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Abstract

Long-term (5-yr) measurements of Black Carbon (BC) and Organic Carbon (OC) in

bulk aerosols are presented here for the first time in the Mediterranean Basin (Crete

Island). A multi-analytical approach (including thermal, optical, and thermo-optical

techniques) was applied for these BC and OC measurements. Light absorbing dust5

aerosols have shown to poorly contribute (+17% on a yearly average) to light absorp-

tion coefficient (babs) measurements performed by an optical method (aethalometer).

Long-range transport of agricultural waste burning from European countries surround-

ing the Black Sea was shown for each year during two periods (March–April and July–

September). The contribution of biomass burning to the concentrations of BC and OC10

has shown to be rather small (20 and 14%, respectively, on a yearly basis), although

this contribution could be much higher on a monthly basis and is expected a high intra

and inter annual variability. By removing the biomass burning influence, our data re-

vealed an important seasonal variation of OC, with an increase by almost a factor of

two for the Spring months of May and June, whereas BC was found to be quite sta-15

ble throughout the year. Preliminary measurements of Water Soluble Organic Carbon

(WSOC) have shown that the monthly mean WSOC/OC ratio remains stable through-

out the year (0.45±0.12), suggesting that the partitioning between water soluble and

water insoluble organic matter is not significantly affected by biomass burning and sec-

ondary organic aerosol (SOA) formation. A chemical mass closure performed in the20

fine mode (Aerodynamic Diameter, A.D.<1.5µm) showed that the mass contribution of

organic matter (POM) was found to be essentially invariable during the year (monthly

average of 26±5%).

1 Introduction

Recent studies demonstrate the significant role of black carbon (BC) aerosols in the25

eastern Mediterranean (Lelieveld et al., 2002; Sciare et al., 2003b) with negative sur-
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face radiative forcing and large positive atmospheric forcing values nearly identical to

the highly absorbing south Asian haze observed over the Arabian Sea (Markowicz et

al., 2002). The contribution of these light absorbing particles is particularly impor-

tant during the summer period when most of air masses over the eastern Mediter-

ranean originate from the Balkans, Turkey and central/eastern Europe (Vrekoussis et5

al., 2005; Bryant et al., 2006). During this period, continental (anthropogenic) aerosols,

mainly composed of sulfate and carbonaceous material, contribute for almost 2/3 of the

Aerosol Optical Thickness (AOT) over the Greek-Turkish coastal region (Barnaba and

Gobbi, 2004). Extensive forest fires from southern Europe and desert dust plumes

from North Africa may also be significantly contributing to large-scale aerosol emis-10

sions in the Mediterranean environment. Since aerosol types emitted from the above

mentioned phenomena significantly absorb solar radiation and contain trace elements

such as phosphorus and iron, they can influence the atmospheric physics and the ma-

rine biogeochemistry of the Mediterranean (Guieu et al., 2005; Meloni et al., 2006;

Bonnet and Guieu, 2006).15

Most of studies clearly indicate the major role of carbonaceous material on aerosol

light properties in the Mediterranean region but still few are based on field observa-

tions which are particularly scarce and time limited (Sciare et al., 2003a, 2005). The

few of them performed in the eastern part of Mediterranean have shown that a proper

determination of their concentrations remains a difficult task primarily due to the com-20

plexity of the aerosol mixtures (Sciare et al., 2003b; Bardouki et al., 2003). Among

the major outcomes from these studies, important discrepancies were observed in the

determination of summertime BC concentrations from the use of different analytical

protocols. BC concentrations derived from the IMROVE thermo-optical protocol (Chow

et al., 1993) and light absorption measurements (PSAP, Radiance Research) showed25

a very good correlation with non-sea-salt potassium (nss-K), considered to be a tracer

of biomass burning. On the other hand, BC concentrations derived from a 2-step ther-

mal method (Cachier et al., 1989) and performed on the same filter samples showed

to better correlate with non-sea-salt sulfate (nss-SO
2−
4

) which is considered as a tracer
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for fossil fuel combustion. The proper analysis of carbonaceous aerosols over the

Mediterranean is even more complicated by the presence of important dust concentra-

tions deposited on quartz filter matrix that interferes in many ways with light absorption

measurements as well as on thermo-optical measurements of BC and OC. The above

drawbacks originate either from the presence of absorbing hematite (Fe2O3) contained5

in the dust particles and/or release of oxygen contained in the metallic oxides that com-

pose dust aerosols during the He step of the thermo-optical method. All these results

indicate that the proper determination of the different carbonaceous fractions (BC and

OC) in the dusty environment of the Mediterranean remains a challenge.

Long-term measurements of carbonaceous aerosols are presented here for the first10

time over the Mediterranean Sea (Crete Isl.). Their concentrations and seasonal vari-

ations are discussed from the use of different analytical methods. Their relative mass

contribution to the fine aerosol mass (A.D.<1.5µm) is evaluated from a chemical mass

closure (CMC) study. The multi-year record of BC and OC obtained here is used to

investigate the role of long-range transport of biomass burning aerosols in the region15

as well as the role of secondary organic aerosol formation.

2 Instrumentation

2.1 Sampling site and climatology

The atmospheric station of Finokalia (Crete Isl., Greece) is located in the marine

boundary layer (35
◦
20

′
N, 25

◦
40

′
E; 200 m above sea level), facing the Aegean Sea20

and located at approximately 500 m from the shore. A detailed description of the cli-

matology of this site can be found in Kouvarakis et al. (2000) and Gerasopoulos et

al. (2006).

