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Simultaneous Sparse Approximation : insights

and algorithms
Alain Rakotomamonjy

Abstract

This paper addresses the problem of simultaneous sparse approximation of signals given an overcom-

plete dictionary of elementary functions. At first, we propose a simple algorithm for solving the multiple

signals extension of the Basis Pursuit Denoising problem. Then, we consider the M-FOCUSS problem

which performs sparse approximation by using non-convex sparsity-inducing penalties and show that

M-FOCUSS is actually equivalent to an automatic relevance determination problem. Based on this novel

insight, we introduce an iterative reweighted Multiple-Basis Pursuit for solving M-FOCUSS; we trade the

non-convexity of M-FOCUSS against several resolutions of the convex M-BP problem. Relations between

our reweighted algorithm and the Multiple-Sparse BayesianLearning are also highlighted. Experimental

results show how our algorithms behave and how they compare to previous approaches for solving

simultaneous sparse approximation problem.

EDICS: DSP-TFSR, MLR-LEAR

I. INTRODUCTION

Since several years now, there has been a lot of interest about sparse signal approximation. This large

interest comes from frequent wishes of practitioners to represent data in the most parsimonious way.

According to this objective, in signal analysis, one usually wants to approximate a signal by using a

linear combination of elementary functions called a dictionary. Mathematically, such a problem can be

formulated as the following optimization problem

min
c

‖c‖0 st s = Φc

wheres ∈ R
N is the signal vector to be approximated,Φ ∈ R

N×M is a matrix of unit-norm elementary

functions,c a weight vector and‖·‖0 theℓ0 pseudo-norm that counts the number of non-zero components
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in its vector parameter. Solving this problem of finding the sparsest approximation over a dictionaryΦ

is a hard problem, and it is usual to relax the problem in orderto make it more tractable. For instance,

Chen et al. [6] have posed the problem as a convex optimization problem by replacing theℓ0 pseudo-

norm with a ℓ1 norm and proposed the so-called Basis Pursuit algorithm. Greedy algorithms are also

available for solving this sparse approximation problem [22], [31]. Such a family of algorithms known

as Matching Pursuit is simply based on iterative selection of dictionary elements. Although the original

sparse approximation problem has been relaxed, both Basis Pursuit and Matching Pursuit algorithms can

be provided with some conditions whereby they are guaranteed to produce the sparsest approximation of

the signal vector [9], [30].

A natural extension of sparse approximation problem is the problem of finding jointly sparse repre-

sentations of multiple signal vectors. This problem is alsoknown as simultaneous sparse approximation

and it can be stated as follows. Suppose we have several signals describing the same phenomenon, and

each signal is contaminated by noise. We want to find the sparsest approximation of each signal by using

the same set of elementary functions. Hence, the problem consists in finding the best approximation

of each signal while controlling the number of functions involved in all the approximations. Such a

situation arises in many different application domains such as sensor networks signal processing [20],

neuroelectromagnetic imaging [14], [24] and source localization [21].

A. Problem formalization

Formally the problem of simultaneous sparse approximationcan be stated as follows. Suppose that we

have measuredL signals{si}
L
i=1 where each signal is of the form

si = Φci + ǫ

wheresi ∈ R
N , Φ ∈ R

N×M is a matrix of unit-norm elementary functions,ci ∈ R
M a weighting vector

andǫ is a noise vector.Φ will be denoted in the sequel as the dictionary matrix. Sincewe have several

signals, the overall measurements can be written as

S = ΦC + E (1)

with S = [s1 s2 · · · sL] a signal matrix,C = [c1 c2 · · · cL] and E a noise matrix. Note that in the

sequel, we have adopted the following notations.ci,· and c·,j respectively denote theith row andjth

column of matrixC. ci,j is the ith element in thejth column ofC.
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For the sparse simultaneous approximation problem, the goal is then to recover the matrixC given

the signal matrixS and the dictionaryΦ under the hypothesis that all signalssi share the same sparsity

profile. This latter hypothesis can also be translated into the coefficient matrixC having a minimal

number of non-zero rows. In order to measure the number of non-zero rows ofC, a frequent measure is

the so-calledrow-supportor row diversity measureof a coefficient matrix defined as

rowsupp(C) = {i ∈ [1 · · ·M ] : ci,k 6= 0 for somek}

The row-support ofC tells us which atoms of the dictionary have been used for building the signal

matrix. Hence, if the cardinality of the row-support is lower than the dictionary cardinality, it means that

at least one atom of the dictionary has not been used for synthetizing the signal matrix. Then, the row-ℓ0

pseudo-norm of a coefficient matrix can be defined as

‖C‖row−0 = |rowsupp(C)|

According to this definition, the sparse simultaneous approximation problem can be stated as

minC
1
2‖S − ΦC‖2

F

st. ‖C‖row−0 ≤ T
(2)

where ‖ · ‖F is the Frobenius norm andT a user-defined parameter that controls the sparsity of the

solution. Note that the problem can also take a different form

minC ‖C‖row−0

st. 1
2‖S − ΦC‖F ≤ ǫ

(3)

For this latter formulation, the problem translates in minimizing the number of non-zero rows in the

coefficient matrixC while keeping control on the approximation error. Both problems (2) and (3) are

appealing for their formulation clarity. However, similarly to the single signal approximation case, solving

these optimization problems are notably intractable because‖·‖row−0 is a discrete-valued function. Hence,

some relaxed versions of these problems have been proposed in the literature.

B. Related works

Two ways of relaxing problems (2) and (3) are possible : by replacing the‖ · ‖row−0 function with

a more tractable row-diversity measure or by using some suboptimal algorithms. We details these two

approaches in the sequel.
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A large class of relaxed versions of‖ · ‖row−0 proposed in the literature are emcompassed into the

following form

Jp,q(C) =
∑

i

‖ci,·‖
p
q

where typicallyp ≤ 1 andq ≥ 1. This novel penalty term can be interpreted as theℓp quasi-norm of the

sequence{‖ci,·‖q}i. Note that asp converges to0, Jp,q(C) provably converges towards
∑

i log(‖ci,·‖).

According to this relaxed version of the row diversity measure, most of the algorithms proposed in the

literature try to solve the relaxed problem

min
C

1

2
‖S −ΦC‖2

F + λJp,q(C) (4)

whereλ is another user-defined parameter that balances the approximation error and the sparsity-inducing

penaltyJp,q(C). The choice ofp and q results in a compromise between the row-support sparsity and

the convexity of the optimization problem. Indeed, problem(4) is known to be convex whenp, q ≥ 1

while it is known to produce a row-sparse matrixC if p ≤ 1 (due to the penalty function singularity at

C = 0 [11]).

