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Abstract

Gaseous Elemental Mercury (Hg
◦

or GEM) was investigated at Summit Station, Green-

land, in the interstitial air extracted from the perennial snowpack (firn) at depths ranging

from the surface to 30 m, during summer 2005 and spring 2006. Photolytic production

and destruction of Hg
◦

were observed close to the snow surface during summer 20055

and spring 2006, and we observed dark oxidation of GEM up to 270 cm depth in June

2006. Photochemical transformation of gaseous mercury resulted in diel variations in

the concentrations of this gas in the near-surface interstitial air, but destruction of Hg
◦

was predominant in June, and production was the main process in July. This seasonal

evolution of the chemical mechanisms involving gaseous elemental mercury produces10

a signal that propagates downward through the firn air, but is unobservably small below

15 m in depth. As a consequence, multi-annual averaged records of GEM concentra-

tion should be well preserved in deep firn air at depths below 15 m, and available for

the reconstruction of the past atmospheric history of GEM over the last decades.

1 Introduction15

Mercury is a persistent and toxic heavy metal present in the environment in various

chemical forms. In the atmosphere, gaseous elemental mercury (Hg
◦
, GEM) is the

predominant form of mercury (>95%) and has a global atmospheric residence time of

about 6–24 months (Lamborg et al., 2002). The relatively inert GEM can undergo long-

range transport whereas oxidized species of mercury such as particulate mercury (PM)20

and reactive gaseous mercury (RGM) are subject to rapid deposition near their emis-

sion sources. Atmospheric mercury depletion events (AMDEs) were first observed at

Alert, Canada (Schroeder et al., 1998). They commonly occur during the spring in po-

lar environments and are characterized by rapidly decreasing concentrations of GEM

in the atmosphere. The decrease is caused by photochemically initiated oxidation re-25

actions involving marine halogens (Lu et al., 2001; Lindberg et al., 2002; Skov et al.,

18223

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/18221/2007/acpd-7-18221-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/18221/2007/acpd-7-18221-2007-discussion.html
http://www.egu.eu


ACPD

7, 18221–18268, 2007

Mercury in the snow

and firn at Summit

Station, Greenland

X. Faı̈n et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

2004) that transform GEM to RGM and PM. These oxidized species can be deposited

onto snow surfaces. As a result, the arctic seasonal snowpack is suspected to con-

tribute to the contamination of the aquatic reservoir during snowmelt. Conversely, the

polar snowpack can also act as a source of GEM to the atmosphere. Direct photore-

duction of divalent mercury (Hg(II)) complexes deposited onto snow surfaces lead to5

an emission of GEM to the atmosphere. AMDEs have only been observed in coastal

areas. Brooks et al. (2007) reported preliminary observations about mercury chem-

istry at the South Pole, but there is still a clear lack of data on inland Greenland and

Antarctica, even though these ice sheets represent a surface of ∼14 millions km
2

of

snow which could strongly interact with the lower atmosphere and influence the global10

cycle of mercury.

Atmospheric mercury pollution over the last 150 years has greatly increased mercury

deposition to terrestrial and aquatic ecosystems in remote areas. Modern measure-

ments combined with historical records from lake sediments and peat suggest a three-

fold increase in mercury deposition since pre-industrial times (Engstrom and Swain,15

1997; Lamborg et al., 2002). A single ice core profile from the Freemont Glacier

(Wyoming, USA) showed a 20-fold increase since 1840 (Schuster et al., 2002) for

Hg(II) deposition. Mason et al. (1994) and Mason and Sheu (2002) used archives of

deposited mercury and modelling studies to estimate an increase in the global atmo-

spheric reservoir’s GEM concentrations by a factor of 2–5 since the beginning of the20

industrialized period. Only total and reactive mercury can be investigated in sediment,

peat and ice archives, however, post-deposition processes may strongly modify the

chemical information trapped into these records (see e.g. Biester et al., 2007). Conse-

quently, these archives do not provide direct information on the evolution of the global

background concentration of atmospheric GEM over time.25

The potential of the polar ice sheets to serve as an archive for the reconstruction of

past atmospheric GEM composition has been well recognized. From the top surface

to ∼60–120 m depth is the firn, an openly porous and permeable media through which

air can diffuse. The solid ice is located below the firn, and the transition between firn
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and ice is called the close-off. Ice core records of trapped gases and interstitial firn

air have been used extensively to study the past history of atmospheric greenhouse

gases (Schwander et al., 1988; Siegenthaler et al., 2005). In principle, both firn air

and ice cores should also be useful for quantifying the histories of atmospheric GEM

concentrations.5

However, to correctly interpret GEM measurements from the deep firn air or in the

ice air, we first need to quantify any perturbations in the GEM records arising from

surface phenomena. For example, chemical processes leading to production and/or

destruction of GEM close to the snow-air interface might distort atmospheric properties

preserved in the glacial records. More generally, physical and chemical modifications of10

GEM signals in the lower atmosphere, the surface snowpack and the deep firn have to

be understood to determine the transfer function. The GEM transfer function is defined

as the relation between GEM atmospheric concentrations and GEM concentrations in

deep ice bubbles. This function has to be determined in order to reconstruct the past

history of GEM in the atmosphere.15

We measured, for the first time, GEM concentrations from the top surface to a depth

of 30 m at Summit Station, Central Greenland, during two field campaigns during sum-

mer 2005 and spring 2006. The aims of this study were (i) to document the chemical

processes involving GEM in the shallow firn air and (ii) to understand the influence

of these surface processes on the GEM levels in the deep firn air. We also discuss20

the feasibility of using the GEM transfer function to reconstruct past atmospheric GEM

levels from deep firn air and air trapped in ice.

2 Experimental

2.1 Study site

GEM was investigated on the Greenland ice sheet at the Greenland Environmental25

Observatory (72.6
◦
N, 38.5

◦
W, 3200 m elevation) from 23 to 29 July 2005 (summer
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2005) and 29 May to 6 June 2006 (spring 2006). In 2005, atmospheric and snow air

sampling were carried out close to the Science Trench: a clean area where access

was restricted. In 2006, atmospheric air, snow air and firn air were sampled in a re-

mote location 10 km away from the station. These measurements were part of the

collaborative firn air sampling campaign “Firn structure, interstitial processes, and the5

composition of firn air at Summit, Greenland” led by CREEL, Hanover, N.H. (USA).

2.2 In situ air analysis

We measured GEM levels with two Tekran gas phase GEM analyzers (Model 2537A;

Tekran Inc., Toronto, Canada). One was dedicated to ambient and shallow firn mea-

surements, while the other was used exclusively for deeper firn measurements. The10

pre-filtered air stream (soda lime trap and 0.2µm Teflon particle filter) is collected on

two gold cartridges. GEM is thermally desorbed from the cartridges and detected by

cold vapor atomic fluorescence spectrometry (AFS) at 253.7 nm (Tekran, 1999). Dual

gold cartridges allow alternate sampling and desorption, resulting in continuous mea-

surement of GEM on a predefined time base. The set-up, accuracy and precision of this15

instrument have been assessed during field intercomparisons at an urban/industrial

site (Schroeder et al., 1995) and at a remote marine background location (Ebinghaus

et al., 1999). The Tekran analyzer was operated with a 5-min sampling frequency and

the air was sampled at a flow rate of 1 l min
−1

. The analyzer was calibrated every 25 h

with an internal automatic permeation source injection. The detection limit for GEM20

in this operational mode is roughly 0.15 ng m
−3

(Aspmo et al., 2005). All GEM data

discussed in this paper are presented with one StDv.

