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Abstract. This paper suggests a method for improving cur-
rent inventories of aerosol emissions from biomass burning.
The method is based on the hypothesis that, although the to-
tal estimates within large regions are correct, the exact spatial
and temporal description can be improved. It makes use of
open fire detection from the ATSR instrument that is avail-
able since 1996. The emissions inventories are re-distributed
in space and time according to the occurrence of open fires.
Although the method is based on the night-time hot-spot
product of the ATSR, other satellite biomass burning proxies
(AVHRR, TRMM, GLOBSCAR and GBA2000) show simi-
lar distributions.

The impact of the method on the emission inventories
is assessed using an aerosol transport model, the results of
which are compared to sunphotometer and satellite data. The
seasonal cycle of aerosol load in the atmosphere is signifi-
cantly improved in several regions, in particular South Amer-
ica and Australia. Besides, the use of ATSR fire detection
may be used to account for interannual events, as is demon-
strated on the large Indonesian fires of 1997, a consequence
of the 1997–1998 El Niño. Despite these improvements,
there are still some large discrepancies between the simu-
lated and observed aerosol optical thicknesses resulting from
biomass burning emissions.

1 Introduction

Aerosols affect the Earth radiative balance through diverse
processes (direct and indirect effects), which are qualitatively
well understood (Charlson et al., 1992;Twomey, 1977) but
quantitatively still poorly known (Haywood and Boucher,
2000; IPCC, 2001). There are many evidence of a large effect
of aerosols on climate both at regional (Léon et al., 2002) and
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global (Bŕeon et al., 2002) scale. Improving our knowledge
requires, in particular, a better representation of aerosols in
atmospheric models, which requires, among others, an accu-
rate representation of sources (see Fig. 4 of Charlson et al.,
1992). In this paper, we focus on biomass burning, which
is the main source of carbonaceous aerosols (Black Carbon
(BC) and Organic Carbon, OC). The two emission invento-
ries most often used in general circulation models (GCM)
are that of Liousse et al. (1996) and GEIA (Global Emis-
sions Inventory Activity, a part of the International Global
Atmospheric Chemistry (IGAC) Project). Although satellite
data have been used to describe the monthly distribution of
emissions over Africa (Cooke et al., 1996), the seasonal cy-
cles are uncertain in many regions. In addition, interannual
variations are not accounted for in these inventories. Satel-
lites are well suited to provide seasonal and inter-annual in-
formation because of their global and continuous coverage.
The present study describes a method that generates emis-
sion maps of biomass burning aerosol, which couples the
inventories (Lavoúe et al., 2000; Liousse et al., 1996) to
the occurrence of fires as detected by ATSR-2 (Along Track
Scanning Radiometer). Recently Schultz (2002) and Dun-
can et al. (2003) have presented methods that are based on
a similar idea. Duncan et al. (2003) use the 20 years TOMS
aerosol index to quantify the interannual variability over an
extended time period. A major difference of our method is
that the biomass burning location is redistributed in space
within large regions, as will be discussed in Sect. 2. In ad-
dition, the present work shows atmospheric transport simu-
lations of the aerosol loads using both the original and the
corrected inventories, which allows a direct analysis of the
method impact through a comparison to aerosol load sun-
photometer measurement. Finally, we make use of multi-
year optical thickness simulation and measurements, which
permit an analysis of the seasonal and interannual variability.

c© European Geosciences Union 2003
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Fig. 1. Regional boxes used to build the emission maps. The boxes have been defined to distinguish areas with a fairly homogeneous
vegetation cover and fire seasonal cycle.

2 Method

The monthly emission maps have been created as follow.
First, the globe is divided into boxes that contain fairly ho-
mogeneous vegetation cover and fire season. The regions
have been selected based upon MODIS land cover maps
(http://modis-land.gsfc.nasa.gov/). In high latitude regions,
the boxes follow the work of Lavoúe et al. (2000), based on
state borders and dominant vegetation (blue boxes in Fig. 1).
Within each box, we compute the total annual emission ac-
cording to the inventories.