Seasonal variations of wind sectors at Finokalia station are reported in Fig. 1. They

are calculated from backtrajectory analysis with the Hysplit Dispersion Model (Hybrid25

Single – Particle Lagrangian Integrated Trajectory; Draxler and Hess, 1998) using the
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location of air parcels 24 h before arrival at Finokalia Station. Seasonal variations of

wind sectors are computed for the duration of the filter sampling reported here (from

September 2001 to December 2006). Each wind sector covers a 90
◦

sector centred on

each direction (North, East, South, and West). On a yearly basis, more than half of the

air masses arriving in Crete originate from the North sector, which covers central and5

eastern Europe as well as part of western Turkey. This northern contribution reaches

almost 75% during the summer months, when the photochemistry is at its highest. This

pattern clearly shows that the eastern Mediterranean Basin is strongly influenced by

long-range transport of continental air masses and makes Finokalia station a partic-

ularly well-suited receptor site to characterize the poorly documented emissions from10

central/eastern Europe as well as their ageing.

2.2 Aerosol sampling

The long-term aerosol chemical measurements presented here are based on the filter

sampling devices that have been used during the MINOS campaign in August 2001

(see Sciare et al., 2003b, 2005 for more details). Briefly, ambient aerosol samples are15

collected on 47-mm diameter quartz fiber filters (QMA, Whatman) for carbon analysis

(BC, OC, WSOC). Co-located Stacked Filter Units (SFUs) made of polycarbonate filters

are used in parallel for gravimetric measurements and ion analysis. SFUs consist of

an 8µm pore size 47-mm diameter Nuclepore filter mounted in front of a 0.4µm pore

size 47-mm diameter Nuclepore filter. The 50% cut point diameter (D50) of the 8µm20

Nuclepore filter was estimated to be of the order of 1.5±0.5µm based on the adopted

flowrate of 1.5 m
3
/h. In this paper, the aerosol coarse fraction will refer to the particles

collected on the 8µm pore size filters and thus having an A.D. larger than 1.5µm.

Conversely, the fine fraction refers to particles collected on the 0.4µm pore size filters

and corresponds to particles with an A.D. below 1.5µm. Typical filter sampling time is25

of the order of 1 week and covers a 3.5-yr period (09/2001–04/2004).
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3 Analysis

3.1 Thermal and termo-optical carbon analyses

One thermal and two thermo-optical techniques have been used to determine the BC

and OC contents on the quartz filters. They are presented and discussed in details

by Sciare et al. (2003b) and are briefly reported here. To avoid interference by car-5

bonates, all samples were initially treated with HCl fumes using the protocol designed

by Cachier et al. (1989). Artifacts due to the absorption of gas-phase organic com-

pounds on the sample substrate were minimized by heating filters for 20 min at 60
◦
C

prior to the analyses. The BC and OC concentrations for the quartz filters were mea-

sured with a thermo-optical light transmission technique (Sunset Carbon Analyzer In-10

strument; Birch and Cary, 1996). Two temperature programs were implemented in the

Sunset instrument and correspond to the temperature programs used in the IMPROVE

and NIOSH protocols, respectively (Chow et al., 1993; NIOSH, 1996 and 1998). BC

measurements from these two temperature programs are reported as BC(NIOSH) and

BC(IMPROVE) in the following. Finally, BC was also determined using a 2-step thermal15

method developed by Cachier et al. (1989) and is reported later as BC(2-STEP). Fil-

ters taken regularly in the field, and used as blanks, did not show a detectable amount

of BC but showed OC concentrations of 0.8µgC/cm
2
, on average. Blank corrections

were then performed only for OC and represent on average less than 5% of the OC

measurements performed during the study. Uncertainties in the BC and OC measure-20

ments given by the manufacturer (Sunset Lab, OR) are estimated to be of the order of

5%±0.2µgC/cm
2
.

3.2 Light absorption measurements

A circle punch of 18 mm diameter was taken on each QMA filter to perform a non-

destructive optical measurement of the light absorption using a modified aethalometer25

model AE-9 manufactured by Magee Scientific (Hansen et al., 1982). The aerosol
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absorption coefficient (bATN) determined in this way may differ significantly from the

true aerosol absorption coefficient (babs) of airborne particles (Weingartner et al.,

2003). Therefore, calibration factors C and R(ATN) are introduced, which can con-

vert aethalometer attenuation measurements to “real” absorption coefficients following

the equation:5

babs = bATN/(C ∗ R(ATN)) (1)

It is assumed here that filter deposit at our receptor site was low enough to adopt an R-

value of 1. A factor C of 1.9 given by the manufacturer was also adopted. Aethalometer

BC measurements are reported in the following as BC(AETHALO).

3.3 Water Soluble Organic Carbon analysis10

Water Soluble Organic Carbon analyses were performed on 49 samples covering the

period (10/2005–07/2006). Three quarter of the quartz filter (previously used for BC

and OC determinations) was dedicated for this analysis by using a total organic carbon

analyser (TOC, Model Sievers 900, Ionics Ltd, USA). Filter extraction was conducted

through overnight soft shaking of the filter portion placed in borosilicate Erlenmeyer15

flasks with 25 mL of ultra pure water (obtained by ELGA maxima HPLC). Prior to anal-

ysis, the extract solution was filtered through Teflon (PTFE) filters (0.2µm pore size

diameter), to remove suspended particles. The measurement uncertainty given by

the manufacturer is of the order of 7%. Blank values for the water (used for the fil-

ter extraction) and blank values for the filters were found to be on average 50±20 ppb20

and 250±50 ppb, respectively. The overall blank value of the order of 300±70 ppb

corresponds on average to 16.4±8.5% of the mean WSOC value determined for the

49 sampled QMA filters. Analyses were duplicated for each QMA sample and good

reproducibility (deviation of the order of 1%) was obtained. Water Insoluble Organic