We measured GEM concentrations between depths of 40 and 330 cm below the

snow surface using GAMAS probes (Gaseous Mercury in Interstitial Air in Snow), de-

vices dedicated to the sampling of GEM and temperature measurements in the air25

of snowpacks (Dommergue et al., 2003a). This system has been used successfully in

different Arctic sites, for example, at Station Nord, Greenland (Ferrari et al., 2004a; Fer-

rari et al., 2004b), Kuujjuarapik, Canada (Dommergue et al., 2003b) and Col de Porte,
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French Alps (Faı̈n et al., 2007). Ten GAMAS probes and an atmospheric sampling line

were connected to the Tekran analyzer using an 11-port Teflon solenoid switch. This

set-up allowed a cyclic sampling of each probe every 10 min.

2.3 Firn air sampling

Firn air was sampled using established methods (Schwander et al., 1988; Battle et al.,5

1996; Butler et al., 1999) from one hole at the depths of 15, 25, 30, 40, 50, 58, 63,

66, 70, 72, 74, 76, 78 and 79.5 m, but only the top three depths will be discussed in

this manuscript. Briefly, a 5-m long bladder was lowered into the borehole after drilling

to the sampling depth, and was pressurized, effectively sealing the borehole. Two

Dekabon® (polyethylene/aluminum composite) lines were used to pump firn air from10

a space left immediately below the bladder. These lines drew air from two separate

openings separated by a horizontal stainless steel baffle nearly as wide as the hole.

Air was pumped from the upper opening at ∼20 l min
−1

and was directed to waste after

measuring the CO2 concentration (in situ measurements using a LICOR instrument).

When CO2 levels stabilized, indicating effective removal of contamination by younger15

and/or ambient air, sampling started from the lower opening. Pumping from the upper

opening continued during sampling to remove any air leaking from within or around the

bladder. It also served to keep sampled air out of contact with the bladder itself. Firn

air was collected in pressurized flasks for analysis of other gas species at a flow of

4 l min
−1

during approximately one hour. Afterwards, the sampling line was connected20

to a Vacuubrand PTFE pump (MZ-2C) and GEM analyses commenced. The pump

delivered firn air to the inlet of a 2537A Tekran analyzer at a flow rate of 1 l min
−1

.

Blanks of the Dekabon sampling line were checked both at the beginning and at the

end of the field work. They were 0.08±0.13 ng.m
−3

(n=8, before sampling, on 25 May)

and 0.01±0.06 ng.m
−3

(n=18, after sampling, on 1 June). We measured blanks of25

the PTFE pump before and after sampling at all depths to quantify any contamination

introduced by this additional pump.
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2.4 Pressure influence on GEM analysis

Summit Station elevation is 3200 m, and an atmospheric pressure of ∼675 mbar was

observed both during July 2005 and June 2006. While our 2537 analyzers are op-

timized for GEM determination in the air from the sea-level atmosphere up to 2000 m

(Tekran Inc., Toronto, Canada), Ebinghaus and Slemr (2000) have shown that low pres-5

sures can influence the operation of these analyzers. Using ground calibrations, these

authors reported a pressure dependency of the AFS detector of about 0.1% mbar
−1

over the tested range of pressures (980 to 620 mbar). Unfortunately, we could not

use such results because we calibrated both Tekran analyzers automatically using an

internal calibration source every 25 h at Summit Station. Instead, we carried out lab-10

oratory studies to obtain information about the effect of low pressure on internal cali-

brations. While both analyzers were at ambient pressure (∼990 mbar), all the inlet and

outlets (including internal calibration inlets) were introduced into a low-pressure cham-

ber. This equipment, located at the Centre de Recherche du Service de Santé des

Armées (CRSSA, La Tronche, France) and initially designed for biological studies, had15

a volume of 2000 liters and could reach a stable pressure from ambient to 500 mbar

in a few minutes. The accuracy of the pressure measurement in the chamber was

±6 mbar. We first did internal calibrations at 675 mbar to reproduce the conditions of

Summit Station. Then, we performed 14 manual injections (∼120 pg of Hg
◦
) using a

primary mercury vapor source (Tekran 2505), using the manual injection port. Because20

the instruments were at a higher pressure than their internal plumbing, we also sam-

pled mercury free air to check that no invasion of ambient air occurred. The response

of both instruments was found to be pressure dependent: at 675 mbar we observed an

increase of the GEM signal by 6.2 and 9.4% for the two analyzers (serial numbers 209

and 238, respectively). All data discussed in this study were pressure corrected.25
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2.5 Snow sampling

A 2-m snowpit was dug in the clean air sector of Summit Station, 500 m south of the

Science Tower. The pit was sampled for total mercury (HgT ) on 23 July 2005, in a

location where the snow had not been previously disturbed. All samples were imme-

diately stored in the dark at −20
◦
C until analysis. For HgT samples, we used ultra5

clean Teflon bottles and clean snow sampling procedures (Ferrari et al., 2000). HgT

includes species such as HgCl2, Hg(OH)2, HgC2O4 that are easily reducible by SnCl2
or NaBH4, as well as stable complexes such as HgS and Hg

2+
bound to sulfur in

humic compounds, and some organomercuric species (Lindqvist and Rodhe, 1985).

HgT was determined at the Department of Environmental Science of the University10

Ca’Foscari of Venice (Italy), using an Element ICP-SFMS (Thermo Finnigan MAT In-

strument, Bremen, Germany). Planchon et al. (2004) gave a detailed description of

the analytical technique. Instrumental calibrations were carried out with Hg standards

prepared from serial dilutions of a monoelemental Hg
2+

solution at 1000 mg l
−1

(CPI

International Santa Rosa, CA, USA). Using these techniques, the laboratory achieved15

a lower detection limit of ∼0.18 ng l
−1

. The precision of the measurements was esti-

mated to be 15% (the relative standard deviation of five replicates). Snow samples

were melted just prior to analysis to minimize mercury transformation during storage.

3 Results and discussion

3.1 Meteorological conditions20

During both field measurement campaigns, there was 24-h daylight. During sum-

mer 2005, atmospheric temperatures and wind speeds exhibited two different periods.

From 18 to 25 July, wind speeds were always below 3 m s
−1

while from 26 and 27 July,

wind speed was typically between 3 and 5 m s
−1

. From 18 to 22 July, atmospheric

temperatures ranged from −20
◦
C at night to −5

◦
C during the day. From 24 to 27 July25
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2005, air temperatures during the days were close to 0
◦
C. During spring 2006, the

daily temperature ranged between −30
◦
C at night and −15

◦
C during the day. Weather

conditions were generally calm and clear with a maximum wind speed of 4 m s
−1

(mea-

sured two meters above the snow surface). The only exception was on 6 June, when a

maximum wind speed of 6 m s
−1

was recorded. The hemispherical integrated incoming5

radiation measured at a height of two meters during both field campaigns are shown,

along with the shallow firn air data, in Figs. 3 and 4.

3.2 Snow and firn characteristics

The physical properties of the Summit snowpack have been intensively studied before.