Similarly, we compute within each box the total number
of fires detected by the ATSR instrument during the period
[January 1997–May 1997] U [June 1998–December 2001].
The period from June 1997 to May 1998 was omitted since
it is strongly affected by an El Niño event, which resulted
in very abnormal fire activity. We also removed from the
datasets the ”hot-spots” occurring in the same place during
several months, as those are likely to be a result of indus-
trial flares. The hot-spots, likely to be agricultural or wild
fires, are detected based on a simple 317 K threshold on
the 3.7µm channel on night-time observations (Arino and
Melinotte, 1995). This product appears well suited for our
needs as it is sensitive to fires that are small compared to the

1×1 km2 pixel, and because there is no orbit drift on the plat-
form, which makes possible year-to-year comparisons. On
the other hand, it suffers from well-known drawbacks that
are discussed in the next section. Since a cloud presence will
prevent the satellite detection of an underlying fire, a cloud
coverage correction was applied by weighting the number of
fires by (1-C)−1 where C is the monthly climatological cloud
cover (New et al., 1999).

From these two datasets, we compute for each box the ra-
tio between the annual emitted quantities of carbonaceous
aerosols (Q) and the annual mean number of detected fires af-
ter having applied the cloud cover correction (N). This Emis-
sion Constant (EC) is a statistical estimate of the emitted
mass per detected fire. It varies depending on the box but
is assumed constant within a given box, all through the year
and from one year to the next.

Using EC and the monthly hot-spot distributions at the
chosen resolution, we compute an emission estimate for all
months when ATSR data is available (July 1996 to January
2002 at the time of the study). In the results presented in the
following, the resolution was chosen in agreement with the
atmospheric model resolution (3.75×2.5 degrees in longi-
tude and latitude, respectively) although the same procedure
would apply to finer grids. In order to provide an emission

Atmos. Chem. Phys., 3, 1211–1222, 2003 www.atmos-chem-phys.org/acp/3/1211/
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Fig. 2. Several proxies of biomass burning activity over Central and South America (left), Africa (center) and Australia (right). First line is
the original inventory (from Liousse et al., 1996). The two middle lines are the corrected inventories for 1998 and 2000 respectively. The
bottom line is a proxy based on the estimates of burnt surfaces by GBA and GLOBSCAR (averaged value of the two is used here).

estimate for the periods when no ATSR data is available, we
also computed a “climatological” monthly emission based on
the mean number of fires observed during a given month for
the same period that excludes El Niño.

In Schultz (2002) and Duncan et al. (2003), the scaling
factor is computed for each 1◦ square grid box, whereas we
estimate a value for each of the large regions shown in Fig. 1.
In this way, the inventory emissions are redistributed over the
season as in the above methods, but also within the boxes
of Fig. 1. Figure 2 presents three examples of spatial redis-
tribution. The first one concerns the Northern countries of
South America (first row of Fig. 2). The original inventory
shows a maximum of the annual estimates that extends from
the Western part of Venezuela to Colombia and Ecuador.
On the other hand, the ATSR-derived inventory shows for
1998 a maximum area that extends from Venezuela to Suri-
name, thus largely shifted to the North-East. We also show

the ATSR corrected estimate for 2000 as a fully independent
proxy of biomass burning is available for this year. The spa-
tial distribution of burned surfaces (lower figure) is much
closer to the ATSR corrected inventory than to the original
version (top figure). This is a strong indication of the posi-
tive impact of spatial redistribution. When the scaling is ap-
plied on boxes that are small in comparison with typical size
of biomass burning regions, as in Schultz (2002) the invento-
ries are only corrected for any temporal deficiency. Duncan
et al. (2003) proposed a method to account for spatial redis-
tribution, which applies differently in function of the regions.
For some regions the distribution of the base inventory is not
modified. Other examples are shown in Fig. 2 concerning the
Northern part of Africa and Australia. The three cases clearly
indicate that the corrected inventory agree much better than
the original with the estimates of burnt surfaces.

