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Jussieu, 75252 Paris Cedex 05, France
5
Service d’Aéronomie (SA), UMR-CNRS 7620 Verrières le Buisson, 91371, France

6
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Abstract

This paper presents a climatology and trends of tropospheric ozone in the southwest-

ern part of Indian Ocean (Reunion Island) and South Africa (Irene and Johannesburg).

This study is based on a multi-instrumental dataset: PTU-O3 radiosoundings, DIAL LI-

DAR, MOZAIC airborne instrumentation and Dasibi UV ground based measurements.5

The seasonal profiles of tropospheric ozone at Reunion Island have been calculated

from two different data sets: radiosondes and LIDAR. The two climatological profiles

are similar, except in austral summer when smaller values for the LIDAR profiles in the

free troposphere, and in the upper troposphere for all seasons occur. These results

show that the LIDAR profiles are at times not representative of the true ozone climato-10

logical value as measurements can be taken only under clear sky conditions, and the

upper limit reached depends on the signal.

In the lower troposphere, climatological ozone values from radiosondes have been

compared to a one year campaign of ground based measurements from a Dasibi in-

strument located at high altitude site (2150 m) at Reunion Island. The seasonal cycle15

is comparable for the two datasets, with Dasibi UV values displaying slightly higher

values. This suggests that if local dynamical and possibly physico-chemical effects

may influence the ozone level, the seasonal cycle can be followed with ground level

measurements. Average ground level concentrations measured on the summits of the

island seem to be representative of the lower free troposphere ozone concentration20

at the same altitude (∼2000 m) whereas night time data would be representative of

tropospheric concentration at a higher altitude (∼3000 m) due to the subsidence effect.

Finally, linear trends have been calculated from radiosondes data at Reunion and

Irene. Considering the whole tropospheric column, the trend is slightly positive for

Reunion, and more clearly positive for Irene. Trend calculations have also been made25

separating the troposphere into three layers, and separating the dataset into seasons.

Results shows that the positive trend for Irene is governed by the lower layer most

probably by industrial pollution and biomass burning. On the contrary, for Reunion
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Island, the strongest trends are observed in the upper troposphere, and in winter when

stratospheric-tropospheric exchange is more frequently expected.

1 Introduction

Tropospheric ozone has a significant climatic impact especially in the middle and upper

troposphere, where ozone acts as a greenhouse gas. In the lower troposphere, ozone5

is known to be a major oxidant and is involved in other oxidant production, such as OH.

Model calculations show that ozone formation can be enhanced with deep convective

transport of boundary layer precursors (Thompson et al., 1997). Knowledge of the

climatological characteristics of tropospheric ozone production and fluxes in subtropical

regions would allow a better understanding of its direct effect on climate, and its role in10

atmospheric photochemistry. Subtropical regions, although poorly studied, experience

at different times of the year significant stratospheric-tropospheric exchanges (STE),

and also intense photochemical ozone production due to biomass burning, especially

in our region of interest which covers the southern parts of Africa and the Indian Ocean.

Data used in this paper come from long term series of radiosonde data from Reunion15

Island and Irene in South Africa, both of which belong to the SHADOZ network (Thomp-

son et al, 2003), and allow a comparative study of the ozone sources climatology in

the subtropics. Reunion island (20.8
◦
S; 55.5

◦
E) is located near the southern limit of

the tropics, in the Indian Ocean, 1000 km east of Madagascar. During winter, the is-

land is affected by the proximity of the subtropical jet stream which may have a role20

in stratospheric air masses intrusions via tropopause breaks (Baray et al., 1998) and

Rossby wave breaking (Postel et al., 1999). Results describing stratospheric intrusion

associated with a tropical cut off low in South Africa have been previously published

(Baray et al., 2003). A study of the effect of tropical convection on tropospheric ozone

has also been reported (Leclair de Bellevue et al., 2006) and showed some differ-25

ences between the two sites, Reunion and Irene. Biomass burning activity in southern
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Africa and Madagascar during austral spring
1

associated with long range transport of

air masses are also a cause of the tropospheric ozone increase over Reunion Island

(Taupin et al., 2002).

Johannesburg (26.1
◦
S; 28.0

◦
E) and Irene (25.5

◦
S; 28.1

◦
E) are located further south

and about 3000 km west of Reunion. These sites are located closer to photochemical5

sources, but from a dynamical perspective, the site of Irene is less affected by tropical

convection but more affected by the subtropical jet stream activity than Reunion.

In this region, the ozone sources have been identified as both photochemical (Baldy

et al., 1996) and stratospheric (Baray et al., 2003). Thompson et al. (2003) derived a

Tropical Ozone climatology from the SHADOZ network data only and Diab et al. (2004)10

focused their climatology study on Irene and Johannesburg sites. A climatology of

stratospheric intrusions has been conducted over the Pacific and Atlantic Oceans

(Waugh, 2000). However, the ozone climatology and the influence of photochemical

and stratospheric sources have not been analyzed using the same climatological ap-

proach at two distant subtropical sites ; and as such this is the objective of the present15

study.

A wide range of ozone data is available. In addition to ozone sonde profiles, ground

based data from a UV absorption analyzer, in-situ measurements from commercial air-

craft (MOZAIC data) and vertical ozone profiles from LIDAR will be used. In this paper

the geophysical context for each site and the regional sources of ozone precursors will20

be presented together with a brief description of the database features. The first step

is to examine and compare all databases in order to ensure of the coherence of the

various data sets. The influence of data sampling and bias on ozone values between

LIDAR and radiosonde data in Reunion is discussed. All data sets will be used to de-

rive climatological properties of ozone in the subtropics. A comparative study between25

ground based ozone measurements at an elevated site (2100 m) on Reunion Island

and low altitude radiosonde data focus on the seasonal cycle of ozone in the lower

1
September, October, November.
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free troposphere. Finally, the last part of this paper deals with the tropospheric ozone

trends over the past decade at Reunion and Irene.

