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Abstract. The distribution and budget of oxygenated or-
ganic compounds in the atmosphere and their impact on
tropospheric chemistry are still poorly constrained. Near-
global space-borne measurements of seasonally resolved up-
per tropospheric profiles of methanol (CH3OH) by the ACE
Fourier transform spectrometer provide a unique opportunity
to evaluate our understanding of this important oxygenated
organic species. ACE-FTS observations from March 2004
to August 2005 period are presented. These observations re-
veal the pervasive imprint of surface sources on upper tro-
pospheric methanol: mixing ratios observed in the mid and
high latitudes of the Northern Hemisphere reflect the sea-
sonal cycle of the biogenic emissions whereas the methanol
cycle observed in the southern tropics is highly influenced
by biomass burning emissions. The comparison with dis-
tributions simulated by the state-of-the-art global chemistry
transport model, LMDz-INCA, suggests that: (i) the back-
ground methanol (high southern latitudes) is correctly repre-
sented by the model considering the measurement uncertain-
ties; (ii) the current emissions from the continental biosphere
are underestimated during spring and summer in the North-
ern Hemisphere leading to an underestimation of modelled
upper tropospheric methanol; (iii) the seasonal variation of
upper tropospheric methanol is shifted to the fall in the model
suggesting either an insufficient destruction of CH3OH (due
to too weak chemistry and/or deposition) in fall and winter
months or an unfaithful representation of transport; (iv) the
impact of tropical biomass burning emissions on upper tro-
pospheric methanol is rather well reproduced by the model.
This study illustrates the potential of these first global profile
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observations of oxygenated compounds in the upper tropo-
sphere to improve our understanding of their global distribu-
tion, fate and budget.

1 Introduction

Methanol (CH3OH) is the second most abundant organic
molecule in the atmosphere after methane (Singh et al., 2001)
and is the predominant oxygenated organic compound in the
mid to upper troposphere (Heikes et al., 2002). Furthermore,
primary methanol emissions constitute about 6% of the total
terrestrial biogenic organic carbon emissions (Heikes et al.,
2002). Oxygenated species such as methanol also influence
the oxidizing capacity of the atmosphere by reacting with
the hydroxyl radical, OH, to produce HO2 and formaldehyde
(Tie et al., 2003). As such, methanol represents an important
source of radicals in the dry upper troposphere and affects the
budget of tropospheric ozone (Tie et al., 2003; Folberth et al.,
2006). However, the existing measurements of methanol suf-
fer from a very limited spatial and temporal coverage and, as
a consequence, large uncertainties exist in our knowledge of
the methanol distribution and budget in the atmosphere (Ja-
cob et al., 2005).

The global distribution of methanol has been assessed
using global chemical transport models (Tie et al., 2003;
Von Kuhlmann et al., 2003; Jacob et al., 2005; Folberth et
al., 2006). However, the few available surface sites (e.g.,
Heikes et al., 2002; Karl et al., 2003; Schade and Goldstein,
2006) and aircraft measurements (e.g., Singh et al., 2000;
Singh et al., 2003) do not provide a sufficient constraint on
the simulated methanol distribution. In particular, little is
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Fig. 1. (a) Spectral window used for the retrieval in Dufour et
al. (2006). (b) Additional window used for this study (see text for
details). The upper panels show a spectrum observed at 10 km in
the tropics during October 2004. The second panels represent the
methanol contribution to the spectrum. The third and the last panels
give the residuals (observed-calculated) when methanol is excluded
or included in the calculation, respectively.

known about the seasonal variation of methanol, especially
in the mid- to upper-troposphere. The origin of methanol
in the atmosphere is largely dominated by biogenic emis-
sions (Galbally and Kristine, 2002). Plant growth repre-
sents up to 60–80% of this source and is responsible for a
strong seasonal cycle in methanol abundance, especially in
the Northern Hemisphere where vegetated land surfaces pre-
vail (Jacob et al., 2005; Galbally and Kristine, 2002; Fol-
berth et al., 2006). Methanol release from plants is higher
for young leaves than for mature leaves (Galbally and Kris-
tine, 2002; Jacob et al., 2005; Lathière et al., 2006) imply-
ing peak emissions in spring and early summer (Karl et al.,
2003; Schade and Goldstein, 2006). The biogenic sources of
methanol from plant growth and also plant decay are subject
to large uncertainties and current best estimates range from