www.atmos-chem-phys.org/acp/3/1211/ Atmos. Chem. Phys., 3, 1211–1222, 2003
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Fig. 3. Comparisons between five global fire products for nine selected regions. The number of fires for ATSR, TRMM and AVHRR and the
burnt area for GLOBSCAR and GBA2000 (in arbitrary units) are plotted as a function of time and for the year 2000. Numbers shown close
to the name of the datasets correspond to the total number of occurrences (fires for ATSR, TRMM, AVHRR; burnt area for GLOBSCAR and
GBA2000) detected in the year in the given region.

3 Discussion

3.1 Representativity of the night-time detection

The method provides a simple way to introduce temporal and
spatial variations of biomass burning in the inventories. On
the other hand, it requires unproven assumptions. A first
assumption stems from the use of night observations only.
As a consequence, the emission distribution is only based
on fires that extend into the night. This hypothesis does not
impact the mean emissions in a box as it is implicitly ac-
counted for in the Emission Constant EC. On the other hand,
the method will fail if the ratio between the number of day-
time and night-time fires varies significantly, within a box,
between months or between the various pixels of the emis-
sion grid. To assess the representativity of the night-time
fires used in this study, we have compared the global fire
count products from the AVHRR (daily) (World Fire Web
from the Joint Research Center of the European Commission

available at http://www.gvm.jrc.it/tem/wfw/wfw.htm), ATSR
(night-time), TRMM (daily) (Giglio et al., 2003, 2000), and
the GBA2000 (Gŕegoire et al., 2003) and GLOBSCAR (Si-
mon et al., 2003) burnt area products. We have plotted the
number of fires for ATSR, TRMM and AVHRR and the burnt
area for GLOBSCAR and GBA2000 (in arbitrary units) as a
function of time and for the year 2000. The comparisons are
made within the large regions of Fig. 1.

Figure 3 shows the results for nine selected regions. The
same plots were made for all the regions of Fig. 1. We only
show a representative sample. There are two main types of
proxies. ATSR, AVHRR and TRMM products are based on
the detection of active fires (hot- spots). On the other hand,
GLOBSCAR and GBA2000 detect the presence of burnt sur-
faces. In general, there is a good agreement between the dif-
ferent proxies, in particular over the major zones of biomass
burning: Sahel (except TRMM), South and Central Amer-
ica, Mongolia, Indochina Peninsula, and Australia (except

Atmos. Chem. Phys., 3, 1211–1222, 2003 www.atmos-chem-phys.org/acp/3/1211/
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Figure 4.  Aerosol optical thickness measured by AERONET sunphotometer (blue curve)
compared to LMDZ  estimates with the new sources (red curve) and with the previous
sources (green curve).

Fig. 4. Aerosol optical thickness measured by AERONET sunphotometer (blue curve) compared to LMDZ estimates with the new sources
(red curve) and with the previous sources (green curve).

GLOBSCAR in the northern region). A few regions show
significant differences between the proxies however, with the
burnt area product showing an earlier season than the hot-
spot based products. This feature is strongly apparent over
South Africa. Note that, the optical depths – another proxy
of biomass burning activity – measured by the AERONET
stations Mongu (15◦ S, 23◦ E) and Skukuza (24◦ S, 31◦ E)
are maximum in September and October 2000 (see Fig. 4),
thus more in agreement with the hot-spot products than with
the burnt area products. Indonesia is another region with
strong differences between the proxies. Indeed, both burnt
area product show a well-marked seasonal cycle, whereas the
hot-spot products detect fire over most of the year. The three
products based on the hot-spot show rather similar profiles,

with correlated month-to-month variability, so that the differ-
ences cannot be attributed to the night time only detection of
the ATSR.