2 Geophysical context and regional sources of ozone precursors

2.1 Reunion Island

2.1.1 Dynamical context5

Reunion is located in the subsidence area of the Southern Hemisphere Hadley cell.

The island meteorology is subject to subtropical, tropical and temperate influences on

the general circulation, namely the south Indian anticyclone, the subtropical jet stream,

and perturbations carried in the westerlies (Randriambelo et al., 2003). Preston-Whyte

and Tyson (1988) have documented the circulation patterns in South Africa and in the10

adjacent Atlantic and Indian Oceans.

2.1.2 Regional sources

Of the two types of ozone sources already described, the photochemical source of

ozone influencing the ozone profile over Reunion is mainly due to the long range trans-

port of pollutants and ozone precursors from biomass burning activity in southern Africa15

and Madagascar (Fig. 1). Southern Africa is one of the main biomass burning regions

in the Southern Hemisphere. The burning season starts in July and ends in October

(Marenco et al., 1990). Measurement campaigns such as TROPOZ (TROPospheric

Ozone) (Marenco et al., 1990), SAFARI (Southern African Fire-Atmosphere Research

Initiative), TRACE-A (Transport and Atmospheric Chemistry near the Equator-Atlantic)20

(Andreae et al., 1996), SAFARI 2000 (Swap et al., 2003) have been undertaken in

order to study the atmospheric photochemistry and the circulation patterns leading to

the redistribution of southern African emissions and resulting in an ozone increase

over southern Africa and the Atlantic and Indian Oceans (Randriambelo et al., 1999).
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Aghedo et al. (2007) recently determined that 70% of the tropospheric ozone pro-

duced by African emissions is exported outside the continent. Meteorological analysis

based on trajectory statistics showed that a large part of the African emissions might

be advected to the Indian Ocean (Garstang et al., 1996; Piketh et al., 2002). Mech-

anisms responsible for regional contamination by biomass burning by-product have5

been documented (Baldy et al., 1996; Taupin et al., 1999, 2002). A climatology based

on radiosonde and satellite data focuses on the relative importance of the different

mechanisms (Randriambelo et al., 1999).

Ozone increase due to stratospheric intrusions have been detected in South Africa

and over the Indian Ocean. These intrusions take place in association with meteoro-10

logical disturbances such as tropopause breaks induced by the subtropical jet stream,

cut off lows, tropical cyclones (Baray et al., 1998, 1999, 2003), westerly waves and

frontal zones.

2.2 Irene

2.2.1 Dynamical context15

The atmospheric circulation at Irene (25.9
◦
S, 28.22

◦
E) is dominated by the subtropi-

cal anticyclone within which subsidence and recirculations cause the accumulation of

pollutants on large temporal and spatial scales (Garstang et al., 1996; Tyson et al.,

1996; Piketh et al., 2002). As a consequence a 5km deep haze layer is formed over

the southern African subcontinent. This layer is capped by a stable and persistent20

layer due to subsidence resulting from circulations inside the subtropical anticyclone

(Cosin and Tyson, 1996). The frequency of this anticyclonic circulation is higher during

winter (79% in June, July) than during summer (11% in December) (Tyson and Preston-

Whyte, 2000). The system is disrupted when a mid-latitude westerly wave crosses the

south of the African subcontinent. The 5 km stable polluted layer is then spread out.25

Trace gases including ozone precursors and aerosols circulate inside the stable layer

until they are finally released eastward as a giant plume centred at 31
◦
S along the east
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coast (Tyson et al., 1996).

2.2.2 Regional sources

In addition to stratospheric sources, regional sources of ozone in Irene include:

biomass burning, biogenic, lightning and anthropogenic emissions (Aghedo et al.,

2007).5

Irene is located southwards of the main biomass burning region in Africa (Fig. 1). The

biomass burning area extends between 10
◦
N and 20

◦
S and eastward (∼25

◦
E) during

the dry season from June to October. Although the most important ozone increase is

expected north of Irene, the impact of biomass burning can be detected at the station

as a result of long range transport in the anticyclonic gyre. Results of the SAFARI 200010

campaign emphasize the importance of biomass burning in the tropospheric ozone

budget of the southern African subcontinent (Swap et al., 2003). Volatile Organic Com-

pounds (VOCs) are naturally emitted by vegetation (Kesselmeier and Staudt, 1999).

The emission of VOCs significantly influence atmospheric chemistry because of their

high reactivity and result in the formation (or destruction) of tropospheric ozone in high15

(or low) NOx conditions (Aghedo et al., 2007).

During summer, the tropical easterlies from the Indian Ocean cause moist air to be

advected over Irene. Strong convective activity is a daily phenomenon and can pro-

mote a rapid vertical uplift of surface pollutants, which leads to an ozone enhancement

in the mid- to upper troposphere (Pickering et al., 1990, 1996). Lightening, which of-20

ten accompanies these convective storms, can also be responsible for an increase in

tropospheric ozone load.

Anthropogenic sources are an important factor in the ozone budget. Irene is located

close to two urban-industrial areas: Pretoria and Johannesburg. The station is also

100 km from the main power generating area of South Africa, with 11 large coal gen-25

erating power plants (Diab et al., 2004). Domestic use of biofuels also contributes to

ozone precursors. Emissions due to power plants and domestic fuels are stronger dur-

ing winter because of heating requirements. An emission increase during summer can
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also be expected because of air conditioning.

