deduce Rts (ξ) ≤ Rts 0 (ξ) + Rs 0 s (ξ) + ( δ R) ts 0 s (ξ)

≤ 8 |t-s| 0 ψ -1 4 Ũ(ξ) r 2 + ψ -1 4 C(ξ) r 2 dφ(r) + ( δ R) ts 0 s (ξ) ,
and observe that

( δ R) ts 0 s (ξ) ≤ ψ -1 4 C(ξ) |t -s| 2 φ(|t -s|) ≤ |t-s| 0 ψ -1 4 C(ξ) r 2 dφ(r),
which achieves the proof.

We also need to prove a slight extension of the previous proposition to functions indexed by two Laplace variables:

Proof of Proposition 4.19. It follows the same lines as the proof of Proposition 3.12. Relation (67) has to be replaced with

( £ £ δ £ £ R) s k s k+1 s (ξ, η) = £ £ R s k s (ξ, η) -£ £ R s k s k+1 (ξ, η)e -η(s k+1 -s) -e -ξ(s k -s k+1 ) £ £ R s k+1 s (ξ, η),
which leads to the expected estimation

£ £ R s k s (ξ, η) ≤ £ £ R s k+1 s (ξ, η) + £ £ R s k s k+1 (ξ, η) + ( £ £ δ £ £ R) s k s k+1 s (ξ, η) ,
whereas (70) becomes

£ £ R ts (ξ, η) = e -η(s 0 -s) £ £ R ts 0 (ξ, η) + e -ξ(t-s 0 ) £ £ R s 0 s (ξ, η) + ( £ £ δ £ £ R) ts 0 s (ξ, η) and thus £ £ R ts (ξ, η) ≤ £ £ R ts 0 (ξ, η) + £ £ R s 0 s (ξ, η) + ( £ £ δ £ £ R) ts 0 s (ξ, η) .
6.2. Proofs of the complex analysis lemmas. We will prove in this section Lemmas 5.3, 5.6 and 5.7. The key ingredients for those proofs are the following elementary estimations: Lemma 6.1. Let 0 ≤ s < t ≤ T and γ (s,t) the three-part path in

Π + γ (s,t) = [s, s + i(t -s)] ∪ [s + i(t -s), t + i(t -s)] ∪ [t + i(t -s), t]. (71) 
Then, for any ε > 0 and any α ∈ (0, 1),

γ (s,t) |dz| γ (s,t) |dw| |-i(z -w) + ε| α-2 ≤ c |t -s| α , (72) 
where the constant c does not depend on s, t, ε. Moreover, for any η > 0 and λ ∈ (0, α), 

γ (s,t) |dz| γ (s,t) |dw| (-i(z -w) + ε) α-2 -(-i(z -w) + η) α-2 ≤ c |t -s| α-λ |ε -η| λ , (73 
γ (s,t) |dw| |-i(z -w) + ε| α-2 = 1≤j,k≤3 γ j (s,t) |dz| γ k (s,t) |dw| |-i(z -w) + ε| α-2 .
Let us now estimate each term of the latter sum. Notice first that, for any α > 0, the integral 1 0 (u + v) α-2 dudv is finite. This allows to obtain:

+ + -i(t -s) i(t -s) s t γ 1 γ 2 γ 3 Figure 1.

Contours of integration

Case j = k = 1:

γ 1 (s,t) |dz| γ 1 (s,t) |dw| |-i(z -w) + ε| α-2 = t-s 0 t-s 0 (u + v + ε) α-2 dudv ≤ t-s 0 t-s 0 (u + v) α-2 dudv ≤ |t -s| α 1 0 1 0 (u + v) α-2 dudv ≤ c |t -s| α . Case j = k = 2: γ 2 (s,t) |dz| γ 2 (s,t) |dw| |-i(z -w) + ε| α-2 = t-s 0 t-s 0 |2(t -s) + ε -i(u -v)| α-2 dudv ≤ |t -s| α .
Case j = k = 3:

γ 3 (s,t) |dz| γ 3 (s,t) |dw| |-i(z -w) + ε| α-2 = t-s 0 t-s 0 |(t -s -u) + (t -s -v) + ε| α-2 dudv ≤ t-s 0 t-s 0 |u + v| α-2 dudv ≤ c |t -s| α . Case j = 1, k = 2: γ 1 (s,t) |dz| γ 2 (s,t) |dw| |-i(z -w) + ε| α-2 = t-s 0 t-s 0 |(u + t -s) -iv| α-2 dudv ≤ |t -s| α . Case j = 1, k = 3: γ 1 (s,t) |dz| γ 3 (s,t) |dw| |-i(z -w) + ε| α-2 = t-s 0 t-s 0 |-i(s -t) + (u -v + t -s)| α-2 dudv ≤ |t -s| α .
Case j = 2, k = 3:

γ 2 (s,t) |dz| γ 3 (s,t) |dw| |-i(z -w) + ε| α-2 = t-s 0 t-s 0 |2(t -s) -v -i(s -t + u)| α-2 dudv ≤ |t -s| α .
It is clear that the other cases can be dealt with in the same way, which achieves the proof of (72). As for (73), notice that, if z ∈ γ (s,t) and w ∈ γ (s,t) ,

(-i(z -w) + ε) α-2 -(-i(z -w) + η) α-2 , ≤ (2 sup x∈[η,ε] |-i(z -w) + x| α-2 ) 1-λ (|α -2| sup x∈[η,ε] |-i(z -w) + x| α-3 ) λ |ε -η| λ ≤ c |-i(z -w) + η| (α-λ)-2 |ε -η| λ ,
so that the result is a consequence of (72). Remark 6.2. As mentioned in [START_REF] Unterberger | Stochastic calculus for fractional Brownian motion with Hurst exponent H larger than 1/4: a rough path method by analytic extension[END_REF], one of the interesting features of the complex analysis approach for the stochastic calculus with respect to fBm is that simple deformations of contour like (71) allow to transform very singular kernels like (uv) α-2 into a much more tractable term of the form (u + v) α-2 .