We measured density in 2-m pits both in summer 2005 and spring 2006, finding a10

pattern similar to that of Albert and Shultz (2002). Our 2-m pit represented about

three years of snow accumulation. In May and early June, most of the top 50 cm of

snow is fine-grained wind-packed snow. Low-density hoar layers form occasionally

during summer. In accumulated firn from previous years, the layers of hoar from the

summer alternate visibly with high density wind-pack layers characteristic of winters.15

The density and permeability measurements from the top two meters of firn from the

early June 2006 snow pit are shown on Fig. 1. In spring 2006, the snowpack exhibited

thick layers of hoar centered at approximately ∼55 and ∼140 cm depths, with large

grains and low snow density of about 0.2 g cm
−3

. In summer 2005, similar hoar layers

were observed centered at ∼80 and ∼150 cm depths. At Summit, the permeability20

generally increases with depth by more than an order of magnitude in the first 3 m of

the snowpack (Albert and Shultz, 2002), and generally decreases below 3 m.

To assess the role of total mercury in chemical processes, we sampled the full 2 m of

our pit for Ca
2+

and Na
+

abundance, as well as for HgT in summer 2005. We used Ca
2+

and Na
+

measurements (not shown here) for pit dating. Ca
2+

concentration peaks at25

∼10, ∼90 and ∼150 cm depths indicating spring layers, while Na
+

concentration peaks

at ∼40, ∼110 and ∼170 cm depths showing winter layers were observed. HgT concen-
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trations shown in Fig. 2 ranged from 2.6 to 20.2 ng l
−1

, with a mean value of 10.3 ng l
−1

and a mean analytical uncertainty of 0.7 ng l
−1

. We collected duplicate samples at the

snow surface and at 10, 20, 60, 100, 140, and 180 cm depths, the concentrations re-

ported at these depths on Fig. 2 are the means of duplicate analysis and error bars

represent the variability between these duplicates. While there are substantial uncer-5

tainties in our measurements, we observed neither a seasonal cycle, nor an annual

change in HgT deposition over this period.

Although these are the first measurements of HgT made at Summit, reactive mercury

(HgR) has been studied at this site in the past, both in the first seven meters of the snow

and firn (Mann et al., 2004) and in the deep firn (Boutron et al., 1998). HgR corresponds10

to the fraction of mercury bound in complexes that are easily reducible by SnCl2 or

NaBH4. Examples include HgCl2, Hg(OH)2 and HgC2O4 (Lindqvist and Rodhe, 1985).

Reactive mercury represents less than 10% of HgT in the Summit snowpack. Mann

et al. (2004) reported a high variability of HgR concentrations in the first 2 m of the

snowpack, with values ranging from 0.25 to 0.68 ng l
−1

(mean value of ∼0.46 ng l
−1

).15

3.3 GEM in the atmosphere

We measured GEM levels in atmospheric air at Summit Station during summer 2005

and spring 2006. Concentrations were stable, and no atmospheric GEM depletion

events were observed. Mean concentrations were 1.61±0.14 ng m
−3

(n=1102) from

27 May to 6 June 2006, and 1.80±0.14 ng m
−3

(n=112) from 23 to 29 July 2005. GEM20

atmospheric levels measured during both spring and summer at Summit were a bit

higher than concentrations reported for Alert at the same season (Steffen et al., 2005).

This slight difference (∼10%) was not confirmed by inter-calibrations and comparison

measurements of the instruments used at Alert and Summit. However, the air masses

at Alert and Summit have different origins: the chemical loading to the atmosphere25

above Summit is influenced by air masses arriving at high altitude (500 hPa) (Khal et

al., 1997). Moreover, springtime displays a strong variability of GEM concentrations in
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the atmosphere at Alert due to the atmospheric mercury depletion events (AMDEs).

These phenomena, leading to a complete depletion of GEM in the atmosphere, occur

simultaneously with the post-solar sunrise destruction of ozone. Helmig et al. (2007b)

investigated the surface ozone mixing ratio at Summit Station from 2000 to 2004 and

reported concentrations ranging from ∼40 to ∼70 ppbv without any ozone depletion5

event. No atmospheric ozone and mercury depletion events were observed at Summit,

indicating no strong variations in their atmospheric concentrations throughout the year.

3.4 GEM from the top surface snow to 3 m depth

3.4.1 Variations in GEM concentrations with depth

Evolution of GEM concentrations with depth, from the top surface to a depth of 30 m, is10

presented in Fig. 3. The dashed line represents the mean atmospheric GEM concen-

tration of ∼1.65 ng m
−3

, estimated from data obtained both during summer 2005 and

spring 2006. At lower concentrations (left side of the dashed line) is the profile mea-

sured during spring 2006. Higher concentrations correspond to the profile measured

during summer 2005 (right side of the dashed line). For each depth, all of the data15

collected are graphed and the corresponding mean GEM concentrations at each depth

are given with the solid and open circles. In spring 2006, we observed a decrease

in the mean GEM concentration with depth in the snow interstitial air (SIA) with level

close or below the atmospheric one. During summer 2005, mean GEM concentrations

were always above the atmospheric level, increasing from 40 cm to 120 cm depths,20

and decreasing at a depth of 160 cm. Finally, mean concentration at a depth of 200 cm

was close to the one recorded at a depth of 140 cm. The evolution of mean GEM

concentrations in the SIA during spring 2006 presented a similar trend to that reported

for Station Nord, (North Greenland) by Ferrari et al. (2004a). At this site, a seasonal

snowpack ∼1 m thick was investigated, and an exponential decrease of GEM concen-25

trations was observed from atmospheric levels at the snow surface to 0.1–0.2 ng m
−3

at

the bottom of the snowpack. Hence, GEM consumption at a depth of 100 cm in arctic
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snow has been previously observed. On the other hand, we report for the first time

an increase of mean GEM concentrations with depth in snow and firn air at Summit

Station during summer 2005, but these measurements could be strongly influenced by

sampler-induced advection, as discussed in Sect. 3.4.3.

3.4.2 Daily variations in GEM concentrations5

Evolution of GEM concentrations with time in the SIA and above the snow surface,

from 18 to 27 July 2005 (summer 2005), and from 29 May to 6 June 2006 (spring

2006), are reported in Figs. 4 and 5 respectively. As presented in the previous sec-

tion, summer 2005 and spring 2006 differed strongly regarding the evolution of mean

GEM concentrations with depth in the SIA. However, during both periods, GEM con-10

centrations exhibited a diel variation anti-correlated to solar irradiation in the first two

meters of the snowpack. We measured production and depletion of GEM in the SIA,

with maximum concentrations at midnight and minimum concentrations at midday.

GEM levels measured at 200 and 270 cm depths during spring 2006 were close to

the detection limit of the 2537A Tekran analyzer, and the fluctuations observed were15

below 0.15 ng m
−3

, the uncertainty reported for this analyzer. Indeed we measured

0.09±0.08 ng m
−3

(n=41) at a depth of 200 cm, and 0.08±0.10 ng m
−3

(n=117) at a

depth of 270 cm. At a depth of 330 cm, the GEM concentration was monitored continu-

ously during 48 h: no diel variation was observed, and levels were stable with a mean

value of 0.27±0.04 ng m
−3

(n=34). In summer 2005, diel variations of GEM concentra-20

tions were observed from the surface to a depth of 200 cm. Of the many recordings,

only very few measurements fell below the atmospheric level at a depth of 40 cm; most

measurements in the near-surface in July were higher than the ambient atmospheric

concentration. Due to equipment maintenance, we were not able to collect data on

22 and 23 July. In the following section, we investigate the different roles of physical25

processes and chemical mechanisms in the daily variations of GEM concentrations in

the SIA.
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3.4.3 Chemical or physical processes in the SIA?