3 Instrumentation and database features

3.1 Radiosondes

A radiosonde program started in 1992 at Reunion and the database represents 15

years of usable data. At Irene, radiosondes were regularly launched between July5

1990 and October 1993 (Diab et al., 2004). Since the two sites have been involved in

the SHADOZ program in 1998, radiosondes are launched regularly on a weekly basis.

The SHADOZ program aims to provide a consistent database for tropospheric ozone

in the Southern Hemisphere. The program originally intended to supplement the

sparse amount of tropospheric ozone data in the Southern Hemisphere compared to10

the abundant data in the Northern Hemisphere (Thompson et al., 2003). The SHADOZ

network involves 15 stations, distributed so as to have a good zonal coverage of the

Southern Hemisphere.

Irene and Reunion stations use ECC (Electro Chemical Cells) sondes for ozone

and Vaisala RS80 sondes for temperature, pressure and humidity. The KI Solution for15

cathode is 1% buffered at Irene and 0.5% buffered at Reunion. Profiles give data from

ground level (24 m at Reunion, 1524 m at Irene) up to burst altitude, which is located

between 30 km and 35 km in most cases. Ozone content precision for ECC sondes is

estimated at 5% for the stratosphere and 10% for the troposphere (Thompson et al.,

2003). Since 2007, horizontal wind measurements have been made at Reunion by20

GPS, simultaneously with ozone and PTU measurements.

3.2 LIDAR

Two LIDAR (Light Detection And Ranging) instruments are operating at Reunion. One

of them, devoted to the measurement of a tropospheric ozone profiles, has been op-

erating since 1998. The approach is to process the differential absorption of two UV25
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wavelengths (289 nm and 316 nm) generated by a high pressure deuterium cell. LIDAR

profiles are taken several times a week with a 150 m vertical resolution between 3 km

and the tropopause height of 17 km in the tropics. The limits of the vertical domain

for each profile are closely related to the atmospheric conditions. Details on the DIAL

ozone LIDAR at Reunion are given in Baray et al. (1999) and on all the instrumenta-5

tion of OPAR (Observatoire de Physique de l’Atmosphère de la Reunion) in Baray et

al. (2006).

3.3 MOZAIC

The MOZAIC program (Measurement of Ozone and Water Vapour by Airbus In-Service

Aircraft) was launched in 1994 by European scientists and Airbus in order to collect10

ozone water vapour, carbon monoxide and nitrogen oxides data to validate global

chemistry transport models (Marenco et al., 1998). The precision of the ozone mea-

surements is ±2 ppbv±2% (Thouret et al., 2006). The program uses equipment in-

stalled aboard long haul Airbus A340 aircraft flying from Europe. The MOZAIC data

used in this paper corresponds to 577 flights from and to Johannesburg between July15

1995 and January 2003. The seasonal distribution is given in Fig. 2.

3.4 Temporal coverage

Vertical ozone profile data is available since the early 1990s at Reunion and Irene.

Both sites joined the SHADOZ network in 1998. In this article, the climatological study

(Figs. 3, 4) focuses on the 8 common years of data (1998–2006, Table 1) for the two20

sites. Hence the ozone climatology benefits from a greater regularity in the radiosound-

ings time distribution regarding a considerable number of profiles (Table 1). The trend

section uses the whole dataset for the two sites in order to view the widest time range.

At Reunion, profiles are collected regularly each week and the frequency of sound-

ings is less affected by weather considerations than by possible technical issues. For25

each site, the total number of profiles over the 8-year period ranges between 20 and 25
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profiles per month. Differences between January to July and August to December in

numbers of radiosonde profiles for Reunion (Fig. 2) can be explained by measurement

campaigns that have been conducted for satellite validation purposes or to describe

particular atmospheric events in July 1998 and 1999.

MOZAIC and LIDAR databases show a great number of profiles, respectively 5775

and 265 profiles respectively (Fig. 2, Table 1) but the profiles are sporadically dis-

tributed in time compared to the SHADOZ data. In addition to their climatological value,

MOZAIC and LIDAR data are interesting to describe singular atmospheric events.

Since the vertical domain of these data is variable, more work is necessary to de-

fine precisely the most convenient vertical domain for a climatology. MOZAIC data10

were recently used to derive an ozone climatology in the upper troposphere (9–12 km)

(Thouret et al., 2006). In the next section, seasonal profiles enable a comparison be-

tween LIDAR data and ozone probe data. The climatological significance of LIDAR

data will be discussed.

4 Data analysis15

4.1 Comparison of ozone DIAL and sonde climatological profiles at Reunion

LIDAR seasonal profiles show lower ozone content than radiosounding profiles above

11 km for spring and winter, above 13 km for autumn and summer. This difference

which appears on climatology is not visible on simultaneous measurements (Baray

et al., 1999). Because of the absorption of the LIDAR beam by ozone molecules,20

when the LIDAR signal is weakened in the upper part of the profiles, the vertical limits

of LIDAR ozone profiles are often set below an altitude where high ozone content is

found, then the number of profiles used to build the climatological profiles lower in the

upper part of the climatological profiles, and profiles with high ozone content in the

upper troposphere are small in number in the LIDAR database. Contrary to the LIDAR25

technique, the measurement of ozone by radiosonde is not affected by the amount
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of ozone. This gives rise to some differences in the upper tropospheric climatology.

The upper tropospheric DIAL ozone climatology is not representative of the real ozone

climatology, despite individual DIAL profiles which covers the whole troposphere are

available.

In summer, seasonal profiles are concordant in the lower troposphere below 5 km.5

Above 13 km, the trend is similar to the other seasons i.e. the LIDAR profile depicts

smaller values than the sounding profile. Between 5 km and 13 km, the LIDAR profile

shows higher values than the sounding profile. The maximum difference between the

two profiles in this altitude range is 12.83 ppbv at 9.5 km. This difference is comparable

to the difference between the two ozone climatological profile obtained in distinguishing10

the radiosonde database in presence of tropical convection and not (Fig. 4 of Leclair

de Bellevue et al., 2006).