Several authors have proposed methods for solving problem (4). For instance, Cotter el al. [7] have

developed an algorithm for solving problem (4) whenp ≤ 1 and q = 2, known as M-FOCUSS. Such

an algorithm based on factored gradient descent have been proven to converge towards a local or global

(whenp = 1) minimum of problem (4) if it does not get stuck in a fixed-point.

The casep = 1, q = 2, named as M-BP for Multiple Basis Pursuit in the following, is a special case

that deserves special attention. Indeed, it seems to be the most natural extension of the so-called Lasso

problem [28] or Basis Pursuit Denoising [6], since forL = 1, problem (4) reduced to the Lasso problem.

The key point of this case is that it yields to a convex optimization problem and thus it can benefit

from all properties resulting from convexitye.gglobal minimum. Malioutov et al. [21] have proposed an

algorithm based on a second-order cone programming formulation for solving the resulting M-BP convex

problem which at the contrary of M-FOCUSS, always convergesto the problem global solution.

Whenp = 1 andq = 1, again we fall within a very particular case that has been studied by Chen et

al. [5]. In this case, the sparse simultaneous problem can bedecoupled inL independent problems. In

such a situation, the hypothesis of theL signals having the same sparsity profile is no more guaranteed,

thus the problem can not be considered as a simultaneous sparse approximation problem. However, in

this case, one can use efficient algorithms that solve the well-known Lassoproblem [27], [10].
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The approach proposed by Wipf et al. [35] for solving the sparse simultaneous approximation is

somewhat related to the optimization problem in equation (4) but from a very different perspective.

Indeed, if we consider that the above described approaches are equivalent to a MAP-estimation procedures,

then Wipf et al. have explored a Bayesian model which prior encourages sparsity. In this sense, their

approach is related to the relevance vector machine of Tipping et al. [29]. Algorithmically they proposed

an empirical bayesian learning approach based on AutomaticRelevance Determination (ARD). The ARD

prior over each row they have introduced is

p(ci,·; di) = N (0, diI) ∀i

whered is a vector of non-negative hyperparameters that govern theprior variance of each coefficient

matrix row. Hence, these hyperparamaters aim at catching the sparsity profile of the approximation.

Mathematically, the resulting optimization problem is to minimize according tod the following cost

function

L log |Σt| +
L
∑

j=1

st
jΣ

−1
t sj (5)

whereΣt = σ2I + ΦDΦt, D = diag(d) andσ2 a parameter of the algorithm related to the noise level

presented in the signals to be approximated. The algorithm is then based on a likelihood maximization

which is performed through an Expectation-Minimization approach. Very recently, a very efficient al-

gorithm for solving this problem has been proposed [19]. However, the main drawback of this latter

approach is that due to its greedy nature, the algorithm can be easily stucked in local minima.

The second family of methods for solving the simultaneous sparse approximation is to use a suboptimal

forward sequential selection of a dictionary element. These algorithms denoted as M-OMP in the sequel

[32], are a simple extension of the well-known Matching Pursuit technique to simultaneous approximation.

They provide a solution of problem (2) or (3) which corresponds to a local minimum of the cost function.

While the algorithms are relatively simple, their main advantage is their efficiency and some theoretical

guarantees about the correctness of the approximation can be provided [17], [32].

C. Our contributions

At the present time, the most interesting approach for simultaneous sparse approximation is the

Bayesian approach introduced by Wipf et al. [35] and furtherimproved by Ji et al. [19] in terms of speed

efficiency. However, in this paper, we depart from this routeand instead consider a (frequentist) regularized
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empirical minimization approach. Indeed, in view of the very flourishing literature onℓp minimization

algorithms and subsequent theoretical results (e.gconsistency of estimator, convergence rate, ...) related to

single signal sparse approximation, we think that many of these results can be transposed to the multiple

signal approximation case and we hope with this paper to giveour dime to reach that objective. Hence,

we follow the steps of Cotter et al. and Malioutov et al. in considering usingℓp minimization problem

for simultaneous sparse approximation, but propose a different way of solving the minimization problem

(4). Our contributions here are essentially on novel insights on the problem and algorithms for solving

it.

At first, we develop a simple and efficient algorithm for solving the M-Basis Pursuit problem. We show

that by using results from non-smooth optimization theory,we are able to propose an iterative method

which only needs some matrix multiplications.

Then, we focus on the more general situation wherep ≤ 1 andq = 2 in Jp,q. We show that such a row

diversity measure is actually related to automatic relevance determination (ARD). Indeed, we show that

for any p ≤ 1 andq = 2, Jp,q can be interpreted as a weighted row 2-norm measure, and these weights

measure the relevance of a given row in the approximation. Owing to that interpretation, we clarify the

relation between M-FOCUSS and M-SBL (which also uses ARD) for any value ofp ≤ 1. Afterwards,

instead of directly deriving a proper algorithm for solvingthe non-convex optimization problem when

p < 1 and q = 2, we introduce an iterative reweighted M-Basis pursuit (IrM-BP) algorithm. We then

show that depending on the chosen weights, such an iterativescheme can actually solve problem (4).

Our main contribution at this point is then to have translated the non-convex problem (4) into a series of

convex problems which are easy to solve with our iterative method for M-BP. Furthermore, by choosing a

different weighting scheme, we show that our iterative reweighted approach is strongly related to M-SBL.

The paper is organized as follows. Section II introduces theiterative shrinking algorithm for solving M-

BP. After having discussed the ARD formulation of M-FOCUSS in Section III, we propose in Section IV a

reweighted M-BP algorithm for addressing the optimizationproblem related to M-FOCUSS. Experimental

results presenting performance of our algorithms are in Section V while conclusion and perspectives in

Section VI close the paper. For a sake of reproducibility, the code used in this paper is available on

http://asi.insa-rouen.fr/enseignants/∼arakotom/code/SSAindex.html
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II. SIMPLE ALGORITHM FOR M-BASIS PURSUIT

The algorithm we propose in this section addresses the particular case ofp = 1 and q = 2, denoted

as the M-BP problem. We show in the sequel that the specific structure of the problem leads to a very

simple iterative shrinking algorithm. Furthermore if the dictionary is under-complete then it can be shown

that the solution of the problem is equivalent to a simple shrinkage of the coefficient matrix.

The M-BP optimization problem is the following

min
C

W (C) =
1

2
‖S − ΦC‖2

F + λ
∑

i

‖ci,·‖2 (6)

where the objective functionW (C) is a non-smooth but convex function. Since the problem is un-

constrained a necessary and sufficient condition for a matrix C⋆ to be a minimizer of (6) is that

0 ∈ ∂W (C⋆) where∂W (C) denotes the subdifferential of our objective valueW (C) [1]. By computing

the subdifferential ofW (C) with respect to each rowci,· of C, the optimality condition of problem (6)

is then

−ri + λgi,· = 0 ∀i

whereri = φt
i(S − ΦC) andgi,· is the i-th row of a subdifferential matrixG of J1,2(C) =

∑

i ‖ci,·‖2.