Diel variations of GEM concentrations were observed both during spring and summer

(see Figs. 4 and 5). Five possible phenomena could potentially explain the variations

observed: i) adsorption of GEM on snow grains, ii) natural ventilation, iii) diffusion within

the deeper snowpack, iv) chemical processes leading to destruction and/or production5

of GEM and v) advective flow induced by the sampling procedure. Due to the high

adsorption energy of GEM on snow evaluated at ∼61 kJ mol
−1

(Ferrari et al., 2004a),

the adsorption of GEM is extremely reduced and cannot explain these observations.

Similarly, natural ventilation could not induce the variation of GEM concentrations ob-

served. Albert and Shultz (2002) showed at Summit Station that gas transport in high10

permeability layers 15 cm beneath the snow surface under low winds (∼3 m s
−1

) was

not influenced by natural ventilation, but controlled by diffusion.

To identify the potential role of diffusion in the interstitial air in the snow and firn, we

simulated the diffusion of the diel variation of GEM recorded in spring 2006 at a depth

of 40 cm. We first determined diffusion constants characterizing GEM and the firn15

structure at Summit Station. The GEM diffusivity in air at Summit Station DSurface
(T,P )

was

determined using the value reported by Massman (1999) corrected for Summit tem-

perature and pressure (Schwander et al., 1988).

DSurface
(T,P )

= DT0,P0
×
P0
/

P ×

(

T/
T0

)1.85

(1)

where T0=253.16
◦
K, P0=1013.25 mbar, T=241

◦
K and P=675 mbar. T and P are mean20

annual atmospheric values of temperature and pressure for the site of Summit. Equa-

tion (1) gives the GEM diffusivity in the atmosphere above the firn surface. To obtain

the effective diffusivity of GEM in the SIA (Deff), we used the following relation:

Deff = φ/τ × DSurface
(T,P )

(2)

where φ is the snow porosity determined using the densities fo snow and ice25

φ = 1 − ρsnow/ρice (3)
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τ is the firn tortuosity. The tortuosity of a porous medium represents the complexity of

the pathway, and is commonly calculated as the ratio of the mean path length to the

minimum possible (straight line) path length. Albert and Shultz (2002) reported that

the tortuosity of the surface wind pack at Summit in June was 2.0. A value of 2.0 is

the maximum tortuosity value that can be considered in the first several meters of the5

snowpack, because the top 50 cm of snow is wind-pack, and is less permeable than the

underlying layers at Summit, as can be seen in Fig. 2. With the definition of tortuosity

in Eq. (2), the tortuosity in the underlying, more permeable layers below a depth of

50 cm, may be lower than 2.0. Considering a tortuosity of 1.4–2.0 and a snow porosity

of 0.7, we obtained Deff for GEM of 0.06–0.08 cm
2

s
−1

.10

Diel cycles of GEM concentrations in the SIA showed a time shift with increasing

depth both during summer (Fig. 4) and spring (Fig. 5), suggesting that diffusion was

occurring. To better assess the transport of GEM by diffusion in the SIA, we modeled

this physical process from 40 to 270 cm depths. In this model, we used GEM spring

measurements at a depth of 40 cm (GEM40) and a constant concentration of 0.1 ng m
−3

15

at a depth of 270 cm as boundary conditions. The modeled diffusion of GEM40 deeper

in the snowpack is shown on Fig. 6. A comparison of modeled data and measurements

is also represented. Peak concentrations from field data exhibit a slight shift in time

when depth increases but modeling results show that this shift should be larger if only

diffusion took place in the SIA. This effect could be due of induced air advection in the20

firn, as we discuss in the following paragraph.

Albert et al. (2002) showed that interstitial air sampling in snow with sampler flow

rates of 1 l min
−1

(and higher) draws in a substantial amount of ambient air into the

sampler, even when one assumes that the sampler has perfect contact with the sur-

rounding snow. Thus, we investigated the role of induced interstitial advection in the25

shallow firn. Using the multidimensional model (Albert, 1996; Albert et al., 2002), along

with the measured permeability profile depicted in Fig. 1 for the permeability of the top

two meters for spring 2006, and the published permeability profile deeper in the firn

at Summit (Albert and Shultz, 2002), we investigate the impacts of sampler-induced
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advection on the measured concentration profiles in the firn air. Using a sampler intake

rate of 1 l min
−1

for each simulation, Fig. 7 depicts the air flow patterns when the intake

is at depths of 40, 120, and 160 cm in the firn. The closer the intake is to the atmo-

sphere/snow interface, the more air is drawn vertically down through the surrounding

snow into the sampler intake, thus diluting the sampled air at the sampled depth with5

air from above. This is clearly evident when the sample intake is at a depth of 40 cm

(Fig. 7a); most of the air into the inlet is coming directly down from the near-surface

snow. As the inlet gets deeper, the contribution from the snow-air interface decreases,

and the contribution from nearby permeable layers (whether above or below the inlet)

increases. Considering the inlet at a depth of 120 cm (Fig. 7b), there is still surface10

air coming down, but a greater part of the sample comes from the high-permeability

layer locate between 50–95 cm depths in the snow. At a depth of 160 cm (Fig. 7c),

much of the air sampled comes from the high-permeability layer above the intake: this

high-permeability layer serves as a channel for lateral flow in the firn. Sampler-induced

advection transports down photochemically-induced changes in GEM concentrations15

from the near-surface snow. On one hand, we assume that diel cycles observed from

80 to 160 cm depths during spring 2006 are due to sampler-induced advection. The

decrease with depth of the amplitude of the diel GEM variations is consistent with our

modeling, showing less influence of the forced advection as depth increases. We note

that dilution/mixing of interstitial air measurements by flow samplers is not unique to20

this study; in fact it is an unavoidable artifact of all firn air measurements that have

been carried out by flow samplers to date (Albert et al., 2002; Dominé et al., 2007).

On the other hand, sampler-induced advection could not explain the decrease in min-

imum GEM concentrations with depth measured close to midday. Diffusion modeling,

reported on Fig. 5, could not reproduce either this destruction of GEM, which may re-25

flect chemical mechanisms involving GEM from 40 to 270 cm that will be discussed in

the following section.

Snow permeability data was not available for summer 2005. However, modeling

showed that diffusion of GEM was too slow to explain the diel cycles deeper in the
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SIA. Similarly to spring data, we assume that diel GEM variations below a depth of

80 cm could be an artifact due to sampler-induced advection. Forced advection could

also lead to an underestimation of GEM concentrations in the first meter due to the

mixing of low-concentrated air from the atmosphere and high concentrated air from the

SIA. Thus, the increase of the mean GEM concentrations with depth during summer5

2005 could not be explained by diffusion, but may be an artifact of sampler-induced

advection. Dark chemical production of GEM should also be considered as a possible

mechanism for the observed increase in GEM concentrations.

In summary, measurements in the field when compared to gas transport modeling

lead to the evidence that natural diffusion was not the main process driving the evo-10

lution of GEM concentrations in the SIA. On the other hand, photochemical changes

in GEM that occur in the top centimeters to tens of centimeters of snow are likely ad-

vected down into the sampler, giving the appearance that photochemical reactions are

occurring deeper in the snow than is actually the case. Despite this sampler-induced

artifact, there is evidence of chemical processes involving GEM in the SIA, with both15

photolytic mechanisms close to the surface and dark processes in the first three meters

of the snowpack.