While radiosonde measurements can be launched in any weather conditions, LIDAR

profiles are constrained to meteorological conditions: LIDAR measurements can be

made only during nights with clear sky conditions. Then, summer corresponding to15

the rain season at Reunion and taken into account the complex role of convection on

ozone, (uplift of ozone poor air masses into the troposphere in convective systems

giving low values of ozone in the upper troposphere, and stratospheric-tropospheric

exchange in the periphery of convective systems giving high values of ozone in the

middle troposphere (Leclair de Bellevue et al., 2006), this gives some differences be-20

tween ozone DIAL and radiosonde climatologies during summer.

4.2 Monthly mean distribution

The whole database has been processed so as to obtain the mean monthly evolution

of ozone content in the troposphere. Figure 4 depicts the mean annual cycle in ozone

content in ppbv (0–130 ppbv) between 3 and 16 km. Panels (a) to (d) depict LIDAR25

data, SHADOZ data from Reunion, MOZAIC data from Johannesburg, and SHADOZ

data from Irene respectively. The lower altitude limit of 3 km is imposed by the LIDAR

data; and 16 km is below the tropopause height (around 17 km in the tropics). The
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maximum value of the ozone mixing ratio is set 130 ppbv in order to keep variations of

the SHADOZ data perceptible. This scale allows variations in the ozone content in the

mid and lower troposphere to be distinguished.

4.2.1 Observations and analysis

Although the database includes many LIDAR and MOZAIC profiles (Table 1), Fig. 4b5

and d derived from SHADOZ data have a smoother appearance most likely due to the

greater regularity of radiosonde launches. Each data type show a springtime maximum

linked to biomass burning activities, that occurs between September and November

according to the site. The greatest values are found in the SHADOZ data (Panels b, d),

and Irene data shows values greater than 90 ppbv above 10 km altitude. MOZAIC and10

LIDAR data also exhibit a springtime peak but the values are seldom above 80 ppbv in

the lower and mid-troposphere. The LIDAR ozone content at Reunion (Panel a) shows

greater values in January than the content derived from SHADOZ data. Specifically

LIDAR data display ozone values varying between 80 and 90 ppbv between 9 and

12 km. For the same altitude, the SHADOZ ozone content has values between 50 and15

70 ppbv. This result is consistent with summer seasonal profiles shown in Sect. 3.

Upper tropospheric ozone content at Irene is greater than at Reunion. During win-

ter, the ozonopause is lower at Irene. Values greater than 100 ppbv are found above

an altitude of 13 km whereas at Reunion, such values are found only above 14 km.

Irene is located at a more southerly latitude than Reunion, and consequently expe-20

riences a greater influence of the subtropical jet stream during winter than Reunion.

Thus a strong influence of stratospheric intrusions during winter in South Africa can be

assumed. Moreover, Irene is under the influence of the anticyclonic subtropical gyre

which is responsible for large scale subsidence and recirculations of air masses in the

lower troposphere above the southern African subcontinent. This regime is capped by25

a stable layer (Diab et al., 2004) which inhibits vertical mixing of air masses. Tyson and

Preston-Whyte (2000) have shown that this system is highly prevalent during winter.

During summer, values above 90 ppbv are found at Irene at 10 km altitude and above.

11075

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11063/2008/acpd-8-11063-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11063/2008/acpd-8-11063-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11063–11101, 2008

Tropospheric Ozone

climatology in the

southern subtropics

G. Clain et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

At Reunion, such values are not recorded below an altitude of 11 km. Irene is located

nearer to the photochemical sources than Reunion. Moreover, Pickering et al. (1990,

1996) show that during summer the southern African subcontinent is under the in-

fluence of the easterlies, which gives rise to convective activity and allows advection

and mixing of tropospheric air masses. The quick redistribution of surface pollutants5

may be responsible for a mid- and upper tropospheric ozone enhancement. Con-

sidering the South African data for January, an ozone enhancement appears in the

mid-troposphere where values exceed 60 ppbv. That increase, evident on both the

MOZAIC and the SHADOZ plots, might be due to anthropogenic pollution. According

to Diab (2004) Irene is located in an active urban industrial region. Domestic emissions10

during summer coupled with convection might explain this phenomenon.

5 Ground based measurements and comparison with the radiosounding clima-

tology at Reunion

One year of ground-based ozone measurements have been performed at Piton Tex-

tor (2150 m ASL, southeast of Reunion) from October 1998 to October 1999. The15

instrument was a commercial photometer Dasibi 1008 RS allowing continuous mea-

surements with a precision of about 5%. Monthly means of ground based ozone have

been calculated, separating night-time (from 10 p.m. to 7 a.m.) and day-time (8 a.m. to

8 p.m.) measurements. These measurements are compared in Figure 5 with average

ozone concentrations measured at an altitude of 2100 m by radiosoundings launched20

at Roland Garros airport (north of Reunion) in the morning. Radiosonde monthly data

averaged over the period 1992–2006 are quite comparable to the values measured

at ground level by the Dasibi instrument. Radiosonde data for the period 1998–1999

are somewhat lower. It is noted, however, that during this period only 40 balloons

launches were performed, therefore monthly means are based on only 3 to 4 days25

of data. We also observe that ozone values recorded during the night by continuous

ground level measurements are slightly greater than those recorded during the day by
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about 5 ppb. When the radiosondes reach 2000 m altitude they are rather far from the

influence of the mountain boundary layer and the data corresponds to the free tropo-

sphere ozone concentration at 2100 m altitude. In contrast, ground measurements at

the same altitude are strongly influenced by vertical motions and exchanges between

the lower layers and the free troposphere, these exchanges being forced by orogra-5

phy. Figure 6 represents average vertical ozone profiles for the period 1998 to 2006

between sea level and 5000 m altitude. All seasonal profiles exhibit a positive gradient

of 3 to 7 ppb/km, the largest gradient being observed during austral spring which cor-

responds to the fire season in southern Africa and Madagascar. Air motions along the

mountain slopes are generated by a combination of land/sea breeze and slope breeze10

due to the differential heating of mountain slopes. This effect can be more or less pro-

nounced depending on the force of the synoptic wind (i.e., the south-east trade wind).