We can now begin with the proof of our lemmas, after introducing an additional notation: for the sake of conciseness, we shall henceforth denote

K α ε 1 ,ε 2 (x, y) = (-i(x -y) + ε 1 + ε 2 ) α . ( 74 
)
Proof of Lemma 5.3. Write the left-hand-side as

A ts (ε, η) := E t s f ts (u) dX ε u - t s f ts (u) dX η v 2 = n t s t s f ts (u)f ts (v) E (X ε,(1) ) ′ u -(X η,(1) ) ′ u (X ε,(1) ) ′ v -(X η,(1) ) ′ v dudv.
Notice then that

E (X ε,(1) ) ′ u (X ε,(1) ) ′ v = E X ′ +,(1) (u + iε) + X ′ -,(1) (u -iε) X ′ +,(1) (v + iε) + X ′ -,(1) (v -iε) = c H K 2H-2 ε,ε (u, v) + K 2H-2 ε,ε (v, u) ,
where c H = H(1-2H) 2 cos(πH) , and E (X ε,(1) ) ′ u (X η,( 1)

) ′ v = E (X η,(1) ) ′ u (X ε,(1) ) ′ v = c H K 2H-2 ε,η (u, v) + K 2H-2 ε,η (v, u) .
Using these identities, one can decompose A ts (ε, η) into a sum of terms whose prototype is:

A 1 ts (ε, η) = t s du t s dv f ts (u)f ts (v)[K 2H-2 ε,ε (u, v) -K 2H-2 ε,η (u, v)].
Let us focus then on the estimation of this last term: by a deformation of contour, we get (remember that γ (s,t) is defined by (71))

A 1 ts (ε, η) = γ (s,t) dz γ (s,t) dw f ts (z)f ts (w)[K 2H-2 ε,ε (z, w) -K 2H-2 ε,η (z, w)],
hence, owing to (73), it is easily seen that:

A 1 ts (ε, η) ≤ f 2 ∞,Π (s,t) γ (s,t) |dz| γ (s,t) |dw| K 2H-2 ε,ε (z, w) -K 2H-2 ε,η (z, w) ≤ c f 2 ∞,Π (s,t) |ε -η| α |t -s| 2H-α .
Clearly, this argument remains true for the other terms composing A ts (ε, η), which achieves the proof.

Proof of Lemma 5.6. We have

E t s e -µ(t-u) dX ε u 2 = n t s du t s dv e -µ(t-u) e -µ(t-v) E[(X ε,(1) ) ′ u (X ε,(1) ) ′ v ], with E[(X ε,(1) ) ′ u (X ε,(1) ) ′ v ] = c H K 2H-2 ε,ε (u, v) + K 2H-2 ε,ε
(v, u) , which gives, by an argument of symetry,

E t s e -µ(t-u) dX ε u 2 = c t s du t s dv e -µ(t-u) e -µ(t-v) K 2H-2 ε,ε (u, v).
In the latter integral, deform the line [s, t] into γ (s,t) for u and γ (s,t) for v. The result is then a consequence of (72).

Proof of Lemma 5.7. It goes along the same lines as the previous proof, taking into account the fact that if z ∈ γ (s,t) ∪ γ (s,t) ,

|a zs (µ)| ≤ e -µ(z-s) -1 λ ≤ µ λ |z -s| λ ≤ µ λ |s + i(t -s) -s| λ ≤ c µ λ |t -s| λ .
6.3. Proof of Lemma 5.9. As one might expect, the estimation of the variance of the convolutional Levy area X2,∆ ts (defined by equation ( 62)) gives rise to more intricate calculations. We shall distinguish the diagonal and non-diagonal terms, respectively denoted by X2,∆,(1,1) ts and X2,∆,(1,2) ts , and use the fact that

E[ X2,∆ ts (ξ) 2 ] ≤ c E[ X2,∆,(1,1) ts (ξ) 2 ] + E[ X2,∆,(1,2) ts (ξ) 2 ] .
The diagonal term X2,∆, [START_REF] Alòs | Anticipating stochastic Volterra equations[END_REF][START_REF] Alòs | Anticipating stochastic Volterra equations[END_REF] ts : For the sake of conciseness, denote X ε := X ε, (1) . The following property of X ε will be useful: Lemma 6.3. Let ε, η > 0, 0 ≤ s, t ≤ T . Then, for any α ∈ (0, 2H),

E[(X ε t -X ε s ) 2 ] ≤ c 1 |t -s| 2H , E[(X ε t -X η t ) 2 ] ≤ c 2 |ε -η| α , (75) 
E[({X ε t -X ε s } 2 -{X η t -X η s } 2 ) 2 ] ≤ c 3 |t -s| 4H-α |ε -η| α 2 /4H , (76 
) where the constants c 1 , c 2 , c 3 do not depend on ε, η, s, t, α.

Proof. The first (resp. second) inequality is a direct consequence of Lemma 5.6 (resp. Lemma 5.3). Those two inequalities account for (76). Indeed, we have, on the one hand,

E[({X ε t -X ε s } 2 -{X η t -X η s } 2 ) 2 ] ≤ c E[(X ε t -X ε s ) 4 ] + E[(X η t -X η s ) 4 ] ≤ c |t -s| 4H .
On the other hand, using Hölder's inequality,

E[({X ε t -X ε s } 2 -{X η t -X η s } 2 ) 2 ] = E[{(X ε t -X η t ) -(X ε s -X η s )} 2 {X ε t -X ε s + X η t -X η s } 2 ] ≤ c E[{(X ε t -X η t ) -(X ε s -X η s )} 4 ], (77) and thus E[({X ε t -X ε s } 2 -{X η t -X η s } 2 ) 2 ] ≤ c E[(X ε t -X η t ) 4 ] + E[(X ε s -X η s ) 4 ] ≤ c |ε -η| α . (78) 
Hence for any λ ∈ (0, 1), thanks to (77) and ( 78), we end up with

E ({X ε t -X ε s } 2 -{X η t -X η s } 2 ) 2 = E λ ({X ε t -X ε s } 2 -{X η t -X η s } 2 ) 2 E 1-λ ({X ε t -X ε s } 2 -{X η t -X η s } 2 ) 2 ≤ c |t -s| 4Hλ |ε -η| α(1-λ) ,
which gives the result if we take λ = 1 -α 4H .

Recall from (60) that we have X2,ε,(

(ξ) = ∞ 0 dµ φ(µ) £ £ X 2,ε,(1,1) ts (ξ, µ), with £ £ X 2,ε,(1,1) ts (ξ, µ) = t s du e -ξ(t-u) dX ε u u s e -µ(u-v) dX ε v . 1,1) ts 
Our main effort will of course concern the estimation of £ £ X 2,∆,(1,1) ts . In the absence of exponential weights like e -ξ(t-u) , namely in the case of the usual Levy area A ε ts = t s dX ε u u s dX ε v , the strategy is obvious (see [START_REF] Unterberger | Stochastic calculus for fractional Brownian motion with Hurst exponent H larger than 1/4: a rough path method by analytic extension[END_REF]): one can compute explicitly

A ε ts = 1 2 (X ε t -X ε s ) 2
, from which all the useful bounds can be easily deduced. The situation is less simple here due to our exponential weights, but we will try to mimic the classical situation with a natural trick: integrate the exponential weights by parts.

