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Abstract. We have analysed relative humidity statistics from
measurements in cirrus clouds taken unintentionally during
the Measurement of OZone by Airbus In-service airCraft
project (MOZAIC). The shapes of the in-cloud humidity dis-
tributions change from nearly symmetric in relatively warm
cirrus (warmer than−40◦C) to considerably positively skew
(i.e. towards high humidities) in colder clouds. These results
are in agreement to findings obtained recently from the IN-
terhemispheric differences in Cirrus properties from Anthro-
pogenic emissions (INCA) campaign (Ovarlez et al., 2002).
We interprete the temperature dependence of the shapes of
the humidity distributions as an effect of the length of time
a cirrus cloud needs from formation to a mature equilibrium
stage, where the humidity is close to saturation. The duration
of this transitional period increases with decreasing temper-
ature. Hence cold cirrus clouds are more often met in the
transitional stage than warm clouds.

1 Introduction

The formation of cirrus clouds in the upper troposphere re-
quires that the relative humidity (with respect to ice,RHi)
exceeds certain freezing thresholds. These are generally
much higher than 100%; for instance, homogeneous freezing
of aqueous solution droplets at temperatures below the super-
cooling limit of pure water (≈−40◦C) needsRHi>140%
(Koop et al., 2000). Cirrus formation and its subsequent evo-
lution into a mature cirrus cloud (whereRHi is close to sat-
uration) affects the ambient relative humidity field, and it is
possible to conclude on cirrus formation pathways by investi-
gation of their ambientRHi-distribution (Haag et al., 2003).
It is obvious that the humidity within a cloud is even stronger
affected by the cloud since it is directly involved in the mi-
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crophysical processes. It is then clear that the microphysical
processes within a cloud shape the statistical distribution of
theRHi-field. Therefore it should principally be possible to
gain insight into the microphysical processes by considering
theRHi-statistics within clouds.

The statistical distribution of the relative humidity with re-
spect to ice within cirrus clouds was investigated by Ovarlez
et al. (2002) using data obtained during the INCA campaigns
in the southern (Punta Arenas, Chile, 55◦ S) and northern
(Prestwick, Scotland, 55◦ N) hemispheres, respectively. The
distinction between in-cloud and out-of-cloud situations was
made on the basis of the extinction coefficient measured with
a polar nephelometer (Gayet et al., 1997): An extinction co-
efficient of less than 0.05 km−1 was considered a cloud free
situation. This corresponds roughly to an ice crystal con-
centration of 50–100 particles L−1 of 5 µm diameter. Ovar-
lez et al. (2002) found essentially that two types of distri-
butions can be well fitted to the observations. These are
a Gaussian distribution for cirrus warmer than−40◦C and
a Rayleigh distribution for cirrus colder than−40◦C. The
main point to note here is rather the symmetry of the respec-
tive distribution than the type of the distribution itself (which
should be considered merely a convenient mathematical ex-
pression for the fits). Warmer clouds possess symmetric or
quasi-symmetric distributions ofRHi centred about 100%
(exemplified by the Gaussian) whereas colder clouds possess
distributions ofRHi with positive skewness (exemplified by
the Rayleigh distribution), i.e. they have a tail towards higher
values. This tail might be interpreted a signature of clouds in
statu nascendi, where the supersaturation has not yet relaxed
to a value close to equilibrium (i.e. saturation). Ovarlez et al.
(2002) found slight differences between the in-cloud humid-
ity distributions obtained at the two locations, with a ten-
dency for higher values ofRHi in the southern hemisphere.

In the present paper we analyse humidity data from an-
other data source, namely from the Measurement of OZone
by Airbus In-service airCraft project (MOZAIC, Marenco
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Fig. 1. Statistical distributions (non-normalised) of relative humid-
ity wrt ice inside (dashed line) and outside (dotted line) clouds, and
the sum of both (solid line), obtained from INCA measurements.
Obviously the bulge in the “sum” distribution originates from mea-
surements inside clouds. It should also be noted that the slopes of
the distributions at humidities above ice saturation are similar.

et al., 1998; Helten et al., 1998) and we will show that these
data are consistent with the results of Ovarlez et al. (2002).

