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Abstract

The global spatial and diurnal distribution of cloud properties is a key issue for under-

standing the hydrological cycle, and critical for advancing efforts to improve numerical

weather models and general circulation models. Satellite data provides the best way

of gaining insight into global cloud properties. In particular, the determination of cloud5

thermodynamic phase is a critical first step in the process of inferring cloud optical and

microphysical properties from satellite measurements. It is important that cloud phase

be derived together with an estimate of the confidence of this determination, so that

this information can be included with subsequent retrievals (optical thickness, effective

particle radius, and ice/liquid water content).10

In this study, we combine three different and well documented approaches for infer-

ring cloud phase into a single algorithm. The algorithm is applied to data obtained by

the MODIS (MODerate resolution Imaging Spectroradiometer) and POLDER3 (Polar-

ization and Directionality of the Earth Reflectance) instruments. It is shown that this

synergistic algorithm can be used routinely to derive cloud phase along with an index15

that helps to discriminate ambiguous phase from confident phase cases.

The resulting product provides a semi-continuous confidence index ranging from

confident liquid to confident ice instead of the usual discrete classification of liquid

phase, ice phase, mixed phase (potential combination of ice and liquid particles), or

simply unknown phase clouds. This approach is expected to be useful for cloud assim-20

ilation and modeling efforts while providing more insight into the global cloud properties

derived from satellite data.

1 Introduction

Clouds are important modulators of the Earth’s radiation budget and hydrological cycle.

Their macrophysical, microphysical, and optical properties (cloud pressure, tempera-25

ture, height, optical thickness, thermodynamic phase, effective particle size) and their
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variation in space and time need to be understood to improve general circulation and

weather prediction models. Additionally, cloud properties are being used increasingly

in nowcasting activities as part of data assimilation efforts. For nowcasting, the cloud

thermodynamic phase is an important indicator used by forecasters to determine haz-

ardous road conditions.5

The determination of cloud thermodynamic phase is critical for inferring optical thick-

ness and particle size because ice and water clouds have very different scattering

and absorption properties. The quality of the retrieval depends on the ability to match

pre-computed radiative transfer calculations with measurements. It is thus critical that

cloud phase be derived together with an estimate of its confidence to help decide which10

optical models should be used for determination of optical thickness, effective particle

radius and ice/liquid water content.

Recent efforts have been made to derive cloud thermodynamic phase from satellite-

based passive radiometric observations (e.g., Knap et al., 2002; Baum et al., 2000;

Key and Intrieri, 2000; Goloub et al., 2000; Platnick et al., 2003) but no single method15

is expected to be preferable for all cloud types and regions. Atmospheric or surface

properties can bias existing methods or lead to ambiguous results. Further, a single

unambiguous answer is inappropriate for multilayer cloud systems (Baum et al.,

2003;Pavolonis and Heidinger, 2004) or mixed phase clouds (Pavolonis et al., 2005).

Yet, both cases are recognized as significant components of the global cloud cover20

(Hahn et al., 1982; Hahn et al., 1984). There is a great interest for new approaches

that can provide more meaningful cloud thermodynamic phase information from

passive imagers on a global scale.

The approach proposed in this study is based on the synergy between the25

POLDER-3/Parasol (POLarization and Directionality of the Earth Reflectances)

and MODIS/Aqua (MODerate resolution Imaging Spectroradiometer) instruments

operating in the framework of the A-Train mission. Both POLDER and MODIS have

been used to derive key parameters needed to improve our knowledge of cloud
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properties (Platnick et al., 2003; Parol et al., 2004).

The potential of using polarization measurements of the reflected shortwave radia-

tion to infer cloud phase has been clearly demonstrated using POLDER observations

(Goloub et al., 2000; Riedi et al., 2001). The MODIS instrument provides information

on cloud phase using two methods that rely on spectral measurements in the visible,5

shortwave to midrange infrared, and thermal infrared Platnick et al. (2003). However,

both the instruments and the specifically designed retrieval algorithms have limitations

that need to be understood and recognized to prevent drawing misleading conclusions

from analysis of the data products. Fortunately, limitations from one instrument can

partly be mitigated by capabilities available from the other, as will be demonstrated in10

this paper.

We present a methodology to combine these three different and well documented

approaches for deriving cloud phase within a single algorithm that uses data from both

the MODIS and POLDER instruments. A brief description of the processing algorithm15

used to merge radiance data from MODIS and POLDER is provided in Sect. 3.

POLDER level 1b (L1B) data files correspond to a complete daytime portion of an

orbit (equivalent to approximately 40 min of data acquisition). For each POLDER L1B

file, the corresponding MODIS data (radiances and geolocation) are collocated with

POLDER data on a common sinusoidal grid centered on the POLDER ascending node20

longitude. For each element within that grid (6×6 km
2
) observed by both instruments,

we form a data structure that contains all multidirectional and multispectral POLDER

data together with all multispectral and multiresolution MODIS data. For MODIS,

within each element of the grid, the mean and standard deviation for each radiance

is computed and kept along with all individual full resolution data (250 m, 500 m and25

1 km). These L1B radiances are provided together with surface albedo information

derived from MODIS (Moody et al., 2005) and meteorological data (obtained for the

European Center for Medium-Range Weather Forecast) needed for retrieval of cloud

properties.
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In the first part of the paper, we provide an overview of the theoretical basis of

the three methods for cloud phase discrimination with particular emphasis on their

respective strengths and limitations. In the second part, the processing scheme

for the joint MODIS/POLDER data analysis is briefly discussed and the practical5

implementation of the joint algorithm described. A case study, featuring typhoon Nabi

on September 2005 (Fig. 1), is then analyzed to show how this synergistic algorithm

can be used routinely to derive a cloud phase index, along with information on retrieval

quality/confidence usefull for easily discriminating ambiguous from confident cases.