The following lemma which proof has been postponed to the appendix, characterizes this subdifferential

G of J1,2(C).

Lemma 1:A matrix G is a subdifferential ofJ1,2(C) =
∑

i ‖ci,·‖2 if and only if the j-th row of G

satisfies

et
jG ∈







{g ∈ R
L : ‖g‖2 ≤ 1} if ∀k, cj,k = 0

cj,·

‖cj,·‖2
otherwise

whereej is a canonical vector ofRM .

According to this definition ofJ1,2’s subdifferential, the optimality condition can be rewritten as

− ri + λ
ci,·

‖ci,·‖2
= 0 ∀i, ci,· 6= 0 (7)

‖ri‖2 ≤ λ ∀i, ci,· = 0

A matrix C satisfying these equations can be obtained after the following algebra. Let us expand each

ri so that

ri = φt
i(S −ΦC−i) − φt

iφici,·

= Ti − ci,· (8)
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Algorithm 1 Solving M-BP through iterative shrinking
C = 0, Loop = 1

while Loop do

for i = 1, 2, · · · ,M do

if ci,· KKT condition is not satisfiedthen

ci,· =
(

1 − λ
‖Ti‖

)

+
Ti

end if

end for

if all KKT Conditions are satisfiedthen

Loop = 0

end if

end while

whereC−i is the matrixC with the i-th row being set to0 andTi = φt
i(S−ΦC−i). The second equality

is obtained by remembering thatφt
iφi=1. Then, equation (7) tells us that ifci,· is non-zero,Ti and ci,·

have to be collinear. Plugging all these points into equation (7) yields to an optimal solution that can be

obtained as :

ci,· =

(

1 −
λ

‖Ti‖

)

+

Ti ∀i (9)

From this update equation, we can derive a simple algorithm which consists in iteratively applying the

update (9) to each row ofC. Such an iterative scheme actually performs a block-coordinate optimiza-

tion. Although, block-coordinate optimization does not converge in general for non-smooth optimization

problem, Tseng [33] has shown that for an optimization problem which objective value is the sum of

a smooth and convex function and a non-smooth but block-separable convex function, block-coordinate

optimization converges towards the global minimum of the problem. Since for M-BP we are considering

a quadratic function and a row-separable penalty function,Tseng’s results can be directly applied in order

to prove convergence of our algorithm.

Our approach, detailed in Algorithm (1), is a simple and efficient algorithm for solving M-BP especially

when the dictionary size is large. A similar approach has also been proposed for solving the lasso [12],

the group lasso [36] and the elastic net [37]. Intuitively, we can understand this algorithm as an algorithm

which tends to shrink to zero rows of the coefficient matrix that contribute poorly to the approximation.

Indeed,Ti can be interpreted as the correlation between the residual when rowi has been removed and
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φi. Hence the smaller the norm ofTi is, the lessφi is relevant in the approximation. And according to

equation (9), the smaller the resultingci,· is. Insight into this iterative shrinking algorithm can be further

obtained by supposing thatM ≤ N and thatΦ is composed of orthonormal elements ofR
N , hence

ΦtΦ = I. In such situation, we have

Ti = φt
iS and ‖Ti‖

2
2 =

L
∑

k=1

(φt
isk)

2

and thus

ci,· =



1 −
λ

√

∑L
k (φt

isk)2





+

φt
iS

This last equation highlights the relation between the single Basis Pursuit (whenL = 1) and the Multiple-

Basis Pursuit algorithm presented here. Both algorithms lead to a shrinkage of the coefficient projection.

With the inclusion of multiple signals, the shrinking factor becomes more robust to noise since it depends

on the correlation of the atomφi to all signals.

As we stated previously, the M-BP problem is equivalent to the M-FOCUSS problem withp = 1 and

q = 2. For solving such a problem Cotter et al. [7] have proposed a factored gradient algorithm. That

algorithm is related to iterative reweighted least-squares, which at each iteration updates the coefficient

matrix C. However, their factored gradient algorithm presents a important issue. Indeed, the updates they

propose are not guaranteed to converge to a local minima of the problem (if the problem is not convex

p < 1) or to the global minimum of the convex problem (p = 1). Indeed, their algorithm presents several

fixed-points since when a row ofC is equal to0, it stays at0 at the next iteration. Although such a

point may be harmless if the algorithm is initialized with a “good” starting point, it is nonetheless an

undesiderable point when solving a convex problem. At the contrary, our iterative shrinking algorithm

does not suffer from the presence of such fixed-points. Thus,it can benefit from a good initialization like

C = 0 since most of rows would stay at zero.

From a computational complexity point of view, it is not possible to evaluate the exact number

of iterations that will be needed before convergence of our algorithm. However, we can analyze the

computational cost per each iteration. We can note that eachshrinking operation,in the worst case

scenario, has to be doneM times and the dominating cost for each shrinking is the computation of

Ti. This computation involves the matrix multiplicationΦC−i and a matrix-vector multiplication which

respectively needO(NML) andO(NL) operations. On the overall, if we assume that at each iteration,
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all ci,· are updated, we can consider that the computational cost of our algorithm is aboutO(M2NL).

This cost per iteration can be compared to the one of M-FOCUSSalgorithm and second-order code

programming of Malioutov et. al [21] which are respectivelyO(MN2) and O(M3L3). Theoretically,

it seems that our algorithm suffers more than M-FOCUSS from large dictionary size but it is far more

efficient than the SOC programming.

Illustrations of how our algorithm behaves and empirical computational complexity evaluation are given

in section V.

III. ARD F ORMULATION OF SIMULTANEOUS SPARSEAPPROXIMATION

In this section, we now focus on the relaxed optimization problem given in (4) for the general where

p ≤ 1 and q = 2 in Jp,q(C). Our objective here is to clarify the connection between such a form of

penalization and the automatic relevance determination ofC’s rows, which has been the keystone of the

Bayesian approach of Wipf et al [35].

For this purpose, we first consider the following formulation of the simultaneous sparse approximation

problem

minC
1
2‖S − ΦC‖2

F

st Jp,q(C) ≤ T
(10)

Due to the non-convexity ofJp,q, equivalence between this formulation and the one given in equation (4)

is not strict in the sense that it is possible that for some values ofT , there exists noλ so that solution of

problem 4 is a solution of problem (10) (for more details on this issue, one can refer to [8]). However,

such a formulation is useful due to the nature of the transformation we apply to problem (10). Indeed,

since the power function is strictly monotonically increasing, we can equivalently replace the constraint

of that problem with the constraint

(Jp,q(C))
1

p =

(

∑

i

‖ci,·‖
p
q

) 1

p

≤ T
1

p

Now, let us introduce the key lemma that allows us to derive the ARD-based formulation of the problem.

This lemma gives a variational form of theℓ2/s norm of a sequence{ai} for any s > 1.