More specifically, for a fixed ε > 0, since X ε is a smooth process, it is easily derived from equation (79) that

£ £ X 2,ε,(1,1) ts (ξ, µ) = 1 2 (X ε t ) 2 -2e -µ(t-s) X ε s X ε t + e -ξ(t-s) (X ε s ) 2 + £ £ R ε,1 ts (ξ, µ) + Rε,2 ts (ξ) + £ £ R ε,3 ts (ξ, µ),
where the remainders £ £ R ε,1

, Rε,2 and £ £ R ε,3 are defined by:

£ £ R ε,1 ts (ξ, µ) = -µ t s du e -ξ(t-u) (X ε ) ′ u u s dv e -µ(u-v) X ε v Rε,2 ts (ξ) = - ξ 2 t s du e -ξ(t-u) (X ε u ) 2 £ £ R ε,3 ts (ξ, µ) = (ξ -µ)X ε s t s du e -ξ(t-u) e -µ(u-s) X ε u .
A little more elementary algebraic manipulations yield then:

£ £ X 2,∆,(1,1) ts (ξ, µ) = 1 2 (X ε t -X ε s ) 2 -(X η t -X η s ) 2 + (1 -e -µ(t-s) ) {X ε s X ε t -X η s X η t } + 1 2 (e -ξ(t-s) -1) (X ε s ) 2 -(X η s ) 2 + £ £ R ∆ ts (ξ, µ) := 4 j=1 K j , (80) 
where, of course,

£ £ R ∆ ts (ξ, µ) = £ £ R ∆,1 ts (ξ, µ) + R∆,2 ts (ξ) + £ £ R ∆,3
ts (ξ, µ). Recall that we have to estimate E[( X2,∆,(1,1) ts (ξ)) 2 ], and according to (80), we will treat the different terms K j separately.

Study of K 1 : The expected value E[K 2 1 ] can be bounded easily thanks to (76), applied for some fixed α ∈ (0, 2H).

Study of K 3 : By Hölder's inequality, we have

E (e -ξ(t-s) -1)[(X ε s ) 2 -(X η s ) 2 ] 2 ≤ ξ 2 |t -s| 2 E (X ε s -X η s ) 2 (X ε s + X η s ) 2 ≤ ξ 2 |t -s| 2 E[(X ε s -X η s ) 2 ] E[(X ε s -X η s ) 2 (X ε s + X η s ) 4 ) ≤ c ξ 2 |t -s| 2 |ε -η| α/2 ,
where we have used (75) to get the last inequality.

Study of K

2 : Likewise, using the decomposition X ε s X ε t -X η s X η t = (X ε t -X η t )X ε s +X η t (X ε s - X η s ), we get, for any µ 1 , µ 2 ≥ 0, E[(1 -e -µ 1 (t-s) )(1 -e -µ 2 (t-s) ) {X ε s X ε t -X η s X η t }] ≤ µ 1 µ 2 |t -s| 2 {E[(X ε t -X η t )X ε s ] + E[X η t (X ε s -X η s )]} (81) ≤ c µ 1 µ 2 |t -s| 2 E[(X ε t -X η t ) 2 ] + E[(X ε s -X η s ) 2 ] ≤ c µ 1 µ 2 |t -s| 2 |ε -η| α/2 .
Study of K 4 : For our purposes, it remains in fact to estimate

E[ £ £ R ∆ ts (ξ, µ 1 ) £ £ R ∆ ts (ξ, µ 2 
)] for any µ 1 , µ 2 ≥ 0. This expression can be decomposed into

E[ £ £ R ∆ ts (ξ, µ 1 ) £ £ R ∆ ts (ξ, µ 2 )] = i,j∈{1,3} E[ £ £ R ∆,i ts (ξ, µ 1 ) £ £ R ∆,j ts (ξ, µ 2 )] + k∈{1,3} l∈{1,2} E[ R∆,2 ts (ξ) £ £ R ∆,k ts (ξ, µ l )] + E[ R∆,2 ts (ξ) 2 ],
whose terms will be treated again separately. For the last term, we have, just as above,

E[ R∆,2 ts (ξ) 2 ] = E[( Rε,2 ts (ξ) -Rη,2 ts (ξ)) 2 ] ≤ ξ 2 4 t s du t s dv E (X ε u ) 2 -(X η u ) 2 (X ε v ) 2 -(X η v ) 2 ≤ c ξ 2 |t -s| 2 |ε -η| α/2 .
By the same arguments, we easily deduce

E[ R∆,2 ts (ξ) £ £ R ∆,3 ts (ξ, µ i )] ≤ c ξ |ξ -µ i | |t -s| 2 |ε -η| α/2 for i ∈ 1, 2. To deal with E[ £ £ R ∆,3 ts (ξ, µ 1 ) £ £ R ∆,3
ts (ξ, µ 2 )], use the same trick as in (81) to deduce

E[ £ £ R ∆,3 ts (ξ, µ 1 ) £ £ R ∆,3 ts (ξ, µ 2 )] ≤ |ξ -µ 1 | |ξ -µ 2 | t s du t s dv E [{X ε s X ε u -X η s X η u } {X ε s X ε v -X η s X η v }] ≤ c |ξ -µ 1 | |ξ -µ 2 | |t -s| 2 |ε -η| α/2 .
In order to handle the terms involving £ £ R 1,∆ ts , we resort again to the integration by parts method, which yields:

£ £ R 1,ε ts (ξ, µ) = c µ £ £ A ε ts (ξ, µ) + µ(ξ -µ) £ £ B ts (ξ, µ) , where £ £ A ε ts (ξ, µ) = -X ε t t s du e -µ(t-u) X ε u + t s du e -ξ(t-u) (X ε u ) 2 , £ £ B ε ts (ξ, µ) = t s du e -ξ(t-u) X ε u u s dv e -µ(u-v) X ε v .
Then it is readily checked, by some elementary computations, that:

E[ £ £ R ∆,1 ts (ξ, µ i ) £ £ R ∆,1 ts (ξ, µ j )] ≤ c |t -s| 2 |ε -η| α/2 1 + ξ 2 2 k=1 1 + µ 2 l E[ £ £ R ∆,1 ts (ξ, µ i ) R∆,2 ts (ξ)] ≤ c |t -s| 2 |ε -η| α/2 µ i ξ + µ i ξ 2 + µ 2 i ξ E[ £ £ R ∆,1 ts (ξ, µ i ) £ £ R ∆,3 ts (ξ, µ j )] ≤ c |t -s| 2 |ε -η| α/2 1 + ξ 2 2 l=1 1 + µ 2 l .
It is also easily seen, by means of the same considerations, that:

E[ £ £ X 2,∆,(1,1) ts (ξ, µ 1 ) £ £ X 2,∆,(1,1) ts (ξ, µ 2 )] ≤ c |t -s| 4H-α |ε -η| κ 1 + ξ 2 2 i=1 1 + µ 2 l ,
for some κ > 0.

