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Abstract

Deep convection induced by large forest fires is an efficient mechanism for transport of

aerosol particles and trace gases into the upper troposphere and lower stratosphere

(UT/LS). For many pyro-cumulonimbus clouds (pyroCbs) as well as other cases of

severe convection without fire forcing, radiometric observations of cloud tops in the5

thermal infrared (IR) reveal characteristic structures, featuring a region of relatively

high brightness temperatures (warm center) surrounded by a U-shaped region of low

brightness temperatures.

We performed a numerical simulation of a specific case study of pyroCb using a

non-hydrostatic cloud resolving model with a two-moment cloud microphysics param-10

eterization and a prognostic turbulence scheme. The model is able to reproduce the

thermal IR structure as observed from satellite radiometry. Our findings establish a

close link between the observed temperature pattern and small-scale mixing processes

atop and downwind of the overshooting dome of the pyroCb. Such small-scale mixing

processes are strongly enhanced by the formation and breaking of a stationary gravity15

wave induced by the overshoot. They are found to enhance the stratospheric pene-

tration of the smoke by up to 30 K and thus are of major significance for irreversible

transport of forest fire smoke into the lower stratosphere.

1 Introduction

Deep convection induced by large forest fires is a highly efficient mechanism for the20

vertical transport of gaseous and particulate fire emissions. As documented by sev-

eral both observational and modeling studies, in its most extreme form, so called

pyro-Cumulonimbus (pyroCb) convection, this process can result in direct injection

of substantial amounts of smoke as high as into the lower stratosphere (Fromm and

Servranckx, 2003; Fromm et al., 2005; Rosenfeld et al., 2007; Trentmann et al., 2006;25

Luderer et al., 2006). Due to a different chemical environment and the lack of washout
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processes, the lifetime of many tracers, such as aerosol particles and NOy, is greater

in the lower stratosphere than in the troposphere. The injection of biomass smoke

therefore results in a substantial perturbation of the chemical composition and the ra-

diative balance of the upper troposphere and lower stratosphere (UT/LS) region, with

potentially far reaching consequences for atmospheric chemistry and even climate.5

The Chisholm fire is one of the largest forest fires ever observed; it has been scien-

tifically documented and thoroughly analysed in terms of its fire characteristics (ASRD,

2001; Fromm and Servranckx, 2003) as well as its atmospheric impact (Fromm and

Servranckx, 2003; Trentmann et al., 2006; Luderer et al., 2006; Rosenfeld et al., 2007).

Here, it serves as a case study for the assessment of the structure of overshooting10

cloud tops.

This study links two important aspects of intensive deep convection: The occurrence

of characteristic cloud top temperature patterns that are regularly associated with py-

roCbs and other intensive thunderstorms (cold U with an enclosed warm center, see

below), and the role of small-scale mixing processes at the cloud top in troposphere-15

to-stratosphere transport (TST).

Understanding and quantification of TST from mid-latitude deep convection is not

only important for pyroCbs, but also for intensive regular thunderstorms. Even though

mid-latitude deep convection accounts for only a small fraction of the air masses in the

lowermost extra-tropical stratosphere (Holton et al., 1995), this process is very impor-20

tant for the budgets of many trace species in the lower stratosphere, most notably water

vapor as well as some short-lived species (Mullendore et al., 2005). This is due to the

rapid and direct transport from the planetary boundary layer, where most tracers have

their sources. Several studies, e.g., Fischer et al. (2003), Ray et al. (2004), Hanisco

et al. (2007) and Pittman et al. (2007), report direct observational evidence for the in-25

fluence of water vapor and tracers into the lower stratosphere due to deep convection

at high- and mid-latitudes. Numerical studies using cloud resolving models have in-

vestigated the characteristics of TST induced by deep convection. Wang (2003, 2007)

identified gravity wave formation and breaking atop convective thunderstorm clouds as
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an important process for the injection of moisture plumes into the lower stratosphere.

Lane et al. (2003) and Lane and Sharman (2006) found that the breakdown of grav-

ity waves generated by thunderstorms is an important source of turbulence above the

cloud and at tropopause level. Mullendore et al. (2005) assessed the vertical transport

of idealized passive tracers by deep convection and found that, in addition to latent5

heating, mixing processes contribute significantly to potential temperature increases

necessary for irreversible TST.