Lemma 2: if r > 0 and{ai}
I
i so thatI ∈ N and∀i = 1, · · · , I, ai ∈ R, let us defines = 1 + 1

r then,

min
d

{

∑

i

a2
i

di
: di ≥ 0,

∑

i

dr
i ≤ 1

}

=

(

∑

i

|ai|
2

s

)s/2

(11)
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Fig. 1. Plots ofdr
1 + dr

2 = 1 for different values of r. From the inner to the outer curves we haver = {0.6, 1, 19} which

corresponds to p={0.75, 1, 1.9}. We can note that forr = p < 1, the plot delimitates a non-convex region which presents

singularities atd1 = 0 or d2 = 0. At the contrary, whenp tends towards2, r goes to∞ and thus the constraints becomes

equivalent to aℓ∞ and defines a convex feasibility domain.

and equality occurs for
∑

i |ai| > 0 at

d⋆
i =

|ai|
2

r+1

(

∑

i |ai|
2r

r+1

)1/r

The proof of this lemma, which is simply based on a Holder inequality can be found for instance in [23].

According to this lemma, theℓ 2

s

norm of a sequence can be computed through a minimization problem.

Hence, applying this lemma to(Jp,q(C))
1

p by definingai = ‖ci,·‖q gives forp < 2 andq = 2

min

{

∑

i

‖ci,·‖
2
2

di
: di ≥ 0,

∑

i

dr
i ≤ 1

}

=

(

∑

i

‖ci,·‖
p
2

)1/p

(12)

with s = 2
p andr = p

2−p .

Now, we can go back to a regularized form of the problem by replacing in (4)Jp,q(C) with Jp,q(C)1/p

. Using the above lemma yields to the following equivalent problem

min
C,d

1
2‖S −ΦC‖2

F + λ
∑

i
‖ci,·‖2

2

di

s.t.
∑

i d
r
i ≤ 1

di ≥ 0 ∀i

(13)

This final problem is the one which makes clear the automatic relevance determination interpretation

of the original formulation of M-FOCUSS problem. We can see that we have transformed problem (4)

into a problem with a smooth objective function at the expense of adding some additional variablesdi.

These parametersdi actually aim at determining the relevance of each coefficient matrix row like in
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problem (5). Indeed, in the objective function, each row square norm is now inversely weighted by a

coefficientdi. By taking the convention thatx0 = ∞ if x 6= 0 and0 otherwise, the objective value of the

optimization problem becomes finite only if‖ci,·‖
2
2 = 0 for di = 0 Then the smallerdi is, the smaller

the ci,· norm will be. Furthermore, optimization problem (13) also involves some constraints on{di}.

These constraints impose the vectord to be in the positive orthant ofRM and so that itsℓr quasi-norm is

smaller than1. Examples of the feasibility domain imposed by these constraints related toℓr quasi-norm,

are given in Figure 1. According to the relation betweenp and r, for p < 1, we also haver < 1, and

we can see in the figure that theℓr norm delimits a non-convex region with singularities atdi = 0. Such

singularities favor sparsity of the vectord at optimality. As we have noted above, when adi is equal to

0, the corresponding row norm should be equal to0 which means that the corresponding element of the

dictionary is “irrelevant” for the approximation of all signals simultaneously.

The problem (13) proposes an equivalent formulation of the M-FOCUSS problem for which the row-

diversity measure has been transformed in a easily interpretable penalty function owing to an ARD

formulation. The trade-off between convexity of the problem and the sparsity of the solution has been

transfered fromp, q to r.

From a Bayesian perspective, we can interpret thedi as the diagonal term of the covariance matrix

of a Gaussian prior over the row norm distribution. This is typically the classical Bayesian Automatic

Relevance Determination approach as proposed for instancein the following works [25], [29]. This novel

insight on the ARD interpretation ofJp,q(C) clarifies the connection between the M-FOCUSS of Cotter

et al. [7] and the M-SBL of Wipf et al. [35] for any value ofp < 1. In their previous works, Wipf et al.

have proved that these two algorithms were related whenp ≈ 0. Here, we refine their result by enlarging

the connection for other values ofp. In a frequentist framework, we can also note that Grandvalet et al.

has proposed a similar approach for feature selection in generalized linear models and SVM [15], [16].

This particular ARD-based formulation of the problem (4) can still be simplified by exploiting the

specific relation between the Frobenius norm and theℓ2 norm. Indeed, we can further expand equation

(13), to yield

min
C,d

∑

j
1
2

(

‖sj − Φc·,j‖
2
2 + λ

∑

i
c2

i,j

di

)

s.t.
∑

i dr
i ≤ 1

di ≥ 0, ∀i

(14)

From this formulation, we can exhibit the relation between each single signal approximation problem

and the sparsity-inducing ARD parameters. Indeed, if we consider fixed parametersdi then the problem
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is equivalent toL least-square regression problems where the relevance of each atomsφi is weighted by

di. Then, we can interpret again the problem as several least-square problems which are tied together by

the sparsity profile induced by the ARD parameters.

IV. REWEIGHTED M-BASIS PURSUIT

This section introduces an iterative reweighted M-Basis Pursuit (IrM-BP) algorithm and proposes two

ways of setting these weights. By using the first weighting scheme, we are able to provide an iterative

algorithm which solves problem (4) whenp < 1 andq = 2. The second weighting scheme makes clear

the strong relation between M-SBL and our work.

A. Reweighted algorithm

Recently, several works have advocated that sparse approximations can be recovered through iterative

algorithms based on a reweightedℓ1 minimization [38], [3], [4]. Typically, for a single signalcase, the

idea consists in iteratively solving the following problem

min
c

1

2
‖s− Φc‖2

2 + λ
∑

i

zi|ci|

wherezi are some positive weights, and then to update the positive weights zi according to the solution

c⋆. Besides, providing empirical evidences that reweightedℓ1 minimization yields to sparser solutions

than a simpleℓ1 minimization, the above cited works theoretically supportsuch claims. These results

for the single signal approximation case suggest that in thesimultaneous sparse approximation problem,

reweighted M-Basis Pursuit would lead to sparser solutionsthan the classical M-Basis Pursuit.

Our iterative reweighted M-Basis Pursuit is defined as follows. We iteratively solve until convergence

the optimization problem

min
C

1

2
‖S − ΦC‖2

F + λ
∑

i

zi‖ci,·‖2 (15)

where the positive weight vectorz depends on the previous iterateC(n−1). In our case, we will consider

the following weighting scheme

zi =
1

(‖c
(n−1)
i,· ‖2 + ε)r

∀i (16)
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where{c(n−1)
i,· } is the i-th row ofC(n−1), r a user-defined positive constant andε a small regularization

term that avoids numerical instabilities and prevents fromhaving an infinite regularization term forci,·as

soon asc(n−1)
i,· vanishes. This is a classical trick that has been used for instance by Candès et al. [3] .