During the daytime, sea breezes and upslope breezes may combine to bring ozone-

poor air from the boundary layer to the top of the mountain. Turbulent motions then

mix this air with ozone rich air from the free troposphere resulting in concentrations15

similar to the free tropospheric concentration at the same altitude. During the night,

land breezes combine with downslope breezes generating a subsiding motion as ob-

served for instance on the slopes of Mauna Loa volcano (Garett, 1980). This leads

to a reverse diurnal cycle of ozone, with maximum values recorded during the night,

which has been observed at various mountain sites in continental regions (Zaveri et al,20

1995). This original ozone cycle with ozone nighttime recovery has already been ob-

served at Reunion, even in the marine boundary layer and was attributed to dynamical

effects (Bremaud et al., 1998a). In another paper, Bremaud and Taupin (1998b) also

discussed the influence of heterogeneous chemistry within orographic clouds in the

marine boundary layer to explain the daytime ozone depletion. However, this is prob-25

ably a second order effect compared to the vertical mixing between layers presenting

important vertical ozone gradients

A seasonal cycle comparable to those observed in the free troposphere is observed

with a maximum during Winter-Spring and a minimum in summer-Autumn. This sea-
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sonal cycle is observed in both Dasibi and radiosounding data at 2 km altitude, with

Dasibi values slightly above radiosounding data. Average ground level concentrations

measured on the summits of the island seem to be representative of the lower free tro-

pospheric ozone concentration at the same altitude (∼2000 m) whereas nighttime data

would be representative of tropospheric concentration at a higher altitude (∼3000 m)5

due to the subsidence effect. Ground level measurements at an altitude station at

Reunion Island therefore allow to document seasonal variations of regional free tropo-

spheric ozone concentrations. To better understand local dynamics and its influence on

trace gas concentrations, we are currently starting a high resolution modelling program

with a meso-scale non-hydrostatic model in order to better understand ground level10

measurements which will be performed at the future observatory built on the top of the

Maı̈do Peak in the north-west of the island at 2200 m altitude. This observatory, ex-

pected for 2010, will be devoted to long term atmospheric composition measurements

in the framework of monitoring networks such as GAW (Global Atmospheric Watch)

and NDACC (Network for Atmospheric Composition Changes).15

6 Long-term Tropospheric ozone behaviour at Reunion Island and Irene based

on linear trend calculations

The ozone databases of Reunion Island and Irene cover the periods 1992–2006 and

1990–2006 respectively (time series of 15 and 17 years). In this section, weexamine

the linear trend of tropospheric ozone over these periods, and we compare the different20

tropospheric layers of the both measurement sites.

6.1 Methodology

To examine the linear trend, the following equation is used:

Ozone = τt + β (1)

11078

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11063/2008/acpd-8-11063-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11063/2008/acpd-8-11063-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11063–11101, 2008

Tropospheric Ozone

climatology in the

southern subtropics

G. Clain et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

τ is the linear trend calculated by linear regression using the least squares method, t is

the time and β is a residual term. The error is calculated using the student’s t-test with

99% confidence interval. This error gives a statistical estimation of the influence of the

variability of ozone data on the estimation of the linear trend (Montgomery et al., 2006).

Radiosonde data can be given in concentration (molec/cm
3
), partial pressure (nbar) or5

volume mixing ratio (ppbv). Ozone trends have been calculated in atmospheric layers

in ppbv by decade and in DU by decade (1 DU=2.69×10
16

molec/cm
2
), with the two

calculations giving similar results. We present only the results in DU/decade in the

following section.

6.2 Results10

Ozone trends calculated at Reunion and Irene are presented in Fig. 7. The lower

limit of the tropospheric column is 1 km at Reunion, and 2 km at Irene, because of the

different altitudes of the two sites. The upper limit has been fixed at 16 km, below the

tropopause height at the two sites (Sivakumar et al., 2006). Considering the whole

column, the tropospheric trend is slightly positive (0.5 DU/decade) for Reunion, and15

more clearly positive for Irene (1.97 DU/decade). These two values are superior to the

statistical error calculated for the two sites (0.33 DU/decade and 0.08 DU/decade for

Reunion and Irene respectively). All the trends calculated in DU by decade and the

corresponding percentages by decade are presented in the Table 2.

In order to examine the potential influence of the two main sources of ozone in20

the region, viz. anthropogenic and biomass burning pollution of the lower layers and

stratospheric–tropospheric exchange, the troposphere has been separated into three

layers: one below 4 km, the altitude where the trade wind inversion occurs (Taupin et

al., 1999), and the free troposphere which is separated into two equal parts: the lower

free troposphere between 4 and 10 km and the upper free troposphere between 10 and25

16 km. At Reunion, below 4 km, because of the easterly trade wind regime, ozone is not

expected to be directly influenced by biomass burning and stratospheric-tropospheric

exchange, but only by local sources and exchanges within the free troposphere. At
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Irene, local sources of pollutions and biomass burning can both occur. For the two

sites, the two layers 4–10 km and 10–16 km can be directly influenced by biomass

burning and stratospheric-tropospheric exchange. In regard to these considerations,

some differences between the two sites appear (Fig. 8):

– The trend for the lower layer at Irene is clearly positive (4.2 DU/decade), while at5

Reunion the trend is slightly negative (–0.3 DU/decade). Under the hypothesis

of an increase of biomass burning and pollution in South Africa, a positive trend

of ozone over South Africa is consistent because of a persistent synoptic recir-

culation which occurs over South Africa (Preston-Whyte and Tyson, 1988). On

the contrary, lower layers over Reunion are less directly influenced by biomass10

burning because of the easterly trade wind regime (Baldy et al., 1996).