When observed from space, many pyroCbs, as well as intense regular thunderstorm

clouds, feature a distinct cloud top temperature pattern. Due to its structure with a warm

center surrounded by a U-shaped cold region, this feature will hereafter be referred to10

as the “cold U/warm center”. Typically, cold U brightness temperatures are lower than

the tropopause minimum, while the temperatures in the warm center are higher than

the temperatures of ambient air at the cloud top altitude. Observations of such thermal

structures have been reported repeatedly in the literature (e.g., Heymsfield et al., 1983;

Heymsfield and Blackmer, Jr., 1988; Levizzani and Setvák, 1996; Setvák et al., 2007;15

Rosenfeld et al., 2007).

Most of these studies agree that the cold U region is due to exposure of air masses

that have cooled while ascending adiabatically beyond their level of neutral buoyancy

(e.g., Heymsfield and Blackmer, Jr., 1988; Rosenfeld et al., 2007). There is, however,

substantial uncertainty about the cause of the warm center. In a recent study based on20

analysis of brightness temperatures at various wavelengths, Setvák et al. (2007) found

that, for some storms, moisture plumes above the anvil level reach equilibrium with high

stratospheric temperatures and mask the colder temperatures of the underlying cloud

tops, thus giving rise to the observed warm center. Other studies suggested effects

related to variations in radiative properties of cloud hydrometeors at the cloud top, with25

optically less opaque hydrometeors in the center allowing IR radiometers to see further

down to a lower, hence warmer level of effective emission (Heymsfield et al., 1983).

In this paper, we will demonstrate that both observations and simulations suggest that

neither moisture masking nor effects related to the hydrometeors’ radiative properties
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were relevant in our case study. The analysis of Rosenfeld et al. (2007) showed that the

emissivity in the core is close to unity and does not show any inferred change of particle

size in the warm center. Based on these observational results, and the simulation of

the Chisholm pyroCb presented here, we infer that the warm center originated from

subsidence and mixing of stratospheric air masses induced by gravity wave activity.5

This explanation is in good agreement with those proposed in earlier studies by Adler

and Mack (1986) and Schlesinger (1984).

This paper is structured as follows: In the next section, observations of the Chisholm

pyroCb are presented. In Section 3, the Active Tracer High Resolution Atmospheric

Model (ATHAM) and the model setup used for this study are described. Section 410

presents an analysis of the cloud top structure based on the model results. Discussions

and conclusions are presented in Section 5.

2 Observations

The Chisholm fire serves as a case study for this paper. In terms of its atmospheric

impacts, the Chisholm fire is the largest boreal forest fire ever to be scientifically docu-15

mented. Its fire characteristics were thoroughly documented by the Alberta Sustainable

Resource Development agency. According to the post-burn assessment presented in

ASRD (2001), the Chisholm Fire burned an area of 50 000 ha in the time of its most

intensive activity between 17:00 and 24:00 local time on 28 May 2001 alone. The fire

intensity was up to 239 000 kW m
−1

(Trentmann et al., 2006; ASRD, 2001). The severe20

intensification of the fire-induced convection was observed to coincide with the passage

of a synoptic cold front. As documented by numerous satellite and ground based ob-

servations, it injected substantial amounts of smoke into the lower stratosphere, which

persisted for several months and resulted in a significant enhancement of the lower
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stratospheric aerosol loading on a hemispheric scale (Fromm et al., 2007a
1
; Fromm

et al., 2007b
2
). Rosenfeld et al. (2007) analyzed the structure, precipitation and light-

ning activity of the pyroCb based on satellite and RADAR data and found that the

convection reached an altitude of about 13.5 km. In an earlier modeling study, Trent-

mann et al. (2006) and Luderer et al. (2006) reproduced the observed structure of5

the Chisholm pyroCb, and assessed its sensitivity to fire activity and meteorological

background conditions. It was found that the main driving forces for the vertical devel-

opment of the convection and subsequent TST of smoke were the release of sensible

heat from the fire and the background meteorological conditions, while the release of

latent heat in the form of water vapor and the presence of aerosol particles acting as10

cloud condensation nuclei was of much lesser importance.

Not only the stratospheric aerosol plume produced by the Chisholm fire, but also

the pyroCb convection itself was well captured by satellite observations (Fromm and

Servranckx, 2003; Rosenfeld et al., 2007). Fortuitously, a NOAA Advanced Very High

Resolution Radiometer (AVHRR) overpass occurred at 02:20 UTC during the mature15

phase of the pyroCb convection. The anvil of the pyroCb is clearly visible in both the

0.65µm channel (Fig. 1a) and the thermal IR at 10.8µm (Fig. 1b).

The fire was located between approximately 55.0
◦
N and 55.2

◦
N at 114.3

◦
W, below

the southern edge of the pyroCb anvil. Due to strong southerly winds associated with

the passing cold front, the convection cell was tilted to the north and the anvil spread20

to northward directions. The areas of maximum reflectance and the shadows cast in

the 0.65µm give a good indication of the location of the overshooting dome.