Note that for any positive weight vectorz, problem (15) is a convex problem that does not present local

minima. Furthermore, it can be solved using our iterative shrinking algorithm by simply replacingλ with

λi = λ · zi. Such a scheme is similar to theadaptive lassoalgorithm of Zou et al. [38] but uses several

iterations and addresses the simultaneous approximation problem.

B. Relation with M-FOCUSS

The IrM-BP algorithm we proposed above can also be interpreted as an algorithm for solving problem

(4) when0 < p < 1. Indeed, similarly to the reweightedℓ1 scheme of Candès et al. [3] or the one-

step reweighted lasso of Zou et al. [39], our algorithm fallsin the class of majorize-minimize (MM)

algorithms [18]. MM algorithms consists in replacing a difficult optimization problem with a more easier

one, for instance by linearizing the objective function, bysolving the resulting optimization problem and

by iterating such a procedure.

The connection between MM algorithms and our reweighted scheme can be made through linearization.

In effect, in our case, sinceJp,2 is concave inci,· for 0 < p < 1, a linear approximation ofJp,2(C)

aroundC(n−1) yields to the following majorizing inequality

Jp,2(C) ≤ Jp,2(C
(n−1)) +

∑

i

p

‖c
(n−1)
i,· ‖1−p

2

(‖ci,·‖ − ‖c
(n−1)
i,· ‖)

then for the minimization step, replacing in problem (4)Jp,2 with the above inequality and dropping

constant terms lead to our optimization problem (15) with appropriately chosenzi andr. Note that for

the weights given in equation (16),r = 1 corresponds to the linearization of a log penalty
∑

i log(‖ci,·‖)

whereas settingr = 1−p corresponds to aℓp penalty (0 < p < 1). According to the convergence properties

for MM algorithms towards a local minimum of their objectivefunction [18], we can state that our IrM-

BP algorithm converges towards a local minimum of problem (4) with p andr being appropriately related.

Note that problem (15) can also be interpreted as a manual relevance determination of matrixC’s rows.

Indeed, compared to the ARD formulation given in equation (13), the weightszi can be considered as

pre-fixed weights that determine the importance of rowci,· in the approximation. Furthermore, it is clear

that for a pairC⋆, d⋆ that minimizes problem (14),C⋆ also minimizes problem (15) for

zi =
‖c⋆

i,·‖2

d⋆
i
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C. Relation with M-SBL

Very recently, Wipf et al. [34] have proposed some new insights on Automatic Relevance Determination

and on Sparse Bayesian Learning. They have shown that, for the vector regression case, ARD can be

achieved by means of iterative reweightedℓ1 minimization. Furthermore, in that paper, they have sketched

an extension of such results for matrix regression in which ARD is used for automatically selecting

the most relevant covariance components in a dictionary of covariance matrices. Such an extension is

more related to learning with multiple kernels in regression as introduced by Girolami et al. [13] or

Rakotomamonjy et al. [26] although some connections with simultaneous sparse approximation can be

made. Here, we build on the works on Wipf et al. [34] and give all the details about how M-SBL and

reweighted M-BP are related.

Recall that the cost function minimized by the M-SBL of Wipf et al. [35] is

L(d) = L log |Σt| +
L
∑

j=1

st
jΣ

−1
t sj (17)

whereΣt = σ2I + ΦDΦt andD = diag(d). Now, let us defineg⋆(z) as the conjugate function of the

concavelog |Σt|. Since, that log function is concave and continuous onR
M
+ , according to the scaling

property of conjugate functions we have [2]

L · log |Σt| = min
z∈RM

ztd − Lg⋆
( z

L

)

Thus, the cost functionL(d) in equation (17) can then be upper-bounded by

L(d, z) , ztd− Lg⋆
( z

L

)

+

L
∑

j=1

st
jΣ

−1
t sj (18)

Hence when optimized over all its parameters,L(d, z) converges to a local minima or a saddle point of

(17). However, for any fixedd, one can optimize overz and get the tight optimal upper bound. If we

denote asz⋆ such an optimalz for any fixedd†, sinceL · log |Σt| is differentiable, we have, according

to conjugate function properties, the following closed form of z⋆

z⋆ = L · ∇ log |Σt|(d
†) = diag(ΦtΣ−1

t Φ) (19)

Similarly to what proposed by Wipf et al., Equations (18) and(19) suggest an alternate optimization

scheme for minimizingL(d, z). Such a scheme would consist, after initialization ofz to some arbitrary
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vector, in keepingz fixed and in computing

d† = argmin
d

Lz(d) , ztd +

L
∑

j=1

st
jΣ

−1
t sj (20)

then to minimizeL(d†, z) for fixed d†, which can be analytically done according to equation (19).This

alternate scheme is then performed until convergence to some d⋆.

Owing to this iterative scheme proposed for solving M-SBL, we can now make clear the connection

between M-SBL and our iterative reweighted M-BP according to the following lemma. Again this is an

extension to the multiple signals case of a Wipf’s lemma.

Lemma 3:The objective function in equation (20) is convex and can be equivalently solved by

computing

C⋆ = argmin
C

Lz(C) =
1

2
‖S− ΦC‖2

F + σ2
∑

i

z
1/2
i ‖ci,·‖ (21)

and then by setting

di = z
−1/2
i ‖c⋆

i,·‖ ∀i

Proof: Convexity of the objective function in equation (20) is straightforward since it is just a sum

of convex functions [2]. The key point of the proof is based onthe equality

st
jΣ

−1
t sj =

1

σ2
min
c
·,j

‖sj −Φc·,j‖
2
2 +

∑

i

c2
i,j

di
(22)

which proof is given in appendix. According to this equality, we can upper-boundLz(d) with

Lz(d,C) = ztd +
∑

j

1

σ2
‖sj − Φc·,j‖

2
2 +

∑

i,j

c2
i,j

di
(23)

The problem of minimizingLz(d,C) is smooth and jointly convex in its parametersC andd and thus

an iterative coordinatewise optimization scheme (iteratively optimizing overd with fixed C and then

optimizing overC with fixed d ) yields to the global minimum. It is easy to show that for any fixedC,

the minimal value ofLz(d,C) with respects tod is achieved when

di = z
−1/2
i ‖ci,·‖ ∀i

Plugging these solutions back into (23) and multiplying thethe resulting objective function withσ2/2

yields to

Lz(C) =
1

2

∑

j

‖sj − Φc·,j‖
2
2 + σ2

∑

i

z
1/2
i ‖ci,·‖ (24)

Making the relation betweenℓ2 and Frobenius norms concludes the proof.
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Fig. 2. Illustration of the Iterative shrinking algorithm for M-BP. Example of variation along the iterations of : left)Objective

value, middle) rownorm‖ci,·‖, right) F-measure. For this example, the dictionary size is50 while 10 active elements have been

considered in the true sparsity profile.

