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Abstract. Balloon-borne frost point hygrometers measured
three high-resolution profiles of stratospheric water vapour
above Ny-̊Alesund, Spitsbergen during winter 2002/2003.
The profiles obtained on 12 December 2002 and on 17 Jan-
uary 2003 provide an insight into the vertical distribution
of water vapour in the core of the polar vortex. The water
vapour sounding on 11 February 2003 was obtained within
the vortex edge region of the lower stratosphere. Here, a sig-
nificant reduction of water vapour mixing ratio was observed
between 16 and 19 km. The stratospheric temperatures indi-
cate that this dehydration was not caused by the presence of
polar stratospheric clouds or earlier PSC particle sedimenta-
tion.

Ozone observations on this day indicate a large scale
movement of the polar vortex and show laminae in the same
altitude range as the water vapour profile. The link between
the observed water vapour reduction and filaments in the
vortex edge region is indicated in the results of the semi-
lagrangian advection model MIMOSA, which show that ad-
jacent filaments of polar and mid latitude air can be identified
above the Spitsbergen region. A vertical cross-section pro-
duced by the MIMOSA model reveals that the water vapour
sonde flew through polar air in the lowest part of the strato-
sphere below 425 K, then passed through filaments of mid
latitude air with lower water vapour concentrations, before
it finally entered the polar vortex above 450 K. These results
indicate that on 11 February 2003 the frost point hygrom-
eter measured different water vapour concentrations as the
sonde detected air with different origins. Instead of being
linked to dehydration due to PSC particle sedimentation, the
local reduction in the stratospheric water vapour profile was
in this case caused by dynamical processes in the polar strato-
sphere.

Correspondence to:M. Müller
(mmueller@awi-potsdam.de)

1 Introduction

The important role of stratospheric water vapour in the cli-
mate system has become evident during the recent years.
Radiatively, it is the most important greenhouse gas (Har-
ries, 1996) and the observed increase of stratospheric water
vapour (SPARC, 2000) contributes to increased stratospheric
cooling (Rind and Lonergan, 1995; Forster and Shine, 1999;
Oinas et al., 2001). The increase of stratospheric water
vapour is also expected to enhance the occurrence of polar
stratospheric clouds (PSCs) (Hofmann and Oltmans, 1992),
thus contributing to heterogeneous reactions that initiate the
catalytic loss of stratospheric ozone. Overall, the distribu-
tion of stratospheric water vapour is determined by the inter-
action of radiation, chemistry, and dynamics. Water vapour
enters the stratosphere through vertical transport in the trop-
ical tropopause region (Brewer, 1949) and is photochemi-
cally produced in the upper stratosphere through the oxida-
tion of methane (Abbas et al., 1996; Michelsen et al., 2000).
The only sink of water vapour in the upper atmosphere is
through photolysis by Lyman-α, with its efficiency increas-
ing with altitude in the mesosphere. A minor loss process
in the stratosphere is due to gravitational sedimentation of
ice particles from PSCs type II inside the polar vortex. This
process leading to dehydration and rehydration is linked to
very cold stratospheric temperatures and is observed regu-
larly in the Antarctic and to a lesser extent in the Arctic
(Vömel et al., 1995, 1997; Hintsa et al., 1998; Nedoluha et
al., 2002; Schiller et al., 2002). Without dehydration, the
water vapour concentration inside the polar vortex is gener-
ally higher than in the surrounding mid-latitudes due to the
descent of air from higher altitudes where water vapour is
produced by methane oxidation (Ovarlez and Ovarlez, 1994;
Aellig et al., 1996; Schiller et al., 1996). In the lower strato-
sphere, the photochemical lifetime of water vapour is on the
order of years (Brasseur and Solomon, 1984), which in the
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Fig. 1. Potential vorticity (PV) at 475 K (red) and 550 K (blue)
above Ny-̊Alesund during winter 2002/2003. The PV data are taken
from ECMWF. Julian Day=0 marks 31 December 2002.

absence of condensation and freezing allows the use of wa-
ter vapour as long lived tracer to study stratospheric transport
processes.