The cloud top temperatures of the pyroCb are much lower than those of the sur-

rounding clouds that were not affected by the fire, showing that the fire induced con-

vection reached much higher than ambient convection. As is the case for a number25

1
Fromm, M., Torres, O., Diner, D., et al.: The stratospheric impact of the Chisholm Pyro-

Cumulonimbus eruption: nadir satellite perspective, J. Geophys. Res., submitted, 2007a.
2
Fromm, M., Shettle, E., Fricke, K. H., et al.: The stratospheric impact of the Chisholm

Pyro-Cumulonimbus eruption: vertical profile perspective, J. Geophys. Res., submitted, 2007b.

10376

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/10371/2007/acpd-7-10371-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/10371/2007/acpd-7-10371-2007-discussion.html
http://www.egu.eu


ACPD

7, 10371–10403, 2007

Small-scale

processes enhancing

TST by pyroCb

storms

G. Luderer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

of other pyroCbs, the Chisholm pyroCb features a distinct pattern when observed from

space with a thermal IR radiometer. While most of the anvil region is characterized by

brightness temperatures of about −61
◦
C to −59

◦
C, corresponding to the tropopause

cold point temperature level, a region with brightness temperatures that exceed those

in the other parts of the anvil by 5–10 K is evident at the center of the pyroCb’s top.5

This warm center structure is located above and downwind of the overshooting dome.

In the upwind direction, the warm center is surrounded by an arch-shaped area of

very cold temperatures. The background temperature profile at the time and location

of the pyroCb convection was obtained from the radiosonde observations recorded at

00:00 UTC at Edmonton (Fig. 2), at about 200 km distance and shortly before the time10

of the convective blow-up of the pyroCb. The cloud top temperature structure is very

remarkable since the coldest temperature of −66
◦
C is much colder than the tropopause

cold point. Conversely, the warmest areas are warmer than −52
◦
C. According to this

sounding, temperatures were −53.7
◦
C or lower throughout the lower stratosphere. The

observed temperature maximum can therefore not be explained by the overshooting15

into warm areas of the lower stratosphere alone.

According to Inoue (1987), the actual cloud top temperature nearly equals the

cloud top thermal temperature if the difference between the brightness temperatures

recorded at 10.8µm and 12.0 µm is within a fraction of a degree. Since the brightness

temperature difference is near zero throughout the center of the Chisholm pyroCb’s20

cloud top (Rosenfeld et al., 2007), we conclude that the observed brightness tempera-

ture pattern is representative of the actual temperature structure at the cloud top.

The cold U/warm center structure of the Chisholm pyroCb was also captured by

the Defense Meteorological Satellite Program (Rene Servranckx, personal communi-

cation, 2005) and shows up as a persistent feature in the GOES geostationary satellite25

imagery (Fromm et al., 2007a
1
). Similar cloud top brightness temperature patterns

were also observed for other pyroCbs (Fromm et al., 2005) as well as regular thunder-

storms (see Introduction), indicating that these are characteristic features of intensive

convection.
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3 The Active Tracer High Resolution Atmospheric Model (ATHAM)

The numerical simulations presented here were performed with the Active Tracer

High resolution Atmospheric Model (ATHAM), a non-hydrostatic cloud-resolving model

originally designed for the simulation of the extreme dynamical conditions present in

plumes. In earlier studies, ATHAM was employed to investigate volcanic eruptions5

(e.g., Oberhuber et al., 1998; Herzog et al., 1998; Graf et al., 1999; Textor et al., 2003)

and wildfire induced convection (Trentmann et al., 2002, 2006; Luderer et al., 2006).

The dynamical core of ATHAM is such that it fully accounts for the effects of all trac-

ers such as hydrometeors, aerosols and gaseous components on heat capacity and

density. The feedback of liquid and frozen cloud particles on the convection dynam-10

ics is therefore explicitly represented. The Euler equation is solved for a gas-particle

mixture under the assumption of zero net fluxes between its constituents for momen-

tum and heat. The volume mean momentum is conserved. The tracer advection is

formulated in mass-conserving form.

For realistic simulation of entrainment of environmental air into the the plume, as well15

as detrainment and mixing of smoke at the cloud top, subgrid scale turbulence is pa-

rameterized using a modified TKE scheme. In this approach, turbulent kinetic energy

(TKE) is a prognostic variable from which the horizontal and vertical turbulent exchange

coefficients are derived (Herzog et al., 2003). Cloud microphysical processes are rep-

resented using a two-moment microphysical scheme (Textor et al., 2006a,b). There20

are four hydrometeor classes, namely, cloud droplets (small, liquid), rain drops (large,

liquid), ice crystals (small, frozen), and graupel (large, frozen), for each of which mass

concentrations and number densities are predicted. A total of 13 processes transferring

water between the four hydrometeor classes and the vapor phase are considered.