Finally, gathering all the estimates we have provided so far, and assuming the condition

∞ 0 dµ | φ(µ)| {1 + µ 2 } < ∞ on φ, we end up with the announced estimation, that is E[( X2,∆,(1,1) ts (ξ)) 2 ] ≤ c |t -s| 4H-α ε κ 1 + ξ 2 , (82) 
for a certain strictly positive κ. 

dv e -ξ(t-x) e -y(x-v) (X ε,(1) ) ′ x (X ε,(2) ) ′ v .
Hence, the moment E[( X∆,(1,2) ts

) 2 ] can be written as

E | X∆,(1,2) ts (ξ)| 2 = ∞ 0 dy 1 φ(y 1 ) ∞ 0 dy 2 φ(y 2 ) t s t s x 1 s x 2 s dx 1 dx 2 dx 3 dx 4 Mε,η x 1 x 2 x 3 x 4 , (83) 
with

Mε,η x 1 x 2 x 3 x 4 = e -ξ(t-x 1 ) e -y 1 (x 1 -x 3 ) e -ξ(t-x 2 ) e -y 2 (x 2 -x 4 ) E (X ε,(1) ) ′ x 1 (X ε,(2) ) ′ x 3 - (X η,(1) ) ′ x 1 (X η,(2) ) ′ x 3 (X ε,(1) ) ′ x 2 (X ε,(2) ) ′ x 4 -(X η,(1) ) ′ x 2 (X η,(2) ) ′ x 4
.

But according to our convention (74) for the fractional Brownian kernel, we can write

E (X ε,(1) ) ′ x 1 (X ε,(2) ) ′ x 3 (X ε,(1) ) ′ x 2 (X ε,(2) ) ′ x 4 (84) = E (X ε,(1) ) ′ x 1 (X ε,(1) ) ′ x 2 E (X ε,(2) ) ′ x 3 (X ε,(2) ) ′ x 4 = c 2 H K 2H-2 ε,ε (x 1 , x 2 ) + K 2H-2 ε,ε (x 2 , x 1 ) K 2H-2 ε,ε (x 3 , x 4 ) + K 2H-2 ε,ε (x 4 , x 3 ) ,
where we have used (58) in order to compute expressions like E[(X ε,(1) ) ′ x 1 (X ε,(1) ) ′

x 2 ]. In the same way, one can check that

E (X ε,(1) ) ′ x 1 (X ε,(2) ) ′ x 3 (X η,(1) ) ′ x 2 (X η,(2) ) ′ x 4 = c 2 H K 2H-2 ε,η (x 1 , x 2 ) + K 2H-2 ε,η (x 2 , x 1 ) K 2H-2 ε,η (x 3 , x 4 ) + K 2H-2 ε,η (x 4 , x 3 ) , (85) 
so that the difference between Expressions (84) and (85), denoted by ∆ ε,η x 1 x 2 x 3 x 4 , can be decomposed as ∆ ε,η = c 2 H { Ãε,η + Bε,η + Cε,η + Dε,η }, with Ãε,η

x 1 x 2 x 3 x 4 = K 2H-2 ε,ε (x 1 , x 2 ) -K 2H-2 ε,η (x 1 , x 2 ) K 2H-2 ε,ε (x 3 , x 4 ) + K 2H-2 ε,η (x 1 , x 2 ) K 2H-2 ε,ε (x 3 , x 4 ) -K 2H-2 ε,η (x 3 , x 4 ) = Ãε,η,1 x 1 x 2 x 3 x 4 + Ãε,η,2 x 1 x 2 x 3 x 4 , Bε,η x 1 x 2 x 3 x 4 = K 2H-2 ε,ε (x 1 , x 2 ) -K 2H-2 ε,η (x 1 , x 2 ) K 2H-2 ε,ε (x 4 , x 3 ) + K 2H-2 ε,η (x 1 , x 2 ) K 2H-2 ε,ε (x 4 , x 3 ) -K 2H-2 ε,η (x 4 , x 3 ) = Bε,η,1 x 1 x 2 x 3 x 4 + Bε,η,2 x 1 x 2 x 3 x 4 , Cε,η x 1 x 2 x 3 x 4 = K 2H-2 ε,ε (x 2 , x 1 ) -K 2H-2 ε,η (x 2 , x 1 ) K 2H-2 ε,ε (x 3 , x 4 ) + K 2H-2 ε,η (x 2 , x 1 ) K 2H-2 ε,ε (x 3 , x 4 ) -K 2H-2 ε,η (x 3 , x 4 ) , Dε,η x 1 x 2 x 3 x 4 = K 2H-2 ε,ε (x 2 , x 1 ) -K 2H-2 ε,η (x 2 , x 1 ) K 2H-2 ε,ε (x 4 , x 3 ) + K 2H-2 ε,η (x 2 , x 1 ) K 2H-2 ε,ε (x 4 , x 3 ) -K 2H-2 ε,η (x 4 , x 3 ) .
Thanks to Lemma 6.1, the treatment of Ãε,η in the expression (83) becomes easy. Indeed, we are allowed to deform the expression

A ε,η,1 = t s dx 1 t s dx 2 t s dx 3 t s
dx 4 e -ξ(t-x 1 ) e -µ 1 (x 1 -x 3 ) e -ξ(t-x 2 ) e -µ 2 (x 2 -x 4 ) Ãε,η,1

x 1 x 2 x 3 x 4 into A ε,η,1 = γ (s,t) dz 1 γ (s,t) dw 1 e -ξ(t-z 1 ) e -ξ(t-w 1 ) K 2H-2 ε,ε (z 1 , w 1 ) -K 2H-2 ε,η (z 1 , w 1 ) γ (s,t) (z 1 ) dz 2 γ (s,t) (w 1 ) dw 2 e -µ 1 (z 1 -z 2 ) e -µ 2 (w 1 -w 2 ) K 2H-2 ε,ε (z 2 , w 2 ), (86) 
where γ (s,t) (z) stands for the path γ (s,t) stopped at z, defined similarly to [23, Proof of Theorem 3.4]. Hence, invoking (72) and (73), we get

A ε,η,1 ≤ |γ (s,t) | |dz| |γ (s,t) | |dw| K 2H-2 ε,ε (z, w) -K 2H-2 ε,η (z, w) |γ (s,t) | |dz| |γ (s,t) | |dw| K 2H-2 ε,ε (z, w) ≤ c |t -s| 4H-α |ε -η| α .
The same arguments hold for Ãε,η,2 , as well as for Dε,η . The estimation for Bε,η and Cε,η is less obvious, since we must cope with integrals of the form

B ε,η,1 = t s dx 1 t s dx 2 e -ξ(t-x 1 ) e -ξ(t-x 2 ) K 2H-2 ε,ε (x 1 , x 2 ) -K 2H-2 ε,η (x 1 , x 2 ) x 1 s dx 3 x 2 s dx 4 e -µ 1 (x 1 -x 3 ) e -µ 2 (x 2 -x 4 ) K 2H-2 ε,ε (x 4 , x 3 ),
for which the complex deformation (86) is not allowed (K 2H-2 ε,ε (w 2 , z 2 ) would be ill-defined for small ε, since -i(w 2z 2 ) might be negative, see [START_REF] Unterberger | Stochastic calculus for fractional Brownian motion with Hurst exponent H larger than 1/4: a rough path method by analytic extension[END_REF] for a further explanation). In fact, the result is a consequence of the technical lemma below. Indeed, with our notations, (88) is equivalent to

B ε,η,1 ts ≤ c |t -s| 4H-α ε α (1 + ξ 2 )(1 + µ 2 1 )(1 + µ 2 2 ), which, as ∞ 0 dµ | φ(µ)|(1 + µ 2 ) < ∞,
gives an accurate bound for our purposes. To conclude with, it only remains to observe that the reasoning which leads to (88) can be easily adapted to Bε,η,2 . The term Cε,η is then handled with an argument of symmetry.