Carbon (WIOC) mass concentrations were calculated as the difference between OC25

and WSOC mass concentrations.
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3.4 Ion chromatography analysis

Ion chromatography analysis of SFUs was performed at LSCE in order to determine se-

lected anions (Acetate, Propionate, Formate, Methanesulfonate, Glutarate, Succinate,

Oxalate, Chloride, Sulfate, nitrate, and Phosphate) and cations (Sodium, Ammonium,

Potassium, Magnesium, Calcium) using the protocol reported in detail by Sciare et5

al. (2007). The overall measurement uncertainty in the determination of ionic species

is of the order of 5% and takes into account the filter blank variability, the filter extrac-

tion efficiency, and the calibration precision. The contribution of sea salt to the levels

of SO
2−
4

, Ca
2+

and K
+

was estimated using their corresponding seawater mass ratios

to Na
+

of 0.252, 0.038, and 0.037, respectively. Non-sea-salt potassium (nss-K) con-10

centrations reported later are those calculated in the fine aerosol mode (A.D.<1.5µm)

and represent on average more than 75% of nss-K bulk concentrations.

3.5 Gravimetric analysis

The Nuclepore filters from the SFU samples were weighed at LSCE after 24 h equili-

bration at room temperature and RH below 10%, using a Mettler Microbalance UMT315

with 1µg sensitivity. The uncertainty in the gravimetric measurement is typically of the

order of 10µg, which represents here an average measurement uncertainty below 2%

for particulate mass (PM) measurements in the fine and coarse size fractions.

3.6 Chemical Mass Closure (CMC)

The weekly SFUs sampling covering a 3.5-yr period (09/2001–04/2004), and co-20

located QMA filters sampled in parallel are used in the following to perform a CMC in

the fine aerosol mode. All the hypotheses using here to perform the CMC were taken

from the mass closure study reported in Sciare et al. (2005) for the MINOS campaign

and are briefly reported here. Calcium is used as a dust tracer and its concentrations,

determined by IC, are divided by 0.09 to obtain mass concentration of dust. Sea salt is25
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calculated as the sum of Na, Cl, Mg, (sea salt-) ss-SO4, ss-K, and ss-Ca. Mass Contri-

bution of carbonaceous aerosols is derived using BC(IMPROVE) and OC(IMPROVE).

The mass contribution of particulate organic matter (POM) is estimated assuming an

OC-to-POM conversion factor of 1.8. Concentrations of BC and OC in the fine mode

are estimated from bulk concentrations assuming that 70% and 90% of bulk OC and5

BC concentrations, respectively, were found in the fine mode. Based on these hypothe-

ses, reconstruction the particulate mass (PM) in the fine from CMC is then calculated

as:

PMCMC = [BC] + [POM] + [NH+

4
] + [nss − SO2−

4
] + [NO−

3
] + [seasalt] + [dust] (2)

where PMCMC stands for the particulate mass derived from the CMC, and [X ] stands10

for the mass concentration of the chemical species, X .

4 Results and discussion

4.1 Chemical Mass Closure of fine aerosols

Monthly mean concentrations of the major aerosol species, PM and PMCMC are given

for the fine mode in Table 1 and are calculated for the 3.5-yr period, when SFU mea-15

surements are available (09/2001–04/2004). On a yearly average, sulfate aerosols

(NH
+

4+nss-SO
2−
4

) are, by far, the major component in the fine mode, contributing to

50% of the PM mass; the carbonaceous aerosols (BC+POM) and primary particles

(sea salt + dust) contributing only to 29% and 19% of PM, respectively, for the same pe-

riod. The mass contribution of organic matter (POM) to the total fine mass is found to be20

quite stable during the year (monthly average of 26±5%) despite the fact that the high-

est BC and OC concentrations are found for the summer months. The contribution of

nitrate aerosols is not significant (0.05µg/m
3

on a yearly average) and can reasonably

be explained by the fact that the warmer temperatures of the eastern Mediterranean

are likely to prevent most of the time from the condensation of semi-volatile ammonium25
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nitrate. All these results, and in particular the major role of sulfate aerosols, are consis-

tent with those reported at the same location by Bardouki et al. (2003) which are based

on the chemical composition of size-resolved atmospheric aerosols during summer and

winter. A mean difference of 0.7±0.5µg/m
3

(8.4±6.0%) is calculated between PM and

reconstructed PM from CMC (PMCMC) on a yearly average, demonstrating the consis-5

tencies of the hypotheses used in the CMC of fine aerosols (Sect. 3.6). The yearly PM

average of 8.5µg/m
3

obtained for the fine mode for the period (09/2001–04/2004) is

close to the PM average value of 10.1µg/m
3

reported at the same location for a 2-yr

period (07/2004–07/2006) for submicron aerosols (A.D.<1µm) obtained from aerosol

samples collected using a Small-Deposit-area low-pressure-Impactor (Gerasopoulos10

et al., 2007).