The model setup is identical to that used in Trentmann et al. (2006) and Luderer et al.25

(2006). The fire forcing is assumed to be constant during the simulation and is repre-

sented as a rectangular front of 15 000 m length and 500 m width. The model domain

is 85 km in the direction along the fire front and 65 km across, with the upper boundary
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at 26 km. The number of grid points used is 110×85 in the x- and y-directions and 100

in the z-direction. We used a focusing grid with maximum resolution at the fire and its

vicinity, where the gradients of tracer concentrations and temperature are largest. To-

wards the edges of the model domain, the grid spacing is larger. In the horizontal, the

minimum grid spacing was set to 100 m perpendicular to the fire front and 500 m along5

the front. In the vertical, we used two regions of enhanced spatial resolution: the grid

spacing was 50 m at the ground and, for more accurate simulation of troposphere-to-

stratosphere transport, 150 m at the tropopause. In the mid-troposphere, the maximum

vertical spacing was 300 m.

The fire was assumed to consume 9 kg m
−2

of fuel at a rate of spread of 1.5 m s
−1

.10

In this simulation run we assumed that 100% of the fire energy goes into the heating

of the atmospheric layer over the fire, i.e., radiative losses were assumed to be zero.

A fuel moisture value of 40% based on dry fuel mass was assumed. This yields a fire

intensity, i.e., sensible heat release per unit fire front length, of 239×10
6

W m
−1

, and a

moisture release of 12.2 kg m
−1

s
−1

. For the aerosol emissions, we used an emission15

factor for total particulate matter (TPM) of 17.6 gTPM kg
−1

fuel
(Andreae and Merlet, 2001)

and assumed, for the particles, a volume mean diameter of 0.2µm, which is consistent

with Reid et al. (2005).

Background meteorology was adopted from radiosonde observations that were per-

formed at Edmonton (53.5
◦
N, 114.1

◦
W), located about 200 km south of the fire loca-20

tion, at 00:00 UTC, shortly before the time of the blow-up (Fig. 2). This sounding is likely

to closely match the meteorological background condition for the Chisholm pyroCb.

Based on ECMWF reanalysis data, the dynamical tropopause (defined as the 2 PVU

potential vorticity level) was located at a potential temperature of 332 K, corresponding

to an altitude of 11.2 km. Here, we opted to use the tropopause definition in terms of25

potential vorticity (PV) since it is most meaningful in terms of troposphere-stratosphere

exchange at mid-latitudes. Since the PV isosurfaces become strongly disturbed during

the active convection, we use the 332 K isentrope of potential temperature to calculate

the TST from the model simulation.
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Given the complicated three-dimensional structure of the pyroCb, the interaction of

its dynamics with incident solar and thermal radiation from the fire are highly com-

plex. Interactive broadband three-dimensional simulation of radiation is computation-

ally much too expensive for simulations with cloud-resolving models such as ATHAM.

Therefore, the following assumptions were made. Since most of the radiative energy5

from the fire is absorbed by the pyro-cloud, we assumed that the entire fire energy

becomes available for the convection. This is consistent with the finding presented in

Luderer et al. (2006) that the observed structure of the pyroCb can only be reproduced,

if the radiative loss is small compared to the fire energy release. Moreover, effects of

solar heating were assumed to be negligible. While it likely contributed substantially to10

the lofting of the stratospheric aerosol plume during the days after the Chisholm fire,

solar heating is of low significance for the convective time scales of less than one hour

and the large solar zenith angles during the convective phase considered here.

In order to compare the simulations with satellite observations of brightness tem-

perature, an offline-simulation of the radiative properties of the pyroCb was performed15

using a one-dimensional, broadband, δ-four-stream radiative transfer model (Fu and

Liou, 1993; Hungershöfer, 2007). At each vertical column of the ATHAM grid, an

independent-column calculation was performed. Up to an altitude of 26 km, the ver-

tical model layers were adopted from ATHAM. For the remaining part up to the top of

the atmosphere at 80 km, data for a standard mid-latitude summer atmosphere (Ander-20

son et al., 1986) were applied. In total, this resulted in 129 horizontally homogenous

layers with a thickness varying from 50 m near the surface to 10 km in the mesosphere.