Putting all our estimates together, we have thus proved that

E[( X2,∆,(1,2) ts (ξ)) 2 ] ≤ c |t -s| 4H-α ε α 1 + ξ 2 , (87) 
for a certain α > 0.

Owing to inequalities (82) and (87), the proof of Lemma 5.9 is now easily finished. We are thus only left with the proof of the following lemma: Lemma 6.4. Let s < t, ξ, µ 1 , µ 2 > 0, and set

Q ε,η ts (ξ, µ 1 , µ 2 ) = t s dx 1 t s dx 2 e -ξ(t-x 1 ) e -ξ(t-x 2 ) K 2H-2 ε,ε (x 1 , x 2 ) -K 2H-2 ε,η (x 1 , x 2 ) x 1 s dx 3 x 2 s dx 4 e -µ 1 (x 1 -x 3 ) e -µ 2 (x 2 -x 4 ) K 2H-2 ε,ε (x 4 , x 3 ).
Then, for any α < 4H -1, we have

Q ε,η ts (ξ, µ 1 , µ 2 ) ≤ c |t -s| 4H-α ε α (1 + ξ 2 ) 2 l=1 (1 + µ 2 l ), ( 88 
)
where the constant c does not depend on s, t, ε, η, ξ, µ 1 , µ 2 .

Proof. First, notice that the estimation is obvious if ts ≤ 2ε, since then |K 2H-2 ε,ε

(x 4 , x 3 )| ≤ |t -s| 2H-2 and |K 2H-2 ε,ε (x 1 , x 2 ) -K 2H-2 ε,η (x 1 , x 2 )| ≤ c ε 2H-2-α |ε -η| α ≤ c |t -s| 2H-2-α ε α .
From now on, we thus assume that 2ε < t-s. The strategy in order to control our multiple integral Q ε,η ts (ξ, µ 1 , µ 2 ) consists then in two main steps: (i) Handle the exponential weights by means of successive integrations by parts (recall that X ε is a smooth process for a given ε > 0). (ii) Control the singularities of the fBm kernel by a convenient deformation of contour.

A first application of the integration by parts trick gives the following identity:

x 1 s dx 3 x 2 s
dx 4 e -µ 1 (x 1 -x 3 ) e -µ 2 (x 2 -x 4 ) K 2H-2 ε,ε

(x 4 , x 3 ) = c 1 K 2H ε,ε (x 2 , x 1
)e -µ 1 (x 1 -s) K 2H ε,ε (x 2 , s)e -µ 2 (x 2 -s) K 2H ε,ε (s, x 1 ) +e -µ 1 (x 1 -s) e -µ 2 (x 2 -s) (2ε

) 2H + c 2 Rx 1 x 2 (µ 1 , µ 2 ) = c 1 A 2ε x 1 x 2 + B2ε x 1 x 2 (µ 1 ) + C2ε x 1 x 2 (µ 2 ) + D2ε x 1 x 2 (µ 1 , µ 2 ) + c 2 Rx 1 x 2 (µ 1 , µ 2 ), (89) 
where R can be further decomposed into Rx 1 x 2 (µ 1 , µ 2 ) = R1

x 1 x 2 (µ 1 , µ 2 ) + R2

x 1 x 2 (µ 1 ) + R3

x 1 x 2 (µ 1 , µ 2 ), with:

R1 x 1 x 2 (µ 1 , µ 2 ) = c µ 2 x 1 s dx 3 x 2 s
dx 4 e -µ 1 (x 1 -x 3 ) e -µ 2 (x 2 -x 4 ) K 2H-1 ε,ε

(x 4 , x 3 ) R2 x 1 x 2 (µ 1 ) = c µ 1 x 1 s dx 3 e -µ 1 ( 1 -x 3 ) K 2H ε,ε (x 2 , x 3 ) R3 x 1 x 2 (µ 1 , µ 2 ) = c µ 1 x 1 s
dx 3 e -µ 1 (x 1 -x 3 ) e -µ 2 (x 2 -s) K 2H ε,ε (s, x 3 ).

We have thus proved that where we have set m ε,η x 1 ,x 2 (ξ) = e -ξ(t-x 1 ) e -ξ(t-x 2 ) {K 2H-2 ε,ε

Q ε,
(x 1 , x 2 ) -K 2H-2
ε,η (x 1 , x 2 )}. We will now estimate these 4 terms separately.

To begin with, let us consider the case of Ĩts (ξ): an elementary change of variables (u = x 1x 2 , v = x 2 ) yields: Ĩts (ξ) = dv e -ξ(t-u-v) e -ξ(t-v) + 1 {u≥0} t-u s dv e -ξ(t-u-v) e -ξ(t-v) .

It is easily seen that for u ∈ (0, ts), f ξ ts (u) = 1 2ξ e -ξue -ξ(t-s-u) e -ξ(t-s) = f ξ ts (-u), so that Ĩts (ξ) = 2 Re t-s 0 du f ξ ts (u) (-iu + 2ε) Using the decomposition e -ξue -ξ(t-s-u) e -ξ(t-s) = e -ξ(t-s-u) (1e -ξ(t-s) ) -(e -ξ(t-s-u) -1) + (e -ξu -1), it is readily checked that sup z∈γ ε,(t-s) |f ξ ts (z + 2iε)| ≤ c |t -s|. The estimation of (90) on each of the γ i ε,(t-s) 's is then a matter of elementary calculations, that we proceed to detail now: for γ 1 ε,(t-s) , one has, if y ∈ [η, ε] and θ ∈ [-π/2, π/2], that | -2iε e iθ + 3ε + y| ≥ ε. Thanks to the fact that ε < (ts)/2, this leads to For the upper bound on the path γ 2 ε,(t-s) , notice that if x ∈ [2ε, ts], y ∈ [η, ε], then of course |x + 3ε + y| ≥ x. Thus, for a small enough positive parameter α, we obtain: dx 2 e -ξ(t-x 1 ) e -ξ(t-x 2 ) e -µ 1 (x 1 -s) e -µ 2 (x 2 -s)