10

The resulting product is provided as a semi-continuous index ranging from confi-

dent liquid only to confident ice only instead of the usual liquid/ice/mixed discrete

phase classification. This approach is a necessary step towards being able to assess

errors inherent in derived regional and global cloud products.

2 Theoretical basis overview15

Figure 2 provides an overview of the three metrics used for phase discrimination in

this study. The interpretation of these metrics will be discussed. For a case study to

illustrate the theoretical basis for the three different methods, we have selected a region

covered by Typhoon Nabi.

2.1 Multiangle polarization measurements20

When considering a cloudy system observed from a satellite, the polarized component

of the upwelling radiance is primarily from the upper portion of the cloud layer. Cal-

culations have shown that the polarized component, Lp, is saturated for cloud optical

thickness greater than 2–3 depending on the cloud microphysics that is represented

by the particle shape and effective size. The important quantity for determining cloud25
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phase is the polarized radiance Lp, which is less sensitive than the total radiance
1

L to

multiple scattering effects. Thus, the polarization features, which correspond to single

scattering, are preserved in Lp.

According to both theory and observations (Chepfer et al., 2001; Bréon and Goloub,

1998; Goloub et al., 2000), the polarization features of clouds depend strongly on the5

particle shape and size. Within the range of scattering angles that can be observed

by POLDER, clouds composed of liquid spherical particles exhibit a strong maximum

in Lp at about 140
◦

(primary rainbow). Liquid clouds exhibit a polarization value of

zero (i.e., a neutral point) at around 90
◦

, and supernumerary bows for angles greater

than 145
◦

. These features make possible the discrimination with clouds composed of10

ice particles, which exhibit positive polarization that decreases as the scattering angle

increases (Fig. 2d). Unambiguous discrimination between ice particles and liquid water

droplets can be made using these polarization differences.

Because it relies on the different single scattering properties of spherical and non-

spherical particles, this cloud phase detection may be considered a cloud particle15

shape detection method. Ice clouds are typically composed of nonspherical particles,

whereas liquid water clouds are assumed to be composed of spherical droplets. Also,

the use of polarization measurements makes this technique primarily sensitive to the

very top of the uppermost cloud layer since Lp saturates for cloud optical thickness

greater than 2.20

Finally, the use of polarized angular signatures depends on the availability of partic-

ular scattering angles, which means phase information will depend on the total number

of viewing geometries and the the range of scattering angles available. An advantage

of this technique is that it is insensitive to particle size and also to potential biases in

inferred cloud temperature. A complete description of the operational implementation25

for this algorithm is given by Riedi et al., 2007
2
.

1
Also, the polarization degree, defined as the ratio of Lp over L, is subject to multiple scat-

tering effects since it depends on L.
2
Riedi, J., Parol, F., and Goloub, P.: Cloud Thermodynamic phase determination from multi-
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2.2 Shortwave infrared and visible measurements

Pilewskie and Twomey (1987) recognized that reflectance measurements near 1.6 and

2.1µm can provide useful information for cloud phase discrimination. For wavelengths

in the shortwave infrared spectrum, the imaginary part of the refractive index becomes

non-negligible for both water and ice, thereby causing absorption by cloud particles to5

occur at these wavelengths. For the MODIS 1.6 and 2.1µm bands, the imaginary part

is also greater for ice than for liquid water. With all other properties being equal, an ice

cloud will exhibit higher absorption than a liquid cloud.

Since almost no absorption occurs at visible wavelengths, the ratio of shortwave

infrared (SWIR) to visible (VIS) reflectances will be lower for an ice cloud than for a10

liquid cloud, assuming everything but phase is kept the same. Because ice particles

are generally larger than liquid cloud droplets, we can derive cloud phase by simply

applying threshold tests on the SWIR to VIS ratio. This will work as long as (i) the liquid

cloud droplet size does not increase too much (or ice particles become very small), (ii)

the optical thickness is sufficiently large for the absorption signal to build (for very thin15

clouds almost no absorption occurs, hence the SWIR/VIS ratio stays close to unity for

both ice and liquid clouds), and (iii) the surface albedo in the SWIR band relative to the

visible isn’t too different.

With these considerations, the ratio of SWIR/VIS reflectances can provide useful in-

formation on the cloud thermodynamic phase when the optical thickness is greater than20

about 1 (King et al., 2004). As illustrated in the following section, an obvious limitation

of this metric is that separation between ice and liquid phase can be ambiguous when

the particle size becomes too large for liquid clouds or too small for ice clouds. How-

ever, this technique is not subject to cloud temperature bias nor systematic geometrical

sampling effects except for the sunglint region over ocean.25

angle polarisation measurements. Overview of an improved algorithm for POLDER3/PARASOL

mission. submitted to IEEE Trans. Geo. and Remote Sensing, 2007.
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2.3 Use of thermal infrared measurements

The bispectral technique discussed in Baum et al. (2003) and Platnick et al. (2003)

is currently used for routine analysis of MODIS data. It is based on the fact that the

imaginary part of the refractive index for ice and liquid are almost equal at 8.5µm

but diverge significantly around 11µm with ice having greater absorption. The use5

of differential absorption properties is similar to the previous SWIR/VIS technique but

infrared channels are used, making the inference of cloud phase independent of solar

illumination. With this method, cloud analyses will be consistent between daytime and

nighttime conditions.