3.4.4 Chemical mechanisms within the snowpack

The photochemical processes in snow and the exchanges of reactive trace gases be-

tween the SIA and the Atmospheric Boundary Layer (ABL) have been largely investi-20

gated at Summit Station (Dibb et al., 2007). Galbavy et al. (2007) measured irradiance

in the snow and firn at Summit, and found actinometry e-folding depths near 12 cm.

Less than 2% of monochromatic light penetrates deeper than the top half-meter at

Summit. Thus, photochemistry can directly play a role from the top surface to ∼60 cm

depth in the snow at Summit. In this area, defined as the sunlit snow, diel variations25

of GEM observed during spring and summer in the SIA were probably the result of

the co-existence of GEM oxidation and Hg(II) reduction. These two competitive phe-

nomena have already been observed in coastal snowpacks in the Arctic (Dommergue
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et al., 2003b; Ferrari et al., 2004b). In our case, oxidation was predominant during

spring and Hg(II) reduction was predominant during summer. According to e-folding

depth values reported by Gavaldy et al. (2007), there is no evidence that significant,

naturally-occurring photochemical reactions involving GEM could occur below ∼60 cm

depth. However, at Dome C (Antarctica), irradiance attenuation in the shallow firn de-5

pends on the snow layers considered: at higher depths, Warren et al. (2006) observed

a lower irradiance attenuation related to an increase in snow grain size. A similar study

is necessary at Summit Station to better characterised the photochemical processes

in the snowpack. Assuming that light does not penetrate below ∼60 cm depth, the diel

variation of GEM concentrations from 80 to 200 cm depths in the SIA is probably due10

to the transport of the photochemically-induced gas composition in the top half-meter

to deeper depths by the sampler flow, as shown by our modeling (see Fig. 7). This

effect occurred both during summer 2005 and spring 2006. However, the decrease of

mean GEM levels during spring 2006, and their stabilization to zero (see Fig. 3) from

200 to 270 cm could not be explained by the transport of the depleted air but only by15

dark oxidation processes in the SIA. The active photochemistry involving both GEM

and Hg(II) complexes implies that one must exhibit great caution when using HgR and

HgT profiles to infer depositional histories. Hg(II) species could be perturbed by post-

deposition processes occurring close to the surface, leading to HgR or HgT profiles in

the firn that would not be simply linked to the history of mercury deposition on the sur-20

face. In the next sections we discuss the photolytic and dark mechanisms which could

be involved in the destruction and production of GEM.

3.4.5 GEM depletion within the snowpack

In the sunlit snow, we observed GEM depletion with concentrations lower than atmo-

spheric ones and a diel evolution which was anti-correlated to solar irradiation during25

both summer 2005 and spring 2006. During spring 2006, we also observed a deple-

tion of GEM in the SIA below the sunlit zone, with GEM concentrations close to zero

from 200 to 270 cm (see Fig. 3). Thus, both photolytic and dark oxidation of GEM were
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occurring in the SIA at Summit.

Using backward transport model simulations, Sjostedt et al. (2007) showed that the

boundary layer at Summit could be periodically impacted by halogens, and the bromine

mixing ratio in the SIA at Summit was estimated at 1–4 ppbv by Peterson et al. (2001).

Br
•

is probably the most efficient oxidant for GEM in the Arctic troposphere (Ariya et al.,5

2004; Skov et al., 2004), and GEM depletion within the snowpack could be the result

of homogenous and/or heterogeneous chemistry with Br radicals (Ferrari et al., 2004b;

Goodsite et al., 2004). The following mechanism has been proposed by Goodsite et

al. (2004):

Hg◦
+ Br• → HgBr• (R1)10

HgBr• + Br• → HgBr2 (R2)

These authors demonstrated that a recombination of Hg
◦

with Br
•

(R1), followed by

the addition of a second radical Br
•

(R2) was able to explain the observed rate of Hg
◦

removal during AMDEs. Radicals I
•

and OH
•

could also interact with HgBr, but their

concentrations within the snowpack are to low for these compounds to be considered.15

Br2 is also an oxidant for GEM according to the following reaction:

Hg◦
+ Br2 → HgBr2 (R3)

However, the rate constant for reaction (R3) is much lower (by a factor ∼10
5
) than

the rate constants for (R1) and (R2) (Ariya et al., 2002; Goodsite et al., 2004). Since

reactions (R1), (R2) and (R3) are exothermic in gas and aqueous phases (Tossel,20

2003), they could occur in a dark environment if Br
•

radicals or Br2 are available.

Modeling and measurements of photolyzable bromine (Br2, BrCl, HOBr) and bromine

radicals at Alert, Canada, showed that the snowpack is a bromine source (Tang and

McConnell, 1996). Foster et al. (2001) reported Br2 concentrations in the SIA at Alert,

Canada, that were the double of those measured in the overlying air during the sunlight25

period, which provides evidence for the production of Br2 in natural snowpacks. There

18239

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/18221/2007/acpd-7-18221-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/18221/2007/acpd-7-18221-2007-discussion.html
http://www.egu.eu


ACPD

7, 18221–18268, 2007

Mercury in the snow

and firn at Summit

Station, Greenland

X. Faı̈n et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

are now several observations suggesting that halogen chemistry may also be impor-

tant at Summit: Swanson et al. (2007) provided evidence for production of alkyl halide

in the SIA, and Sjostedt et al. (2007) suggested that HOx chemistry could be linked to

halogen oxides at Summit Station. In the lower atmosphere, Br
•

radicals are formed

by Br2 photodissociation at wavelengths below 620 nm. Such wavelengths are avail-5

able in the top centimeters of the snowpack at Summit Station (Galbavy et al., 2007).

In July at Summit, Peterson and Honrath (2001) measured diel variations of ozone

concentrations at a depth of 30 cm with minimum concentrations at midday, and levels

close to atmospheric ones during the night. They demonstrated that only destruction

by bromine radicals is sufficiently efficient to explain such rapid processes. Such ozone10

depletions are similar to GEM measurements we report for the sunlit zone both during

summer and spring. We finally assume that the mechanisms involved in the destruc-

tion of GEM in the sunlit snow (from the surface to ∼60 cm depth) are similar to the

ones happening during AMDEs and ODEs in the polar atmosphere during spring, as

previously suggested (Ferrari et al., 2004b): GEM is actively converted to its oxidized15

form Hg(II) when solar irradiation is strong enough to produce Br
•

by the photolysis of

Br2.

Deeper, the snowpack may also act as a source of Br2, even if there is no light. Oum

et al. (1998) reported laboratory measurements suggesting that the oxidation of Br
−

ions by ozone at the surface of the snow crystals could produce Br2 in the dark. These20

authors proposed the following reactions:

O3 + Br− → BrO−
+ O2 (R4)

BrO−
+ H+

→ HOBr (R5)

HOBr + H+
+ Br− → Br2 + H2O (R6)

This mechanism is consistent with field observations reported before the polar sun-25

rise at Alert by Foster et al. (2001). These authors reported the simultaneous depletion

of ozone and production of Br2 in the SIA. Recently, Helmig et al. (2007a) reported O3
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measurements in the SIA at Summit from April to June 2004. These authors did not

observed any ozone destruction in the SIA during the polar night (beginning of April)

but they did not investigated ozone below a depth of 60 cm. Deeper measurements are

necessary to conclude whether or not dark ozone oxidation occurred during this period

of the year. On the other hand, they reported permanent minimum ozone levels at a5

depth of one meter for June. Such a decrease in concentration with depth cannot be

explained by diffusion or sampler-induced advection. Considering that the actinic flux

is null at this depth in the Summit snowpack (Galbavy et al., 2007), dark destruction of

ozone in the SIA must be occurring. We assume that such dark oxidation reported for

O3 at Alert by Foster et al. (2001) also occurred in the SIA at Summit Station according10

to the mechanisms described previously (R4-R5-R6). This destruction of ozone is a

source of Br2, which becomes available for GEM oxidation in the SIA via reaction (R3).