These analyse demonstrate that in most cases, the night-
time only ATSR product show a seasonal cycle that is con-
sistent with the other proxies. In several cases, the burnt
area products reach their maximum earlier than the fire count
products. The differences between the burnt area products
and those based on the hot-spots are not larger when using a
night-only proxy (ATSR) than when using a night+day one
(AVHRR or TRMM). This indicates that, although all prod-
ucts do have uncertainties, the night time restriction does not
appear to be significant.

www.atmos-chem-phys.org/acp/3/1211/ Atmos. Chem. Phys., 3, 1211–1222, 2003
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Fig. 5a. Comparisons between POLDER AI and LMDZ AI using both the original and the new sources from November 1996 to April 1997.
LMDZ AI is obtained from AOT865 assuming an Angström coefficient equal to 1.5 (Dubovik et al., 2002; Liousse et al., 1995). Note that
all the monthly means are computed for the days when POLDER data are available.

3.2 Other causes of uncertainty

Cloud coverage is also a source of uncertainty as it prevents
the detection of surface fires. We have attempted to correct
for the cloud coverage using a monthly climatology. Nev-
ertheless significant uncertainty remains as the cloud cover
may differ from the climatology (in particular during spe-
cific meteorological events) and also because the night-time
mean cloud cover may differ from the daily climatology that
we use.

Another potential problem results from the satellite cov-
erage that increases with latitude (a high latitude point is
sampled more frequently than a low latitude one), augment-
ing the probability of fire detection. On the other hand, the
boxes of Fig. 1 are small enough so that the satellite revisit

frequency does not change significantly within a box. As our
method computes EC box by box, the variation of satellite
coverage with the latitude is implicitly accounted for.

Moreover, the geo-location precision of the ATSR has
been significantly affected during the year 2001 with a mis-
registration of up to 40 km. This distance is small in com-
parison with the sizes of our boxes and typical size of areas
affected by biomass burning. As a consequence, misregistra-
tion shall have a small impact to our results, except for areas
affected by industrial flares as our detection and removal pro-
cedure is based on a persistent signal within a 3 km radius.

Finally, these maps have been made assuming that in each
box, the emission efficiency of fires for BC or OC has no
seasonal or interannual variation (EC is constant). This is

Atmos. Chem. Phys., 3, 1211–1222, 2003 www.atmos-chem-phys.org/acp/3/1211/
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Fig. 5b. Comparisons between POLDER AI and LMDZ AI using both the original and the new sources from May 1997 to October 1997.
LMDZ AI is obtained from AOT865 assuming an Angström coefficient equal to 1.5 (Dubovik et al., 2002; Liousse et al., 1995). Note that
all the monthly means are computed for the days when POLDER data are available.

a rather strong assumption as, for a given vegetation type,
the emitted quantities depend on several parameters such as
ground humidity, vegetation state or burns history, that vary
with the season.

4 Results and validation

Both original and satellite-corrected emission maps have
been used as input of the Laboratoire de Mét́eorologie Dy-
namique (LMD) General Circulation Model, LMDz, coupled
with INCA (Interaction with Chemistry and Aerosols) which
is an emission/chemistry model (http://www.ipsl.jussieu.fr/
∼dhaer/inca/). We use the model with a resolution of 96×72
(3.75×2.5 degrees in longitude and latitude) and 19 hybrid
vertical levels. Only carbonaceous aerosols were analyzed

in this study. The model can include its own dynamics, al-
though we nudged here the meteorological fields from the 6-
hourly ECMWF reanalysis. It generates fields of aerosol load
[g.m−2] that are converted into optical thicknesses at 865 nm
using constant factors (3.5 m2.g−1 for OC and 4.5 m2.g−1 for
BC, (Dubovik et al., 2002; Liousse et al., 1995, 1996) based
on typical size distributions of biomass burning aerosols.