77 to 312 Tg/year (Galbally and Kristine, 2002; Heikes et al.,
2002; Tie et al., 2003; Von Kuhlmann et al., 2003; Jacob et
al., 2005). Atmospheric oxidation of hydrocarbons, biomass
burning, and urban activities are also identified as methanol
sources and together contribute 27–55 Tg/year (Singh et al.,
2001; Jacob et al., 2005). The major sink of methanol in the
atmosphere is from gas-phase oxidation by the hydroxyl rad-
ical OH (Heikes et al., 2002; Jacob et al., 2005). Other sinks
arise from dry deposition, wet removal and oceanic uptake.
As for the sources, these sinks are also not well quantified.
In the Heikes et al. (2002) and Tie et al. (2003) studies, clo-
sure of the budget is not achieved for example. Moreover,
the role of the ocean as either a source or a sink is not com-
pletely determined, although a recent study suggests that the
ocean acts like a sink (Sinha et al., 2007). These loss terms
result in a methanol lifetime in the atmosphere of 1–2 weeks
(Galbally and Kristine, 2002; Heikes et al., 2002; Jacob et
al., 2005). This lifetime implies that the methanol distribu-
tion is not only affected by surface emissions and chemistry
but also by atmospheric transport.

In this paper, we report on the first satellite observa-
tions of the global methanol distribution in the upper tro-
posphere using the Atmospheric Chemistry Experiment in-
frared Fourier transform spectrometer (ACE-FTS) onboard
the SCISAT satellite. The measurements are characterized in
Sect. 2. The LMDz-INCA model used for the interpretation
of the data is described in Sect. 3 as well as the emissions
used for the simulations. The observations are discussed in
Sect. 4 and compared to the model in Sect. 5.

2 ACE-FTS measurements

The ACE-FTS records solar occultation measurements with
coverage between approximately 85◦ S and 85◦ N, and with
a majority of observations over the Arctic and the Antarctic
(Bernath et al., 2005). It is worth noting that the observa-
tions are not equally distributed in space and time leading
to an inhomogeneous global coverage (e.g., Bernath, 2006;
Fu et al., 2007). The ACE-FTS has high spectral resolu-
tion (0.02 cm−1) in the 750 to 4400 cm−1 range. Vertical
profiles of temperature, pressure and various atmospheric
constituents are retrieved from ACE-FTS spectra using a
global fit approach (Boone et al., 2005). In our previous
work, we were able to retrieve methanol profiles with en-
hanced concentrations in biomass burning plumes (Dufour
et al., 2006). We have improved our methanol retrievals by
adding a supplementary 6.4 cm−1-width microwindow cen-
tred at 1001.9 cm−1 (Fig. 1). This permits us to extend the
retrieval down to 6 km. The main interfering species in the
spectral range used are O3 and its minor isotopologues, CO2,
H2O, NH3, and C2H4. The isotopologues 1, 2 and 3 (OOO,
OO18O and O18OO, respectively) of ozone are fitted simul-
taneously with methanol while the other interfering species
are fixed to their retrieved values for H2O (version 2.2 of
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Fig. 2. Comparison of the total error and measurement noise pro-
files obtained using one or two windows for the methanol retrieval
for a subset of 12 tropical retrieved profiles. The absolute error
corresponds to the error expressed in concentration (pptv) and the
relative error to the ratio (%) between the absolute error and the
measured vmr.

the ACE-FTS operational data) or to their climatological val-
ues for CO2, NH3, and C2H4. The concentration of isotopo-
logues 4 and 5 (OO17O and O17OO, respectively) of ozone
is fixed using the normal isotopic abundances relative to the
values of the main isotope previously retrieved.