2 Data handling

For the present investigation we use the statistical data of
relative humidity with respect to ice in the (mostly northern
hemispheric) tropopause region as obtained from MOZAIC
aircraft (Gierens et al., 1999). For this data set it is not
really possible to decide whether a recording that signals
supersaturation comes from cloud free air or from within
a cirrus cloud. Thus the humidity statistics obtained from
the data set bears signatures from both cloudy and clear air.
Of course, data from substantially subsaturated air are ob-
viously obtained in clear regions. The common characteris-
tics of all humidity statistics obtained from these data sets
is a relatively flat exponential distribution for the subsatu-
rated air (i.e. 20%.RHi.80%) and a steeper exponential
distribution in supersaturated air masses. These characteris-
tics can also be found in humidity statistics obtained from the
microwave limb sounder (MLS) on board the Upper Atmo-
sphere Research Satellite (UARS), where a cloud clearing
could be performed successfully (Spichtinger et al., 2002,
2003). Hence, the exponential parts of the humidity statis-
tics are characteristic for cloud free air. The signature of
clouds in the MOZAIC data is a “bulge” around saturation
(i.e. RHi≈100±20%). Such a bulge is not present in the
cloud cleared MLS data. Whereas we were interested in the
exponential parts of the humidity statistics in our previous
papers, we will here consider the “cloud bulge” in more de-
tail.

The interpretation of the bulges as a cloud signature can be
underpinned by taking a look at data from the INCA project,
namely at the combination of humidity data from the frost-
point hygrometer (Ovarlez et al., 2002) and extinction data
from the nephelometer (Gayet et al., 1997). The combina-
tion allows to distinguish in-cloud from out-of-cloud data
records: As in the work of Ovarlez et al. (2002) we fix the
cloud threshold at an extinction of 0.05 km−1. Using all mea-
surements in the pressure range 200≤p≤600 hPa and in the
temperature range 200≤T ≤240 K, we have derived three sta-
tistical distributions of relative humidity: inside clouds, out-
side clouds, and irrespective of cloud presence (i.e. the sum
of the two others). These distributions are shown in Fig. 1.
The relative humidity distribution of cloud free data shows
the usual characteristic of tropospheric data (see e.g. Gierens
et al., 1999; Spichtinger et al., 2002). The shape of the distri-
bution can be described using two exponential distributions
with different slopes. As we expected, there is a kink at sat-
uration. In contrast the distribution obtained from the cloudy
data has the shape as described in Ovarlez et al. (2002): The
distribution is centred at saturation and the frequency of oc-
currence of relative humidity decreases towards lower and
higher humidities. The most interesting distribution for our
present purpose is that obtained from the sum. This distri-
bution has qualitatively the same shape as the distributions
obtained from the MOZAIC data: There is the characteristic
shape of the pair of exponential distributions (typically for
tropospheric data) but there is also a bulge around saturation.
This bulge is the result of the in-cloud data which is evident
from the figure.

In order to investigate the cloud bulges in MOZAIC data
we treat the data in the following way: First we run a mov-
ing average (with a window width of 5%RHi) over the re-
spective distribution to reduce their statistical noise. Then we
construct baselines representing the exponential parts of each
distribution and subtract them from their respective distribu-
tion of RHi. The residuum from this operation is the bulge
alone. This baseline is constructed in the following way: On
the left and the right of the bulge there are the exponentials
with their different slopes (2 free parameters).These two ex-
ponentials are then smoothly connected by means of an “ex-
ponential” with varying exponent. The varying exponent is a
Fermi function centred at a value close to 100% (1 free pa-
rameter). The width of the Fermi function is adjustable (1
free parameter). The whole baseline function is scaled with
another adjustable parameter, such that there are a total of 5
free parameters. The functional form of the baseline is then:

B(x) = N exp[−F(x) · (x − xc)] (1)

with the Fermi function

F(x) = a +
b − a

1 + e−c(x−xc)
. (2)

Obviously, the limiting values for large negative (subsatu-
ration) and large positive values (supersaturation) ofx−xc

Atmos. Chem. Phys., 4, 639–647, 2004 www.atmos-chem-phys.org/acp/4/639/
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Fig. 2. Examples of some baseline fits.

area andb, respectively, which are the slopes of the corre-
sponding exponential distributions.xc is the value where the
Fermi function is centred, andc determines the sharpness of
the transition between the two slopesa andb. N is the scale
parameter. These five free parameters ({a, b, c, xc, N}) are
determined numerically using a simple optimisation routine,
that aims at minimising the sum of squared differences be-
tween the baseline fit and the data in the twoRHi regions
where the distribution is exponential.

After subtraction of the baseline the cloud bulge plus some
residual noise remains and can be studied further. This is
done in the next section. Certainly, the remaining bulge is
sensitive to the construction of the baseline and to the pa-
rameters. For studying the impact of baseline construction
on the bulge we have used the following procedure: For each
distribution of RHi we have constructed several baselines
distinguished by different ranges of best fit in the exponen-
tial parts, e.g. 30–70% or 30–80% etc. The standard range
for the calculations was 40–80%RHi and 120–160%RHi.
Within these ranges the distributions obviously follow expo-
nential distributions. The different fit ranges per se imply
differences in the goodness-of-fit measureχ2. Therefore we
use for comparison of the quality of the fits a normalised

χ2
RHi :=100%·

χ2

1RHi
were1RHi denotes the range within

the baseline was constructed. With this variable we are able
to determine the best baseline and using the distinct baselines
we can study the variations of baseline construction and their
impact on the bulge. An example of some different baseline
fittings is given in Fig. 2. The corresponding bulges after
subtraction of these various baselines are shown in Fig. 3.

We interprete the bulges or the difference distributions as
cloud signatures and as distribution of relative humidity in-
side clouds. But, as one can see in the figures, the residual
number of events after baseline subtraction are sometimes
negative, which simply is a consequence of the fact that it is
not strictly possible to discern cloudy from non-cloudy data

-100

0

100

200

300

400

500

60 70 80 90 100 110 120 130 140 150 160

nu
m

be
r 

of
 e

ve
nt

s

relative humidity wrt ice (%)

fit 1
fit 2
fit 3
fit 4

Fig. 3. Examples of the remaining bulges (or the difference distri-
butions) after subtracting the baseline fits in Fig. 2.

in MOZAIC, that is, the baselines are too close to the data.
This indicates, that with the baselines subtracted we probably
also remove in-cloud data, especially in the supersaturated
region. As (Fig. 1) shows, the slopes of the humidity distri-
butions above ice saturation in the in-cloud and out-of-cloud
INCA data are similar, which could mean that by the baseline
subtraction we remove from all supersaturation bins nearly a
constant (but here unknown) fraction of in-cloud data. How-
ever, since there is no possibility to flag cloudy data, we do
not see a better possibility of baseline construction. Thus we
have to accept that we miss some of the cloudy data and that
we also have negative values in the residuals, which we will
set to zero for the further analysis.

For analysis of the difference distributions we calculate
the mean values, standard deviations and the so-called L-
skewness (for a definition see the appendix). We use the L-
skewness instead of the usual skewness because of its greater
robustness against outliers (see e.g. Guttman, 1993), which is
necessary here because there is still some noise in the bulge
data even after the initial smoothing. The traditional skew-
ness is very sensitive to such noise and can therefore not be
used as a reliable measure.