More measurements during different seasons are now necessary to better under-

stand the dark chemical processes involving both ozone and GEM. During summer

2005, we did not observe dark destruction of GEM directly, but rather diffusion of GEM15

produced in the sunlit snow through deeper layers. Sampling-induced artifacts could

have also hidden this process.

3.4.6 GEM production in the snowpack

GEM photo-production in the shallow firn was observed both during spring and sum-

mer, from the top surface to a depth of ∼60 cm where light could penetrate. GEM20

production processes were much more active relative to oxidation during the summer

rather than during spring. GEM production was previously reported in interstitial air of

both polar (Dommergue et al., 2003b; Ferrari et al., 2004b) and mid-latitude snowpacks

(Poulain et al., 2004; Faı̈n et al., 2007). Most authors assumed that such production is

the result of direct photodissociation of Hg(II) complexes. This reduction mechanism25

was also observed in water solutions (Xiao et al., 1994) and was suggested to occur

in snow (Lalonde et al., 2002; Lalonde et al., 2003). GEM could also be produced

by the reduction of Hg(II) complexes by photochemically produced compounds. Hy-
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droperoxyl radical (HO
•

2) was proposed as a potential reductant of Hg(II) in liquid water

(Lin and Pehkonen, 1999). This hypothesis has to be considered carefully, since a

recent study based on thermodynamic considerations showed that reduction of Hg(II)

by HO
•

2 radicals should be of minor importance (Gardfeldt and Jonsson, 2003). Sjost-

edt et al. (2007) reported the first measurements of peroxy radicals above the Summit5

snowpack. The majority of HO
•

2 radicals in the SIA are generated via the photolysis

of O3, H2O2, HONO and CH2O. Thus HO
•

2 concentrations exhibit a diel pattern with

maximum values at midday, but levels above zero at night. Humic acids may also play

a central role in the degradation of Hg(II) molecules by producing reactive species.

These mixtures of organic macromolecules can transfer electrons to species adsorbed10

on their surfaces when irradiated over broad spectral regions.

Laboratory flux chamber measurements indicated that GEM is first driven by solar

radiation (especially UVA and UVB radiation), and then could be enhanced when liq-

uid water is observed in the snowpack (Dommergue et al., 2007; Faı̈n et al., 2007).

Global irradiation and air temperatures were higher during summer 2005 as compared15

to spring 2006: the evolution of these two environmental parameters from spring to

summer favored an increase in the photo-production processes of GEM. Higher atmo-

spheric GEM concentrations measured during summer (∼1.8 ng m
−3

) as compared to

spring background levels (∼1.6 ng m
−3

) could be the result of GEM emission from the

snowpack to the atmosphere.20

Our 2005 data showed an increase in the mean GEM concentration with depth, and

a maximum was measured at a depth of 120 cm. This could be explained by sampler-

induced advection from concentrated layers located close to the surface. However,

dark production of GEM could also occur, as previously reported from snow samples

collected in a mid-latitude snowpack (Lalonde et al., 2003), inside an alpine snowpack25

(Faı̈n et al., 2007) and inside an arctic snowpack (Ferrari et al., 2004b).
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3.4.7 Seasonal variations of GEM concentration

Environmental parameters such as irradiation and temperature, as well as the snow

and the snow air compositions, evolved from spring to summer and led to a change in

the relative importance of both GEM destruction and GEM production mechanisms in

the SIA at Summit. However, we observed mean GEM concentrations in the SIA that5

were lower during spring and higher during summer than the atmospheric level. This

suggests that GEM concentrations, up to a depth of three meters in the SIA, could ex-

hibit a yearly variation with low concentrations during spring and higher concentrations

during summer. However, no measurements were available for winter time. Using GEM

concentrations collected from 15 to 30 m depths and diffusion modeling, we first inves-10

tigated if any seasonal variations in GEM concentrations close to the surface could

affect GEM levels in the deep firn air, thereby affecting the long-term record that is rep-

resented by the deep firn air. We then characterized the mean value and the amplitude

of the seasonal variation expected in the shallow firn.

3.5 GEM in the firn air15

3.5.1 Do chemical processes exist in the deep firn air?

GEM concentrations measured at 15, 25 and 30 m depths in the firn were respectively

1.78±0.17 ng m
−3

(n=6), 1.68±0.08 ng m
−3

(n=2) and 1.70±0.17 ng m
−3

(n=6). These

measurements were taken at depths too high to be significantly impacted by sampler-

induced air flow from the snow surface down to these levels; rather, these concen-20

trations represent interstitial air from the nearest permeable layer. These values are

all close to the atmospheric level of ∼1.65 ng m
−3

. As discussed in Sect. 3.4.2., dark

destruction of GEM was occurring in the SIA close to the surface. Such processes ob-

viously do not exit in the firn at depths of 15 to 30 m, because the GEM concentrations

observed are not null. However, the temperature at both 15 and 2 m depths are similar25

during spring, and close to the mean annual temperature of the site (i.e. ∼-32
◦
C). We
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assume that the source of Br2 required for dark GEM destruction no longer exists in

the firn air at a depth of 15 m and below. To our knowledge, measurements of ozone

concentrations have never been reported for deep polar firn air, but O3 is a rather re-

active gas which is not preserved in the air bubbles trapped in ice cores. The sinks of

ozone are multiple, in the sunlit snow as well as in dark conditions. The atmospheric5

sources of ozone are much more limited and always require solar radiation. Thus, we

suggest that the entire firn air column from a depth of 15 m to the bottom could exhibit

null concentrations of ozone, and consequently null Br2 concentrations, an oxidant for

GEM in dark conditions.

3.5.2 Firn structure and modeling10

Figure 8 presents a conceptual model of the firn at Summit Station. We can think of

the firn as having three primary zones: the chemical zone (CZ), the diffusion zone

(DZ) and the lock-in zone. The chemical zone extends from the surface to 2.7 m (zC)

and GEM levels within this zone are determined by both chemical and physical pro-

cesses. These are discussed in detail in the previous section. Daily variations of GEM15

concentrations in the near-surface snow air lead to bi-directional fluxes between the

shallow firn and the lower atmosphere. The diffusion zone extends from the bottom of

the chemical zone to the top of the lock-in zone, and is comprised of an openly porous

and permeable matrix in which the air’s composition is determined solely by physical

processes (as shown in Sect. 3.5.1., there is no chemical alteration of GEM below zC).20

The diffusion zone ends at the top of the lock-in zone (zD). Within the lock-in zone, im-

permeable winter layers prevent the vertical diffusion of air, but persistent open porosity

in the summer layers allows the extraction of samples (Martinerie et al., 1992). At still-

greater depths, when the overburden is sufficient, all pores become closed and air can

no longer be extracted. This defines the firn-ice transition.25

We used a 1-D forward model developed by Rommelaere et al. (1997) to under-

stand how the variations of GEM concentrations occurring in the chemical zone could

influence the GEM levels recorded in the air of the diffusion zone. Diffusion zone pro-
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cesses taken into account to simulate GEM transport were molecular diffusion, gravi-

tational fractionation, and a downward air flux due to bubble closure sequestering air

from open pores (see Fig. 8). This sequestered air must be replaced by air coming

from the upper part of the firn, thus creating a downward flux. Surface temperature

and accumulation rate were set to their present day values and assumed to be con-5

stant throughout the model run. We used firn structure parameters (density, open and

closed porosity) from EUROCORE drilling (Schwander et al., 1993). Free-air diffusivity

of GEM is given by Eq. (1) while Eq. (2) gives the diffusivity of GEM within the firn

(i.e. Deff, see Sect. 3.4.3). Deff depends on the firn tortuosity which increases progres-

sively with depth. A null value of the ratio l/τ at the top of the lock-in zone means that10

diffusion ceases at this depth. In short, the GEM effective diffusivity decreases from

the snow surface value to zero at the close-off. We used tortuosity data reconstructed

from CO2 record to determine the GEM Deff profile at Summit. See Fabre et al. (2000)

for a more complete description of the method.