2.1 Error determination: description of the method

The statistical part of the error, corresponding to the fitting
error, is named ”measurement noise”. To estimate the sys-
tematic part of the error, the retrieval was performed by per-
turbing each parameter by 1σ of its assumed uncertainty
(Dufour et al., 2006). Error sources accounting for uncertain-
ties in temperature, tangent altitude pointing, CH3OH spec-
troscopic data, instrumental line shape (ILS), and mixing ra-
tios of the main interfering species (CO2, H2O, NH3, C2H4
and isotopologues 4 and 5 of ozone) are considered. The ef-
fects of uncertainties in the baseline of the spectra, spectral
shifts and isotopologues 1, 2 and 3 of ozone are not included
in this sensitivity study because these parameters are fitted si-
multaneously with methanol. Except the measurement noise,
the methanol retrieval is mainly sensitive to uncertainties in
the tangent height determination, in the temperature and in
the spectroscopic data. The sensitivity to uncertainties in the
ILS and interfering species is less than 1% on average for
altitudes in the upper troposphere.

In the paper, averaged mixing ratios (vmrs) are often con-
sidered. In this case, the error is reduced. However, only the
statistical part of the errors decreases when vmrs are aver-
aged (divided approximately by the square root of the num-
ber of averaged vmrs). The resulting total error (statistical +
systematic) is then driven by the systematic error and is in
the 20–30% range.

Fig. 3. Methanol profiles and the associated total error profile for 5
individual occultations representative of different latitudes and sea-
sons. The error profile is given only for altitudes with methanol
values above the detection limit (>100 pptv).

2.2 Characterization of the retrieval errors

In order to assess the performance of our new retrieval, we
compared the error budget obtained with one and two win-
dows on a subset of 12 tropical occultations recorded in Oc-
tober 2004 using the method described above and presented
in detail by Dufour et al. (2006). The resulting measurement
noise and the resulting total error obtained with one or two
windows are compared in Fig. 2. Adding a new window for
the retrieval improves the fitting error for concentration pro-
files especially at background levels and hence permits the
investigation of near global distributions for methanol. The
total error at the maximum of the profile is about 17% with a
two-window retrieval and about 20% with a one-window re-
trieval. The errors are also more constant (in relative terms)
below the tropopause with two windows and increase rapidly
in the lower stratosphere.

Due to computational cost, we applied our error estima-
tion method to a limited number of occultations, selected
to cover the range of measured CH3OH profiles. We then
determined the error budget for 5 individual occultations
(Fig. 3). For high southern latitudes, where the methanol
vmr is small (∼250 pptv), the total error reaches 80% in the
troposphere and is larger than 100% in the lower stratosphere
(>10 km). For other occultations, the errors usually remain
below 30% in the troposphere and also increase rapidly in
the lower stratosphere where the methanol concentrations de-
crease rapidly. For the present study, we used a selection of
profiles from March 2004 to August 2005 that sample low
in the troposphere and for which the quality of the retrieval
has been checked. Mean observed methanol in the upper tro-
posphere for different regions of the world are reported by
season in Table 1. The observations agree well with previ-
ous aircraft measurements (Singh et al., 1995; Singh et al.,
2000; Singh et al., 2001; Singh et al., 2004). The back-
ground methanol vmr measured, for instance, from aircraft in
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Fig. 4. Seasonal cycle of the budget terms (left column) and sea-
sonal cycle of primary emissions for each type of sources (right
column) for the entire Earth and for each region. Note that trans-
ported CH3OH should be added when considering regional budgets.

the free troposphere over the Pacific is about 600 pptv (Singh
et al., 2000; Singh et al., 2001), in relatively good agree-
ment with the mean value observed by the ACE-FTS. It is
also worth pointing out that the measured profiles show a
rapid decrease above the tropopause and reach values close
to the detection limits of the ACE-FTS (∼100 pptv). These
values and their uncertainties (>100%) are similar to aircraft
measurements performed in the lower stratosphere during the
SONEX campaign (104±102 pptv) (Singh et al., 2000).