These statistical measures are calculated in the range 70–
150%RHi, which per se introduces a certain positive skew-
ness even in a perfectly symmetric distribution (see below).
The lower boundary is considered a lower threshold where
most cirrus clouds will be evaporated completely. The upper
boundary is a typical threshold for homogeneous ice nucle-
ation in the upper troposphere (see Koop et al., 2000); higher
thresholds apply for still colder temperatures, but the data
get more noisy, hence we constrain the range for our calcu-
lations to 150% and do not go beyond. Since we constrain
the calculation of mean, standard deviation and L-skewness
to this range which is asymmetric with respect to saturation,
we have to determine how this affects in particular the cal-
culation of the skewness. In order to estimate this effect we

www.atmos-chem-phys.org/acp/4/639/ Atmos. Chem. Phys., 4, 639–647, 2004
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Fig. 4. Non-normalised probability distribution of relative humidity
over ice in tropospheric tropical (south of 30◦ N) MOZAIC data,
after baseline subtraction for 4 pressure levels:(a) 190–209,(b)
210–230,(c) 231–245,(d) 246–270 hPa.

analyse a Gaussian (i.e. symmetric) distribution in the range
70–150%RHi with and without an additional perturbation
at 150%RHi (about 5% of the maximum). Perturbations
of the order 5% of the maximum at 150%RHi is what we
normally have in our data after smoothing. This Gaussian
distribution

fX(x) =
1

√
2πσ0

exp

(
−

1

2

(
x − µ0

σ0

)2
)

is centred atµ0=100%RHi and the parameterσ0=11.25%
RHi is chosen such that the standard deviation (for the
range 70–150%RHi) is similar to those determined for
the bulges. If we now compute the statistical measures
in the restricted range 70–150%RHi, we find the mean
value in the range 100.11≤µ≤100.19% RHi (the greater
value arises when the noise peak at 150% is added), and
the standard deviation in the range 11.10≤σ≤11.28%RHi.
The most important result is that the L-skewnessτ3 ranges
within: 0.0077≤τ3≤0.0161 (for a symmetric distribution the
L-skewness is zero by definition). Hence, in the discussion
of the results a distribution withτ3≤0.0161 can be classified
as nearly symmetric, a distribution withτ3>0.0161 can be
classified as asymmetric.

3 Results

3.1 MOZAIC data

Let us first consider MOZAIC data recorded south of 30◦ N
(tropical data) between 1995 and 1999. We show tro-
pospheric data from four pressure levels 190–209, 210–
230, 231–245, and 246–270 hPa (hereafter levels 1–4). All
these are characterised by a rather narrow temperature dis-
tribution. The mean temperatures on the four levels are
−54, −49, −44, −39◦C, respectively, the standard devia-
tions range between 2.0◦C and 3.3◦C. Hence, using these
levels there is a splitting of the data in distinct temperature
classes. After applying the procedure described in Sect. 2 we
see that for all different baseline fits the structure of the dif-
ference distributions remains mainly the same. Hence, it is
acceptable to consider the best fit for describing the structure
of the distributions. For evaluating the distributions more
quantitatively we consider also the variations of the baseline
fits, particularly the varying L-skewness. The measured hu-
midity distributions of the cloud bulges (after baseline sub-
traction of the best fit, i.e. minimisingχ2

RHi) are presented in
Fig. 4.

It can be seen that after baseline subtraction the resid-
ual number of events is rather small compared to the orig-
inal data base (cf. the numbers along the y-axis of Fig. 2).
But nevertheless, the distributions contain a considerable
fraction of the total data (13–33%, depending on the pres-
sure level) and the noise in the distributions is quite small
(due to the moving average of theRHi-distributions). For

Atmos. Chem. Phys., 4, 639–647, 2004 www.atmos-chem-phys.org/acp/4/639/
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Table 1. Variations of mean values, standard deviations and L-
skewness for the difference distributions of the different MOZAIC
data sets for distinct baseline fits as described in Sect. 2.