3.5.3 Age distribution15

Due to transport processes, the firn air at a given depth is not characterized by a single

age, but by a distribution of ages (Schwander et al., 1993; Trudinger et al., 2002). We

used our diffusion model to generate age distributions G(z,t) of GEM. This approach

has been used in various studies for a variety of gases with seasonal atmospheric cy-

cles (Trudinger et al., 2002; Montzka et al., 2004; Assonov et al., 2007). The distribution20

for depth z represents the relative contribution of different ages, where
∑

G(z, t)≡1. The

age distributions at the depths of 30 m, 40 m, 50 m, 60 m, 69 m and 70 m are shown

in Fig. 9. For example, point A indicates that 20% of GEM in the firn air at a depth of

30 m was in the atmosphere 2 years ago. Point B shows that 4% of GEM at a depth

of 70 m is 15 years old. Above 70 m, the distributions show non-zero values for the25

first year (for example, ∼4% at a depth of 60 m). At 70 m and below, air is at least two

years old. Consequently, the annual variations of GEM concentrations at the bottom

of the chemical zone (depth zC) cannot influence the firn air record below 70 m. In
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short, GEM values below a depth of 70 m record the annual mean concentrations of

the bottom of the CZ.

For the firn air above 70 m, we have to examine to which extent GEM variations in

the CZ influence the GEM concentrations that are measured deeper. Using an intuitive

approach, we perceive that the amplitude of the variations of GEM concentrations in5

the CZ decreases as the depth increases. Indeed, GEM diffusion takes longer as the

air is deeper. For a better estimate of the diffusion of GEM variations in the CZ, we

can adapt our transport model using different variation scenarios. We modeled their

diffusion from the bottom of the CZ into the diffusion zone and compare this data to our

field measurements.10

3.5.4 Downward diffusion of seasonal GEM variations

As discussed in Sect. 3.4.5, GEM concentrations were stable in the atmosphere, but

showed seasonal variations in the firn down to zC (2.7 m) due to chemical processes

and transport. These variations have an influence even below the chemical zone as

they diffuse downward. However, due to decreasing diffusivity of the firn with depth,15

the amplitude of the seasonal GEM cycle also steadily decreases with depth, vanishing

completely at a depth of 70 m (see Sect. 3.5.2). In order to understand the downward

propagation of this seasonal signal through the diffusion zone, we simulated seven

different seasonal cycles and compared them to firn-air observations between 15 and

30 m depths. The cycles we considered are shown in Fig. 10 and are composed of20

three distinct modes: constant concentrations close to the atmospheric background,

periods with elevated GEM concentrations relative to atmospheric background and

periods with depleted GEM concentrations relative to background. A constant con-

centration of ∼1.65 ng m
−3

at the bottom of the chemical zone will arise if there is no

chemistry in the shallow firn, or if there is equilibrium between production and destruc-25

tion of GEM. Concentrations higher than atmospheric values occur when production

processes dominate, as we observed during summer 2005. GEM concentrations be-

low atmospheric levels will occur when oxidation exceeds production in the shallow firn,
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as we observed during spring 2006. All cycles were run for 16 years with a time step

of 7.3 days. The age distribution (see Fig. 9) shows that 98 % of the firn air is between

0 to 16 year old at a depth of 30 m (
16
∑

t=0

G(30, t)=98%). For each of the scenarios de-

scribed in Fig. 10, we calculated the depth zSEAS at which the amplitude of any GEM

variation is less than 0.15 ng m
−3

, the uncertainty of our GEM analyzer. These values5

are presented in Table 1. The location of zSEAS depends on both the amplitude of the

GEM variations and the length of the constant concentration period (with GEM level

of ∼1.65 ng m
−3

). Table 1 also includes the concentration of GEM at zSEAS. Below

zSEAS, the GEM variations originating in the top layers of the snowpack are no longer

observable. As shown by scenario 1, 2 and 3, an increase of the amplitude between10

maximum and minimum concentrations leads to an increase in the depth zSEAS. An in-

crease in the period with stable concentrations (of about ∼1.65 ng m
−3

) reduces zSEAS

(compare cycles 2, 6 and 7). As expected, for all cycles, concentrations at zSEAS are

close to the mean concentration at the bottom of the chemical zone. While the different

trial cycles do lead to a range of values for zSEAS, none has any influence on the firn15

air below a depth of 35 m.

Using our observations from 15 to 30 m depths, we are able to further constrain the

shape of the seasonal GEM cycle expected at the depth zc. We begin by assum-

ing zSEAS is at most 15 m, since GEM concentrations were constant from 15 to 30 m

depths. To be consistent with measurements carried out in the chemical zone in both20

summer 2005 and spring 2006, we considered GEM concentrations at depth zC rang-

ing from a minimum at the beginning June (0.1 ng m
−3

) to a maximum at the end of July

(2.9 ng m
−3

), and we adjust winter concentrations to the constant atmospheric back-

ground (i.e. 1.65 ng m
−3

). We fitted the mean annual concentration to ∼1.65 ng m
−3

to

match the observed value at a depth of 15 m, and we adjusted the length of the winter25

(i.e. constant concentration period) so as to not observe GEM variations deeper than

15 meters. These constraints lead to cycle 7 in Fig. 10. The expression of this cycle in

the firn between zC and 30 m is shown in Fig. 11. The blue line indicates the expected

18247

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/18221/2007/acpd-7-18221-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/18221/2007/acpd-7-18221-2007-discussion.html
http://www.egu.eu


ACPD

7, 18221–18268, 2007

Mercury in the snow

and firn at Summit

Station, Greenland

X. Faı̈n et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

GEM concentration profile in June and is consistent with data collected at 3.3, 15, 25

and 30 m. As discussed in Sect. 3.4.4, production or destruction of GEM in the shallow

firn can dominate, depending on season (spring vs. summer), leading to elevated or

depleted GEM concentrations. The results from the model presented in Fig. 11 lead

us to conclude that the annual mean concentration at a depth of 2.7 m in the firn air at5

Summit Station is close to the atmospheric level. This result is of prime importance:

we can interpret the signal from a depth of 15 m and the close-off solely as a record

of the long-term atmospheric trend. Moreover, the shape of cycle 7 (Fig. 10) indicates

that GEM chemistry in the snowpack probably occurs only during the brief period be-

tween May and September, which suggests that chemical processes involving GEM10

in the shallow firn could be linked to solar radiation. We assumed in this study that

no photochemical processes were occurring in the SIA below 60 cm depth, according

to Galbavy et al. (2007). However we expect that future studies will investigate the

transmission of solar irradiance deeper within the snowpack.