(-i(x 1 -x 2 ) + 2ε) 2H-2 -(-i(x 1 -x 2 ) + ε + η) 2H-2 ,
and perform the same deformation as in Lemma 6.1 to deduce

| £ £ IV ts (ξ, µ 1 , µ 2 )| ≤ c (2ε) 2H |t -s| 2H-α |ε -η| α ≤ c |t -s| 4H-α ε α .
In order to deal with £ £ II ts (ξ, µ 1 , µ 2 ), notice that £ £ II ts (ξ, µ 1 , µ 2 ) = t s dx 1 t s dx 2 e -ξ(t-x 1 ) e -ξ(t-x 2 ) e -µ 1 (x 1 -s)

K 2H ε,ε (x 2 , s) K 2H-2 ε,ε (x 1 , x 2 ) -K 2H-2 ε,η (x 1 , x 2 ) ,
and write, by means of another integration by parts, t s dx 1 e -ξ(t-x 1 ) e -µ 1 (x 1 -s) K 2H-2 ε,ε

(x 1 , x 2 ) -K 2H-2 ε,η (x 1 , x 2 )
= c e -µ 1 (t-s) K 2H-1 ε,ε

(t, x 2 ) -K 2H-1 ε,η (t, x 2 ) -e -ξ(t-s) K 2H-1 ε,ε (s, x 2 ) -K 2H-1 ε,η (s, x 2 ) + £ £ R 4 x 2 (ξ, µ 1 ), with £ £ R 4 x 2 (ξ, µ 1 ) = c (ξ -µ 1 ) t s
dx 1 e -ξ(t-x 1 ) e -µ 1 (x 1 -s) K 2H-1 ε,ε

(x 1 , x 2 ) -K 2H-1 ε,η (x 1 , x 2 ) .
Now, use the same strategy as for £ £ I ts (ξ, µ 1 , µ 2 ), which consists here in writing t s dx 2 e -µ 1 (t-s) e -ξ(t-x 2 ) K 2H ε,ε (x 2 , s) K 2H-1 ε,ε

(t, x 2 ) -K 2H-1 ε,η (t, x 2 ) 
= e -µ 1 (t-s)

[2iε,t-s+2iε] dz e -ξ(t-s-z) (-i) 2H z 2H

(-i(tsz) + 4ε) 2H-1 -(-i(tsz) + 3ε + η) 2H-1 and deforming the line [2iε, ts + 2iε] into γ ε,(t-s) = γ 1 ε,(t-s) ∪ [-2iε, -i(ts)] ∪ [-i(ts), tsi(ts)] ∪ [tsi(ts), ts + 2iε], with γ 1 ε,(t-s) the half-circle centered at the origin from 2iε to -2iε in {z : Re z ≥ 0}. The same kind of elementary estimations as for £ £ I ts (ξ, µ 1 , µ 2 ) then lead to t s dx 2 e -µ 1 (t-s) e -ξ(t-x 2 ) K 2H ε,ε (x 2 , s) K 2H-1 ε,ε dx 2 e -ξ(t-x 2 ) e -µ 2 (x 2 -s) K 2H-1 ε,ε

(t, x 2 ) -K 2H-1 ε,η (t, x 2 ) ≤ c |t -s| 4H-α ε α . Likewise, t s dx 2 e -ξ(t-s) e -ξ(t-x 2 ) K 2H ε,ε (x 2 , s) K 2H-1 ε,ε (s, x 2 ) -K 2H-1 ε,η ( 
(x 1 , x 2 ) -K 2H-1 ε,η (x 1 , x 2 ) .
We finally have to cope with the remainders R, £ £ R 4 , £ £ R 5

. Owing to the higher regularity of those terms (as regards the kernels), it is rather clear that simple integration by parts should be sufficient to reach the expected bound.

Consider for instance the case of £ £ R 

= c µ 1 (2ε) 2H -(ε + η) 2H φ µ 1 (t, t)e -ξ(t-s) K 2H ε,ε (s, t) -K 2H ε,η (s, t) φ µ 1 (s, t)

e -ξ(t-s) K 2H ε,ε (t, s) -K 2H ε,η (t, s) φ µ 1 (t, s)e -ξ(t-s) (2ε) 2H -(ε + η) 2H φ µ 1 (s, s) where we have set q ε,η xy (ξ) = e -ξ(t-x) e -ξ(t-y) {K 2H-1 ε,ε (x, y) -K 2H-1 ε,η (x, y)}. Let us now integrate those last two expressions by parts with respect to x: we obtain £ £ R 2,1 (ξ, µ 1 ) =c 1 µ 1 ξ t s dy e -ξ(t-y) K 2H ε,ε (t, y) -K 2H ε,η (t, y) φ µ 1 (t, y)

+ £ £ R 2,1 (ξ, µ 1 ) + £ £ R 2,2 ( 
e -ξ(t-s) K 2H ε,ε (s, y) -K 2H ε,η (s, y) φ µ 1 (s, y)

+ c 2 µ 1 ξ 2 t s dx t s
dy e -ξ(t-x) e -ξ(t-y) K 2H ε,ε (x, y) -K 2H ε,η (x, y) φ µ 1 (x, y) dy e -ξ(t-x) e -ξ(t-y) K 2H ε,ε (x, y) -K 2H ε,η (x, y) ∂ 2 φ µ 1 ∂y∂x (x, y).

+ c
The following (easy) estimations come then into play: whenever x, y ∈ [s, t], we have Going back to (91), the previous estimations finally give rise to 

| £ £ R 2 (ξ, µ 1 )| ≤ c ε 2H |t -s| 2H+1 µ 1 + µ 1 ξ + µ 1 ξ 2 + µ 2 1 ξ + µ
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 43 A path ỹ ∈ C1 (I; R k ) is said to be a process controlled by x1 (with regularity κ) if δỹ can be decomposed into:( δ ỹ) ts = (x 1 ts ζ s ) * + rts , with ζ ∈ C κ 1 (I; R n,k ),and r ∈ C2κ 2 (I; R k ), where we recall that we have set Cν i := Cν i,1 according to Remark 4.1. Denote this second space of controlled paths by Qκ (I; R k ) and for any h ∈ L 1 , write Qκ h(I ; R k ) = {ỹ ∈ Qκ (I; R k ) : ỹa = h}. Then the norm associated to Qκ (

  and (41) is thus proved. An analog of Proposition 4.4 concerning the composition of a localized controlled process with a smooth function is the following: Proposition 4.13. Let y ∈ A κ f,h (I), and consider a function σ ∈ C 3,b . Then σ(y) ∈ A κ Dσ(h)f,σ(h) (I) and we have the following bound on the norm of σ(y):

1 0 1 0 1 0) 1 0

 1111 (43) Proof. If s, t ∈ I, write δ(σ(y)) ts = dλ Dσ(y s + λ(δy) ts )(δy) ts = dλ Dσ(y s + λ(δy) ts )f ts + dλ Dσ(y s + λ(δy) ts )((x 1 ts ζ y s ) * + r y ts ) = Dσ(h)f ts + (x 1 ts ζ σ(y) s (y s + λ(δy) ts ) -Dσ(y s )] (x 1 ts ζ y s ) * + dλ Dσ(y s + λ(δy) ts )r y ts , (y s + λ(δy) ts ) -Dσ(y s )] f ts + [Dσ(y s ) -Dσ(y a )] f ts .