4.1 Seasonal cycle

Ground-based measurements from AERONET (Holben et
al., 1998) stations in South America, Africa and Australia are
used to validate our simulations. Chin et al. (2002) evaluates
the simulations of the GOCART aerosol transport model,
using biomass burning emissions from Duncan et al. (2003),

www.atmos-chem-phys.org/acp/3/1211/ Atmos. Chem. Phys., 3, 1211–1222, 2003
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for the different aerosol components through a comparison to
AERONET data. More than 20 AERONET sites are used for
the comparison, although only five of them are significantly
affected by biomass burning emissions. Here, we show sev-
eral seasonal cycles whereas Chin et al. (2002) only analyze
a mean cycle. These year-to-year comparisons are essential
as there is significant interannual variability, which results
both from the emissions and the meteorology. Comparisons
are also made with satellite observations from the POLDER
(POLarization and Directionality of the Earth Reflectances,
Deschamps et al., 1994) spaceborne instrument, which is
well suited to study aerosols and in particular biomass burn-
ing aerosols. The Aerosol Index (AI) from POLDER (Deuzé
et al., 2001), available both over land and ocean, is an indi-
cator of submicronic aerosol load only, thus mainly sulfate,
BC and OC. The analysis of POLDER retrievals (Tanré et al.,
2001) provides a rough identification of the aerosol origin.

Figure 4 shows the mean AERONET Aerosol Optical
Thickness at 870 nm (AOT870) (in blue), the simulation re-
sults using the new sources (red) and those using the previous
sources from Liousse et al. (1996) (in green) at six differ-
ent AERONET sites. Two type of information are shown in
Fig. 4. First, the information on the phase of the burning
season. The improvements to the seasonal cycle are given
by the phasing of the simulated curves (red and green) with
the observation curve (blue). The other information concerns
the aerosol load, which is directly linked to the amplitude of
the curves. The method presented here only impacts the spa-
tial and temporal distribution of fires but not the mean emit-
ted quantities as we assume the total annual estimates of the
original inventory to be correct averaged estimates.

In a first step, we discuss the results over South America,
where Alta Floresta (9◦ S, 56◦ W) and Abracos Hill (10◦ S,
62◦ W) are selected because long-time series of data are
available. AERONET data show the impact of the biomass
burning activity from August to November with a maximum
value generally in September during three consecutive years
from 1999 to 2001. The correction of the emission inven-
tories using the satellite data shift the period with a large
aerosol load by typically two months. Although there are
some disagreement in terms of optical thickness between the
simulations and the sunphotometer measurements, in partic-
ular during the later part of the burning season, the cycle is
clearly improved. The observed aerosol load cycle for the
year 2000 is clearly different than for the other years. It is
not reproduced by the simulation. On the other hand, none of
the biomass burning proxies (see Fig. 3) shows a significant
burning activity during the later part of the year, while a large
aerosol load is observed. Therefore, none method based on
these satellite products would reproduce this specific event.

Over Australia, Jabiru (12◦ S, 132◦ E) is the only site in the
North with sufficient amount of data. Although the seasonal
cycle is not complete, the maximum aerosol load appears
to be in September and October. In addition, the compar-
isons of the diverse global fire products (see Fig. 3) show that

the burning season starts in May/June and ends in November
with the maximum of detected fire from August to October.
Note that only GLOBSCAR show relatively large amount of
fire earlier (in June and July) in disagreement with GBA2000
and all fire count products. Hence, methods based on the
other fire products (except GLOBSCAR) would have repro-
duced a similar seasonal cycle. The corrected emission maps
lead to a better agreement of the seasonal cycle with the
different biomass burning proxies over North Australia al-
though the magnitude of the optical depth is somewhat too
small.

