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Simultaneous Sparse Approximation : insights

and algorithms

Alain Rakotomamonjy

Abstract

This paper addresses the problem of simultaneous sparsaxapption of signals given an overcom-
plete dictionary of elementary functions. At first, we prepa simple algorithm for solving the multiple
signals extension of the Basis Pursuit Denoising problenenT we consider the M-FOCUSS problem
which performs sparse approximation by using non-convexsiy-inducing penalties and show that
M-FOCUSS is actually equivalent to an automatic relevareterthination problem. Based on this novel
insight, we introduce an iterative reweighted Multiplesi&aPursuit for solving M-FOCUSS; we trade the
non-convexity of M-FOCUSS against several resolutioniefdonvex M-BP problem. Relations between
our reweighted algorithm and the Multiple-Sparse Bayetiearning are also highlighted. Experimental
results show how our algorithms behave and how they commanmgrdvious approaches for solving

simultaneous sparse approximation problem.

EDICS: DSP-TFSR, MLR-LEAR

. INTRODUCTION

Since several years now, there has been a lot of interest apatse signal approximation. This large
interest comes from frequent wishes of practitioners taasgnt data in the most parsimonious way.
According to this objective, in signal analysis, one usualants to approximate a signal by using a
linear combination of elementary functions called a ditdiry. Mathematically, such a problem can be

formulated as the following optimization problem
min |[c|]lp St s=®c
Cc

wheres € RY is the signal vector to be approximatebl,c RV*M is a matrix of unit-norm elementary

functions,c a weight vector ang - ||o the ¢y pseudo-norm that counts the number of non-zero components
A. Rakotomamonjy is with the LITIS EA4108, University of Reny France.
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in its vector parameter. Solving this problem of finding tiparsest approximation over a dictionaby

is a hard problem, and it is usual to relax the problem in otdenake it more tractable. For instance,
Chen et al.[[B] have posed the problem as a convex optimizgioblem by replacing thé, pseudo-
norm with a/; norm and proposed the so-called Basis Pursuit algorithree®r algorithms are also
available for solving this sparse approximation problé®][331]. Such a family of algorithms known
as Matching Pursuit is simply based on iterative selectibdictionary elements. Although the original
sparse approximation problem has been relaxed, both BasssiiPand Matching Pursuit algorithms can
be provided with some conditions whereby they are guardrte@roduce the sparsest approximation of
the signal vector(19],[130].

A natural extension of sparse approximation problem is ttodblpm of finding jointly sparse repre-
sentations of multiple signal vectors. This problem is &sown as simultaneous sparse approximation
and it can be stated as follows. Suppose we have severalsigescribing the same phenomenon, and
each signal is contaminated by noise. We want to find the spbapproximation of each signal by using
the same set of elementary functions. Hence, the problemisisnin finding the best approximation
of each signal while controlling the number of functionsdlvwed in all the approximations. Such a
situation arises in many different application domainshsas sensor networks signal processing [20],

neuroelectromagnetic imaging_114l, [24] and source laedion [21].

A. Problem formalization

Formally the problem of simultaneous sparse approximat&nbe stated as follows. Suppose that we

have measured signals{s;}~ , where each signal is of the form
S; = q)Ci +€

wheres; € RY, & ¢ RV*M s a matrix of unit-norm elementary functions, € R a weighting vector
ande is a noise vector® will be denoted in the sequel as the dictionary matrix. Sweehave several

signals, the overall measurements can be written as

S=®C+¢ 1)

with S = [s1 s9 -+ sz]| a signal matrix,C = [c; co --- cz] and & a noise matrix. Note that in the
sequel, we have adopted the following notations. and c. ; respectively denote théh row and;th

column of matrixC. ¢; ; is theith element in thejth column ofC.
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For the sparse simultaneous approximation problem, théigdhen to recover the matriC given
the signal matrixS and the dictionary® under the hypothesis that all signalsshare the same sparsity
profile. This latter hypothesis can also be translated ih® doefficient matrixC having a minimal
number of non-zero rows. In order to measure the number ofzeom rows ofC, a frequent measure is

the so-calledow-supportor row diversity measuref a coefficient matrix defined as
rowsupgC) = {i € [1--- M] : ¢; , # 0 for somek}

The row-support ofC tells us which atoms of the dictionary have been used fordmgl the signal
matrix. Hence, if the cardinality of the row-support is lavtkan the dictionary cardinality, it means that
at least one atom of the dictionary has not been used for efnithg the signal matrix. Then, the rofy-

pseudo-norm of a coefficient matrix can be defined as

ICllrow—0 = [rowsupgC)|

According to this definition, the sparse simultaneous aipration problem can be stated as

minc  1(|S — ®C|%

st. Hc”row—o <T

(@)

where || - || is the Frobenius norm an@ a user-defined parameter that controls the sparsity of the

solution. Note that the problem can also take a differeninfor

ming  [|Cllrow—0 3)

st. $IS — ®CJlp <€
For this latter formulation, the problem translates in mmizing the number of non-zero rows in the
coefficient matrixC while keeping control on the approximation error. Both peofs [2) and[{B) are
appealing for their formulation clarity. However, similato the single signal approximation case, solving
these optimization problems are notably intractable beegli,...,—o is a discrete-valued function. Hence,

some relaxed versions of these problems have been propodbkd literature.