– The trend for the lower free troposphere at Irene is positive but less than the layer

below. Almost no trend is observed for the upper free troposphere. This suggest

that the tropospheric trend at Irene is mainly governed by the lower layers of the

troposphere, and specifically by the biomass burning and pollution influences.15

For Reunion, the trend behaviour is opposite: almost no trend for the lower free

troposphere and a slightly positive trend for the upper free troposphere.

The reason for this positive trend for the upper layers is an interesting issue and

we draw two hypotheses: first, the influence of the increase of biomass burning and

pollution. The less important values than Irene could be due to the complex dynam-20

ical mechanisms which are necessary for Reunion Island tropospheric ozone to be

influenced by biomass burning: injection of pollutants in the free troposphere by con-

vection, mix-then-cook scheme and ozone production during the westward transport

(Chatfield and Delany, 1990, Baldy et al., 1996). The second hypothesis is an increase

in stratospheric-tropospheric exchange which could be induced by the climate warm-25

ing.

In order to estimate the influence of the two mechanisms, seasonal trends are pre-

sented in Figure 9 for Reunion and Fig. 10 for Irene. A climatological study based on
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the Lagrangian determination of the origin of ozone is necessary to quantify with pre-

cision the respective origin of each mechanism. However, for Reunion Island, it has

been established that:

– The influence of biomass burning is at a maximum in September-October-

November season (Baldy et al., 1996, Randriambelo et al., 2000).5

– The influence of stratospheric-tropospheric exchange induced by the subtropical

jet stream is at a maximum in June-July-August, because of the location of the jet

stream close to the latitude of Reunion (Baray et al., 1998; Randriambelo et al.,

2000).

– The influence of stratospheric-tropospheric exchange associated with tropical10

convection is at a maximum in December-January-February (Leclair de Bellevue

et al., 2006).

– The March-April-May season could be representative of background ozone levels,

since the influences of stratospheric-tropospheric exchange and biomass burning

are weak.15

Taking account of these considerations, we observe effectively no-trend, or a weak

trend, for the two sites during the March-April-May season: –0.52±0.58 DU/decade for

Reunion and 0.12±0.11 DU/decade for Irene. For Reunion, the most positive trends

have been observed in December-January-February (1.87±1.12 DU/decade) and in

June-July-August (2.88±1.42 DU/decade). These values suggest that stratospheric-20

tropospheric exchange is the most important influence as it is the most active ozone

source during these seasons. In contrast, for Irene, the trend is strong in September-

October-November (2.68±0.23 DU/decade), and also in December-January-February

(3.32±0.38 DU/decade) and in June-July-August (3.09±0.25 DU/decade). For Irene,

the two mechanisms can play a role in the annual trend observed. An overview of25

long-term changes in tropospheric ozone has recently been published (Oltmans et al.,
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2006). This study was based on a global network of observations, with some stations

located in the tropical and subtropical regions of the Southern Hemisphere: American

Samoa Island, New Zealand, Australia and South Africa. For Cape Grimm (Australia)

and Lauder (New Zealand), Oltmans et al. (2006) observe no change in summer, but a

significant increase during the late winter and early spring. For Lauder (New Zealand),5

they show an interesting vertical structure of the ozone trends, positive below 500 hPa,

and slightly negative above the 500 hPa level (but not significant), very similar to the

vertical structure that we have observed for the ozone trends over Irene. For Cape

Point (South Africa) some increase has been observed throughout the year, but the

largest increase is again during the late winter and early spring, similar to the trends10

observed over Irene in our study. For all the sites of the subtropical Southern Hemi-

sphere, Oltmans et al. (2006) point out that the seasonal increase occurs during a time

of the year when biomass burning in the Southern Hemisphere is very active. However,

trends in this period on a decadal scale have not been reported, nor is there a signifi-

cant increase in CO (Langerfelds et al., 2003), hence it is not possible to conclude with15

certainty which are the main factors influencing the ozone trends for these sites.

In summary, this section was a first attempt to determine the long-term evolution

of ozone based on 15 and 17 years databases respectively at Reunion Island in the

Southern Indian Ocean and at Irene in South Africa. The two sites were compared

and the influence of possible mechanisms playing a role on the long-term ozone evo-20

lution discussed. Significant differences in the ozone trends have been observed at

Reunion and Irene. The increase in tropospheric ozone observed over Irene occurs

mainly in the lower layers, similar to observations of Oltmans et al. (2006) over other

sites of the Southern Hemisphere. It could be associated with the increase in pollu-

tion and biomass burning. Our study outlines some differences between Irene and25

Reunion Island, which has larger positive trends in the upper troposphere than in the

lower troposphere. Some additional studies are necessary to demonstrate the origin

of the positive trends in the upper troposphere over Reunion Furthermore, this work

has highlighted the need to determine the trend with more precision. In order to do
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that, more complex methods and trend models must be applied, which could be, for

example, based on a multiple regression neuronal network (Lu and Chang, 2005).