data µ(% RHi) σ (% RHi) τ3
tropical
lev. 1 96.86–99.88 10.18–10.50 0.1068–0.1310
lev. 2 97.56–102.96 10.60–12.14 0.0071–0.0598
lev. 3 98.39–100.95 10.22–11.69−0.0480–0.0084
lev. 4 100.87–101.48 10.71–12.28−0.0068–0.0057

extratr.
total 98.44–101.72 9.23–10.77 0.0955–0.1178
K1 103.09–105.64 9.20–10.87 0.0882–0.1225
K2 99.48–101.61 8.39–9.28 −0.0186–0.0524

all distributions we see quite the same shape: The distri-
bution is centred around saturation, the mean values range
between 97 and 103%RHi and the standard deviations
are about 11%RHi (see Table 1). The difference dis-
tributions obtained at the two upper pressure levels (level
1 and 2) are clearly skew (i.e. asymmetric), distributions
from the two lower levels (level 3 and 4) are symmet-
ric. This result can be verified by the L-skewness: For the
two upper pressure levels the L-skewnessτ3 takes values
in the following intervals: 0.1068≤τ3(level 1)≤0.1310 and
0.0071≤τ3(level 2)≤0.0598. Hence, the difference distri-
butions for the upper two levels are asymmetric according
to the L-skewness (see Sect. 2). For the two lower pres-
sure levels the L-skewnessτ3 ranges between−0.0480 and
0.0084, therefore we can assume that the distributions are
nearly symmetric according to the L-skewness (see Sect. 2).

We now consider tropospheric MOZAIC data recorded
north of 30◦ N (extratropical data) between 1995 and 1999 in
the pressure range 175≤p≤275 hPa. For this data set there
is not such a sharp temperature stratification due to the pres-
sure levels as in the tropical data. Hence, for studying the
distributions in distinct temperature classes we split the data
in the following way: One classK1 contains all data with
temperatures in the interval−55≤T ≤−50◦C, and one class
K2 with temperatures in the interval−50≤T ≤−45◦C. Ad-
ditionally, we have collected all data (including data from
outside the warm and cold classes) to a third class. A more
detailed splitting of the data is not reasonable because of the
noise that then appears. In Fig. 5 the difference distributions
of the three classes (total,K1 andK2 data) are presented.

As for the tropical data after baseline subtraction the resid-
ual number of events is rather small compared with the origi-
nal data set. But also in these cases the remaining number of
data in the difference distributions are large enough to draw
some conclusions although the fraction of the remaining data
ranges between 2 and 8%: The total number of data are much
higher for the extratropics than for the tropics. The statistical
noise is quite small again.
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Fig. 5. Non-normalised probability distribution of relative hu-
midity over ice in tropospheric extratropical (north of 30◦ N)
MOZAIC data, after baseline subtraction:(a) total data,(b) class
K1 (−55≤T ≤−50◦C), (c) classK2 (−50≤T ≤−45◦C).

We can see a similar result as for the tropical distributions:
the difference distributions for the three data classes are again
centred at saturation, the mean values range between 98 and

www.atmos-chem-phys.org/acp/4/639/ Atmos. Chem. Phys., 4, 639–647, 2004
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are shown. These values can be used to distinguish between sym-
metric and asymmetric distributions. The crosses represent the L-
skewnesses resulting from the two numerical experiments of Sect. 4.

106% RHi, the standard deviations range between 8 and
11%RHi.

The difference distributions obtained from the total extra-
tropic data and the “cold data” are clearly skew, the distri-
bution obtained from the “warm data” is almost symmetric.
This is confirmed by the L-skewnesses: For the total data the
L-skewness is 0.0955≤τ3≤0.1178, for the “cold data” the L-
skewness is 0.0882≤τ3≤0.1225. Hence, these distributions
are clearly asymmetric. The L-skewness for the “warm data”
is −0.0186≤τ3≤0.0524 and therefore we can conclude, that
this distribution is almost symmetric.

The mean values, standard deviations and L-skewness val-
ues are collected in Table 1, the L-skewness values (and their
variations) are visualised in Fig. 6. In this figure additionally
the values for a Gaussian distribution and a perturbed Gaus-
sian distribution (see Sect. 2) are shown, hence it is easy to
distinguish between the symmetric and asymmetric distribu-
tions.