Based on the PM contribution of sulfate and organic aerosols in the fine mode (of 50

and 26%, respectively, on a yearly average) and assuming that light scattering prop-

erties of sulfate aerosols will be enhanced by water uptake onto particles in the humid

environment of the Mediterranean, it may be assumed that sulfate aerosols (more than15

organics) will play a major role on the direct radiative forcing by aerosols in the eastern

Mediterranean. This statement is consistent with the light scattering coefficient contri-

bution of 2/3 calculated by Sciare et al. (2005) for sulfate aerosols during the MINOS

campaign. It is also consistent with the results reported by Vrekoussis et al. (2005) who

have noticed significant correlations between nss-SO4 and light scattering coefficient20

for the remote marine atmosphere of the eastern Mediterranean. Although the light

scattering contribution of organics is expected to be rather small (relatively to sulfates)

over the eastern Mediterranean, the role of black carbon on aerosol absorption prop-

erties is expected to be quite significant. For this reason, the emphasis is given on BC

concentration levels, variability and origin, in the next section.25

4.2 Light absorption coefficient (babs)

The high loadings of Saharan dust aerosols over the Mediterranean are expected to

play a significant role on the light absorbing properties of aerosols due to the presence
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of hematite (Fe2O3) in dust particles. Dust aerosol absorption may be then deduced

from the light absorption coefficient (babs) measurements performed by the aethalome-

ter. The correction referring to the absorption of dust aerosols can be written as:

babs(Fe2O3) = αFe2O3
∗ [Fe2O3] (3)

where [Fe2O3] refers to the atmospheric concentration of hematite in dust aerosols (in5

µg/m
3
) and αFe2O3

to the light absorption cross-section of hematite. Assuming that

the major fraction of iron is found in dust aerosols as hematite, Eq. (3) can be re-

written using [Fe] and αFe (instead of [Fe2O3] and αFe2O3
). Concentrations of Fe in

our samples were derived from an [Fe]/[nss-Ca
2+

] mass ratio of 0.52 found in dust

aerosols collected in Crete (Sciare et al., 2005 and Mihalopoulos et al., unpublished10

results) and [nss-Ca
2+

] obtained from the IC analysis of SFUs. A light absorption

cross-section of 2.55 m
2
/g (at 550 nm) was obtained from the elemental iron calibration

constant KFe of 0.234±0.022µm
4

m
2

g
−1

determined by Fialho et al. (2005) for Saharan

dust aerosols. Seasonal variations of babs(Fe2O3), babs(AETHALO) and [Fe] were

derived from the 3.5-yr period when SFU measurements were available and are given15

in Fig. 2. The difference between babs(AETHALO) and babs(Fe2O3) is also shown in

this figure and stands for the corrected babs(AETHALO). The light absorption coefficient

due to dust aerosols shows a weak seasonal variation with a minimum of 0.6 Mm
−1

during the summer months and two maxima of the order of 1 Mm
−1

in Spring and Fall,

respectively. This seasonal variation is in accordance with the seasonal variations of20

air masses origin with the highest occurrence during both Spring and Fall (Fig. 1). As

depicted in Fig. 2, light absorption coefficient due to dust aerosols is observed during

the whole year and represents 17±5% of the light absorption coefficient measured by

the aethalometer on a yearly basis. It should be noted that the contribution of dust

aerosols can account for more than half of the light absorption coefficient during short25

but intense dust events (Vrekoussis et al., 2005).
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4.3 Comparison of BC measurements from different analytical protocol

Each dataset of BC measurements obtained using thermo-optical (IMPROVE &

NIOSH), optical (AETHALO), and thermal (2-STEP) methods has been compared by

linear regression analysis. In this analysis, both the regression-calculated intercept and

a slope with a zero intercept were calculated. The results of these various statistical5

analyses are given in Table 2. Precision (σ) is defined following the equation reported

in Lewtas et al. (2001). Periods of comparison were also reported in the Table, as all

the methods were not available for the duration of the study. BC concentrations de-

rived from aethalometer and reported in Table 2 were not corrected for dust absorption

influence, since iron measurements were available only for a short period (09/2001–10

04/2004).

As shown in this Table, comparison between the two thermo-optical methods is not

satisfactory as r2
and precision (σ) were found to be 0.68 and 32.4%, respectively. In

addition, BC(NIOSH) concentrations were 15–20% lower compared to BC(IMPROVE).

This discrepancy might originate from the primary difference between the two thermo-15

optical protocols which is the allocation, at the NIOSH protocol, of carbon evolving at

870
◦
C temperature in a helium atmosphere to OC rather than to BC (Chow et al., 2001).

The increase in the light transmission during this temperature step and observed in

almost all our samples indicates that this fraction should be classified as BC rather

than OC. The most probable explanation of such whitening of the filter is that mineral20

oxides from dust aerosols – deposited on the filter – are supplying oxygen to neigh-

boring carbon particles at this high temperature (Sciare et al. 2003b). Interestingly,

the best correlation coefficient and precision for BC measurements are found between

IMPROVE and AETHALO methods (r2
=0.76, σ=18.3%), whereas the comparison be-

tween NIOSH and AETHALO methods is much less satisfactory (r2
=0.65, σ=40.5%).25

This result confirms that the IMPROVE protocol relates in a more quantitative way the

light absorbing properties of BC in our Mediterranean samples.

Comparison between IMPROVE and 2-STEP protocols showed the lowest correla-
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tion coefficient and precision (r2
=0.46, σ=53.0%) with the BC levels from the 2-STEP

method being 50% higher. This poor agreement is somehow expectable considering

the major discrepancies that have been observed between these two methods dur-

ing the MINOS campaign (Sciare et al., 2003b) and that have pointed out a more-

pronounced sensivity of the BC(2-STEP) to combustion aerosols of fossil fuel origin5

(rather than of biomass burning origin).

4.4 Seasonal variation of Black Carbon: evidence of biomass burning

Seasonal variations discussed in the following are reported on a monthly mean basis.