7 Conclusions

In this study we have presented a climatology of tropospheric ozone in the south-

western part of the Indian Ocean (Reunion Island) and South Africa (Irene, Johannes-5

burg). The main conclusions are the following:

– The comparison of the seasonal profiles of tropospheric ozone of Reunion Island

obtained from radiosondes and LIDAR showed that the two climatological profiles

are generally in good agreement, except in austral summer with smaller values

for the LIDAR profiles in the free troposphere, and in the upper troposphere for10

all the seasons. Because of the nature of LIDAR data (measurements performed

only under clear sky conditions, and an upper limit depending of the signal) the

LIDAR profile is not representative of the true ozone climatology in the whole

troposphere.

– Climatological ozone values from radiosonde for the lower troposphere have been15

compared to a one year campaign of ground based measurements from a Dasibi

instrument at a high altitude site (2100 m) on Reunion Island. The seasonal cycle

is comparable for the two sets of data, with Dasibi values slightly exceeding ra-

diosounding data at the equivalent altitude. This suggests that if local dynamical

and possibly physico-chemical effects may influence the ozone level, the sea-20

sonal cycle can be followed with ground level measurement at a high altitude

site. Average ground level concentrations measured on the summits of the island

seem to be representative of the lower free troposphere ozone concentration at

the same altitude (∼2000 m) whereas night-time data would be representative of

tropospheric concentration at a higher altitude (∼3000 m) due to the subsidence25

effect.
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– Finally, linear trends have been calculated from radiosondes data at Reunion and

Irene. Considering the whole tropospheric column, the trend is slightly positive

for Reunion, and more clearly positive for Irene. The trend calculations have

been repeated, stratifying the troposphere into three columns, and separating

the dataset into seasons. Results shows that the positive trend for Irene seems5

to be governed by the lower layer and consequently by industrial pollution and

biomass burning. On the contrary, at Reunion, the strongest trends are observed

in the upper troposphere, and in winter when stratospheric-tropospheric exchange

peaks.

Our short term intention is to study the temporal and vertical distribution of anoma-10

lies in the tropospheric ozone column over Irene and Reunion. In order to discuss the

influence of different sources, climatology and trends of tropospheric ozone, as well

as CO measurements and the convective transport index from the MOPITT satellite

(Deeter et al., 2003) will be analysed. The long term perspective is to provide a com-

plete quantification of all the sources influencing the tropospheric ozone budget in the15

region using a Lagrangian approach and to compare the results with those obtained

from a global chemistry transport model.
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ozone, to access the data, as well as the airlines (Lufthansa, Air France and Austria) who carry

free of charge the MOZAIC instrumentation and perform the maintenance since 1994.

Finally, we thank the editor Owen Cooper for his constructive remarks which helped us to

improve this manuscript.

11084

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11063/2008/acpd-8-11063-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11063/2008/acpd-8-11063-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11063–11101, 2008

Tropospheric Ozone

climatology in the

southern subtropics

G. Clain et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

References

Aghedo, A. M., Schultz, M. G., and Rast, S.: The influence of African air pollution on the

regional and global tropospheric chemistry, Atmos. Chem. Phys., 7, 1193–1212, 2007,

http://www.atmos-chem-phys.net/7/1193/2007/.

Andreae, M. O., Fishman, J., and Lindesay, J.: The Southern Tropical Atlantic Experiment5

(STARE): Transport and Atmospheric Chemistry near the Equator-Atlantic (TRACE A) and

Southern African Fire-Atmosphere Research Initiative (SAFARI): An introduction, J. Geo-

phys. Res., 101, 23519-23520, 1996.

Baldy, S., Ancellet, G., Bessafi, M., Badr, A., and Lan Sun Luk, D.: Field observations of

the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics), J.10

Geophys. Res., 101(D19), 23 835–23 850, 1996.

Baray, J. L., Ancellet, G., Taupin, F. G., Bessafi, M., Baldy, S., and Keckhut, P.: Subtropical

tropopause break as a possible stratospheric source of ozone in the tropical troposphere, J.

Atmos. Solar-Terr. Phys., 60, 27–36, 1998.

Baray, J. L., Leveau, J., Porteneuve, J., Ancellet, G., Keckhut, P., Posny, F., and Baldy, S.: De-15

scription and evaluation of a tropospheric ozone LIDAR implemented on an existing LIDAR

in the southern subtropics, Appl. Opt., vol. 38, 6808–6817, 1999.

Baray, J. L., Baldy, S., Diab, R. D., and Cammas, J. P.: Dynamical study of a tropical cut-off low

over South Africa, and its impact on tropospheric ozone, Atmos. Environ., 37, 1475–1488,

2003.20

Baray, J. L., Leveau, J., Baldy, S., Jouzel, J., Keckhut, P., Bergametti, G., Ancellet, G., Bencherif,

H., Cadet, B., Carleer, M., David, C., De Mazière, M., Faduilhe, D., Godin Beekmann, S.,

Goloub, P., Goutail, F., Metzger, J. M., Morel, B., Pommereau, J. P., Porteneuve, J., Portafaix,

T., Posny, F., Robert, L., and Van Roozendael, M.: An instrumented station for the survey of

ozone and climate change in the southern tropics: Scientific motivation, technical description25

and future plans, J. Environ. Monit., 8, 1020–1028, doi:10.1039/b607762e, 2006.

Bremaud, P. J., Taupin, F., Thompson, A. M., and Chaumerliac, N.: Ozone nighttime recovery

in the marine boundary layer: Measurement and simulation of the ozone diurnal cycle at

Reunion Island, J. Geophys. Res, 103(D3), February 20, 1998a.

Bremaud P. J. and Taupin, F.: Cloud influence on ozone diurnal cycle in the marine boundary30

layer at Reunion Island, Atmos. Res., 47–48, 285–298, 1998b.

Chatfield, R. B. and Delany, A. C.: Convection links biomass burning to increased tropical

11085

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11063/2008/acpd-8-11063-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11063/2008/acpd-8-11063-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys.net/7/1193/2007/


ACPD

8, 11063–11101, 2008

Tropospheric Ozone

climatology in the

southern subtropics

G. Clain et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

ozone: However, models will tend to overpredict O3, J. Geophys. Res., 95, 18473–18488,

1990.