Radiative transfer simulations indicate that the brightness temperature difference10

between the 8.5 and 11µm bands (hereafter denoted as BTD[8.5–11]) tends to be

positive in sign for ice clouds that have a visible optical thickness greater than approx-

imately 0.5. Water clouds of relatively high optical thickness tend to exhibit negative

BTD[8.5–11] values of generally less than −2 K.

In addition to the differences caused by the divergence in the refractive index for15

ice and water, the BTD[8.5–11] values are quite sensitive to atmospheric absorption,

especially by water vapor. Also, these IR window bands are sensitive to the surface

emittance properties. Recent studies have shown that the 8.5-µm surface emittance

can decrease much more significantly than that at 11-µm over non-vegetated land.

Thus, clear-sky BTD[8.5–11] values tend to be negative because of the difference in20

surface emissivity over non-vegetated surfaces between the two bands as well as from

differing sensitivities to water vapor absorption. The BTD[8.5–11] value for low-level

water clouds tends to become more negative as the water vapor loading increases and

as particle size increases. Additionaly, small particles tend to increase the BTD[8.5–

11] values relative to large particles because of increased scattering (assuming total25

ice water content is kept constant).

In summary this technique is subject to surface emissivity, water vapor, and to a

lesser extent particle size biases but has the major advantage of being applicable

14110

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/14103/2007/acpd-7-14103-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/14103/2007/acpd-7-14103-2007-discussion.html
http://www.egu.eu


ACPD

7, 14103–14137, 2007

Cloud phase from

POLDER and MODIS

data

J. Riedi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

to both daytime and nightime measurements. There are known issues with this

approach, primarily for optically thin cirrus, multilayer cloud systems in which optically

thin cirrus overlies a low-level water cloud, and a single-layer cloud at temperatures

between 238 K and 273 K. In this temperature range, one could make a case on the

basis of radiative transfer simulations that either water or ice particles could be present5

(or a mixture of the two), so that one cannot make an unambiguous assessment of

the phase. This is important because single-layered clouds of wide spatial extent

having cloud-top temperatures in the range between 238 K and 270 K are prevalent

in the storm tracks in both the Northern and Southern Hemispheres. While there are

limitations, the MODIS bispectral IR algorithm reports an unambiguous cloud phase10

determination in approximately 80% of global data.

The MODIS operational algorithm provides two sets of information for cloud phase.

One product is provided day and night at 5-km resolution and is based solely on the

bispectral thermal infrared technique. The other product, used in the optical properties15

retrieval, is provided at 1-km resolution during the daytime only and is based on a

combination of both SWIR, thermal IR, and additional information from individual cloud

mask tests.

3 Algorithm description

3.1 Data fusion20

The rationale for merging the three methods previously described is twofold. First,

because each method has its own limitations, it is not always possible to provide a

definitive phase determination based on a single technique. By implementing multiple

approaches, the phase information content can be improved.

The second reason is that when all three methods provide a “reliable” answer, a25

general agreement between them provides a higher confidence level in the retrieval.
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When they disagree, this information is again useful because it provides guidance for

focused attention and potential for identification of multilayer situations or mixed phase

clouds.

3.2 Implementation

In the first step, the algorithm is designed to compute a cloud phase index for each5

individual method and assign to each pixel one of the following: confident liquid, liquid,

mixed, ice, confident ice or unknown (Fig. 4).

In our implementation, the polarization (POLDER) and bispectral thermal IR

(MODIS) algorithms are obtained directly from application of a copy of the most re-

cent production code software. However, we allow for more undetermined cases in10

the POLDER algorithm output when the decision is known to be less reliable (e.g., for

poor observation geometries). Additionally, the cloud top pressure sanity check is not

performed. Further details are provided in the Algorithm Theoretical Basis Documents

for each method and their associated publications (Platnick et al., 2003, Riedi et al.
2
).

The SWIR/VIS method does not reproduce the more complex algorithm used in the15

MODIS optical properties phase product Platnick et al. (2003) (In MOD06 Collection

5 product: refer to Science Data Set Cloud Phase Optical Properties). Only SWIR/VIS

thresholds are applied (2.1µm to 0.670µm ratio over land; 2.1µm to 0.865µm ratio

over ocean) and are given thresholds that provide an unambiguous decision of either

ice or liquid phase. Such an implementation of the SWIR/VIS phase algorithm alone20

would yield a large proportion of undetermined cases if it was to be applied as a stan-

dalone phase retrieval scheme. This is counterbalanced here by the combination of

the three methods.

In the subsequent step, the final decision is from these three individual indices based

on a decision tree built from a priori expert knowledge that accounts for the potential25

strengths and weaknesses of each method. The decision tree starts by looking at the

thermal IR phase index for which high confidence is not allowed. The main reasons

for this are that (i) the algorithm can be applied everywhere with a minimum amount
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of undetermined cases and (ii) it can be applied regardless of solar illumination. The

use of this infrared method as a basis for the decision logic has the advantage of

providing a maximum coverage of the final phase product and is expected to provide

better day/night coherence.