In looking at Fig. 6 one should consider the values dis-
played as lower estimates, because, as stated before, the
range of the computation of the moments was confined at
150%RHi and cloud events can get lost in our baseline sub-
traction procedure. Since this happens evidently more prob-
ably in the supersaturated than in the subsaturated regime,
the underestimation of the true L-skewness is probably the
stronger the more asymmetric is the distribution. Thus, we
expect that the true contrast between the skewnesses for
warm and cold clouds, respectively, is larger than indicated
by the error bars in the figure.

3.2 INCA data

The INCA campaigns took place in the extratropical lati-
tudes of both hemispheres. Hence, we can compare the
distributions of relative humidity in clouds obtained from
the INCA data set to the corresponding distributions ob-
tained from the extratropical MOZAIC data. As before
we have picked the INCA data out of two different tem-
perature classes: The classC1 contains all data in the
temperature range−55≤T ≤−50◦C and the classC2 con-
tains all data in the temperature range−50≤T ≤−45◦C. For
these two classes we have calculated the L-skewness in the
range 70–150%RHi. The values for the two distributions
(τ3(C1)=0.1377, τ3(C2)=0.0860) are visualised in Fig. 6.
We get the same qualitative effect as for the two differ-
ence distributions obtained from the temperature classesK1
andK2 (MOZAIC): For the colder clouds the distribution is
skewer than for the warmer clouds. Comparing these val-
ues with the L-skewness obtained from the MOZAIC data
(classesK1 andK2) we see that the values of MOZAIC data
are a lower approximation due to the causes mentioned in
Sect. 2.

3.3 MLS data

In order to show as a contrast to the previous data sets an ex-
ample where cloud clearing works effectively, we show here
one example of MLS data analysis for the two nominal pres-
sure levels of 147 hPa and 215 hPa (Spichtinger et al., 2002,
2003). Figure 7 shows that for all concerned tropospheric
data sets after baseline subtraction there remains only noise.
This can be interpreted that the cloud clearing algorithm de-
scribed in Spichtinger et al. (2002, 2003) works very well
and almost no cloudy measurements are left in the data.

4 Discussion

Obviously there is a qualitative difference between the in-
cloud distributions ofRHi for warm and cold cirrus, respec-
tively. This contrast consists of the different shapes of the
distributions, namely symmetric for warm cirrus versus pos-
itively skew for cold cirrus. This leads to the question about
the physical processes (or possibly selection biases) that pro-
duce such qualitatively different distributions of in-cloud rel-
ative humidity.

We believe that the difference we see in the humidity dis-
tributions is caused by the temperature dependence of the
length of time a cirrus cloud needs to approach saturation
from an initial high supersaturation at its instant of formation.
This transitional period is about twice as long at−60◦C than
at −40◦C, because both the diffusivity of water molecules
in air and the saturation vapour pressure decrease with de-
creasing temperature. The nominal crystal growth time scale
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(Kärcher and Solomon, 1999, Eq. B5) in a young cirrus cloud
can be written as (Gierens, 2003)

τg = 7.14× 105 T −1.61p [s0 e∗(T )]−1/3N−2/3, (3)

with initial supersaturation at cirrus formations0, saturation
vapour pressure over icee∗(T ) (in Pa), and number density
of ice crystals formedN (in m−3). τg is in seconds. Typ-
ical growth time scales range from 10 min to half an hour,
however, the cirrus transition time to phase equilibrium is
more than double that quantity, in particular because initially
the condensation rate is very small since the ice crystals are
very small. This means that the transition period from cir-
rus formation to phase equilibrium can make up a substan-
tial fraction of the total cloud life time. In fact, especially
thin and sub-visible cirrus in cold air (below about 215 K)
may not reach equilibrium at all, i.e. the crystals sediment
out of the cloud before the in-cloud humidity reaches satu-
ration (Kärcher, 2002). This in turn implies that a substan-
tial fraction of the cirrus clouds probed unintentionally by a
MOZAIC aircraft can still be in the transition phase. Since
the duration of the transition phase increases with decreasing
temperature, the probability to probe a cirrus in the transi-
tion phase instead of the equilibrium phase increases with
decreasing temperature. From this consideration we would
expect, that we find a slightly positively skew (or almost sym-
metric) distribution ofRHi in warm cirrus, but a strongly
skew distribution in cold cirrus. Furthermore, the threshold
supersaturation for homogeneous nucleation grows about lin-
early with decreasing temperature. This additionally leads to
a longer relaxation phase for cold than for warm clouds.