Our observations indicate the large scale descent of water
vapour inside the polar vortex, as well as small-scale struc-
tures of reduced water vapour. Although the cold temper-
atures allowed freezing and dehydration above Scandinavia
in early winter 2002/2003, the observed structure of reduced
water vapour was found to be caused dynamically. Layer-
ing of water vapour profiles through dynamical processes has
been observed before in the sub-tropics (Kley et al., 1980)
as well as in the polar regions (Ovarlez and Ovarlez, 1994).
Here we focus on tracer filamentation at the vortex edge
and use the observed water vapour structures to validate the
semi-lagrangian advection model MIMOSA (Hauchecorne
et al., 2002). It has previously been shown that vortex fil-
amentation appears as lamination in tracer profiles as verti-
cally tilted filament sheets pass over a measurement location
(Reid and Vaughan, 1991; Orsolini, 1995). These filaments
are produced by planetary wave breaking at the vortex edge
where tracer isopleths are stretched and thinned due to dif-
ferential advection. With time, the size of a tracer filament
is reduced from synoptic scale to mesoscale and finally mi-
croscale where molecular diffusion becomes important (e.g.
Flentje et al., 2003). Several authors (e.g. Waugh et al., 1994;
Manney et al., 1998; Flentje et al., 2000) have shown that
tracer transport models reproduce realistic filamentary struc-
tures in the lower stratosphere. Comparisons with airborne
lidar data (Flentje et al., 2000; Heese et al., 2001) and sensi-
tivity studies (Hauchecorne et al., 2002) have shown that the
uncertainty of filament positions are on the order of>100 km
for mid-latitudes.

2 Observations

In winter 2002/2003, three high resolution water vapour pro-
files were obtained by balloon-borne frost point hygrome-

ters launched from Ny-̊Alesund, Spitsbergen (79◦ N, 12◦ E).
The instruments are built at NOAA/CMDL, and a detailed
description is found in V̈omel et al. (1995). The hygrome-
ter launches were conducted on 12 December 2002, as well
as on 17 January and 11 February 2003. According to the
changing meteorological situation in the stratosphere, the
sondes detected different states of the polar vortex.

2.1 The Arctic Polar Vortex in Winter 2002/2003

During the Arctic winter 2002/2003 the stratospheric polar
vortex had developed very early. In mid November 2002 the
cold pool temperatures were already low enough to allow the
formation of polar stratospheric clouds. For the most part,
the vortex was centred above Spitsbergen. A minor warming
at the end of December only propagated down to the 10 hPa
level (approximately 30 km) and did not influence the lower
part of the vortex. In mid January 2003, a major stratospheric
warming disturbed the entire vortex with high temperatures
moving from the Aleutian Islands towards the pole, creating
an elongation of the vortex. Despite this dynamical activ-
ity, the core of the elongated vortex was still centred above
Spitsbergen during the water vapour measurement on 17 Jan-
uary; however, the vortex split into two centres during the
following days. At the beginning of February 2003, the vor-
tex stabilized again and was centred above Spitsbergen, mov-
ing eastward with ongoing disturbances. On 11 February, the
vortex appeared in a wave-3 shape centred above the Siberian
Arctic with one edge above Spitsbergen. During the follow-
ing days, the vortex elongated further and split again. Mi-
nor warming events in mid-February and at the beginning
of March kept the vortex dynamically active until the final
warming at the end of March. The position of the polar vor-
tex relative to Ny-̊Alesund is shown by the time evolution
of potential vorticity (PV) in Fig. 1, which also marks the
dates of the water vapour soundings. The slow increase of
PV during December implies that the first sounding detected
a stable and intensifying inner vortex, while the sonde on 17
January 2003 was launched in the vortex core indicated by
the very high PV values. The large and rapid decrease of PV
around 11 February 2003 was caused by a large scale move-
ment of the polar vortex away from the station. Obviously,
the vortex edge is tilted, as it passes across Ny-Ålesund first
on the 475 K level and with a lag of approximately 2 days on
the 550 K level. From 22 February 2003 until its break-up
in the end of March the vortex core is again situated above
Spitsbergen.