Then, for each possible output of the thermal IR method (liquid, mixed, ice, unknown)5

the two other indices (SWIR/VIS and polarization) are compared and a decision is

made depending on whether the two indices are in agreement with each other, and

also whether they agree with the thermal IR test. The confidence level of each individ-

ual index is also considered for the final decision. Each possible combination is thus

evaluated and accorded a value ranging from 0 (pure high confidence liquid) to 20010

(pure high confidence ice). The highest confidence value is reached when all three in-

dices agree with each other and are all at the highest possible confidence level for the

class considered (the term class refers here to either the liquid, mixed or ice category).

For example, if two indices indicate liquid and the third index is ice, the final decision

would be liquid but with a low confidence value (about 70). When one or two tests can15

not provide useful information, the remaining test will be used alone to take a decision

and will always be accorded a low confidence value. The mixed phase situations tend

to be denoted by a final index value around 100 and correspond to cases in which

the individual tests do not agree with each other. Note that the final decision is not

strictly a linear average of the three intermediate results as each combination has20

been evaluated invidually. Hence, a combination of 2 liquid and 1 ice intermediate

results will not always provide the same final decision depending on which methods

yielded the ice answer for instance. A typical mixed phase case situation would be

for instance, a thermal IR index of mixed, a SWIR indicating ice and a polarization

index indicating liquid. Hence, there is a difference in the final product between low25

confidence ice or water and mixed phase although the final index over an image has

an almost continuous range of values from pure liquid to pure ice.
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4 Theoretical performance consideration

Before discussing the case study, we discuss a number of theoretical scenarios to

understand how the algorithm performs in particular situations.

4.1 Thin cirrus alone

The inference of phase for optically thin ice clouds (i.e., cirrus) can be problematic be-5

cause both surface spectral properties and emissivity can bias the SWIR and thermal

IR methods.

For the SWIR test, the thresholds have values such that in case of thin clouds, the

ratio could be in the undetermined range. One exception is in the sunglint region over

ocean where the ratio can be high enough to lead to liquid phase. Over ocean in the10

sunglint region of MODIS, we use the POLDER data to evaluate the “out of glint” cloud

reflectance. If the minimum reflectance at 0.865 µm observed by POLDER out of the

glint region is lower than 0.1, the SWIR test is switched off to prevent false detection of

liquid phase.

The thermal IR test is very sensitive to thin cirrus due to the strong signal of the15

BTD[8.5–11]. However, when the cirrus optical thickness is less than approximately

0.5 over oceans and warm, vegetated surfaces (where the surface emissivity is high in

both IR bands), a false inference of liquid phase can occur (Baum et al., 2003). The

misinterpretation of phase can occur at slightly higher values of cirrus optical thick-

nesses over non-vegetated surfaces such as deserts.20

Fortunately, the problem is reversed for polarization measurements since clear skies

yield a similar angular signature to ice clouds or very broken low liquid clouds. Hence,

by default the polarization will tend to identify correctly thin cirrus clouds as ice clouds.

Overall, the thin cirrus may be partially misclassified as liquid by the SWIR and IR

tests but the polarization tests will reduce this bias or at least lower the confidence in25

the retrieval.
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4.2 Thick ice/liquid clouds

For optically thick clouds, the SWIR/VIS signal is insensitive to surface spectral prop-

erties but the potential particle size bias remains. The SWIR reflectance will saturate

more rapidly than the VIS reflectance as cloud optical thickness increases. Subse-

quently, the SWIR/VIS ratio will decrease accordingly for both ice and liquid clouds and5

for all particle effective sizes.

Consequently, the probability that the SWIR/VIS ratio for liquid clouds decreases

below some given threshold will increase as cloud optical thickness increases. This

tendency occurs regardless of particle size. In this asymptotic regime, we can deter-

mine from theoretical values of the SWIR and VIS reflectances (computed for different10

values of effective radius and optical thickness), that there exists an extended range of

(τc,Reff) combinations where ice and liquid phase clouds are indistinguishable using a

simple SWIR/VIS ratio. Figure 3 illustrates the overlap between ice and liquid phase

solution spaces in a 2.1–0.865µm reflectance diagram.

The situations may not be as dramatic as it appears in Fig. 3 because as liquid cloud15

optical thickness increases, the probability of having larger droplets increases (not that

the reverse isn’t necessarily true for ice clouds). It remains that the SWIR/VIS ratio

metric will provide unambiguous information only for liquid clouds with Reff less than

8.0 microns or ice clouds with Reff greater than 30 microns.

As can be seen from inspection of Fig. 4, this implies that the potential exists for20

numerous pixels to remain unclassified using the SWIR/VIS metric. For all these cases,

the additional information from the IR bispectral and polarization techniques will be

necessary to provide reliable phase determination.

The BTD[8.5–11] signal is affected by smaller particle sizes because of the increased

scattering, but the information provided becomes ambiguous in case of supercooled25

liquid clouds when cloud top temperature is in the 238 K–270 K range. As with the

SWIR test, one could make a case for either water or ice in this range based on a range

of simulated conditions. A significant number of undetermined or mixed cases for these
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clouds would benefit from additional information from SWIR/VIS and polarization tests.