Over the African continent there are two main areas of
biomass burning. One extends along 10◦ of latitude with the
main activity between November and February. The other
large burning area of Africa extends over the southern sub-
tropics, with an activity that starts in June in the western
part of the area, moves to the East and Madagascar, and
ends in November. Figure 4 shows the comparison results
over Ilorin (8◦ N, 4◦ E), Mongu (15◦ S, 23◦ E) and Skukuza
(24◦ S, 31◦ E) sites, which were chosen for their extended
time series. These comparisons indicate that the original
emission maps show a satisfactory seasonal cycle that is
not improved nor degraded using the information from the
ATSR. On the other hand, the modeled optical thicknesses
are much smaller than the observations, which can be a result
of an underestimate of the emission fluxes, although the fac-
tor used to convert masses to optical thicknesses can also be
blamed. Chin et al. (2002) show that Ilorin is also influenced
by dust aerosols, which are not included in the simulations.

In order to have a global view of the representation of
carbonaceous aerosols in the model, we show on Figs. 5a
and b a comparison between POLDER AI (a good index for
carbonaceous and sulfate aerosols) and LMDZ AI. The sim-
ulation overlaps the period of the POLDER data, i.e. from
November 1996 to October 1997. For consistency with the
satellite measurements, the model simulates the source and
cycle of carbonaceous and sulfate (Boucher et al., 2002)
aerosols. The global picture confirms several findings of the
AERONET comparisons. Figure 5a shows that both invento-
ries depict correctly the phase of the aerosol load seasonal cy-
cle in Western Africa, although the maximum of the aerosol
index is shifted to the East in February in the simulation (new
sources). In South Africa, the model seems to under predict
the aerosol index in June (Fig. 5b). The satellite data confirm
that there is no significant aerosol load over South America
from May to June (see middle panel on Fig. 5b). The model
predictions using the ATSR-derived inventory are in agree-
ment with observations, contrary to what the model predicts
with the original sources in May and June. The use of infor-
mation from ATSR fires brings about an even larger change
in the phasing of biomass burning over North Australia. The
original sources yield a significant aerosol load from May to
September, when the corrected sources indicate that the fire
activity starts in September.

Atmos. Chem. Phys., 3, 1211–1222, 2003 www.atmos-chem-phys.org/acp/3/1211/
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Figure 6. Comparison of the aerosol index from the Earth-Probe TOMS (middle panels) with
simulated aerosol optical depths at 865 nm simulated with Liousse et al. (1996) inventory
(left panels) and newly derived sources from ATSR fire counts (right panels). Color scales
were chosen from 0 to 2 for TOMS AI and from 0 to 0.5 for LMDZ AOT in order to be
consistent with the assumed value of 5 for the slope of the fit between the TOMS AI and the
AOT at 865 nm based upon the Chiapello et al. (2000) study.

Fig. 6. Comparison of the aerosol index from the Earth-Probe TOMS (middle panels) with simulated aerosol optical depths at 865 nm
simulated with Liousse et al. (1996) inventory (left panels) and newly derived sources from ATSR fire counts (right panels). Color scales
were chosen from 0 to 2 for TOMS AI and from 0 to 0.5 for LMDZ AOT in order to be consistent with the assumed value of 5 for the slope
of the fit between the TOMS AI and the AOT at 865 nm based upon the Chiapello et al. (2000) study.

www.atmos-chem-phys.org/acp/3/1211/ Atmos. Chem. Phys., 3, 1211–1222, 2003
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Table 1. Quantities of carbonaceous aerosols emitted by biomass burning (including savanna, forest and agricultural fires) in the ATSR-
derived inventory. BC emissions are in Tg of Carbon (TgC) per year and OC emissions are in Tg of mass (Tg) per year. BC and OC (blue)
correspond to the emissions of the blue boxes of Fig. 1 (boreal latitudes) and BC and OC (red) to the emissions of the red boxes

BC (blue) BC (red) TOTAL BC OC (blue) OC (red) TOTAL OC

1997 0.10 7.00 7,10 1.37 59.41 60,78
1998 0.41 6.09 6,50 7.55 51.64 59,19
1999 0.15 3.79 3,94 2.47 31.26 33,73
2000 0.16 3.20 3,36 2.70 26.45 29,15
2001 0.11 3.09 3,20 1.97 25.48 27,45