The brightness temperature was determined from the upward-directed flux density at

the top of the atmosphere for the wavelength band from 10.2µm to 12.5µm. In this

atmospheric window region, only the absorption of water vapor and the effect of the25

hydrometers had to be taken into account. To determine the optical properties of the

four hydrometeor classes, pre-calculated values were scaled with the respective mass

concentrations simulated with the ATHAM model. In case of the water droplets, a con-

stant effective radius of 5µm was assumed. For ice crystals, a plate-like structure with
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an effective size of 25µm was applied, which roughly corresponds to an effective ra-

dius of about 10µm as obtained in the retrieval by Rosenfeld et al. (2007). Aerosol

optical properties were considered as well, but their influence was found to be small in

the wavelength region considered.

4 Model results5

Two- and three-dimensional visualizations of the modeled smoke plume are provided in

Figs. 3 and 4. Figure 3 depicts the 50 µg m
−3

isosurface of aerosol mass concentration

color coded with potential temperature θ. In the coordinate frame used for the simu-

lations, the x-direction is aligned with the fire front orientation and is therefore rotated

with respect to north by 165
◦
. The overshooting cloud top is centered at x=15 km,10

y =−5 km and reaches to a maximum altitude of about 13 000 m. At this altitude level,

background winds were blowing from south-south-west, at an angle of about 25
◦

to the

x-axis. In order to optimally capture the overshooting cloud top and its substructure, the

vertical 2d cross sections presented here were prepared along the y =−5 km line. The

vertical cross section of the aerosol mass distribution depicted in Fig. 4 shows that the15

plume reached a peak altitude of 13 km, well above the tropopause, which was located

at 11.2 km. The maximum potential temperature at the cloud top was approximately

360 K.

4.1 Simulated radiative and thermal structure of the cloud top

Top views of the modeled smoke cloud at three different times are given in Fig. 5. The20

pyroCb is represented by the 0.5 g kg
−1

hydrometeor concentration isosurface and has

been color-coded with the temperature field on this isosurface, thus showing the “skin

temperature” of the cloud top. Similar to the satellite observations, the thermal structure

of the cloud top features a warm center partially surrounded by an arch-shaped region

of cold temperatures.25
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Fig. 6 shows results from offline calculations of the pyroCb’s radiative properties

after 40 min simulation time. Figure 6a presents the extinction coefficient resulting

from aerosols and hydrometeors in the AVHRR 10.8µm wavelength channel. At this

wavelength, scattering is much less significant than absorption, and the extinction is

dominated by hydrometeors. The extinction coefficient is highly variable throughout5

the pyroCb, with maximum values of 0.25 m
−1

in the non-frozen part of the updraft, and

more moderate extinction at the cloud top and the anvil. Figure 6b depicts the total

optical depth relative to the top of the atmosphere. The τ=1 contour can be used to

estimate the effective thermal emission level (e.g., Thomas and Stamnes, 1999). Even

though the aerosol and hydrometeor extinction is small at the cloud top compared10

to the pyroCb center, the τ=1 level is located very close to the cloud top, indicating

that the temperature structure observed by the satellite radiometer is representative

of the conditions at the cloud top. This explains the close agreement between mod-

eled brightness temperature (Fig. 7) and modeled in situ “skin temperature” (Fig. 5c).

As discussed in Sect. 2, the observations also support the conclusion that the cloud15

was optically thick in the thermal IR. Hence the occurrence of the cold U/warm center

structure must have been due to dynamic effects at the cloud top rather than radiative

effects.

The simulated cloud top brightness temperature structure (Fig. 7) is in good agree-

ment with the observations. When viewed from above, the warm center is located at20

the downwind side of the overshooting dome, while the minimum cloud top tempera-

tures are found on the upwind side of the overshoot. For most of the anvil, brightness

temperatures are in the −56 to −59
◦
C range, roughly in equilibrium with the tropopause

temperature level at this altitude. These brightness temperatures are slightly warmer,

by 2–3 K, than in the observations, but are consistent with the uncertainty in the back-25

ground temperature profile and the anvil altitude, which might have been slightly under-

estimated by our ATHAM simulations. The maximum cloud top brightness temperature

in the warm center is −48
◦
C, substantially warmer than the −58

◦
C of the ambient air

at this altitude. On the other hand, the minimum brightness temperatures in the cold U
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region are close to −65
◦
C, about 5

◦
C colder than the tropopause cold point. The differ-

ence of 17
◦
C between the simulated maximum and minimum cloud top temperatures is

in good agreement with the AVHRR brightness temperature field, where a difference of

15
◦
C between the warm center and the cold U was recorded (see Sect. 2 and Fig. 1b).