Minimizing Lz(C) boils down to minimize the M-BP problem with an adaptive penalty λi = σ2 · z
1/2
i

on each row-norm. This latter point makes the alternate optimization scheme based on equation (19) and

(20) equivalent to our iterative reweighted M-BP for which weightszi would be given by equation (19).

The impact of this relation between M-SBL and reweighted M-BP is essentially methodological. Indeed,

its main advantage is that it turns the original M-SBL optimization problem into a serie of convex

optimization problems. In this sense, our iterative reweighted algorithm can again be viewed as an

application of MM approach for solving problem (17). Indeed, we are actually iteratively minimizing

a proxy function which has been obtained by majorizing each term of equation (17). This MM point

of view offers us the convergence of our iterative algorithmtowards a local minimum of equation (17).

Convergence for the single signal case using other arguments has also been shown by Wipf et al. [34].

Note that similarly to M-FOCUSS, the original M-SBL algorithm based on EM approach suffers from

presence of fixed-points (whendi = 0). Hence, such an algorithm is not guaranteed to converge towards

a local minimum of (17). This is then another argument for preferring IrM-BP.

V. NUMERICAL EXPERIMENTS

Some computer simulations have been carried out in order to evaluate the algorithms proposed in the

above sections. Results that have been obtained from these numerical studies are detailed in this section.

A. Experimental protocol

In order to quantify the performance of our algorithms and compare them to other approaches, we

have used simulated datasets with different redundanciesM
N , numberk of active elements and numberL
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Fig. 3. Illustration of the Iterative reweighted M-BP applied for J 1
2

,2 penalty. Example of variation along the iterations of :

left) Objective value, middle) rownorm‖ci,·‖, right) F-measure

of signals to approximate. The dictionary is based onM vectors sampled from the unit hypersphere of

R
N . The true coefficient matrixC has been obtained as follows. The positions of thek non-zero rows

in the matrix are randomly drawn. The non-zero coefficients of C are then drawn from a zero-mean unit

variance Gaussian distribution. The signal matrixS is obtained as in equation (1) with the noise matrix

being drawn i.i.d from a zero-mean Gaussian distribution and variance so that the signal-to-noise ratio

of each single signal is10 dB.

Each algorithm is provided with the signal matrixS and the dictionaryΦ and will output an estimate

of C. Since our objective is to evaluate whether the sparsity profile of the coefficient matrix has been

recovered, we use as a performance criterion the F-measure between the row support of the trueC⋆ and

the estimatêC. In order to take into account numerical precisions, we overload the row support definition

as

rowsupp(C) = {i ∈ [1 · · · M ] : ‖ci,·‖ < µ}

where µ is a threshold coefficient that has been set by default to1e−16 in our experiments. From

rowsupp(Ĉ) and rowsupp(C⋆) respectively the estimated and true sparsity profile, Precision, Recall and

F-measure are computed as

Prec=
|rowsupp(Ĉ) ∩ rowsupp(C)|

|rowsupp(Ĉ)|

Recall=
|rowsupp(Ĉ) ∩ rowsupp(C)|

|rowsupp(C)|

F-measure=
2 · Prec· Recall
(Prec+Recall)
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Note that Precision and Recall are equal to1 respectively when the estimated sparsity profile is a subset

of the true sparsity profile and when the true sparsity profileis a subset of the estimated one. F-measure

is equal to1 when the estimated sparsity profile coincides exactly with the true one.

In the experiments presented below, we consider empirical convergence of the iterative shrinking

algorithm when the KKT conditions given in equation (7) are satisfied up to a tolerance of0.001.

For IrM-BP, we have usedr = 1 and r = 0.5 which respectively corresponds to a log penalty and

M-FOCUSS withp = 0.5. ǫ has been set to0.01 and we stop our Iterative reweighted M-BP when

‖C(n) − C(n−1)‖∞ ≤ 1e−5 or when the maximal number of fifty iterations are reached. The M-SBL

algorithm we used is the one proposed by Wipf et al. [35] and available on his website. We have used the

fast EM updates which according to Wipf et al. provides a goodtrade-off between speed and precision.

The M-OMP is the one described by Tropp et al. [32].

B. Illustrating our M-BP and IrM-BP algorithms

This first experimental results aim at illustrating how our M-BP and Ir-MBP algorithms work. As an

experimental set-up, we have usedM = 50, N = 25, L = 3 and the numberk of active elements in the

dictionary is equal to10. λ has been chosen so as to optimize the sparsity profile recovery. Since we

just want to illustrate how the algorithm works, we think that such a default value ofλ is sufficient for

making our point.

Figure 2 respectively plots the variations of the objectivevalue, the row norms‖ci,·‖ and the F-

measure for our iterative shrinking algorithm. For this example, many iterations are needed for achieving

convergence. However, we can note that the objective value decreases rapidly whereas the row-support

(middle plot) of Ĉ first increases then many of these row norms get shrinked to zero. Following this

trend, the F-measure slowly increases before yielding to its maximal value. In this example, we can

see that we have more non-zero rows than expected. Figure 3 shows the same plots resulting from the

same approximation problem but using Iterative reweightedM-BP with a penaltyJ 1

2
,2. The first iteration

corresponds to a single pass of M-BP. After the second iteration, the objective value already seems to

have reached its optimal value. However the next iterationsstill help in shrinking to zero some undesired

coefficients and thus in improving sparsity recovery. For this problem, IrM-BP is able to perfectly recover

the sparsity profile while M-BP does not.

We have also empirically assessed the computational complexity of our algorithms (we usedr = 1

for IrM-BP). We varied one of the different parameters (dictionary sizeM , signal dimensionalityN ,
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Fig. 4. Estimation of the empirical exponent of the computational complexity of different algorithms (M-BP, IrM-BP, M-SBL

and M-FOCUSS). For the two last algorithms, we have used the code available from Wipf’s website. The top plots give the

computation time of the algorithms with respects to the dictionary size. On the top left, the signal dimensionN has been

kept fixed and equal to128 whereas on the right one, the signal dimension is related to the dictionary size. The bottom plots

respectively depict the computational complexity with respects to the number of signals to approximate and the dimensionality

of these signals.

number of signalsL ) while keeping the others fixed. All matricesΦ, C andS are created as described

above. Experiments have been run on a Pentium D-3 GHz with 4 GBof RAM using Matlab code.

The results, averaged over50 trials, in Figure 4 show the computational complexity of thedifferent
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algorithms for different experimental settings. Note thatwe have also experimented on the M-SBL and

M-FOCUSS computational performances owing to the code of Wipf et al. [35]. All algorithms need one

hyperparameter to be set, for M-SBL and M-FOCUSS, we were able to choose the optimal one since

the hyperparameter is dependent on a known noise level. For our algorithms, the choice ofλ is more

critical and has been manually set so as to achieve optimal performances. Note that our aim here is not

give an exact comparison of computational complexity of thealgorithms but just to give an order of

magnitude of these complexities. Indeed, careful comparisons are difficult since the different algorithms

do not solve the same problem and do not use the same stopping criterion.