2.2 Water Vapour Profiles

The water vapour soundings on 12 December 2002 and 17
January 2003 were obtained in the centre of the polar vor-
tex and show very similar profiles. The 17 January profile
(Fig. 2) is chosen here to represent the vortex core. In the
lowermost stratosphere from the tropopause up to 15 km, the
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Fig. 2. Balloon-borne frost point hygrometer measurement on 17
January 2003, 15:00 UTC, at Ny-Ålesund with water vapour mixing
ratio in ppmv (left) and both temperature (grey line) and frost point
(dotted).

water vapour mixing ratio has rather stable values at about 4
ppmv. Above 15 km water vapour is constantly increasing,
reaching about 7 ppmv at 24 km and thus exceeding by far
the 5 ppmv commonly assumed for the calculation of PSC
existence temperatures (e.g. Carslaw et al., 1998).

The observed high water vapour mixing ratio in the up-
permost part of the profile is most certainly related to the
stratospheric warming events whose effects can be seen in
the upper part of the temperature profile in Fig. 1. As sudden
stratospheric warming events are always connected with en-
hanced downward transport inside the vortex, the 2002/2003
polar vortex seems to be more intensely rehydrated from
above than in years without stratospheric warming events.
In winter 2002/2003, the water vapour mixing ratio reaches
7 ppmv above 24 km, which is somewhat higher than the
6 ppmv measured in the cold and stable polar vortex of win-
ter 1995/1996 (V̈omel et al., 1997).

The profile on 12 December 2002 obtained deep inside
the polar vortex (not shown) is very similar to the profile
on 17 January 2003 (Fig. 2), while the third profile on 11
February 2003 shows some significant differences (Fig. 3).
Water vapour is approximately constant at 4 ppmv between
the tropopause to about 15 km and increasing with altitude
above 20 km. However, between 16 and 19 km, significantly
less water vapour is found in the 11 February 2003 profile.
Within this bite-out compared to the background profiles, a
distinct peak is found near 17 km, which reaches background
values. The cause for these features in the 11 February 2003
water vapour profile is addressed below.

Fig. 3. Balloon-borne frost point hygrometer measurement on 11
February 2003, 07:00 UTC, at Ny-Ålesund with water vapour mix-
ing ratio in ppmv (left, black line) and temperature (grey line) and
frost point (dotted). For better comparison, the water vapour mix-
ing ratio of 17 January is also shown (left, grey dotted line) together
with a circle that marks the most distinct features.

3 Discussion of Dynamical Aspects

A dramatic water vapour reduction within distinct layers has
previously been observed in Arctic water vapour profiles and
was linked to the sedimentation of ice PSC particles (Vömel
et al., 1997). However, on 11 February 2003 the local tem-
perature (Fig. 3) as well as the temperature along the back
trajectories (not shown) was not low enough for the forma-
tion of PSCs. Therefore, dehydration is unlikely to have oc-
curred just before. Due to the stratospheric warming events
and consequent mixing within the polar vortex, a possible
footprint of prior dehydration by PSC type II occurrence ear-
lier in the winter may be excluded. Thus, the reduction of
water vapour on 11 February 2003 is most likely not caused
by ice formation. A more likely explanation could be strato-
spheric dynamics.

A first indication is given by the temperature profile in
Fig. 3. Above 19 km, the hygrometer detected the cold pool
inside the polar vortex. Below 19 km a rapid temperature in-
crease towards the tropopause suggests the detection of air
outside the polar vortex, implying that the reduction of water
vapour between 16 and 19 km could be related to the lower
water vapour mixing ratios found in mid latitude air. This
hypothesis is supported by ozone measurements, trajectory
calculations and the results of the semi-lagrangian advection
MIMOSA model, which are presented below.

www.atmos-chem-phys.org/acp/3/1991/ Atmos. Chem. Phys., 3, 1991–1997, 2003
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Fig. 4. Ny-Ålesund ozone profiles retrieved on 11 February 2003
by lidar (blue and red lines) and balloon-borne ozone sonde (black
dotted line).