Step 3 :.

 3 patching solutions. The construction of the announced solution ỹ ∈ Qκ 0 ([0, T ]) reduces now to a patching argument. Let us make it precise. First, define a sequence (ỹ n , ζ ỹn ) n≥0 by the recursive condition: (ỹ 0 , ζ ỹ0 ) ∈ Qκ (I N 0 ) is the fixed point of Γ in B 0 0 and for any n ≥ 1, (ỹ n , ζ ỹn ) ∈ Qκ (I N n ) is the fixed point of Γ in B This construction is allowed by the first part. Then set, for any t ∈ [0, T ], ỹt =

  |dz|

  t-s-(t-s) du f ξ ts (u) (-iu + 2ε) 2H-2 -(-iu + ε + η) 2H-2 (iu + 2ε) 2H ,

Figure 2 .

 2 Figure 2. Deformation of [-2iε, ts -2iε]

γ 1 ε

 1 ,(t-s)dz f ξ ts (z + 2iε) (-iz + 4ε) 2H-2 -(-iz + 3ε + η) 2H-2 z 2H ≤ c |t -s| ε 4H-1 ≤ c |t -s| 4H-α ε α .

γ 2 ε 1 0

 21 ,(t-s)dz f ξ ts (z + 2iε) (-iz + 4ε) 2H-2 -(-iz + 3ε + η) 2H-2 z 2H ≤ c |t -s| t-s 2ε dx x 2H (x 2H-2-α |ε -η| α ) ≤ c |t -s| 4H-α ε α dx x 4H-2-α ≤ c |t -s| 4H-α ε α , since, by hypothesis, 2 + α -4H < 1. For γ 3 ε,(t-s) , start with |tsiu + 3ε + y| ≥ |t -s| if u ∈ [0, ts], y ∈ [η, ε], to deduce

γ 3 ε

 3 ,(t-s)dz f ξ ts (z + 2iε) (-iz + 4ε) 2H-2 -(-iz + 2ε + η) 2H-2 z 2H ≤ c |t -s| t-s 0 du |t -s| 2H-2-α |ε -η| α |i(ts) + u| 2H ≤ c |t -s| 4H-α ε α .Finally, as far as γ 4 ε,(t-s) is concerned, observe that for any v ∈ [0, ts + 2ε], y ∈ [η, ε], |-i(ts) + (ts)v + 3ε + y| ≥ |t -s|, and thus

γ 4 ε

 4 ,(t-s)dz f ξ ts (z + 2iε) (-iz + 4ε) 2H-2 -(-iz + 2ε + η) 2H-2 z 2H ≤ c |t -s| t-s+2ε 0 dv |t -s| 2H-2-α |ε -η| α |ts + i(ts) -iv| 2H ≤ c |t -s| 4H-α ε α .Therefore, these four elementary bounds, computed on the pathsγ 1 ε,(t-s) up to γ 4 ε,(t-s) , allow to claim that | Ĩts (ξ)| ≤ c |t -s| 4H-α ε α . Consider now the term £ £ IV ts (ξ, µ 1 , µ 2 ): it is readily checked that £ £ IV ts (ξ, µ 1 , µ 2 ) = (2ε)

s, x 2 ) 4 x 2 5 x 1 £ R 5 x 1

 2425151 ≤ c |t -s| 4H-α ε α , and accordingly£ £ II ts (ξ, µ 1 , µ 2 ) -t s dx 2 e -ξ(t-x 2 ) K 2H ε,ε (x 2 , s) £ £ R (ξ, µ 1 ) ≤ c |t -s| 4H-α ε α .Those arguments can be easily adapted to £ £ III ts (ξ, µ 1 , µ 2 ) to get£ £ III ts (ξ, µ 1 , µ 2 ) -t s dx 1 e -ξ(t-x 1 ) K 2H ε,ε (s, x 1 ) £ £ R (ξ, µ 2 ) ≤ c |t -s| 4H-α ε α , where £ (ξ, µ 2 ) = c(ξµ 2 ) t s

2 (ξ, µ 1 ) 2 and

 212 ξ(t-x) e -ξ(t-y) K 2H-2 ξ(t-x) e -ξ(t-y) K 2H-2 ε,ε(x, y) -K 2H-2 ε,η (x, y) φ µ 1 (x, y), with φ µ 1 (x, y) = x s du e -µ 1 (x-u) K 2H ε,ε (y, u).Another integration by parts yields:t s dy e -ξ(t-y) K 2H-2 ε,ε (x, y) -K 2H-2 ε,η (x, y) φ µ 1 (x, y) =c K 2H-1 ε,ε (x, t) -K 2H-1 ε,η (x, t) φ µ 1 (x, t) e -ξ(t-s) K 2H-1 ε,ε (x, s) -K 2H-1 ε,η(x,s) φ µ 1 (x, s) y) e -ξ(t-y) ξ φ µ 1 (x, y) + ∂φ µ 1 ∂y (x, y) , and thus, plugging this expression into the definition of £ £ R

ξ, µ 1 2 (

 12 ξ, µ 1 ) = c µ 1 t s dx t s dy q ε,η xy (ξ) ∂φ µ 1 ∂y (x, y),

|φ µ 1

 1 (x, y)| ≤ c |t -s| 2H+1 , ∂φ µ 1 ∂x ≤ c |t -s| 2H {1 + µ 1 } , ∂φ µ 1 ∂y ≤ c |t -s| 2H {1 + µ 1 } , and if a ∈ R, K 2H ε,ε (a, 0) -K 2H ε,η (a, 0) ≤ c ε 2H-1 |ε -η| ≤ c ε 2H . Besides, ∂ 2 φ µ 1 ∂y∂x (x, y) = c K 2H-1 ε,ε (y, x)µ 1 x s du e -µ 1 (x-u) K 2H-1 ε,ε(y, u) .

2 1 , 4 , £ £ R 5 ,

 145 which leads to the expected bound since 2H + 1 > 4Hα and 2H > α.The same arguments enable to handle R1 , R3 , £ £ R which achieves the proof.

  graded algebra once endowed with the following product: for g ∈ C n and h ∈ C m let gh ∈ C n+m the element defined by (gh) t 1 ,...,t m+n-1 = g t 1 ,...,tn h tn,...,t m+n-1 , t 1 , . . . , t m+n+1 ∈ [ℓ 1 , ℓ 2 ].

s| , and as a consequence, lim |Πts|→0 n i=0 Λ t i+1 t i (δg) = 0.

2.2.