Also vertical motions have an influence on the duration of
the transition to phase equilibrium. Uplifting motions evi-
dently prolong this period because they reduce the saturation
pressure via adiabatic cooling. The effect can be quantified
by using the updraft time scale,τu (Gierens, 2003):

τu = 1.67× 10−2 w−1 T 2, (4)

with vertical velocityw. The transition duration increases
with decreasing updraft timescale. Hence, strong vertical
motion leads to an additional prolongation of the transition
period. Unfortunately, the MOZAIC data base contains no
information about vertical velocities, therefore this effect
cannot be quantified. Additionally, at the same vertical mo-
tion the transition duration increases with decreasing tem-
perature, which adds to the microphysical temperature effect
mentioned above.

We have performed a simple numerical exercise to simu-
late the transition process without considering the dynamical
effect. The simulation starts with an initial relative humid-
ity of 140% or 160%, and then theRHi changes in vari-
able steps of about±1% according to the sign of a uniformly
distributed random number. The range of the random num-
ber distribution is slightly asymmetric around zero such that
there is always a slightly higher chance thatRHi gets closer
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Fig. 7. Non-normalised probability distributions of relative humid-
ity over ice, after baseline subtraction for tropospheric MLS data:
(a) tropical (south of 30◦ N) MLS data on pressure levels 147 (solid)
and 215 hPa (dashed)(b) extratropical northern hemispheric (north
of 30◦ N, solid) and southern hemispheric (south of 30◦ S, dashed)
MLS data on pressure level 215 hPa. Because of cloud clearing
there remains after baseline subtraction only a flat distribution of
noise along the zero line.

to 100% than further away. The number of steps is 800 for
representation of a cold case, which is a suffiently small num-
ber that the system has still a memory of its initial state, that
is, it is in a transitional stage. In this case the initial relative
humidity was set to 160%RHi. For the warm case we use
1600 steps (i.e. 2×800, since one step in the cold case repre-
sents about double the time of one step in the warm case, be-
cause of the different growth time scales, see above). It turns
out that this number of steps is sufficient to loose the mem-
ory of the initial state. In this case the initial relative humidity
was set to 140%RHi. In order to get smooth statistics, this
simulation is repeated 100 000 times for each case. We find
distributions centred close to 100% and with standard devia-
tions close to 10% in both cases (see Fig. 8). Both distribu-
tions are positively skew, but the L-skewness in the cold case
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Fig. 8. Simulation of statistical distributions of relative hu-
midity in warm (RHihom=140% RHi, 1600 steps) and cold
(RHihom=160%RHi, 800 steps) cirrus clouds.

is 10 times larger than in the warm case, since in the cold
case there is still a considerable tail in theRHi-distribution
extending to the initial value of 160%. The distributions in
these two cases turn out to have different skewnesses in spite
of similar simulated time because the microphysical process
rates are different. The L-skewness values of the two simu-
lations are indicated in Fig. 6 as crosses. Hence, the values
are similar to the values obtained from the difference distri-
butions of the different data sets. For the skewness of the
distributions the main impact is due to the number of steps,
i.e. the different growth time. The initial relative humidity
only slightly affects the skewness.