Note finally that for optically thick clouds, the polarization signal is strong and un-

ambiguous as long as cloud cover is not broken and the angular range available is

sufficient. The main limitation remaining is that polarization provide information for the

very top of the cloud, or into the cloud up to an optical thickness of 3.5

4.3 Thin ice cloud over liquid

Multilayered clouds, and in particular the case where an ice cloud overlies a lower-

level liquid cloud, are problematic for any passive retrieval of cloud properties because

for practical purposes, current operational algorithms have to assume a single-layered

cloud of homogeneous phase. For multilayered clouds, a single phase obviously can-10

not represent the situation. As a consequence, an obvious problem occurs when a

cloud optical property model has to be chosen from a static look-up table for the sub-

sequent retrieval of optical thickness and particle effective size.

To improve the situation, the first step would be to detect when multilayered clouds

occur. This is the subject of some recent work (Pavolonis and Heidinger, 2004; Pavolo-15

nis et al., 2005). In the case of relatively thin cirrus, the different sensitivities of the

three phase discrimination methods can provide useful information depending on the

cirrus optical thickness.

To evaluate our ability to detect a multilayered cloud situation, we have simulated

the different metrics used in our algorithm for an ice cloud of varying optical thickness20

(between 0 and 10) overlying a lower-level liquid cloud layer of constant optical thick-

ness (10). Figures 5, 6, 7 and 8 present respectively the simulated metrics used for

polarization, shortwave infrared and thermal infrared based retrievals.

For SWIR/VIS and IR simulations, the ice crystal model is a perfect hexagonal col-

umn of aspect ratio 1 with a spherical equivalent volume of 40µm. We choose a simple25

model for which all optical properties can be easily and coherently computed for the

various wavelengths involved in our retrievals. For polarization simulations, we used

the IHM model from Labonnote et al. (2001) which proved to best match the polarized
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angular signature of ice clouds on a global scale (Baran and Labonnote, 2006). The

liquid cloud model is a gamma size distribution of spheres with an effective radius of

12µm and an effective variance of 0.1.

An adding-doubling code was used to compute polarized reflectances De Haan et al.

(1987) whereas an accurate Fast Discrete Ordinate Method (Dubuisson et al., 1996;5

Dubuisson et al., 2005), which accounts for absorption and scattering, has been used

for cloud radiance computations in all visible, shortwave infrared and thermal infrared

bands.

Polarized reflectances tend to saturate for optical thicknesses greater than 2. For

cirrus optical thicknesses less than 2, the liquid cloud signature is still present in the10

polarized reflectances in the rainbow scattering angle region (around 140
◦

) as can be

seen from Fig. 5.

For a cirrus optical thickness less than 1, the polarization signature will be classified

as “liquid” by the POLDER standalone algorithm. Between 1 and 2, the polarization

signature will be interpreted as a “mixed” or “undetermined” case; an optical thickness15

greater than 2 will yield “ice” phase. If the rainbow region is not sampled by the mea-

surements, the “mixed” case can not be identified.

The situation is more complex with the SWIR/VIS metric since the respective contri-

bution from absorption and scattering will build up differently depending on the particle

size of both the liquid and ice clouds. However, we can still evaluate approximate upper20

and lower limits of this metric by looking at an asymptotic regime of this ratio. Simu-

lations are performed for two solar geometries (nadir and 30
◦

), 10 view zenith and 20

relative azimuth geometries.

On Figs. 6a and 6b, the SWIR/VIS theoretical ratios are plotted for each cirrus optical

thickness, as a function of viewing angle by averaging over relative azimuth angle. This25

was done to provide a crude estimate for the magnitude of variation one could expect

from a set of realistic cloud conditions. If we consider the average ratio for pure liquid

cloud (0.75 for cirrus optical thickness = 0.) and allow a 0.1 (0.2) variation from this

initial value, then we can see that when thin cirrus OT is less than 0.2 (0.5), the phase
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will be returned as liquid. Conversely, considering the thick ice cloud limit (0.15) and

allowing an equivalent 0.1 (0.2) increase for the ratio would lead to a limit of cirrus OT

of about 3.0 (2.0) above which a single-layered ice cloud can not be distinguished from

a multilayered cloud scenario.

Another way to consider the problem is to consider the thresholds used for interme-5

diate phase retrieval based on SWIR/VIS ratio. The thresholds have been set exper-

imentally and result partially from the analysis of a large number of MODIS scenes

during the validation and quality assessment phase of MODIS cloud optical proper-

ties collection 5 products. The PDF of the ratio values is divided into 5 regions using

thresholds at 0.65, 0.55, 0.35 and 0.25, which correspond respectively to confident10

liquid, probably liquid, unknown, probably ice, and confident ice. These thresholds are

demonstrated in Figs. 6c and 6d, where the SWIR/VIS theoretical ratios are plotted on

a surface as a function of both cirrus OT and viewing geometry. It can be seen from

this that confident liquid (ice) will be assessed only if the overlaying cirrus OT is lower

(greater) than 0.2 (3.0).15

The reduced confidence thresholds occur respectively for liquid and ice at cirrus op-

tical thicknesses of about 0.5 and 2. With this single criterion, a multilayered cloud

situation consisting of ice over water clouds, in which the cirrus optical thickness lies

between 0.5 and 3, will most probably lead to a low confidence or undetermined phase.