3 LMDz-INCA chemistry transport model

The ACE-FTS measurements are compared with the re-
sults of the LMDz.3-INCA.2 state-of-the-art global three-
dimensional chemistry transport model. LMDz is a grid

point General Circulation Model (GCM) coupled on-line to
INCA (Interactive Chemistry and Aerosols) (Hauglustaine et
al., 2004; Folberth et al., 2006). The version of INCA used in
this study simulates tropospheric chemistry, monthly emis-
sions, and deposition of primary tropospheric trace species
including non-methane hydrocarbons. The ORCHIDEE (Or-
ganizing Carbon and Hydrology in Dynamic Ecosystems)
dynamical vegetation model has been used to calculate the
seasonal and geographical distribution of methanol biogenic
emissions (Lathìere et al., 2005). These emissions are
rescaled to a global mean best estimate for plant growth and
plant decay of 151 Tg/year (Jacob et al., 2005). The biomass
burning emissions for wild fires are based on the mean of
inventories covering the 1997–2001 period provided by Van
der Werf et al. (2004), rescaled region by region using the
MODIS data for 2004 and 2005 (Turquety, private commu-
nication). The resulting methanol biomass burning emissions
are 10.6 Tg/year. We also consider a minor urban source of
4 Tg/year (Jacob et al., 2005). All the emissions are injected
at the lowest level of the model. In the model, we calcu-
late a total methanol photochemical production of 20 Tg/year
from hydrocarbon oxidation. The photochemical destruction
is 141 Tg/year and the surface dry deposition accounts for
40 Tg/year. We derive a methanol lifetime in the atmosphere
of 9 days. This lifetime is in the middle of the range of those
reported in the literature and gathered by Jacob et al. (2005).
The seasonality of the budget terms and the different com-
ponents of the primary sources are displayed for major con-
tinental source regions in Fig. 4. The dominant feature of
biogenic emissions is underlined by this figure. This source
controls the seasonal cycle of emissions except in the tropics
where biomass burning determines the seasonality.

4 Discussion of the ACE-FTS observations

4.1 Northern Hemisphere

The methanol satellite observations reveal a pervasive im-
print of surface sources and in particular of biogenic emis-
sions on the upper tropospheric mixing ratio. Figure 5 (left
side) displays the zonal means of methanol profiles for 20◦-
latitude bands by season from spring 2004 to summer 2005.
The tropopause height and the number of occultations used
for the averages are indicated in the figure. Only aver-
ages with more than 10 occultations are considered. These
zonally-averaged measurements show a strong seasonal cy-
cle in the Northern Hemisphere. The upper tropospheric
vmr increases progressively from less than 500 pptv during
northern winter to about 2000 pptv in summer. This sea-
sonal increase starts in April-May at mid-latitudes and in
early summer at high latitudes, in agreement with the plant
growth cycle. The measured distribution at 8.5 km (Fig. 6)
indicates a higher vmr and a stronger seasonal variation of
methanol over the continents than over the ocean (especially
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Table 1. Statistics derived from the comparison between observations and simulations at 8.5 km by season for different regions:n is the
number of data considered; (r2) the determination coefficient;| bias| is the average of the absolute values of the individual bias (simulation-
observation in %); bias of means represents the bias between the mean values of the simulations and the observations (%); sim and obs
correspond to the mean vmr simulated and observed andσsim andσobs to their corresponding variability (rms).

Region Period n r2 | bias| bias of sim obsb σsim σobs
(%) means (%) (pptv) (pptv) (%) (%)

Global Entire period 2401 0.41 56 2 582 569 64 114

Zone 1 Entire period 387 0.31 65 −3 757 782 48 99
North Americaa MAM 168 0.40 69 −12 566 628 29 91

JJA 71 0.22 85 −73 982 1702 38 63
SON 71 0.38 48 33 1169 777 33 78
DJF 75 0.02 58 56 557 244 11 64

Zone 2 Entire period 454 0.53 55 −2 812 829 53 109
Europe Russiaa MAM 210 0.38 53 17 587 490 25 102

JJA 93 0.25 72 −64 1285 2107 32 73
SON 60 0.65 45 34 1178 775 27 73
DJF 90 0.02 48 45 566 312 15 56

Zone 3 Entire period 90 0.46 52 −28 626 800 43 78
North Pacifica MAM 25 0.11 47 −58 524 828 25 63

JJA 58 0.58 40 −23 678 836 45 80
SON Number of data<10
DJF Number of data<10

Zone 4 Entire period 164 0.02 64 −26 414 522 37 62
South Pacific MAM 38 0.02 47 3 428 414 38 55