Weighed averages were used to derive these monthly mean concentrations from:

Ci = (2 × Ci + Ci−1 + Ci+1)/4 (4)10

where Ci stands for the weighed average of the monthly mean concentration of species

C for the month i . Temporal variations of BC from the four different analytical methods

described previously are given on a seasonal basis in Fig. 3, for the periods when these

measurements are available (report to Table 1). Seasonal variations of nss-K are also

given in this figure and show that two periods of the year are influenced by biomass15

burning, the early Spring (March/April) and the summer months (July/September). De-

spite the discrepancies observed between the different BC measurements techniques,

all measurements exhibit the two peaks of biomass burning periods although of differ-

ent strengths.

Several observations were used in the following to better depict the origin of the20

two distinct periods of biomass burning (early Spring and summer). First, hotspots/fire

map products were obtained using data from the MODIS (Moderate Resolution Imag-

ing Spectroradiometer) instrument and were downloaded from the web fire mapper

built by the NASA funded Fire Information for Resource Management System (FIRMS,

http://maps.geog.umd.edu/firms/). These hotspots/fire maps are given in Fig. 4 for dif-25

ferent periods of the year 2004 and point out important fires in the surrounding regions
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of the Black Sea (Bulgaria, Romania, Moldavia, Ukraine, and Russia). Two periods

with an increasing number of fire spots are clearly visible in this figure that correspond

to the same periods reported previously (early Spring and summer). Similar patterns

can be obtained from the study of map products for other years (2001–2006) with,

however, strong interannual variability in the number of hotspots/fires. These fires5

are likely to correspond to agricultural waste burning practices (post-harvesting for the

summer months) and they are in agreement with the results reported by Van der Werf

et al. (2006) for monthly fire emissions over Europe derived from satellite and model

data. These biomass burning emissions from countries bordering the Black Sea are

expected to have a significant impact over the eastern Mediterranean since they are10

located in the northern wind sector of Crete Isl. which has the highest occurrence at

the monitoring station (Fig. 1). Consequently, the stronger maximum of BC observed

during summertime may originate from the higher occurrence of North sectors during

this season. Alternatively, the occurrence of fire spots shown in Fig. 4 is higher for

the period July–September than for the period March–April and could also explain the15

intensity of our two BC and nss-K maxima in Fig. 3.

Multi-year AOD measurements available in Moldova (i.e. within the region affected

by the major fire spots reported in Fig. 4) and in Northern Greece (i.e. at half way be-

tween this region and our receptor site) were also used to assess the extent of biomass

burning emissions over the eastern Mediterranean. Aerosol Optical Depth, Angstrom20

exponent and Absorption measurements obtained at the Moldovan station (Aculinin et

al., 2004 and AERONET almucantar retrieval products) exhibit very similar seasonal

patterns with two concomitant peaks in March–April and July–September (data not

show here). These results strongly suggest that the major aerosol source in Moldova at

these two periods could be of combustion (biomass burning) origin. Similar results are25

obtained from AOD measurements in Northern Greece (Kazadzis et al., 2007) when

air masses originating from the regions surrounding the Black Sea are investigated.

All these optical measurements gathered with the seasonal BC variations in Crete con-

tribute to the idea that biomass burning aerosols emitted in the regions surrounding the
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Black Sea are likely to significantly impact the aerosol absorbing properties in remote

areas of eastern Mediterranean located as far as 1500–2000 km downwind. Further

evidence of these large-scale biomass-burning aerosol emissions from eastern Eu-

rope was also found by Niemi et al. (2004, 2005), Arola et al. (2007), Saarikoski et

al. (2007), and Stohl et al. (2007) over northern Europe (Finland) and Arctic zone.5

4.5 Temporal variability of carbonaceous aerosols

BC and OC concentrations obtained from the IMPROVE method are used in the follow-

ing to investigate the temporal variability of carbonaceous aerosols as well as their dif-

ferent origins. This choice is motivated primarily by the fact that this IMPROVE method

is poorly affected by analytical artifacts due to dust aerosols and that it shows the best10

agreement with absorption (AETHALO) measurements. Finally, this is the only time

series of BC and OC that covers the entire sampling period. The monthly mean vari-

ations of BC(IMPROVE) and OC(IMPROVE) are reported in Fig. 5 for the 5-yr period

(09/2001–12/2006) together with 3.5-yr record of nss-K. Seasonal variations of these

compounds derived from Eq. (4) are also reported in the same figure to better high-15

light their important year-to-year variations. The important seasonal and interannual

variations observed for both BC and OC can possibly be explained by the occurrence

of North wind sectors, but also by the fact that biomass burning emissions, by nature,

often last for short periods (typically less than a couple of days). These fugitive emis-

sions are also known to have very important seasonal and interannual variations (van20

der Werf et al., 2006).

Interestingly, the two peaks of biomass burning observed only for nss-K and BC

are not for OC concentrations that exhibit one broad peak during the summer months.

Other contributions than biomass burning should then account for this OC peak and

could possibly originate from the formation of secondary organic aerosols (of bio-25

genic/anthropogenic origin) as this season is associated with more intense photochem-

istry. Deconvolution of carbonaceous aerosols sources is tentatively performed in the

next section to better characterize sources for organic aerosols other than biomass
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burning.

4.6 Deconvolution of the source origin of carbonaceous aerosols

Time duration of the fugitive emissions of biomass burning is expected to differ sig-

nificantly at the sampling station from the more permanent and homogeneous anthro-

pogenic fossil fuel emissions. Based on the time limited duration of these biomass5

burning episodes, and using the temporal resolution of filter sampling, each biomass

burning event was isolated from the whole dataset using an arbitrary threshold nss-K

concentration of 50 ng/m
3
, corresponding to the weighed monthly mean nss-K concen-

trations for May and June (Fig. 3), two months which are poorly affected by biomass

burning (Fig. 4). Each filter batch with nss-K concentrations higher than 50 ng/m
3

was10

then defined as affected by biomass burning.