Computations in C * . For sake of simplicity, let us assume for the moment that V = R, and set C k (R) = C k . Then the complex (C * , δ) is an (associative, non-commutative)

  t 1 ...t m+2 = δ( ML) t 1 ...t m+2a t 1 t 2 Mt 2 t 3 L t 3 ...t m+2 = (δ M) t 1 t 2 t 3 L t 3 ...t m+2 -Mt 1 t 2 (δL) t 2 ...t m+2a t 1 t 2 Mt 2 t 3 L t 3 ...t m+2 = [(δ M) t 1 t 2 t 3a t 1 t 2 Mt 2 t 3 ]L t 3 ...t m+2 -( M δL) t 1 ...t m+2 .

  1 ...tn = Ãt 1 ...tns , with s = 0. Then [ δ B] t 1 ...t n+1 = [δ B] t 1 ...t n+1 s + (-1) n+1 Ãt 1 ...t n+1a t 1 t 2 Ãt 2 ...tns

	= [ δ Ã] t 1 ...t n+1 s + (-1) n+1	Ãt 1 ...t n+1 = (-1) n+1	Ãt 1 ...t n+1 .

  ) where the constant c does not depend on s, t, ε, η.

	Proof. Denote γ 1 (s,t) = [s, s+i(t-s)], γ 2 (s,t) = [s+i(t-s), t+i(t-s)] and γ 3 (s,t) = [t+i(t-s), t]
	(see the figure below), so that
	γ (s,t)

  η ts (ξ, µ 1 , µ 2 ) = Ĩts (ξ) + £ £ II ts (ξ, µ 1 , µ 2 ) + £ £ III ts (ξ, µ 1 , µ 2 ) + £ £ IV ts (ξ, µ 1 , µ 2 ) + c 2 Rx 1 x 2 (µ 1 , µ 2 ), ,x 2 (ξ) B2ε x 1 x 2 (µ 1 , µ 2 ) £ £ III ts (ξ, µ 1 , µ 2 ) = ,x 2 (ξ) C2ε x 1 x 2 (µ 1 , µ 2 ) £ £ IV ts (ξ, µ 1 , µ 2 ) =

	with						
	Ĩts (ξ) =	s	t	dx 1	s	t	dx 2 m ε,η x 1 ,x 2 (ξ)K 2H ε,ε (x 2 , x 1 )
	£ £ II ts (ξ, µ 1 , µ 2 ) =	s	t x 1 t t dx 1 s dx 2 m ε,η t
		s s	dx 1 x 1 t s dx 2 m ε,η dx 1 t s dx 2 m ε,η x 1 ,x 2 (ξ) D2ε x 1 x 2 (µ 1 , µ 2 ),

  2H-2 -(-iu + ε + η) 2H-2 (iu + 2ε) 2H . 2H-2 -(-iz + 3ε + η) 2H-2 z 2H , (90) and deform the line [-2iε, ts -2iε] into a four-part contour γ ε,(t-s) = γ 1 ε,(t-s) ∪ γ 2 ε,(t-s) ∪ γ 3 ε,(t-s) ∪γ 4 ε,(t-s), where γ 1 ε,(t-s) runs along the half-circle centered at the origin from -2iε to 2iε in {z : Re z ≥ 0}, γ 2 ε,(t-s) is the line [2iε, i(t-s)], γ 3 ε,(t-s) the line [i(t-s), t-s+i(t-s)] and γ 4 ε,(t-s) the line [ts + i(ts), ts -2iε].

	Write the latter integral as
	i 2H	[-2iε,t-s-2iε] i(t -s) dz f ξ 2iε γ 2 ts (z + 2iε) (-iz + 4ε) -2iε t -s γ 1 γ 3 γ 4

  3 µ 1 ξ

						s	t	dx	s	t	dy e -ξ(t-x) e -ξ(t-y) K 2H ε,ε (x, y) -K 2H ε,η (x, y)	∂φ µ 1 ∂x	(x, y),
	and the expression for £ £ R	2,2	is
	£ £ R	2,2	(ξ, µ 1 )		
	=c 1 µ 1	s	t	dy e -ξ(t-y) K 2H ε,ε (t, y) -K 2H ε,η (t, y)	∂φ µ 1 ∂y	(t, y)
									∂φ µ 1 ∂y	(x, y)
						t		t
	+ c 3 µ 1	dx
						s		s

e -ξ(t-s) K 2H ε,ε (s, y) -K 2H ε,η (s, y) ∂φ µ 1 ∂y (s, y) + c 2 µ 1 ξ t s dx t s dy e -ξ(t-x) e -ξ(t-y) K 2H ε,ε (x, y) -K 2H ε,η (x, y)

Acknowledgment: We wish to thank M. Gubinelli for introducing us to Stroock's method for the proof of GRR type results. We also had a great benefit of some conversations with J. Unteberger concerning the complex analysis method for estimating iterated integrals of the fBm.

Step 1: invariant balls. Fix a positive integer N and consider a sequence of intervals

N +n , so that [0, T ] is covered by a finite union of (I N n ) n≥0 . Introduce also a sequence of balls

We are thus given a control over both δ ỹ and the initial condition ỹl N n . If ỹ ∈ B hn n , z := Γ(ỹ) is the path in Cγ 1 (I N n ) defined by the two conditions: zl N n = hn and for all s, t ∈ I N n , ( δz) ts = J ts ( dx σ(y)), with y = a 0 + ∞ 0 dξ φ(ξ)ỹ(ξ). With these notations, and using the previous propositions, we are going to prove the existence of two constants α 1 , α 2 > 0 such that the sets B hn n are invariant by Γ and the following property holds:

Thanks to (H), the local solutions can then be patched together, as we shall see at the end of the proof.

Let ỹ ∈ B hn

n , z = Γ(ỹ). As in Proposition 4.12, denote f n ts = ∞ 0 dξ φ(ξ)a ts (ξ)e -ξ(s-a) hn (ξ) and h n = a 0 + ∞ 0 dξ φ(ξ) hn (ξ). In order to estimate N [z; Q κ (I N n )], use successively (46), ( 42) and ( 41), together with the fact that

(47) If one desires to stay in the ball B hn n after applying Γ, one is naturally led to consider the system

which reduces to

In fact, for some reasons that will arise soon, we should add the conditions α 2 < γ-κ 2 and α 1 -1 > α 2γ, which turn the previous system into

Notice that the conditions above can be easily met (and are assumed to be met in the sequel) whenever κ < γ. Now, going back to (47), we get N [z; Qκ (I N n )] ≤ 6c 1 x,σ (N + n) α 3 , where α 3 stands for the maximum of the left members of the system (48). As α 3 < α 2 , we can pick N sufficiently large such that for any n ≥ 0, (N + n) α 2 -α 3 ≥ 6c 1

x,σ , and so N [z; Qκ (I N n )] ≤ (N + n) α 2 .