3.1 Stratospheric Ozone Profiles

The assumption of a dynamical cause of the water vapour
feature is backed by the Ny-Ålesund ozone observations.
Figure 4 shows the ozone profiles measured by lidar and
ozone sonde on 11 February 2003. During the morning
hours, the lidar ozone profile represents typical polar vor-
tex profiles throughout the lower stratosphere. However, the
evening lidar profile shows a completely different situation
as it differs significantly compared to the vortex profile. Be-
tween the tropopause region and approximately 19 km, the
ozone partial pressure is reduced by up to 50%. This large
reduction in a very short time period is clearly not caused
chemically, but could be explained by the movement of the
polar vortex. During the morning observations, Ny-Ålesund
was situated inside the polar vortex. As the vortex moved
north-eastward during the day, only the upper part of the vor-
tex above 19 km was still covering the site. Below 19 km,
the vortex had moved such that the lidar measurements at
Ny-Ålesund detected air from outside the polar vortex. This
large scale vortex movement, found in ECMWF analyses
(compare Fig. 1) as well as in the MIMOSA model, is re-
flected in the lidar ozone profiles, and may have caused the
water vapour reduction between 16 and 19 km. The ozone
sonde measurement at 11:00 UTC reveals strong lamination
between 15 and 20 km (Fig. 4). These ozone layers are more
distinct in the sonde profile compared to the lidar profiles
due to the different temporal resolution of these observations.
The similarity in structure between ozone and water vapour
profile (Figs. 3 and 4) indicate the same dynamical cause.

Fig. 5. Geographical distribution of modified potential vorticity
(MPV) on 11 February 2003, at 06:00 UTC, simulated by MI-
MOSA. Polar vortex air is marked with bright yellow colours, mid-
latitudinal air with dark red and blue colours. The white square
marks Ny-̊Alesund, while the black line indicates the location of
the cross-section shown in Fig. 6.

3.2 Comparison with MIMOSA model results

The mesoscale distribution of tracers in the stratosphere is
commonly simulated using either reverse domain filling or
contour advection (Waugh et al., 1994; Sutton et al., 1994;
Newman et al., 1996; Manney et al., 1998). Here we
present results from the semi-lagrangian advection model
MIMOSA (Hauchecorne et al., 2002). The simulations are
based on 6-hourly ECMWF wind and temperature data with
a 1.125◦×1.125◦ horizontal resolution on 28 pressure levels,
from which MIMOSA subsequently produces tracer fields
with 0.3◦ horizontal resolution on 20 isentropic surfaces.
Based on PV as tracer, we use modified potential vortic-
ity (MPV) (Lait, 1994) in order to remove the conventional
PV’s exponential growth with height for an isothermal at-
mosphere. A map of the simulated fine scale distribution of
MPV is shown in Fig. 5, displaying the 440 K isentropic level
(about 18.2 km) on 11 February 2003, 06:00 UTC. High po-
tential vorticity (in bright yellow colours) defines the polar
vortex situated north-east of Ny-Ålesund. Mid latitude air
with lower MPV values (in blue colours) is found south of
Spitsbergen. The transition region from polar to mid lati-
tude air is characterized by filamentary structures of different

Atmos. Chem. Phys., 3, 1991–1997, 2003 www.atmos-chem-phys.org/acp/3/1991/
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Fig. 6. MIMOSA fine scale structures of modified potential vorticity (colour coded) on 11 February 2003, 06:00 UTC, in a longitudinal
cross-section at 78N revealing filaments of mid-latitudinal air (blue colours). Superimposed is the water vapour mixing ratio (black line,
upper axis) and the flight trajectory (white dotted line, lower axis) of the frost point hygrometer launched on 11 February 2003, at 07:00 UTC.

origin. A filament of polar air occurs south of Spitsbergen,
separated from the vortex by a tongue of mid-latitudinal air.

Based on the measured ozone sonde balloon trajectory, the
hygrometer was likely to follow the same south-east direc-
tion from Ny-Ålesund parallel to the MPV isolines shown
in Fig. 5. Since there is only a time lag of 4 hours between
the sonde launches and since both tracer profiles show sim-
ilar structures, assuming similar balloon trajectories is rea-
sonable and furthermore supported by ECMWF trajectory
calculations (not shown here). According to Fig. 5, the wa-
ter vapour sonde encountered mid latitude air on the 440 K
level. In fact, both the water vapour and ozone profile (Figs. 3
and 4) indicate that around 18.2 km the sondes detected low
tracer concentrations as expected from mid latitude air.