4.2 Gravity wave formation5

Vertical cross sections through the pyroCb reveal the physical reason for the observed

cloud top temperature structure. Figures 8a, b depict the temperature anomaly, i.e., the

difference between in-situ temperature within the pyro-cloud and the background tem-

perature at the corresponding altitude level on the vertical plane parallel to the fire front

at y =−5 km. It shows a distinct bipolar temperature structure, featuring a strong neg-10

ative temperature anomaly within the pyroCbs overshooting dome, accompanied by a

strong positive temperature anomaly above and downwind (Fig. 8b). A similar bipolar

structure is also found in the pressure anomaly and vertical wind fields, indicating a

stationary gravity wave induced by the overshoot: The cold overshooting air masses

are negatively buoyant and tend to sink as they are advected downwind, thereby cre-15

ating a negative pressure anomaly on the downwind side of the overshoot (Fig. 8c).

In turn, this negative pressure anomaly induces downward motion of airmasses from

above the cloud top (Fig. 8d). Due to adiabatic heating, this process gives rise to the

strong positive temperature anomaly above and downwind of the overshooting dome.

The gravity wave also shows up prominently as a strong perturbation in the potential20

temperature field (Fig. 9g). The air masses in the warm area right above the cloud

top feature θ-values of up to 380 K, indicating that these airmasses originate from an

altitude level of 13 600 m, having descended as much as 600 m.

4.3 Cross-isentrope transport due to small-scale mixing

The gravity wave induced by the overshooting cloud top enhances the cross-isentrope25

transport of smoke laden air into the lower stratosphere in two ways. First, the close
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proximity of the pyroCb’s overshooting dome, with its strong negative temperature

anomaly, to a region of air masses with stratospheric origin and positive temperature

anomaly above and downwind of the dome results in very large gradients of potential

temperature and trace gas concentration directly atop of the overshooting dome. Sec-

ond, gravity wave breaking generates additional turbulence, thereby greatly enhancing5

the mixing efficiency.

Figure 9 depicts vertical cross sections through the fields of potential temperature

(a, c, e, g) and of the vertical turbulent exchange coefficient, as simulated by ATHAM’s

turbulence scheme (b, d, f, h) for four points in time. During the first 20 min of the devel-

opment of the pyroCb, the air masses in the cloud are highly turbulent, with maximum10

values of the vertical turbulent exchange coefficient of up to 1500 m
2

s
−1

at the center

of the updraft. The strong gradient of potential temperature above the overshooting

dome, i.e., a very stable stratification, acts as a sink for turbulent kinetic energy. There-

fore, the turbulent exchange coefficient strongly decreases at the cloud top.

After about 30 min of simulation time, the gravity wave becomes unstable due to15

the vertical wind shear at the tropopause level. Downwind of the overshooting dome,

air masses with high potential temperature are transported below potentially colder air

masses, resulting in gravity wave breaking (Fig. 9e). Such gravity wave breaking is a

highly efficient mechanism for the generation of turbulence (Fig. 9f). It is evident from

the potential temperature and turbulence fields after 40 min (Figs. 9g, h) that the advec-20

tion of gravity-wave generated turbulence along the cloud top results in very efficient

mixing of smoke laden air masses of the pyro-cloud with potentially warm air masses

of stratospheric origin.

As discussed in Sect. 4.2, such cloud top mixing of potentially warm stratospheric

air with smoke and hydrometeor enriched pyroCb air gives rise to the warm center25

structure as observed in the thermal satellite imagery. This establishes a direct link

between the thermal structure and TST above deep convection, hence the cold U/warm

center feature as derived from satellite could serve as an indicator for the occurrence

of TST above deep convection.
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4.4 Troposphere-to-stratosphere transport

In order to assess troposphere-to-stratosphere transport (TST) of smoke tracers, it is

instructive to consider vertical tracer distributions both as a function of altitude, and

as a function of potential temperature. The temporal evolution of such vertical aerosol

distributions is given in Fig. 10.5

The most notable feature of this analysis is the fact that the maximum penetration

altitude is already reached after 20 min, whereas the aerosol distribution as a func-

tion of potential temperature continues to progress to higher values as the simulation

advances in time.

As shown in Fig. 10a, the maximum penetration height is approximately 13 000 m.10

The main outflow height of the smoke is at 10 500 m, giving rise to a peak in the vertical

aerosol mass distribution at this level. Over the course of the simulation, due to the

continuing convective vertical transport of smoke, increasing amounts of aerosol mass

become injected and the layers above 7000 m become increasingly enriched in aerosol

mass. The maximum penetration height, however, remains almost unchanged once15

the 13 000 m level is reached after about 20 min, i.e., the strong inversion in the lower

stratosphere inhibits further vertical ascent of the air parcels in the overshoot to higher

altitude levels.