JJA 54 0.18 34 8 459 421 20 46
SON 39 0.41 98 −90 383 729 24 58
DJF 31 0.51 93 −92 305 585 27 54

Zone 5 Entire period 153 0.17 44 12 849 746 64 78
South Tropicsa MAM 23 0.45 38 35 816 531 59 41

JJA 53 0.03 44 34 819 539 39 62
SON 44 0.54 48 −22 909 1105 56 62
DJF 29 0.26 35 −10 566 623 42 31

a North America: (50–80◦ N; 180–40◦ W)+(20–50◦ N;130–40◦ W);
Europe-Russia: (50–80◦ N;20◦ W–180◦ E)+(35–50◦ N;20◦ W–140◦ E);
North Pacific: (0–60◦ N; 140◦ E–120◦ W);
South Pacific: (60–0◦ S; 150◦ E–90◦ W); South Tropics:(40–0◦ S;20◦ W–140◦ E).
b When observed vmrs are averaged, the measurement noise is reduced (divided approximately by the square root of n). The resulting total
error (fitting + systematic) is then driven by the systematic error and is in the 20–30% range.

Table 2. Determination coefficients (r2) between methanol and two biomass burning tracers (CO and HCN), both measured by ACE-FTS.

Region CH3OH/COa CH3OH/HCNa

JJA 2004 JJA 2005 JJA 2004 JJA 2005
North America (zone 1) 0.24 (−) 0.07 (+) 0.09 (−) 0.01 (−)
Europe/Russia (zone 2) 0.30 (−) 0.12 (+) 0.28 (−) 0.14 (+)
Imprint found in boreal plume 0.67 (+) −

Rinsland et al. (2007)
Imprint found in tropical plume 0.84 (+) 0.79 (+)
Dufour et al. (2006)

a Negative and positive signs designate the sign of the correlation (r).

the Northern Pacific). This is in agreement with a continen-
tal origin for the enhanced values observed. The seasonal

cycle of the methanol distribution observed for the northern
latitudes (increase starting in spring for the midlatitudes and
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Fig. 5. Zonal mean CH3OH volume mixing ratio profiles observed by the ACE-FTS (left) and simulated with the LMDz-INCA model (right)
for each season from March 2004 to August 2005. The modeled profiles used are interpolated at the measurement locations. The number
of profiles averaged in each 20◦ latitude band is indicated on the left panels (white squares). Only averages with more than 10 profiles are
displayed. A mean tropopause height is calculated based on NCEP meteorological fields for each measured methanol profile and from the
model for the calculated distributions (white line).

reaching a maximum for the highest latitudes in summer) fol-
lows the seasonal cycle of the plant growth cycle and sug-
gests that biogenic emissions drive the upper-tropospheric
methanol concentration in the Northern Hemisphere. The
large vmrs sampled over the Northern Atlantic reflect in-
tercontinental transport. However, the northern hemispheric
summer season is also the season of wildfires in the boreal
regions and this can lead to large methanol concentrations
in the upper troposphere (Rinsland et al., 2007). In order
to separate the contribution of biogenic and biomass burning
sources, we estimated the portions of the large vmrs mea-
sured during JJA that are due to biomass burning. For this,
we use the emission ratio of CH3OH with respect to CO
given by Andreae and Merlet (2001) and the CO vmr mea-
sured by the ACE-FTS. A value of 90 ppbv is used as the
background level of CO in the upper troposphere. All mea-
surements in excess of this limit are considered to be the re-
sult of biomass burning emissions. Figure 7 shows that about
25% of the measured methanol vmr could be due to these
emissions in northern latitudes. For comparison, the biomass
burning influence is greater than 60% in the tropics during

the biomass burning season (Fig. 7). We also calculated the
coefficient of determination (r2) between CH3OH and CO
and HCN (two tracers of fire emissions) for North America
and Europe-Russia (Table 2). These coefficients have to be
compared to the correlation obtained inside boreal (Rinsland
et al., 2007) and tropical (Dufour et al., 2006) plumes sum-
marized in Table 2. Except for some specific measurements,
Table 2 and Fig. 7 clearly indicate that biomass burning has a
weak influence on the observed methanol in these regions. It
confirms that biogenic emissions in the Northern Hemisphere
are the major sources leading to large upper-tropospheric
methanol values (as expected based on the partition of the
total emissions displayed in Fig. 4).