Figure 6 shows the simulated MPV field as longitudinal
cross-section along 78◦ N (indicated in Fig. 5), roughly cor-
responding to the balloon trajectory since the balloon drifted
south- eastward. Again, bright yellow colours mark po-
lar vortex air, while dark red and blue colours indicate the
presence of mid-latitudinal filaments. The measured wa-
ter vapour profile is superimposed as well as the assumed
balloon trajectory from 12◦ E to 16◦ E. The combination of
the simulated tracer (MPV) field with the observed vertical
tracer (water vapour) profile in Fig. 6 clearly indicates that
the water vapour reduction is indeed caused by dynamical
processes.

The MIMOSA results show that on its way through the
stratosphere the sonde encountered air of different origins.

Below 420 K, the sonde met a smooth background of po-
lar air. Between roughly 420 and 445 K, the longitudinal
cross-section reveals adjacent polar and mid latitude fila-
ments along the flight path. The well defined water vapour
peak around 425 K (17 km) is clearly linked to a narrow fil-
ament of polar vortex air. Yet, from about 430 to 445 K the
sonde traverses air from the mid-latitudinal tongue described
in Fig. 5, where the hygrometer measured lower water vapour
mixing ratios. The model results are further backed up by tra-
jectory calculations (not shown here) that indicate an origin
outside the polar vortex for the air mass with low humidity.
Finally, above 450 K the sonde enters the polar vortex, which
is clearly shown by the MIMOSA simulation and the water
vapour measurement.

The measured H2O mixing ratio and the simulated small-
scale distribution of potential vorticity indeed show a very
good agreement. Evidently, MIMOSA is able to reproduce
small scale filamentary structures not only with high horizon-
tal but also with high vertical resolution, as shown for ozone
lidar data by Heese et al. (2001). The combination of water
vapour measurements and high resolution PV fields shows
that even small scale water vapour structures like the peak at
17 km are well represented by the simulated PV tracer struc-
tures. Based on the correlation of water vapour and potential
vorticity, the MIMOSA results confirm the purely dynamical
cause for the observed reduction in the water vapour profile
on 11 February 2003.

www.atmos-chem-phys.org/acp/3/1991/ Atmos. Chem. Phys., 3, 1991–1997, 2003
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4 Conclusions

In winter 2002/2003, three high resolution vertical profiles
of stratospheric water vapour were obtained using balloon-
borne frost point hygrometers from Ny-Ålesund, Spitsber-
gen. On 12 December 2002, and on 17 January 2003, the
sondes detected the water vapour distribution well inside the
polar vortex.

The profile on 11 February 2003 exhibits a large reduc-
tion in water vapour between 16 and 19 km. Lower and more
variable ozone concentrations were observed in the same al-
titude region by lidar and ECC ozone sonde. The observed
changes in the profiles are not related to chemical, but rather
to dynamical processes. The ozone lidar profiles taken in
the early morning hours of 11 February 2003, indicate that
the lidar was measuring inside the polar vortex, while the
evening profiles indicate that mid latitude air was detected
between 15 and 19 km. The general meteorological situa-
tion on this day was characterized by a north-eastward shift
of the polar vortex. The ozone and water vapour soundings
measured air in the edge region of the vortex, showing the
co-existence of thin filaments of different origin. These fil-
aments were reproduced by the MIMOSA semi-lagrangian
advection model, identifying the mid latitude origin of the
water vapour profile laminae. The MIMOSA PV simulations
reproduce the filamentary vortex edge with an accuracy of
40 km for the horizontal position, 3 hours for time, and 10 K
for vertical resolution.

It has been shown that a reduction of polar stratospheric
water vapour is not necessarily linked to dehydration due to
PSC particle sedimentation. Instead, water vapour has been
proven to be a valuable tracer for dynamical processes in the
polar stratosphere.

Acknowledgements.Special thanks to the station team at Koldewey
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