We can remark in Figure 4 that with respects to the dictionarysize, all algorithms present an empirical

exponent between1.4 and2.4. Interestingly, we have theoretically evaluate the complexity of M-BP as

quadratic whereas we measure a sub-quadratic complexity. We suppose that this happens because at each

iteration, only the non-optimalci,·’s are updated and thus the number of updates drastically reduces along

iterations. We can note that among all approaches, M-BP is the less demanding algorithm while IrM-BP

is the less efficient one. This is clearly the cost to be paid for trading the resolution of a non-convex

problem against several convex ones. Note however, that this complexity can be controlled by reducing

the number of iterations while preserving good sparsity recovery. This is the case of many weighted

Lasso algorithms which use only two iterations [39], [38].

The difference between the two top plots in Figure 4 shows that algorithm complexities not only

depend on the dictionary size but also on the redundancy of the dictionary. Indeed, on the right plot,

signal dimensionality is related to the dictionary size (redundancy is kept fixed) while on the left plot,

the signal size is fixed. This results in a non-uniform variation of the complexities which is difficult to

understand. It is not clear if it is related to the problem difficulty or is intrinsic to algorithms. Further

researches are still needed to clarify this point.

Bottom left plot of Figure 4 depicts the complexity dependency of all algorithms with respects to the

number of signal to approximate. The results we obtain is in agreement with theoretical exponents since

for M-BP and IrM-BP we have exponents of approximately1 while the other algorithm complexities

do not depend onL. On the bottom right, we have evaluated these exponents withrespects to signal

dimension. Here again, we have results in accordance to theoretical expectations : M-BP and IrM-BP have

lower complexities than M-SBL and M-FOCUSS. Furthermore, we note that IrM-BP has unexpectedly

a very low exponent complexity. We assume that this is due to the fact that as dimension increases, the

approximation problem becomes easier and thus needs less M-BP iterations.
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Fig. 5. Results comparing performances of different simultaneous sparse algorithms. from left to right, we have variedthe

number of generating functionsk, the dictionary sizeM and the number of signal to approximateL. The default setting is

M = 50, N = 25, k = 10 andL = 3.

C. Comparing performances

The objective of the next empirical study is to compare performances of M-BP, IrM-BP (withr = 0.5

andr = 1), M-SBL and M-OMP for different experimental situations. The baseline context isM = 50,

N = 25, k = 10 andL = 3. Note that for the M-OMP, we stop the algorithm after exactlyk iterations.

For this experiment, we did not performed model selection but instead tried several values ofλ andσ

and chosen the ones that maximize performances.

Figure 5 shows, from left to right, the performance averagedover50 trials, on sparsity recovery when

k increases from2 to 20, whenM goes from25 to 150 and whenL = 2, · · · , 8. We can note that, M-BP

performs worse that IrM-BP. This is a result that we could expected in views of the literature [38], [3]

which compare Lasso and reweighted Lasso, the single signalapproximation counterpart of M-BP and

IrM-BP.

For all experimental situations, we remark that IrM-BP and M-SBL perform equally well. Again,

this similar performances can easily be understood becauseof the strong relation between reweighted

M-BP and M-SBL as explained in Subsection IV-C. When considering M-OMP, although we suppose

thatk is known, we can see that the M-OMP performance is not as good as those of M-SBL and IrM-BP.

VI. CONCLUSIONS AND PERSPECTIVES

This paper aimed at contributing to simultaneous sparse signal approximation problems on several

points. Firstly, we have proposed an algorithm for solving the multiple signal counterpart of Basis Pursuit
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Denoising named M-BP. The algorithm we introduced is ratherefficient and simple and it is based on

a soft-threshold operator which only needs matrix multiplications. Then, we have considered the more

general non-convex M-FOCUSS problem for which M-BP is a special case. We have shown that M-

FOCUSS can also been understood as an ARD approach. Indeed, we have transformed the M-FOCUSS

penalty in order to exhibit some weights that automaticallyinfluence the importance of each dictionary

elements in the approximation. Finally, we have introducedan iterative reweighted M-BP algorithm

for solving M-FOCUSS. We also made clear the relationship between M-SBL and such a reweighted

algorithm. We also provided some experimental results thatshow how our algorithms behave and how

they compare to other methods dedicated to simultaneous sparse approximation. In terms of performances

for sparsity profile recovery, our algorithms does not necessarily perform better than others approaches

but they are provided with interesting features such as convexity and convergence guarantees.

Owing to this clear formulation of the problem and its numerically reproducible solution (due to

convexity), our perspective on this work is now to theoretically investigate the properties of the M-

BP and IrM-BP solutions. We believe that the recent works on the Lasso and related methods can be

extended in order to make clear in which situations M-BP and Ir-MBP achieve consistency. Further

improvements of algorithm speed can also be interesting so that tackling very large-scale approximation

becomes tractable.
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VII. A PPENDIX

A. Proof of Lemma 2

By definition, a matrixG lies in ∂J1,2(B) if and only if for every matrixZ, we have

J1,2(Z) ≥ J1,2(B) + 〈Z −B,G〉F (25)

If we expand this equation we have the following equivalent expression

∑

i

‖zi,·‖2 ≥
∑

i

‖bi,·‖2 +
∑

i

〈zi,· − bi,·, gi,·〉 (26)

From this latter equation, we understand that, since bothJ1,2 and the Frobenius inner product are row-

separable, a matrixG ∈ ∂J1,2(B) if and only if each row ofG belongs to the subdifferential of theℓ2

norm of the corresponding row ofB.
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Indeed, suppose thatG is so that any row ofG belongs to the subdifferential of theℓ2 norm of the

corresponding row ofB. We thus have for any rowi

∀z, ‖z‖2 ≥ ‖bi,·‖2 + 〈z − bi,·, gi,·〉 (27)

A summation over all the rows then proves thatG satisfies equation (26) and thus belongs to the

subdifferential ofJ1,2(B).