Note that these threshold values, derived from statistical analysis of real observations,20

are consistent with those derived by allowing a 0.1 departure from pure liquid or ice the-

oretical ratio values. An important observation also is that this metric seems to present

very limited dependance on viewing or solar geometries, which justify the applicability

of fixed thresholds with respect to the observation geometry, and in consideration of

other uncertainties linked to particle size, for example.25

When the 11µm brightness temperature is in the range of 238 K to 268 K where

ice and supercooled liquid water can coexist, the bispectral IR algorithm is basically

selecting the phase based on BTD[8.5–11] values using a set of thresholds at 0.5,

−0.25 and −1.0 K, delimiting the regions of Ice, Unknown, Mixed and Liquid.
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Figures 7 and 8 illustrate the sensitivity of BTD[8.5–11] to cirrus optical thickness and

to atmospheric profile. Brightness temperatures at 8.5 and 11µm depend strongly on

each cloud layer altitude (temperature), particle size, water vapor profile, and surface

emissivity. It is difficult to evaluate all possible combinations of atmospheric profile,

cirrus altitude and optical thickness, and liquid cloud altitude. We have chosen to5

illustrate only a few problems using simulations performed with four distinct scenarios.

Two cases are considered in which the liquid cloud layer is located at either 5 km

(Fig. 7) or 2 km (Fig. 8), with the cirrus cloud being kept at 10 km. For each case, two

very different atmospheric profiles are considered (MidLatitude Summer, humid and

warm; SubArctic Winter, dry and cold). Finally, the thresholds used for the IR phase10

retrieval are indicated on each of the BTD[8.5–11] figures.

A first observation is that the location of the lower liquid cloud has a moderate in-

fluence on the observed BTD[8.5–11], but this influence is more pronounced (as ex-

pected) for the warm/humid profile. For the MidLatitude Summer profile, the cirrus

temperature is set at about 248 K. From the corresponding BTD[8.5–11] diagrams on15

Fig. 7 and 8, it seems that all situations will be declared Liquid for cirrus OT up to

about 2.0 and will then be declared Mixed or Unknown depending on the value of the

cirrus OT. This clearly illustrates the potential bias in the IR retrieval in the case of mul-

tilayered clouds in a warm/humid atmosphere. For the SubArctic Winter profile, and

again for both liquid cloud altitudes, the phase will rarely be declared as Liquid since20

the BTD[8.5–11] value increases above the −1.0 threshold for cirrus optical thickness

as low as 0.1 or 0.2 depending on the viewing geometry. The phase may be declared

as Mixed for cirrus OT up to 0.5 and will be Unknown until the cirrus optical thickness

reaches a value of 2 unless the 11µm BT passes below the 238 K threshold.

For additional discussion about the sensitivity of BT11 and BTD[8.5–11] we suggest25

reading, among others, the studies from Baum et al. (2000), Strabala et al. (1994) and

Baum et al. (2003).

This sensitivity study is obviously limited but clearly illustrates again the difficulty of

dealing with supercooled and/or multilayer clouds. However, we have shown that the
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polarization, SWIR/VIS and TIR metrics will behave quite differently in these situations,

providing potential information to identify multilayer situations as shown by Nasiri et

al. (2004) using MODIS data only. The identification of multilayer situations in case of

Mixed phase (as determined by our multisensors algorithm) will be done a posteriori

by combining the phase index with other information such as different cloud pressure5

retrievals or observations from active sensors.

4.4 Mixed phase

Mixed phase clouds are obviously problematic and therefore of primary interest for

our current investigation. When liquid spherical droplets coexist with ice particles, we

anticipate that high absorption by ice will show up in the SWIR band and also that10

BTD[8.5–11] may indicate either mixed or undetermined phase.

However, spherical particles can produce a rainbow feature that will toggle a liquid

phase detection in the polarization test. Opposing decisions from the SWIR/VIS and

polarization tests, with mixed or undetermined phase from IR test, will lead to confident

mixed phase in the final index.15

Again, additional information to discriminate multilayer clouds from single layer

mixed-phase clouds will then be needed to decide whether mixed phase is due to

vertical structure or inherent to the single cloud layer. Work is under progress to use

different pressure retrievals from POLDER and MODIS to help detect the presence of

multilayer clouds. Also, the multilayer flag product available from MODIS MYD06 cloud20

product can provide some information and is under investigation, being a new product.

Both will obviously require validation from the active lidar in the A-Train.

Table 1 summarizes the basic principles and potential biases for each of the three

methods used to develop the joint algorithm.
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5 Case study analysis and discussion

The case study selected to illustrate the present approach includes Typhoon Nabi on 2

September 2005. This portion of a PARASOL orbit was selected due to the presence

of a typhoon over ocean and a large cloud system over land. Both scenes contain both

optically thin and thick clouds at different levels, thus providing an a priori complex case5

for which individual phase retrieval methods might provide ambiguous information.

We discuss hereafter particular cloud situations available from this case study. For

each, results for individual phase discrimination tests are discussed, as well as how

each test contributes to the final decision. The final decision takes into account the

limitations and advantages of each method.10

5.1 Northern Scene

The cloud system in the northern part of Fig. 1 provides a very good example of a

midlevel cloud layer (see Oxygen cloud pressure retrieval on Fig.9b). Most of these

clouds have temperatures between 238 K and 268 K where ice and supercooled liquid

water can coexist. Figure 4 shows that a significant portion of the cloud system indi-15

cates an ambiguous signal for the SWIR/VIS metric that is thought to be associated

with large liquid particles since both polarization and TIR tests agree on Liquid phase.