4.2 Southern Hemisphere

In the Southern Hemisphere, the seasonal variation is fairly
weak since most of the land masses are located in the trop-
ics where the seasonal cycle of the vegetation and hence
of biogenic emissions is weak. However, the satellite
measurements show the clear influence of biomass burning
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Fig. 6. Methanol volume mixing ratios at 8.5 km height observed by the ACE-FTS (left) and simulated by LMDz-INCA (right) for each
season from March 2004 to August 2005. Squares, circles and triangles represent the first, second and the third month of the period,
respectively. The modeled vmrs at 8.5 km are interpolated at the measurement locations.

emissions on the methanol distribution in the tropics. This is
particularly the case during March-April-May (MAM) and
September-October-November (SON) 2004 with zonally-
averaged vmrs up to 1200 pptv (Fig. 5). Biomass burning
plumes with methanol vmrs reaching more than 2000 pptv
and emanating from southern Africa and South America,
and detected over the Indian and southern Atlantic oceans
are also clearly seen in SON during the peak burning sea-
son in the Southern Hemisphere (Fig. 6). In this case, the
part of the methanol concentration due to biomass burning
is greater than 60% (Fig. 7). The biomass burning origin of
these plumes is also confirmed by the positive correlation ob-
served between methanol and both CO and HCN, two tracers
of biomass burning emissions in the atmosphere (Dufour et
al., 2006; Rinsland et al., 2005).

5 Comparison with the LMDz-INCA CTM

In order to test our knowledge of the methanol budget, the
observations are compared to the simulations of the LMDz-
INCA CTM in Figs. 5 and 6 and in Table 1. For com-
parison with the ACE occultations, the simulated daily av-

eraged methanol profiles are interpolated to the measure-
ment locations. The interpolation is bilinear in latitude and
longitude and only the days with measurements are consid-
ered. We checked that the resulting model results (and es-
pecially the seasonal and monthly means) were representa-
tive of the entire model results (i.e., when all the grid cells
and all the days of the considered season are included in the
means). The agreement between observations and simula-
tions is rather encouraging on a global scale considering the
large uncertainties in surface emissions. The bias between
the mean measured and simulated vmrs at 8.5 km for the en-
tire period studied (March 2004 to August 2005) is only 2%.
This is to be considered relative to the errors in the retrieved
methanol values that are about 20–30% when data are av-
eraged. However, the correlation coefficient (0.41) and the
absolute bias (56%, Table 1) reveal compensating effects on
the average. Furthermore, the variability of the measured
methanol is much larger than the modeled variability of the
measurements (Table 1). The lack of variability is usual with
global scale models and is mainly due to the coarse resolution
of the model that does not allow individual events to be de-
scribed. In the following, we show that, although the model
simulates rather reasonably the average features of CH3OH
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Fig. 7. Portion (%) of the measured CH3OH vmrs at 8.5 km due
to biomass burning source averaged over 10◦-latitude bands for the
seasons potentially affected. This portion is calculated using the
emission ratio of methanol with respect to CO given by Andreae
and Merlet (2001), the CO vmrs measured by the ACE-FTS, and a
limit of 90 ppbv for background CO.

(considering uncertainties in the measurements and the emis-
sions), the model has difficulties in reproducing the seasonal
cycle observed in the Northern Hemisphere.

A general point also to note on the model performance is
how the profile shape (especially in the lower stratosphere)
compares between the model and the observations. The
model does not reproduce the rapid decrease with height ob-
served by ACE-FTS above the tropopause (Fig. 5) and the
model results overestimate the measurements by 70% in the
lower stratosphere. The degree of overestimation has to be
considered carefully because of the large uncertainties in the
observations above the tropopause. However, two reasons
can explain this apparent disagreement: (i) the model is de-
signed for tropospheric studies and the coarse resolution in
the stratosphere and upper troposphere does not permit the
reproduction of the variation observed; (ii) vertical transport
remains subject to large uncertainties in such global models
in particular regarding large scale convection or stratospheric
intrusion. Hauglustaine et al. (2004) also pointed out that the
model is too diffusive which is visible in Fig. 5: the gradient
across the tropopause is smaller than that observed and may
lead to a lack of methanol in the upper troposphere. This has
to be kept in mind in the following discussion.