In terms of TST, however, the aerosol distribution as a function of potential temper-

ature θ is more meaningful (Fig. 10b). In order to mask out the high temperatures20

directly above the fire, only smoke parcels above an altitude of 5000 m were consid-

ered for the analysis presented here. At this level, the sensible heat from the fire is

sufficiently diluted, so that the high potential temperature tail of the aerosol distribution

represents smoke located in the tropopause region only. In contrast to the maximum

penetration altitudes, the maximum θ-values reached by the aerosol plume continue to25

rise to higher levels: The aerosol density exceeds 1000 kg K
−1

up to a potential tem-

perature level of 342 K after 20 min, 350 K after 30 min, 354 K after 40 min and 359 K

after 50 min.

10385

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/10371/2007/acpd-7-10371-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/10371/2007/acpd-7-10371-2007-discussion.html
http://www.egu.eu


ACPD

7, 10371–10403, 2007

Small-scale

processes enhancing

TST by pyroCb

storms

G. Luderer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

The continuous increase in maximum potential temperature without an increase in

maximum altitude strongly supports the finding that, in addition to convective advection,

other driving forces are responsible for the cross-tropopause transport at the cloud top.

We can assess the relative importance of turbulent mixing by considering the energy

balance of an individual air parcel.5

The difference in potential temperature between the boundary layer and the lower

stratosphere is typically of the order of several tens of K. According to traditional parcel

theory, the most important heat source in an air mass ascending within a convection

column is the latent heat from condensing water. The equivalent potential temperature

incorporates the amount of latent heating that would be added if all the water vapor10

contained in the air parcel was condensed. In the case of the Chisholm fire, equiva-

lent potential temperature was almost constant throughout the lower troposphere. If

a modified equivalent potential temperature definition that also takes into account the

latent heat of freezing is used, values are in a range between 320 and 322 K from the

boundary layer to an altitude of about 8 km. The equivalent potential temperature of the15

tropopause, by contrast, was 332 K – hence latent heating alone would not have been

sufficient to lift airmasses into the lower stratosphere. For pyroCbs, of course, heating

from the fire is an important additional contributor to the internal energy of air parcels.

As reported in Trentmann et al. (2006), we estimate that the fire heating contributed

about 6 K to the temperature of air parcels at the anvil level of the Chisholm pyroCb.20

The combined effect of latent heating and fire heating can yield potential temperatures

of 328 K. This is in good agreement with the main outflow level of the pyroCb. On the

other hand, as shown by Fig. 10, a substantial fraction of the aerosol mass ends up

at much higher potential temperature levels. Neglecting radiative heating, which is not

significant on the short time scales considered here, any aerosol mass at θ>328 K25

must be the result of mixing with stratospheric air characterized by large values of

potential temperature. We can thus conclude that the small-scale mixing processes,

most importantly those induced by gravity wave breaking at the cloud top, increased

the stratospheric penetration of the pyroCb smoke by as much as 20–30 K.
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5 Summary and conclusions

We investigated the cloud top of an intensive pyroCb and provide an explanation for the

occurrence of the characteristic cold U/warm center cloud top temperature structure

that has also been observed for other cases of severe thunderstorm convection. A

close link between the cold U/warm center feature and TST induced by small-scale5

mixing processes at the cloud top could be established.

The model results presented here show that the cold U/warm center cloud top tem-

perature pattern observed from satellite radiometry can be closely reproduced with the

cloud resolving model ATHAM. Analysis of the simulated fields of potential tempera-

ture and other prognostic variables of the model demonstrates that this feature is due10

to dynamic processes at the cloud top: the pyroCb’s overshooting dome induces a

stationary gravity wave, which strongly enhances mixing of smoke laden air masses of

the pyroCb with stratospheric air masses characterized by high potential temperatures.

The gravity wave generates large gradients of potential temperature and tracer con-

centration, and turbulence produced by gravity wave breaking results in efficient mixing15

across isentropes. While convective advection, latent heating and sensible heating

from the fire alone can explain only the transport of air masses to sub-tropopause lev-

els of about 328 K, the small-scale mixing processes presented in this paper are of key

importance for the injection of a small but significant fraction of smoke to lower strato-

spheric potential temperature levels of up to 360 K. Thus, small-scale mixing increased20

the stratospheric penetration of the smoke by as much as 30 K.

The results presented here are in good agreement with earlier studies of regular

thunderstorm convection. Our explanation for the formation of the cold U/warm center

structure based on small-scale mixing processes is consistent with the thunderstorm

cloud top dynamics presented by Schlesinger (1984) and Adler and Mack (1986). The25

importance of gravity wave formation and breaking for TST of pyroCb smoke found

here is very similar to the role of gravity waves in transporting water vapor to the lower

stratosphere by mid-latitude convection as described by Wang (2003, 2007). The close
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connection between the thermal structure of the cloud top as observed from satellite

and TST, as demonstrated in this study, opens up the possibility of assessing the oc-

currence of TST induced by deep convection using IR satellite observations.