The ice cloud part of the cloud system is retrieved fairly coherently in all three methods

leading to high confidence ice in the final retrieval shown in Fig. (9a).

Finally, the pixels declared as Mixed phase by the TIR method are given a lower20

confidence Liquid flag in the polarization test and the Unknown flag from the SWIR/VIS

test. As can be seen from the O2 pressure retrieval, those Mixed phase pixels have a

slightly higher altitude than some surrounding high confidence Ice pixels, perhaps indi-

cating a multilayer cloud situation. This will be further evaluated using active sensors

in future work.25
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5.2 Typhoon Scene

Investigation of a portion of Typhoon Nabi in the southern part of Fig. 1 provides further

insight as to how the three methods can provide a very different perspective of a given

situation.

The top of the typhoon is located very high in the atmosphere and whether it is5

optically thick or not does not make much difference in the TIR retrieval, indicating a

large extent of the cirrus cloud layer (Fig. 9a). The situation is more ambiguous again

with the SWIR/VIS metric (Fig. 9b), which turns rapidly from confident Ice about the

center of Nabi to Unknown without seeing very many lower confidence Ice pixels.

Finally the polarization test (Fig. 4a) indicates clearly the presence of liquid cloud10

layer just north of Nabi’s eye and also in the western and south-western region of the

typhoon. For these pixels, the final cloud phase index range from low confidence Ice to

high confidence Mixed. It is evident from inspection of individual metrics on Fig. 2 and

O2 cloud pressure on Fig. 9b that most of these pixels correspond to multilayer clouds

where high thin cirrus overlays a lower-level liquid cloud layer. Note also that the partial15

phase indices (Fig. 4) are very consistent in this particular case with what has been

discussed in the theoretical part related to performance of the algoritm in case of thin

cirrus over low water clouds. Again, these findings would need to be validated using

active sensor observations available from CALIPSO and CloudSat in the A-Train. How-

ever, this is beyond the scope of the present paper which aims primarily at describing20

the theoretical basis and implementation of our synergistic algorithm.

5.3 Final phase index

Figure 9a presents the final results of our joint POLDER/MODIS algorithm together

with the cloud pressure derived from Oxygen A-Band (Fig. 9b). At this stage, we can

comment on two facts. First, the cloud phase index presents fairly smooth variation in-25

dicating that the logical decision tree does not yield unstable situations where we would

randomly switch between confident ice and confident liquid. Secondly, the phase index
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behaves fairly coherently compared to cloud O2 pressure even if this information is

not involved in the phase retrieval process. Overall, and before a thorough validation

is performed using active sensors, we conclude from this case study (and others, not

shown/discussed here) that our proposed method provides new and relevant informa-

tion on cloud thermodynamic phase and to a lesser extent on the vertical structure of5

cloud layers.

6 Conclusions

With the use of coincident data available from POLDER3/Parasol and MODIS/Aqua,

three independent methods for deriving cloud phase have been applied singly and

in combination. It is shown that these methods can provide different information for10

a single-layered cloud due to their respective sensitivity to different parameters. For

unambiguous cases where all three methods provide the same answer individually,

the combination is still useful since it can be used to assess the confidence level of

the phase retrieval. For cases where the three methods disagree, an attempt is made

to interpret the differences in terms of multilayer clouds and/or single-layered mixed15

phase clouds.

Validation of the retrieved joint product is outside the scope of this paper but we

can expect the combination of well evaluated methods to provide at least an equally

accurate product. The value added by the synergy of POLDER and MODIS relies

mainly in (i) the confidence index associated with the product, (ii) the potential to clearly20

identify mixed phase cases and (iii) to a lesser extent, the possibility of determining an

index for almost every pixel that uses the strengths of each method.

In future research, a thorough analysis of the full joint dataset provided by

POLDER3/Parasol and MODIS/Aqua will provide statistics of this new product. Ob-

viously, with the availability of CloudSat and CALIPSO, it is expected that a large vali-25

dation dataset containing vertical profile information will help us in evaluating the sta-

tistical meaningfulness of each class of the decision look-up table. However, a cloud
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phase product from CALIOP (the depolarization lidar on the CALIPSO platform) is not

currently available but is slated for release in the near future.

If a reasonable correlation between radar/lidar data and the phase index can be

demonstrated in case of multilayer or mixed phase clouds, the POLDER/MODIS com-

bination will prove extremely useful to extend the vertical information from the active5

instruments to the full swath covered by the passive instruments of the A-Train.
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tion cloud measurements from satellite: POLDER results, Adv. Space Res., 33, 1080–1088,

2004. 1410610

Pavolonis, M. J. and Heidinger, A. K.: Daytime cloud overlap detection from AVHRR and VIIRS,

J. Appl. Meteorol., 43, 762–778, 2004. 14105, 14116

Pavolonis, M. J., Heidinger, A. K., and Uttal, T.: Daytime global cloud typing from AVHRR and

VIIRS: Algorithm description, validation, and comparisons, J. Appl. Meteorol., 44, 804–826,

2005. 14105, 1411615

Pilewskie P. and Twomey, S.: Cloud phase discrimination by reflectance measurements near

1.6 and 2.2µm, J. Atmos. Sci., 44, 3410–3420, 1987. 14109

Platnick S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riedi, J., and Frey, R. A.:

The MODIS Cloud Products: Algorithms and Examples from Terra. IEEE, Trans. Geo. and

Remote Sensing, 41, 459–473, 2003. 14105, 14106, 14110, 1411220

Riedi J., Goloub, P., and Marchand, R. T.: Comparison of POLDER cloud phase retrievals to

active remote sensors measurements at the ARM SGP site. Geophys. Res. Lett., 28–11,

2185–2188, 2001. 14106

Strabala, K. I., Ackerman, S. A., and Menzel, W. P.: Cloud Properties inferred from 8-12-µm

Data, J. Appl. Meteorol., 33, 212–229, 1994. 1411925

Takano, Y., Liou, K. N., and Minnis, P.: The Effects of Small Ice Crystals on Cirrus Infrared

Radiative Properties, J. Atmos. Sci., 49, 1487–1493, 1992.

Tian, L. and Curry, J. A.: Cloud overlap statistics, J. Geophy. Res., 94, 9925–9935, 1989.

Vanbauce, C., Buriez, J. C., Parol, F., Bonnel, B., Séze, G., and Couvert, P.: Apparent pressure
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Table 1. Summary of methods main characteristics and limitations.

Polar. SWIR/VIS Thermal IR

Sensitivity To Cloud Properties

Particle shape yes no no

Particle absorption no yes yes

Particle size no yes moderate

Potential Biases

Obs. Geometry yes no no

Temperature profile no no yes

Water Vapor profile no no yes

Particle Size no yes moderate

Fractional Cloud Cover yes moderate moderate

Surface albedo/emissivity no yes yes
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Fig. 1. POLDER true color composite of the common scene observed by MODIS and PARA-

SOL on 2 September 2005 (MODIS swath is larger than POLDER). The southern part of the

image is typhoon Nabi. 14129
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Fig. 2. Illustration over typhoon Nabi of the 3 metrics used for phase determination : (a) ratio of

shortwave infrared to visible channel (2.1 to 0.865 microns), (b) brightness temperature differ-

ence between 8.5 and 11 microns channel, (c) false color composite from 490, 670 and 865 nm

polarized reflectance for one instantaneous POLDER field of view, and (d) typical multi-angular

polarized reflectance signature of liquid (red) and ice (blue) clouds.
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Fig. 3. Simulation for two solar geometries of the 2.1µm against 865 nm reflectances for an ice

(blue) and liquid (red) cloud of varying optical thickness and effective radius. Overlapping zone

between the ice and liquid retrieval spaces (shaded region) corresponds to situation where

SWIR/VIS metric can not provide unambiguous phase information.
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Fig. 4. Results of the partial cloud phase index retrieved from (a) POLDER polarization algo-

rithm, (b) MODIS SWIR based algorithm and (c) MODIS bispectral IR algorithm.
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cloud of varying optical thickness overlaying a lower liquid water cloud of optical thickness 10.
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Fig. 6. Simulation for different geometries of the 2.1µm to 865 nm reflectance ratio for an ice

cloud of varying optical thickness overlaying a lower liquid water cloud of optical thickness 10.

Panels (a) and (b) present the simulated ratio for different cirrus optical thickness as a function

of viewing angle. Results are averaged over relative azimuth and standard deviations are

indicated using error bars. Panels (c) and (d) present the same results as a surface contour of

simulated ratio, function of viewing angle and cirrus optical thickness. The later representation

is used to better illustrate the different regions defined by the SWIR/VIS thresholds used in our

algorithm. 14134
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Fig. 7. Simulation for a Mid-Latitude Summer (left) and a Sub-Arctic Winter (right) atmospheric

profile of the brightness temperature differences (in Kelvin) between channel at 8.5 and 11µm

as a function of view angle for an ice cloud of varying optical thickness at 10 km overlaying

a lower liquid water cloud of optical thickness 10, located at 5 km. Isolines correspond to the

thresholds used in the bispectral IR phase determination

14135

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/14103/2007/acpd-7-14103-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/14103/2007/acpd-7-14103-2007-discussion.html
http://www.egu.eu


ACPD

7, 14103–14137, 2007

Cloud phase from

POLDER and MODIS

data

J. Riedi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

 8.5µm 

1

2

3

4

5

6

δ

10 20 30 40 50 60

θv

 11µm 

1

2

3

4

5

6

δ

10 20 30 40 50 60

θv

 8.5µm - 11µm 

1

2

3

4

5

6

δ

10 20 30 40 50 60

θv

220 K

227 K

234 K

241 K

248 K

255 K

262 K

269 K

276 K

283 K

 8.5µm 

1

2

3

4

5

6

δ

10 20 30 40 50 60

θv

220 K

227 K

234 K

241 K

248 K

255 K

262 K

269 K

276 K

283 K

  11µm 

1

2

3

4

5

6

δ
10 20 30 40 50 60

θv

-5.0

-4.4

-3.8

-3.2

-2.7

-2.2

-1.6

-1.0

-0.5

0.0

0.6

 8.5µm - 11µm 

1

2

3

4

5

6

δ

10 20 30 40 50 60

θv

−0.5

−1.0 0.5

−0.25
−0.5 −1.0

Fig. 8. Same as Fig. 8a but liquid cloud is located at 2 km.
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Fig. 9. (a) Results of the final cloud phase index retrieved from combination of POLDER and

MODIS data. (b) Cloud top pressure derived from POLDER oxygen A-Band method.
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