Having the INCA data it is the relatively straightforward
idea to apply the baseline fitting and subtraction also to this
data set and to compare the resulting cloud bulge with the
true in-cloud distribution of relative humidity (dotted curve
in Fig. 1). Although the amount of INCA data is not suf-
ficient to perform the complete analysis (too much noise!)
this test gives interesting results. First, we find that the resid-
ual number of events (i.e. the cloud bulge) only represents
about 1/5 to 1/4 of the true cloud events found by the neph-
elometer analysis. Such a fraction might be expected to be
characteristic for the MOZAIC data as well. However, the
INCA derived fraction cannot be generalised to MOZAIC
in a straightforward way because of different measurement
strategies, techniques, and hence different selection biases.
Second, the out of cloud data in Fig. 1 (dashed curve) can be
fitted with a baseline function very well over the total range
from 30 to about 150%RHi (not shown), since it does not
display a bulge around saturation. This means that clouds
thinner than the nephelometer threshold do not contribute
much to a bulge signature, and that the bulge mainly rep-
resents thicker clouds. TheRHi-statistics within thin clouds
therefore seems to resemble that of clear air which can result
because the relaxation time for thin clouds can be extremely

long (N small in Eq. 3). It can even be longer than the sedi-
mentation time scale for the ice crystals; such clouds do not
reach phase equilibrium at all (cf. Kärcher, 2002).

5 Conclusions

Statistical distributions of relative humidity with respect to
ice in cirrus clouds have been analysed. Humidity data from
MOZAIC were taken, baselines were fitted to the ranges
whereRHi is distributed exponentially, and the residuals af-
ter baseline subtraction have been investigated. The residu-
als, interpreted as data stemming from measurements within
cirrus clouds, are unimodal distributions peaked close to sat-
uration, with standard deviations of the order 10% in relative
humidity units. The interpretation of the residuals as cloud
signatures is corroborated by corresponding features in the
INCA data, where clouds can be detected using nephelome-
ter data.

As in the earlier work of Ovarlez et al. (2002) the shape of
the residual distributions (the cloud bulge) turned out to de-
pend on cloud temperature. Whereas we found nearly sym-
metric distributions in warm cirrus (T >−40◦C), the distribu-
tions are clearly positively skew in colder clouds. The skew-
ness seems to increase with decreasing temperature.

Our interpretation of this feature is that warm cirrus clouds
probed unintentionally by MOZAIC aircraft are mostly in a
mature stage. The signature of this is a symmetric distribu-
tion of RHi centred at saturation. On the other hand, cold
cirrus probed unintentionally are more often in a transitional
state between their instant of formation and their mature
stage. The signature of the transitional stage is a tail in the
distribution extending from saturation to the threshold rela-
tive humidity for freezing. The origin of the difference lies
in the different lengths of time a cirrus needs to reach equi-
librium via crystal growth after its formation at high super-
saturation. The growth time scale decreases with decreasing
temperature, such that the time of transition is about twice
as long at−60◦C than at−40◦C. This difference is reflected
in the different shapes of the humidity distributions within
clouds.

Appendix: L-moments

Formal definition of L-moments:
For this purpose one uses sample probability weighted mo-

mentsbr (r=0, 1, 2, 3 . . .). These moments computed from
data valuesX1, X2, . . . Xn, arranged in increasing order, are
given by

b0 :=
1

n

n∑
j=1

Xj (5)

br :=
1

n

n∑
j=r+1

(j − 1)(j − 2) . . . (j − r)

(n − 1)(n − 2) . . . (n − r)
Xj (6)
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Using these weighted momentsbr in combination with the
coefficients of the “shifted Legendre polynomials” one can
define the so-called L-moments:

l1 := b0 (7)

l2 := 2b1 − b0 (8)

l3 := 6b2 − 6b1 + b0 (9)
...

By combining these L-moments we can calculate some ro-
bust analoga to the usual higher moments in statistics (e.g.
skewness or kurtosis). For our purpose only the L-skewness
is important:

L-skewness τ3 :=
l3

l2
(10)

For calculating the L-skewness we use the method of Hosk-
ing (1990) which is based on order statistics.
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