Data selection was then performed when nss-K is available (09/2001–04/2004) and

50% of the whole initial dataset (i.e. 53 samples) has been consequently retained and

used to calculate non-biomass burning concentrations of BC and OC (noted later as

background BC* and background OC*). Seasonal variations of BC* and OC* were then15

calculated using weighed monthly averages. Seasonal variations of BC and OC during

the periods impacted by biomass burning origin (noted later as bb–BC and bb–OC)

were then calculated on a monthly basis as:

bb − BC = BC(IMPROVE) − BC∗ (5)

bb − OC = OC(IMROVE) − OC∗ (6)20

The hypothesis used for this deconvolution assumes that carbonaceous aerosol con-

centrations result from the addition of the two different and independent sources (back-

ground and biomass burning) and that this mixing will not further alter the composi-

tion/concentration of each source. Thus, it is assumed that OC/BC ratios for each

source will remain unchanged with no extra formation of SOA due to the mixing of the25
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two sources. The seasonal cycles of background (BC* and OC*) and biomass burn-

ing (bb–BC and bb–OC) carbonaceous aerosols and corresponding OC/BC ratios are

presented in Fig. 6 with 1 standard deviation (1σ) and are discussed below.

4.6.1 Biomass burning carbonaceous aerosols

The choice of a threshold value of 50 ng/m
3

for nss-K may be critical and can potentially5

alter the levels of deconvoluted bb–BC and bb–OC. Several sensitivity tests have been

performed for that purpose, using different nss-K threshold values ranging from 40 to

60 ng/m
3
. These two limit values correspond to a restrained dataset (free of biomass

burning events) that represents roughly 1/3 and 2/3 of the initial dataset, respectively.

By varying the threshold value from 40 to 60 ng/m
3
, the levels of bb–BC and bb–OC10

were found to remain almost unchanged (compared to those obtained with 50 ng/m
3
)

with month-to-month deviations of ±0.01 and ±0.04µgC/m
3
, respectively. Then, it

appears that results on the seasonal variations of both bb–BC and bb–OC are not

significantly altered by the choice of a threshold value of 50 ng/m
3

for nss-K and give

further confidence on the levels of bb–BC and bb–OC that are presented here.15

As shown in Fig. 6, both bb–BC and bb–OC show a very similar seasonal cycle

although they have been calculated independently. The observed two maxima (early

Spring and summer months) coincide exactly with our previous observations on the

seasonality of biomass burning emissions. Although biomass burning is clearly iden-

tified as the only source responsible for the major seasonal variation of BC, its contri-20

bution on a monthly mean basis is quite variable, ranging from 6 to 40% (20±10% on

average) with two maxima in March and August. Although biomass burning aerosols

are characterized by high levels of OC relatively to BC, their contribution to the levels

OC is slightly lower (compared to BC) with monthly mean values ranging from 3 to

32% (14±10% on average) and a maximum for August. Noteworthy these calculations25

are averaged on a 3.5-yr period (09/2001–04/2004) and are expected to exhibit much

more variability on a seasonal or interannual basis, depending on the source strength

of biomass burning.
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The calculated bb–OC/bb–BC ratio is 3.8±1.3 on a yearly average but shows an

important seasonal variation with average values from 2.6 to 5.6 for winter and sum-

mer, respectively. Although this ratio is known to be highly variable depending on the

different combustion stages (from flaming to smoldering), it is rather small compared to

wood burning ratios commonly reported in the literature. Discrepancies between these5

two different ratios are even larger if we consider that the biomass burning aerosols

collected in Crete have been highly processed during their transport, probably leading

to an increase of the initial OC/BC ratio resulting from condensation of secondary or-

ganic aerosols (oxidation and condensation of biomass burning emitted VOCs). On the

other hand, several studies have reported that open agricultural waste burning is likely10

to produce rather low OC/BC ratios ranging from 2.4 for wheat crop residuals (Hays et

al., 2005) to 4.8 (Andreae and Merlet, 2001), which are in the range of those reported

here and fit with our findings on the agriculture origin of our biomass burning aerosols.

4.6.2 Background carbonaceous aerosols (BC* and OC*)

Background carbonaceous aerosols can originate from various anthropogenic and nat-15

ural sources. Fossil fuel is probably a major source for BC* over the eastern Mediter-

ranean in which coal burning should be a significant contributor as previously reported

for SO2 in th. re 6, the seasonal variation of BC* remains fairly constant with a yearly

average of 0.24±0.04µgC/m
3
, which is consistent with the general idea that fossil fuel

emissions should be more or less the same during the year.20

The seasonal variation of the OC*/BC* ratio (Fig. 6) shows a sharp peak of 7.9 for

the late Spring (June) and a minimum of 4.8 for the month of October. The variations

of this ratio are almost entirely related to OC* as the levels of BC* remain quite stable

over the year. Contrary to BC*, the origin of OC* is more uncertain and a significant

secondary origin could account for the seasonal variation of OC* which exhibits maxi-25

mum values in late Spring. Such seasonal pattern is not related in BC* and thus should

originate from other sources. Secondary aerosol formation driven by photochemistry

could be proposed to explain the OC* peak value in May–June. On the other hand,
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it hardly explains why OC* is decreasing during summer, when photochemistry is at

its maximum. Alternatively, a temperature driven mechanism leading to a volatiliza-

tion of organic aerosols could be proposed as the summer months in Crete Isl. are

characterized by high temperatures (typically higher than 35
◦
C at mid-day).