3.6 Implications for the transfer function15

Our measurements of GEM close to the surface revealed a high variability of GEM

concentrations on a daily time scale, as well as a seasonal shift in the chemical mech-

anisms affecting GEM levels. Daily fluctuations in GEM concentrations are too fast

relative to diffusion times to influence the firn GEM record beyond a depth of ∼3 m.

Moreover, our modeling work showed that seasonal variations are not expressed in the20

deep firn. In principle, the first 70 m of the firn could show signs of seasonality, but

our best estimates of the seasonal variations of GEM lead us to expect that only the

first 15 m of the firn air contain detectable influences of shallow-firn chemistry. This

implies that firn air from a depth of 15 m to the close-off has the potential to be used

to reconstruct the atmospheric history of GEM over the last decades. Furthermore,25

the conservative nature of GEM below ∼3 m indicates that it is possible to calculate

the GEM transfer function at Summit Station using more detailed information on the

diffusivity of the firn between ∼3 m and the close-off.
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4 Conclusions

Atmospheric Mercury Depletion Events were not observed at Summit Station during

both summer 2005 and spring 2006, and are unlikely to occur, since Ozone Deple-

tion Events have never been reported for this site. In air extracted from the snowpack

between 40 and 200 cm depths, GEM concentrations showed variability at daily and5

seasonal time scales. Both production and oxidation of GEM were observed during

spring (beginning of June) and summer (end of July), but the respective contributions

of each process change with time during the season. Oxidation is the dominant mech-

anism during spring, and production dominates during summer. We postulate that dark

oxidation chemistry can influence GEM levels in the SIA. While the shallowest firn at10

Summit Station acts as a source and a sink of GEM for the lower atmosphere, the

deeper firn air contains a record of the evolution of atmospheric GEM concentrations

since it is not perturbed by surface processes. In particular, the daily variations of GEM

concentrations are too rapid to influence the firn record and the influence of seasonal

variations does not extend below the first 15 m of the firn. From a depth of 15 m to the15

close-off (about ∼79.5 m at Summit Station), the firn air should provide a record of the

past atmospheric GEM composition.
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Table 1. Characteristics of GEM diffusion in the deeper firn of the scenarii presented in Fig. 6.

zD is the depth where fluctuations induced by surface scenario are lower than 0.15 ng m.
−3

. We

also report GEM concentration at this depth zD.

Annual mean Lenght of the period

GEM Max GEM Min GEM with constant GEM GEM

concentration concentration concentration concentration concentration

Scenario Description (ng.m
−3

) (ng.m
−3

) (ng.m
−3

) (months) zseas (m) zseas (m)

1 GEM production>GEM destruction 2.11 4.6 0.6 2 35.5 2.17

2 GEM production=GEM destruction 1.65 2.9 0.1 2 31.5 1.64

3 GEM oxidation>GEM destruction 1.37 2.1 0.2 2 28.7 1.4

4 Only GEM production 2.26 1.6 2.9 2 26.7 2.31

5 Only GEM production 0.94 1.6 0.1 2 26.7 0.95

2 Large annual variation 1.65 2.9 0.1 2 26.7 0.95

6 Mean annual variation 1.65 2.9 0.1 6 23.7 1.63

8 Variation expected on the field 1.65 2.9 0.1 8 15 1.57
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Fig. 1. Measured density and permeability profiles in the snow and firn in early June, 2006, at

the firn air sampling site at Summit, Greenland.
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Fig. 2. Total mercury concentrations in the snowpack from the surface to 200 cm depth, sam-

pled on 23 July 2005. Seven duplicates collected and analyzed are represented.
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Fig. 3. GEM concentrations (ng m
−3

) from the atmosphere to 30 m depth in the firn at Summit

Station. Data in the SIA from 40 to 330 cm depths were measured from 29 May to 6 June

2006 (blue) and from 19 to 27 July 2005 (red). Measurements at 15, 25 and 30 m depth were

collected on 3 and 4 June 2006. The atmospheric value is a mean concentration covering the

June and July sampling period.
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Fig. 4. GEM concentrations 1.5 m above the snow surface and at 40, 80, 120, 160 and 200 cm

depths in the SIA, from 18 to 27 July 2005, at Summit Station. The grey line reports the global

irradiation (W m
−2

).
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Fig. 5. GEM concentrations 1.5 m above the snow surface and at 40, 80, 120 and 160 cm

depths in the SIA, from 29 May to 6 June 2006, at Summit Station. The grey line reports the

global irradiation (W m
−2

).
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Fig. 6. Modeling of diffusion with depth of GEM variations observed at a depth of 40 cm in

June 2006. The dashed lines represent the field observations, while the full lines represent the

expected variations if only diffusion was happening in the SIA.
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Fig. 7. Modeled air flow patterns into the sampler intake, given the measured permeability pro-

file at Summit, when the intake is at depths of 40, 120, and 160 cm in the firn. Samples drawn

from the top two meters of firn include firn air that has undergone photochemical reactions at

shallower depths in the snow.

18264

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/18221/2007/acpd-7-18221-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/18221/2007/acpd-7-18221-2007-discussion.html
http://www.egu.eu


ACPD

7, 18221–18268, 2007

Mercury in the snow

and firn at Summit

Station, Greenland

X. Faı̈n et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

 

Atmosphere

Chemical zone
dominance of 

chemical processes

Diffusion zone
Influenced by

chemical seasonal 
surface processes

Lock in zone

Ice

0

79.5

Diffusion zone
Not influenced by

chemical seasonal 
surface processesM

ol
ec

ul
ar

 d
iff

us
io

n

G
ra

vi
ta

tio
na

l f
ra

ct
io

na
tio

n

A
ir 

flu
x

A
dv

ec
tio

n

D
ep

th
 (m

)

A
ir/

sn
ow

ex
ch

an
ge

s

Snow 
surface

zC

zD

zSEAS

Close-off

2.7

15

69

Atmosphere

Chemical zone
dominance of 

chemical processes

Diffusion zone
Influenced by

chemical seasonal 
surface processes

Lock in zone

Ice

0

79.5

Diffusion zone
Not influenced by

chemical seasonal 
surface processesM

ol
ec

ul
ar

 d
iff

us
io

n

G
ra

vi
ta

tio
na

l f
ra

ct
io

na
tio

n

A
ir 

flu
x

A
dv

ec
tio

n

D
ep

th
 (m

)

A
ir/

sn
ow

ex
ch

an
ge

s

Snow 
surface

zC

zD

zSEAS

Close-off

2.7

15

69

 

Fig. 8. Schematic view of the firn at Summit Station. Chemical processes involving GEM were

observed in the Chemical Zone close to the surface. Below, the Diffusion Zone is characterized

by physical transport mechanisms of GEM.
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Fig. 9. GEM age distributions modeled at Summit Station indicating the percentage of the air

with a given age for different depths in the firn.
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Fig. 10. Annual scenarii of the evolution of GEM concentrations at the bottom of the Chemical

Zone (2.7 m depth in the snowpack). Each scenario is repeated during 16 years for diffusion in

the deeper firn.
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Fig. 11. Diffusion from 2.7 to 30 m depth of a seasonal variation of GEM happening at the

bottom of the Chemical Zone. This annual pattern, represented in the white box, was repeated

16 years. We showed GEM profiles induced in the Diffusion Zone at different months. The blue

line represents the profile expected in June, and agrees with firn data collected from 15 to 30 m

depth.
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