4.2 Interannual variability

Table 1 summarizes the emitted quantities of carbonaceous
aerosols in the new ATSR-derived inventory for each year
of ATSR observations. We have assumed that the total an-
nual estimates of the original inventories (Liousse et al., 1996
and Lavoúe et al., 2000) – as climatological averaged values
– are correct. In the original Liousse et al. (1996) inven-
tory, emissions represent 35.2 Tg of OC and 4.63 Tg of BC
(including savanna, tropical forests and agricultural fires; ex-
cluding domestic fuels). Year 1999 compares well with these
estimates whereas years 1997 and 1998 are a factor 1.5–1.7
larger than the averaged values. This increase in the emis-
sions is mostly due to the Indonesian fires event of Septem-
ber/October 1997. On the other hand, emissions of 2000 and
2001 are smaller (factor of 0.65 to 0.75) than those of the
climatological year.

In order to show that the proposed method accounts for
large interannual variations, we now focus on the partic-
ular event of Indonesian fires that took place in Septem-
ber/October 1997 (Nakajima et al., 1999), thought to be a
consequence of 1997/1998 El Niño. This phenomenon was
well captured by the Earth-Probe TOMS (Herman et al.,
1997). Figure 6 shows a comparison between TOMS AI
and LMDZ AOT865 based upon the Liousse et al. (1996)
inventory and upon the ATSR-derived inventory. Note
that although an exact quantitative comparison is difficult,
the emissions from these fires are reproduced qualitatively
through the use of ATSR fire counts. TOMS measurements
indicate a large aerosol load over Indonesia in September
and October 1997. The consequence of the abnormal fire
activity is not depicted with the original inventory, as one
would expect for a climatological source. By contrast, the
use of ATSR-based emission maps leads to an aerosol in-
dex significantly larger than for other years (i.e. October
1998 in Fig. 6). We note also that the spatial distribution
of the aerosol loads compares well with the TOMS obser-
vations. In addition, Nakajima et al. (1999) have estimated
from the AVHRR data that the region of optical thickness
at 500 nm larger than 0.5 reaches the Indian and Australian
coasts and covers an area such as 2000×5000 km2. Such
high optical depths have been observed from September to
November 1997. Hence, the spatial distribution of the fire

event reproduced by the simulation seems correct although
the optical depths appear overestimated. This comes from an
overestimation of the emissions due to a high EC computed
for the Indonesian region. A possible explanation is that too
low fires are detected during “normal years”, which might be
due to high cloud cover (65% to 85%) over Indonesia.

5 Conclusions

The method described in this paper provides a simple way to
introduce biomass burning seasonal cycles into already ex-
isting inventories and to take into account interannual varia-
tions. The comparison of the aerosol transport simulations to
in-situ and satellite measurements clearly shows an improve-
ment when using the fire count information. In particular,
the aerosol load seasonal cycle over South America and Aus-
tralia, which are not well represented in the original invento-
ries, are now better depicted. The comparison with POLDER
products provides a global and qualitative validation of the
seasonal cycle of biomass burning aerosol. Due to the rather
short observing period of POLDER-1, the analysis of the sea-
sonal cycle is incomplete, and we are expecting additional
information from the recently launched POLDER-2 instru-
ment onboard ADEOS-II. The comparison of the model sim-
ulations with AERONET data allows more quantitative com-
parison over specific sites. These comparisons confirm the
improvement when using the fire count data to constrain the
seasonal cycle and the inter-annual events, although signifi-
cant discrepancies were found in the amplitude of the aerosol
load in particular toward the end of the biomass burning sea-
son.

The present study focuses on the use of ATSR data because
a five years period was available at the time of our analysis. A
comparison of this biomass burning proxy to others, limited
to the year 2000, indicate a general good agreement. The
derivation of aerosol emission from burnt surfaces requires
less assumption than from hot-spot counts. Global invento-
ries of aerosol emission from such datasets as GLOBSCAR
(Hoelzemann et al., 2003) will be of particular interest when
multi-year estimates become available.
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