5.1 Northern Hemisphere

Despite a fair general agreement between the model and
the measurements, a seasonal comparison reveals some dis-
crepancies that we attribute mainly to a misrepresentation of
some emission sources. Figure 5 illustrates the strong un-
derestimation of upper tropospheric methanol by the model
during summer when the influence of biogenic sources on the
measured vmr is large at northern mid-to-high latitudes. Dur-
ing the Northern Hemisphere summer (JJA), the simulated

Fig. 8. Monthly variations of measured (red) and simulated (black)
mixing ratios at 8.5 km averaged for 30◦-latitude bands. The
symbols are open when the number of available measurements is
smaller than 10. A total error estimate of 20% is considered for
all the latitude bands except the 90◦ S-60◦ S band, for which a total
error estimate of 30% is retained (smaller vmrs in this band).

mixing ratios are only 60% of the measured values at the
maximum of the profile for latitudes higher than 50◦ N. This
disagreement arises mostly from continental regions (Fig. 6).
Measured methanol values over the continents in the North-
ern Hemisphere are much larger than the simulated values
(e.g., up to 73% over North America) whereas they are in bet-
ter agreement over the oceans considering the measurement
errors (North Pacific: 23%) (Table 1). A summer continen-
tal source that can lead to enhancement of methanol mixing
ratios in the high latitudes is boreal fires. As Fig. 7 shows,
the contribution of biomass burning to the measured vmrs
is of the order of the errors of the measurements. The dis-
agreement, therefore, between observations and simulations
during the northern hemispheric summer points towards an
underestimate of methanol biogenic emissions and this is
also true during the plant growth phase in spring. As Fig. 6
shows, large methanol concentrations are measured in April
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and May for the mid-latitudes whereas the model does not
reproduce these enhanced values. This spring underestima-
tion is not completely obvious looking at the bias in Table 1.
This is mainly due to the sampling of the data which is pri-
marily at high latitude for March and is sparser in April-
May for the mid-latitudes. A compensation effect then oc-
curs while averaging over the three months, especially since
the March values seem overestimated by the model during
winter. To test the hypothesis of the underestimation of the
simulated methanol during spring and summer, an additional
model run was performed with biogenic emissions increased
by 50% (not shown). In this case, the disagreement is signif-
icantly reduced over land in spring and summer. Most of the
large methanol values observed in May over North America
and Europe-Russia are well represented by the model. The
bias between the mean vmrs and the absolute bias during JJA
over North America are much reduced to about 9%, which is
within the error of the measurements (20–30% when consid-
ering averages), and to 41% compared to 85%, respectively.
However, the differences between the observations and the
simulations are increased for the other seasons in this addi-
tional model run.

Another important difference between the simulations
(reference case) and the observations arising in the Northern
Hemisphere is that the modeled upper-tropospheric methanol
peaks in fall especially for the highest latitudes whereas mea-
surements and emissions peak in summer (Figs. 5 and 6).
The model overestimates observed methanol by about 35%
for both North America and Europe-Russia (Table 1). In or-
der to investigate in detail these disagreements on the inten-
sity and the seasonality of the upper-tropospheric methanol
cycle, the monthly variations of methanol measured and sim-
ulated at 8.5 km are displayed for 30◦ latitude bands in Fig. 8.
Notice that the underestimation of methanol during spring
and summer starting in April is also very obvious in this fig-
ure. The model overestimation identified during the SON
period is essentially due to an overestimation in October and
November. Moreover, above the Northern Hemisphere con-
tinents, the winter methanol values are overestimated by the
model even if we account for the errors of about 30% on
the mean measured methanol (Table 1). Considering only
the deposition and the chemical sinks of methanol (not the
transport), we estimate a lifetime of about 69 days for the
months of October, November and December in the 60–
90◦ N latitude band. This long lifetime would explain the
persistence of relatively large methanol values in the model
for these latitudes during winter. The overestimation of the
model would suggest that the simulated OH amounts are not
sufficient during winter. This latter assumption is difficult
to check because very little information is available on the
upper-tropospheric OH distribution. Only climatological val-
ues are available (Spivakovsky et al., 2000) and show that
there is very little OH during winter for these latitudes. An-
other hypothesis for the model overestimation is that depo-
sition is underestimated. This hypothesis is also difficult to