4.7 WSOC5

Assuming that a significant fraction of SOA originating from gas-to-particle formation

can be related to WSOC (Weber et al., 2007; Kondo et al., 2007), a significant sea-

sonal variation of the WSOC/OC ratio should be expected with a maximum during the

summer months. This is not observed here since a quite stable sample-to-sample

WSOC/OC ratio of 0.45±0.12 was found for whole period when WSOC is available10

(10/2005–07/2006). This lack of seasonal pattern in the WSOC/OC ratio is further

confirmed by the very good agreement found between WSOC and OC measurements

(r2
=0.91, Fig. 7). This result indicates that the OC* increase (relative to BC*) observed

in May–June (Fig. 6) is almost equally composed of water soluble and insoluble organic

material and thus would only be explained by SOA formation through gas-to-particle15

condensation or heterogeneous oxidation of particulate organic matter, as these two

mechanisms are likely to produce significant amounts of WSOC. Similarly, biomass

burning aerosols collected at our site seem to weakly affect the WSOC/OC ratio. All

these results show the complexity of organic sources and ageing in the Mediterranean

and point out the need for more time- and size-resolved measurements of BC, OC, and20

WSOC in order to further make conclusions on the mechanisms responsible for the

enhancement of organic aerosols in late spring/early summer.

5 Conclusions and perspectives

Long-term (5-yr) measurements of carbonaceous (BC, OC) aerosols were reported

here for the first time in the Mediterranean Basin (Crete Island). Light absorbing dust25

aerosols have shown to weakly contribute to the light scattering coefficient (babs) mea-
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surements performed by an aethalometer (+12% on a yearly average). Comparison of

Black Carbon measurements performed with 4 different analytical protocols (2 thermo-

optical, 1 optical, 1 thermal) have shown important discrepancies from one method to

another. However, their seasonal trends were found to be quite similar showing two

peaks (early spring and summer) corresponding to long-range transported biomass5

burning aerosols originating from apart to agriculture (post-harvest wheat residual)

waste burning in the countries surrounding the Black Sea (i.e. at 1000–2000 km up-

wind of Crete). The contribution of biomass burning to the concentrations of BC and

OC have been shown to be rather small on a yearly basis (20 and 14%, respectively)

but could be significant for some months (34 and 32% of BC and OC, respectively, for10

the month of August) and are expected to present a strong seasonal/interannual vari-

ability. Noteworthy, these biomass burning aerosols are expected to have an even more

important impact at the emission sources (mainly in Ukraine and surroundings coun-

tries) as observed from Aerosol Optical Depth measurements performed in Moldova.

Rabbinge and van Diepen (2000) suggested that the wheat yields in Ukraine have15

the potential to double, at least in the long run. As this country has the largest agricul-

ture land area in Europe (FAO, 2003) and the highest European values for energy-crop

potential (Ericsson and Nilsson, 2006), agriculture (wheat crop residual) waste burning

in this region is likely to represent a non-negligible source of combustion aerosols in

the near future. Large emissions from biomass burning aerosols and corresponding in-20

fluence on aerosol radiative forcing over the Ukraine and downwind regions (including

the eastern Mediterranean) is thus expected to remain significant for the coming years

and should be taken into account in modeling studies of BC and OC over Europe. A

quite similar statement can be provided for carbonaceous aerosols of fossil fuel origin.

European countries bordering the Black Sea have particularly high SO2 emissions,25

contributing to more than one third of the total SO2 emissions reported over Europe

in 2004 (Vestreng et al., 2007). Although, SO2 emissions from these countries have

drastically decreased in the nineties, they are expected to slightly increase (+10%) at

the end of 2010. It is likely that levels of carbonaceous aerosols having the same origin
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as SO2 will remain high the coming years.

By removing the biomass burning influence, an important seasonal variation of or-

ganic aerosols was observed, with an increase by almost a factor of two for the Spring

months of May and June. Our preliminary measurements of WSOC have shown that

the WSOC/OC ratio of 0.45±0.12 remains unchanged, suggesting that water soluble5

and water insoluble organic matter do contribute almost equally to OC throughout the

year.

All these results contribute to the general idea that eastern Mediterranean has a

complex mixture of highly processed carbonaceous aerosols of various origins. Further

efforts will be required in the future to better characterize these carbonaceous aerosols10

as they may significantly alter the overall radiative forcing over the Mediterranean Sea

and downwind regions.
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Table 1. Monthly mean concentrations of the major aerosol chemical components, particulate

matter (PM), and reconstructed PM from the chemical mass closure (PMCMC) in the fine mode

(A.D.<1.5µm). Standard deviations (1σ) are reported in brackets. Data collected for the 3.5-yr

period (09/2001–04/2004).