Cosijn, C. and Tyson, P.D.: Stable discontinuities in the atmosphere over South Africa, S. Afr.

J. Sci., 92, 381–386, 1996.

Deeter, M. N., Emmons, L. K., Francis, G. L., Edwards, D. P., Gille, J. C., Warner, J. X.,5

Khattatov, B., Ziskin, D., Lamarque, J.-F., Ho, S.-P., Yuding, V., Attie, J.-L., Packman, D.,

Chen, J., Mao, D., and Drummond, J. R.: Operational carbon monoxide retrieval algo-

rithm and selected results for the MOPITT instrument, J. Geophys. Res., 108(D14), 4399,

doi:10.1029/2002JD003186, 2003.

Diab, R. D., Thompson, A. M., Mari, K., Ramsay, L., and Coetzee, G. J. R.: Tropospheric ozone10

climatology over Irene, South Africa, From 1990 to 1994 and 1998 to 2002, J. Geophys. Res.,

109, D20301, doi:10.1029/2004JD004793, 2004.

Garrett, A. J.: Orographic cloud over the eastern slopes of Mauna Loa volcano, Hawaii, related

to insolation and wind. Mon. Weather Rev., 108, 931–941, 1980.

Garstang, M., Tyson, P. D., Swap, R., Edwards, M., Kalleberg, P., and Lindsay, J. A.: Horizontal15

and vertical transport of air over Southern Africa, J. Geophys. Res., 101, 23 721–23 736,

1996.

Kesselmeier, J. and Staudt, M.: Biogenic volatile organic compounds (VOC): An overview on

emission, physiology and ecology, J. Atmos. Chem., 33, 23–88, 1999.
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Table 1. Features of the database: period of measurements, total number of ozone profile and

altitude range.

Number of years of data Total number of profiles vertical range of data

SHADOZ RUN 8 269 sea level – 30 km

1992–2006 RUN radiosoundings 15 358 sea level – 30 km

SHADOZ IRN 8 208 1524 m – 30 km

1990–2006 IRN radiosoundings 17 363 1524 m – 30 km

LIDAR RUN 8 265 3 km – 16 km

MOZAIC JOB 9 577 1 km – 12 km
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Table 2. Trend values calculated at Reunion and Irene, in DU by decade and the correspon-

dence in percentage per decade. The lower limit A is 1 km for Reunion Island and 2 km for

Irene.

Reunion Irene

DU/decade %/decade DU/decade %/decade

A-16 km 0.50±0.33 1.5±1.0 1.97±0.08 5.6±0.3

A-4 km –0.22±0.02 3.6±0.3 0.87±0.01 13.8±0.1

4–10 km –0.54±0.09 0.3±0.5 0.67±0.03 4.3±0.2

10–16 km 0.94±0.04 9.0±0.4 0.39±0.02 3.2±0.2

11091

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11063/2008/acpd-8-11063-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11063/2008/acpd-8-11063-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11063–11101, 2008

Tropospheric Ozone

climatology in the

southern subtropics

G. Clain et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 1. Schematic representation of meteorological processes affecting tropospheric ozone

over subequatorial Africa. Industrial, biomass burning, and biogenic sources of ozone pre-

cursors are also shown. The locations of Johannesburg, Irene, Lusaka, and Reunion are

represented by “J,”,“I,”, “L” and “R” respectively. Adapted from Fig. 1, Diab et al., 2004.
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Fig. 2. Monthly distribution of the profiles used for each type of data.
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Fig. 3. Seasonal ozone profiles and standard deviation (ppbv) between 3 and 15 km derived

from radiosonde data (blue lines) and from LIDAR data (red lines) at Reunion during (a) spring

(SON) (b) summer (DJF) (c) autumn (MAM) and (d) winter (JJA). The number of profiles used

for each DIAL LIDAR climatological profile is given on the right in grey.
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Fig. 4. Monthly distribution of the mean tropospheric ozone content (0–130 ppbv) between

3 and 16 km altitude for different sites and different types of data. (a) LIDAR Reunion, (b)

SHADOZ Reunion, (c) MOZAIC Johannesburg, (d) SHADOZ Irene.

11095

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11063/2008/acpd-8-11063-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11063/2008/acpd-8-11063-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11063–11101, 2008

Tropospheric Ozone

climatology in the

southern subtropics

G. Clain et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 5. Seasonal variations of ozone concentration at Piton Textor at 2100 m altitude in the

South East of Reunion Island during daytime (green curve) and nigh-time (red curve), from

October 1998 to October 1999, and average value of ozone concentration at the same altitude

from radiosoundings (average monthly data from 1992 to 2006 (blue curve), and monthly data

from October 1998 to October 1999, black curve).
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Fig. 6. Seasonal ozone profiles and standard deviation (ppbv) between 0 and 5 km derived

from radiosondes at Runion (a) spring (SON) (b) summer (DJF) (c) autumn (MAM) (d) winter

(JJA).
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Fig. 7. Ozone trends for the tropospheric layer between 1 and 16 km at Reunion (a) and

between 2 and 16 km at Irene (b).
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Fig. 8. Ozone trends between 2 and 4 km at Reunion (a) and Irene (b), between 4 and 10 km

at Reunion (c) and Irene (d), and between 10 and 16 km at Reunion (e) and Irene (f).
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Fig. 9. Ozone trends for the tropospheric layer between 1 and 16 km at Reunion in December-

January-February (a), March-April-May (b), June-July-August (c), et September-October-

November (d).
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Fig. 10. Same as Fig. 9 but between 2 and 16 km at Irene.
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