check because of the uncertainty in the methanol deposition.
Depending on the studies, the estimation of this sink varies
by as much as a factor of 2 (Jacob et al., 2005, Table 1). A
misrepresentation of the transport in the model, in particu-
lar the diffusion, combined with the above hypothesis, could
also contribute to the accumulation of large methanol con-
centrations in the high latitudes in the simulations.

5.2 Southern Hemisphere

For the Southern Hemisphere, the observations show that the
major component of the emissions that imposes a seasonal
variation on upper tropospheric methanol are the biomass
burning emissions and their transport over oceans (Indian
and South Pacific), especially during the SON period (Fig. 6).
This is easily visible in October in the monthly variations for
the 0-30◦ S and 30–60◦ S latitude bands in Fig. 8. The south
tropical region defined in Table 1 (zone 5) is the most af-
fected by biomass burning emissions with a maximum during
the SON period (Fig. 5 and 6). The model reproduces with
some accuracy the high methanol levels measured in this re-
gion (within the estimated errors). During the other seasons,
the agreement is also rather good with a tendency to overesti-
mate methanol. In JJA, the modeled values are larger than the
observed ones mainly over South America and are likely due
to biomass burning emissions included in the model (Fig. 6).
This would suggest that these emissions are overestimated.
In MAM2005, the average of modeled methanol vmrs is
increased only by two occultations that can be considered
as outliers (Fig. 6). Upper-tropospheric methanol measured
above South Pacific during SON2004 is also affected by
biomass burning and especially by the long-range transport
of biomass burning plumes. The model has some difficulties
in reproducing the observed values (Table 1). This is likely
an effect of the resolution of the global model and thus of the
representivity of the model compared to the measurements.
This leads to a dilution of the plume influence in each model
grid area and therefore does not permit a precise description
of the transport and chemical evolution inside a plume. On
another hand, the underestimation of the model observed in
DJF2005 is due to the relatively large values measured down-
wind of Australia and might reflect an underestimation of
the Australian biogenic emissions during the austral summer.
Moreover, looking in detail Fig. 6 shows that the ACE-FTS is
also able to detect a strong signature from pollution sources
in the upper troposphere. The satellite measurements reveal
large methanol concentrations above China and India dur-
ing MAM 2005. These enhanced values are reproduced by
the model but to a much lesser extent. This disagreement
points to underestimated anthropogenic emissions of hydro-
carbons in currently available emission inventories over these
regions, a conclusion also reached by other studies for car-
bon monoxide (Kasibhatla et al., 2002; Heald et al., 2004;
Pétron et al., 2002). Finally, the comparison between the
model and the measurements for the high southern latitudes
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is fairly good and is largely within the observation errors.
The methanol measured and simulated in these regions is not
influenced by any continental sources and reflects the atmo-
spheric background.

6 Conclusions

Global measurements from a space-borne infrared limb-
viewing instrument can measure the height-resolved distri-
bution of methanol in the mid and upper troposphere. These
measurements provide a unique view of the pervasive influ-
ence of biogenic emissions on the composition of the upper
troposphere at northern mid and high latitudes. Furthermore,
the satellite observations reveal how the upper troposphere
is directly affected by surface and lower-tropospheric pro-
cesses. The integration of these global methanol measure-
ments from space with model results and airborne observa-
tions should significantly improve our understanding of the
atmospheric budget of this important oxygenated species and
the role played by the vegetation as a source of chemical
species. It should also help to improve model simulations
in future studies. The measured profiles will also help to bet-
ter quantify the role played by methanol as a major source of
radicals in the upper troposphere.
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