PyroCb induced smoke injection is an important source of trace gases and aerosols

in the upper troposphere and lower stratosphere. Modeling studies are an important5

tool to advance our understanding of the relevant mechanisms. The Chisholm fire

case study, presented here and in Luderer et al. (2006) and Trentmann et al. (2006),

suggests that the principal ingredients for direct smoke injection by pyroCbs are 1)

strong fire forcing through heat release, 2) favorable meteorological conditions, with,

most importantly, sufficient moisture in the lower and mid-troposphere, and 3) small-10

scale mixing processes at the cloud top.

More studies are needed to further improve our understanding of the causes and

effects of UT/LS aerosol plumes originating from forest fires. Moreover, more convec-

tion scale modeling studies also for other cases and geographical regions would be

desirable. Regional simulations also considering radiative effects for longer timescales15

and larger spatial scales would enhance the understanding of the further development

of lower stratospheric aerosol plumes induced by pyroCbs. Finally, global chemistry

climate models should be used to assess the effect of forest fire smoke on radiative

balance and lower stratospheric chemistry.
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(a) 0.65 µm reflectance (b) 10.8 µm brightness temperature

Fig. 1. Images from a NOAA AVHRR overpass during the mature phase of pyroCb convection.

Reflectance in the visible 0.65µm channel is depicted in (a), brightness temperatures mea-

sured by the 10.8µm thermal IR channel are shown in (b). Reproduced from Rosenfeld et al.

(2007).
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Fig. 2. Skew-T diagramm depicting vertical profiles of temperature (solid line) and dew

point temperature (dotted line) measured at Edmonton at 00:00 UTC. The thick red and blue

isotherms indicate the maximum and minimum cloud top brightness temperatures as measured

by the AVHRR. These deviate substantially from background tropopause temperatures. This

sounding was also used for the initialization of the background meteorology in the model simu-

lations. The arrows indicate the wind profile, with every full barb corresponding to 10 m s
−1

.
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Fig. 3. Three-dimensional representation of the aerosol plume after 40 min simulation time.

The 50µg m
−3

isosurface is color-coded with potential temperature in K.
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Fig. 4. Aerosol mass concentration along the y =−5 km vertical cross section. Contour lines

indicate potential temperature levels. The tropopause was located at θ=332 K.
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(a) 20 min (b) 30 min (c) 40 min

Fig. 5. Cloud top temperatures in
◦
C on the 0.5 g kg

−1
hydrometeor concentration isosurface

as simulated by ATHAM for three instances in time.
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Fig. 6. Results from offline calculation of radiative properties. (a) Extinction due to absorption

and scattering by hydrometeors and aerosols at 10.8µm. Contours of aerosol mass concentra-

tion (solid line) and hydrometeor concentration (dashed line) indicate the extent of the smoke

plume and pyroCb. (b) Aerosol and hydrometeor extinction optical depth τ at 10.8µm from the

top of the atmosphere as a function of z. Note that the τ=1 contour (solid line), which can be

used as an indication of the effective level of emission of the thermal radiation, is situated very

close to the cloud top.
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Fig. 7. Brightness temperatures derived from upwelling radiance simulated for the 10.8µm

wavelength band. The contour lines indicate the altitude in km of the 100µg m
−3

isosurface of

the aerosol mass concentration.
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Fig. 8. Vertical cross-sections of (a, b) temperature anomaly, (c) pressure anomaly, and (d)

vertical wind field at y=–5 km. Solid black lines indicate isolines of aerosol concentration. Tem-

perature and pressure anomalies are defined as the difference with respect to the background

temperature and pressure profiles. The distinct bipolar structure is a clear indication of gravity

wave activity.
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(a) 20 min (b) 20 min

(c) 28 min (d) 28 min

(e) 34 min (f) 34 min

(g) 40 min (h) 40 min

Fig. 9.
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Fig. 9. Vertical cross sections of potential temperature (left column) and vertical turbulent

exchange coefficient (right column) for four different points in time. Due to the anisotropic treat-

ment of turbulence in ATHAM (Herzog et al., 2003), the verticlal turbulent exchange coefficient

Kver is related to the horizontal turbulent exchange coefficient Khor as Kver =
√

2Kver.
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Fig. 10. Temporal evolution of the vertical distributions of aerosol mass as a function of (a)

altitude and (b) potential temperature.
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