Month BC

(IMPROVE)

µgC/m
3

OC

(IMPROVE)

µgC/m
3

nss-SO4

Fine

µg/m
3

NH4

Fine

µg/m
3

NO3

Fine

µg/m
3

sea salt

Fine

µg/m
3

dust

Fine

µg/m
3

PMCMC

Fine

µg/m
3

PM

Fine

µg/m
3

Jan 0.18(0.07) 1.13 (0.07) 1.99 (1.14) 0.39 (0.40) 0.11 (0.13) 2.07 (2.56) 1.44 (1.84) 9.66 (5.30) 10.45 (4.98)

Feb 0.30 (0.12) 1.38 (0.31) 3.34 (1.00) 0.94 (0.33) 0.03 (0.00) 0.40 (0.15) 0.37 (0.38) 8.68 (2.50) 7.77 (4.89)

Mar 0.37 (0.13) 1.81 (0.25) 3.25 (0.22) 0.86 (0.10) 0.04 (0.01) 0.36 (0.09) 1.57 (0.23) 9.18 (0.03) 9.42 (0.87)

Apr 0.37 (0.11) 1.78 (0.48) 3.97 (0.17) 1.11 (0.05) 0.05 (0.04) 0.34 (0.04) 1.22 (0.92) 9.71 (1.81) 9.09 (0.40)

May 0.27 (0.04) 1.68 (0.65) 3.26 (0.80) 0.98 (0.25) 0.03 (0.01) 0.26 (0.01) 0.75 (0.39) 0.75 (2.31) 6.47 (2.98)

Jun 0.26 (0.04) 2.04 (0.48) 4.85 (0.27) 1.34 (0.08) 0.06 (0.04) 0.29 (0.06) 1.17 (0.03) 8.93 (0.20) 9.09 (1.39)

Jul 0.36 (0.17) 2.18 (0.65) 4.61 (1.05) 1.18 (0.29) 0.04 (0.01) 0.36 (0.01) 0.59 (0.06) 10.88 (0.13) 9.57 (0.39)

Aug 0.39 (0.02) 2.16 (0.91) 5.33 (1.43) 1.27 (0.30) 0.06 (0.03) 0.38 (0.10) 1.33 (0.29) 10.35 (1.80) 9.46 (1.63)

Sep 0.40 (0.09) 2.16 (0.39) 2.94 (0.64) 0.72 (0.09) 0.04 (0.03) 0.23 (0.12) 1.12 (1.03) 11.40 (2.28) 7.65 (2.89)

Oct 0.35 (0.11) 1.67 (0.33) 3.65 (1.98) 0.97 (0.58) 0.04 (0.02) 0.27 (0.08) 0.59 (0.50) 7.29 (2.92) 8.91 (2.48)

Nov 0.23 (0.03) 1.51 (0.65) 2.27 (0.03) 0.51 (0.02) 0.08 (0.03) 0.44 (0.02) 1.60 (0.02) 8.29 (0.46) 7.41 (0.31)

Dec 0.25 (0.11) 1.35 (0.50) 1.00 (1.13) 0.18 (0.21) 0.08 (0.06) 1.43 (1.28) 1.08 (0.92) 6.97 (1.19) 6.40 (2.93)

Average 0.31 (0.07) 1.74 (0.35) 3.37 (1.24) 0.87 (0.36) 0.05 (0.02) 0.57 (0.57) 1.07 (0.41) 8.88 (1.75) 8.47 (1.30)
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Table 2. Intercomparison of Black Carbon measurements from 4 different methods: Two

thermo-optical techniques (IMPROVE, NIOSH), one optical (AETHALO), and one thermal (2-

STEP). (σ) stands for the precision as defined by Lewtas et al. (2001).

Y vs. X N Period Slope Intercept r2
X Average (X–Y) bias σ σ

µgC/m
3 µgC/m

3 µgC/m
3 µgC/m

3
%

BC(NIOSH) vs. BC(IMPROVE) 151 (09/2001–04/2004) 0.80±0.04 0.03±0.02 0.68 0.33 0.06 0.10 32.4

(10/2005–12/2006) 0.86±0.02 0 0.67

BC(AETHALO) vs. BC(IMPROVE) 257 (09/2001–10/2005) 1.16±0.04 0.06±0.02 0.76 0.34 0.10 0.07 18.27

1.29±0.02 0 0.75

BC(2-STEP) vs. BC(IMPROVE) 61 (09/2001–03/2003) 1.54±0.22 0.01±0.08 0.46 0.32 0.16 0.22 53.0

1.56±0.09 0 0.46

BC(AETHALO) vs. BC(NIOSH) 86 (09/2001–04/2004) 1.09±0.09 0.13±0.02 0.65 0.24 0.11 0.13 40.5

1.54±0.05 0 0.52
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Fig. 1. Yearly-based wind direction occurrences for the 4 sectors (North, West, East, and

South) at Finokalia station in Crete Isl. M.O.Y stands for Month Of the Year.
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Fig. 2. Seasonal variations of iron concentration in dust aerosols and light absorption measure-

ments obtained from aethalometer (babs (AETHALO)) corrected and uncorrected from the light

absorption due to dust aerosols (babs (Fe2O3)). Grey bands refer to the two biomass burning

periods (March/April) and (July–September).
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Fig. 3. Weighed seasonal variations of BC concentrations derived from two thermo-optical

(IMPROVE and NIOSH) one optical (AETHALO) and one thermal (2-STEP) protocol. Non-sea-

salt potassium (nss-K) concentrations are those from the fine mode (<1.5µm). Grey bands

refer to the two biomass burning periods (March/April) and (July–September).
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Fig. 4. Hotspot fire maps (FIRMS data) for the year 2004.
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Fig. 5. Temporal variations of monthly mean BC and OC (IMPROVE) and nss-K concentrations

in Crete Isl. Seasonalised variations of these compounds derived from Eq. (4) are reported in

black lines.
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Fig. 6. Seasonal variations of BC, OC, and OC/BC derived from the IMPROVE temperature

program, biomass burning (noted with bb−), and non-biomass burning (noted with *). Error

bars stand for 1 standard deviation (1σ). Grey bands refer to the two biomass burning periods

(March/April) and (July–September).
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Fig. 7. OC versus WSOC for bulk aerosol samples collected during the period (10/2005–

07/2006).
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