Now, let us show that a matrixG for which there exists a row that does not belong to the subdifferential

of the ℓ2 norm of the corresponding row ofB can not belong to the subdifferential ofJ1,2(B). Let us

considergi,· the i-th row of G, since we have supposed thatgi,· /∈ ∂‖bi,·‖2, the following equation holds

∃z0 st. ‖z0‖2 < ‖bi,·‖2 + 〈z − bi,·, gi〉

Now let us constructZ so thatZ = B except for thei-th row wherezi,· = z0. Then it is easy to show

that this matrixZ does not satisfy equation (26), which means thatG does not belong to∂J1,2(B). In

conclusion, we get∂J1,2(B) by applying theℓ2 norm subdifferential to each row ofB. And it is well

known [1] that

∂‖b‖2 =







{g ∈ R
L : ‖g‖2 ≤ 1} if b = 0

b

‖b‖2
otherwise

(28)

B. Proof of equation (22)

We want to show that at optimality which occurs atC⋆, we have

st
jΣ

−1
t sj =

1

σ2
st
j(sj − ΦC⋆)

which is equivalent, after factorizing withst, to show that

σ2sj = Σtsj − ΣtΦC⋆

This last equation can be proved using simple algebra

Σtsj − ΣtΦC = σ2sj + ΦDΦts − (σ2I + ΦDΦt)ΦC⋆

= σ2sj + ΦDΦts − Φ(σ2I + DΦtΦ)C⋆

= σ2sj + ΦDΦts − ΦDΦts

= σ2sj
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[12] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, “Pathwise coordinate optimization,”The Annals of Applied Statistics,

vol. 1, no. 2, pp. 302–332, 2007.

[13] M. Girolami and S. Rogers, “Hierarchic bayesian modelsfor kernel learning,” inProc. of 22nd International Conference

on Machine Learning, 2005, pp. 241–248.

[14] I. Gorodnitsky, J. George, and B. Rao, “Neuromagnetic source imaging with FOCUSS : a recursive weighted minimum

norm algorithm,”J. Electroencephalogr. Clin. Neurophysiol., vol. 95, no. 4, pp. 231–251, 1995.

[15] Y. Grandvalet, “Least absolute shrinkage is equivalent to quadratic penalization,” inICANN’98, ser. Perspectives in Neural

Computing, L. Niklasson, M. Bodén, and T. Ziemske, Eds., vol. 1. Springer, 1998, pp. 201–206.

[16] Y. Grandvalet and S. Canu, “Adaptive scaling for feature selection in svms,” inAdvances in Neural Information Processing

Systems, vol. 15. MIT Press, 2003.

[17] R. Gribonval, H. Rauhut, K. Schnass, and P. Vandergheynst, “Atoms of all channels, unite! average case analysis of

multi-channel sparse recovery using greedy algorithms,” IRISA N1848, Tech. Rep., 2007.

[18] D. Hunter and K. Lange, “A tutorial on MM algorithms,”The American Statistician, vol. 58, pp. 30–37, 2004.

[19] S. Ji, D. Dunson, and L. Carin, “Multi-task compressivesensing,”IEEE Trans. Signal Processing, to appear, 2008.

[20] Z. Luo, M. Gaspar, J. Liu, and A. Swami, “Distributed signal processing in sensor networks,”IEEE Signal Processing

magazine, vol. 23, no. 4, pp. 14–15, 2006.

[21] D. Malioutov, M. Cetin, and A. Willsky, “Sparse signal reconstruction perspective for source localization with sensor

arrays,” IEEE Trans. Signal Processing, vol. 53, no. 8, pp. 3010–3022, 2005.

[22] S. Mallat and Z. Zhang, “Matching pursuit with time-frequency dictionaries,”IEEE Trans Signal Processing, vol. 41,

no. 12, pp. 3397–3415, 1993.

September 12, 2008 DRAFT



26

[23] C. Micchelli and M. Pontil, “Learning the kernel function via regularization,”Journal of Machine Learning Research,

vol. 6, pp. 1099–1125, 2005.

[24] C. Phillips, J. Mattout, M. Rugg, P. Maquet, and K. Friston, “An empirical Bayesian solution to the source reconstruction

problem in EEG,”NeuroImage, vol. 24, pp. 997–1011, 2005.

[25] Y. Qi, T. Minka, R. Picard, and Z. Ghahramani., “Predictive Automatic Relevance Determination by Expectation

Propagation,” inProceedings of the 21st International Conference on Machine Learning, 2004.

[26] A. Rakotomamonjy, F. Bach, Y. Grandvalet, and S. Canu, “SimpleMKL,” Journal of Machine Learning Research, to appear,

2008.

[27] R. Tibshirani, “Regression selection and shrinkage via the lasso,”Journal of the Royal Statistical Society, pp. 267–288,

1995.

[28] ——, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society, vol. 46, pp. 431–439,

1996.

[29] M. Tipping, “Sparse Bayesian Learning and the Relevance Vector Machine,”Journal of Machine Learning Research, vol. 1,

pp. 211–244, 2001.

[30] J. Tropp, “Just relax: Convex programming methods for identifying sparse signals,”IEEE Trans. Info. Theory, vol. 51,

no. 3, pp. 1030–1051, 2006.

[31] J. Tropp and A. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,”IEEE Trans.

Information Theory, vol. 53, no. 12, pp. 4655–4666, 2007.

[32] J. Tropp, A. Gilbert, and M. Strauss, “Algorithms for simultaneous sparse approximation. part i: Greedy pursuit,”Journal

of Signal Processing, vol. 86, pp. 572–588, 2006.

[33] P. Tseng, “Convergence of block coordinate descent method for nondifferentiable minimization,”Journal of Optimization

Theory and Application, vol. 109, pp. 475–494, 2001.

[34] D. Wipf and S. Nagarajan, “A new view of automatic relevance determination,,” inAdvances in Neural Information

Processing Systems. Cambridge, MA: MIT Press, 2008, vol. 20.

[35] D. Wipf and B. Rao, “An empirical bayesian strategy for solving the simultaneous sparse approximation problem,”IEEE

Trans on Signal Processing, vol. 55, no. 7, pp. 3704–3716, July 2007.

[36] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,”Journal of Royal Statisctics

Society B, vol. 68, pp. 49–67, 2006.

[37] H. Zhou and T. Hastie, “Regularization and variable selection via the elastic net,”Journal of the Royal Statistics Society

Ser. B, vol. 67, pp. 301–320, 2005.

[38] H. Zou, “The adaptive lasso and its oracle properties,”Journal of the American Statistical Association, vol. 101, no. 476,

pp. 1418–1429, 2006.

[39] H. Zou and R. Li, “One-step sparse estimates in nonconcave penalized likelihood models,”The Annals of Statistics, vol. 36,

no. 4, pp. 1509–1533, 2008.

September 12, 2008 DRAFT


	Introduction
	Problem formalization
	Related works
	Our contributions

	Simple Algorithm for M-Basis Pursuit
	ARD Formulation of Simultaneous Sparse Approximation
	Reweighted M-Basis Pursuit
	Reweighted algorithm
	Relation with M-FOCUSS
	Relation with M-SBL

	Numerical experiments
	Experimental protocol
	Illustrating our M-BP and IrM-BP algorithms
	Comparing performances

	Conclusions and perspectives
	Appendix
	Proof of Lemma 2
	Proof of equation (22)

	References