B. Related works

Two ways of relaxing problemg1(2) anfll (3) are possible : bya@pg the|| - ||,,w—o function with
a more tractable row-diversity measure or by using some irhal algorithms. We details these two

approaches in the sequel.
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A large class of relaxed versions 0f ||..,—0 proposed in the literature are emcompassed into the

following form
Tpa(C) = lles. |y

where typicallyp < 1 andq > 1. This novel penalty term can be interpreted as#hguasi-norm of the
sequencq||c;..||4}i. Note that agp converges td), J, ,(C) provably converges towards,; log(]|c;..||).
According to this relaxed version of the row diversity maasumost of the algorithms proposed in the

literature try to solve the relaxed problem
1
mén§||S _‘I’C||%‘+>‘JP7(I(C) (4)

where\ is another user-defined parameter that balances the apmtien error and the sparsity-inducing
penalty J, ,(C). The choice ofp andgq results in a compromise between the row-support sparsity an
the convexity of the optimization problem. Indeed, probl@h is known to be convex whep,q > 1
while it is known to produce a row-sparse matfixif p < 1 (due to the penalty function singularity at
C = 0 [11]).

Several authors have proposed methods for solving prot#BmF6r instance, Cotter el all[7] have
developed an algorithm for solving problefd (4) wher< 1 andq¢ = 2, known as M-FOCUSS. Such
an algorithm based on factored gradient descent have begarpto converge towards a local or global
(whenp = 1) minimum of problem[{}) if it does not get stuck in a fixed-poin

The casep = 1,q = 2, named as M-BP for Multiple Basis Pursuit in the following,d special case
that deserves special attention. Indeed, it seems to be tisé matural extension of the so-called Lasso
problem [28] or Basis Pursuit Denoisirlg [6], since for= 1, problem [#) reduced to the Lasso problem.
The key point of this case is that it yields to a convex optation problem and thus it can benefit
from all properties resulting from convexig:gglobal minimum. Malioutov et al[]21] have proposed an
algorithm based on a second-order cone programming fotionléor solving the resulting M-BP convex
problem which at the contrary of M-FOCUSS, always convetgethe problem global solution.

Whenp = 1 andq = 1, again we fall within a very particular case that has beedistuby Chen et
al. |5]. In this case, the sparse simultaneous problem catiebeupled inL independent problems. In
such a situation, the hypothesis of thesignals having the same sparsity profile is no more guardntee
thus the problem can not be considered as a simultaneousesgpproximation problem. However, in

this case, one can use efficient algorithms that solve thekmeilvn Lassoproblem [27], [10].
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The approach proposed by Wipf et dl.[[35] for solving the spasimultaneous approximation is
somewhat related to the optimization problem in equatidnbit from a very different perspective.
Indeed, if we consider that the above described approacbesjaivalent to a MAP-estimation procedures,
then Wipf et al. have explored a Bayesian model which priaczoemages sparsity. In this sense, their
approach is related to the relevance vector machine of figpet al. [29]. Algorithmically they proposed
an empirical bayesian learning approach based on AutorRetievance Determination (ARD). The ARD

prior over each row they have introduced is
p(CL.; dl) = N(O, dZI) \V/i

whered is a vector of non-negative hyperparameters that govermptioe variance of each coefficient
matrix row. Hence, these hyperparamaters aim at catchiagsprarsity profile of the approximation.
Mathematically, the resulting optimization problem is ténimize according tod the following cost

function

L
Llog %] + Zsﬁ»Et_lsj (5)
j=1

whereY; = 0?1+ ®D®!, D = diagd) ands? a parameter of the algorithm related to the noise level
presented in the signals to be approximated. The algoriththen based on a likelihood maximization
which is performed through an Expectation-Minimizatiorpagach. Very recently, a very efficient al-
gorithm for solving this problem has been proposed [19]. By, the main drawback of this latter

approach is that due to its greedy nature, the algorithm eaeasily stucked in local minima.

The second family of methods for solving the simultaneo@sspapproximation is to use a suboptimal
forward sequential selection of a dictionary element. €hagorithms denoted as M-OMP in the sequel
[32], are a simple extension of the well-known Matching Ritrechnique to simultaneous approximation.
They provide a solution of probleriil(2) dd (3) which corresg®io a local minimum of the cost function.
While the algorithms are relatively simple, their main achege is their efficiency and some theoretical

guarantees about the correctness of the approximation egmdvided [[1¥], [3R2].

C. Our contributions

At the present time, the most interesting approach for samelous sparse approximation is the
Bayesian approach introduced by Wipf et ALI[35] and furihgsroved by Ji et al.[119] in terms of speed

efficiency. However, in this paper, we depart from this ratd instead consider a (frequentist) regularized
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empirical minimization approach. Indeed, in view of thewépurishing literature or?,, minimization
algorithms and subsequent theoretical reseltggonsistency of estimator, convergence rate, ...) related t
single signal sparse approximation, we think that many e$é¢hresults can be transposed to the multiple
signal approximation case and we hope with this paper to givedime to reach that objective. Hence,
we follow the steps of Cotter et al. and Malioutov et al. in sidering using/,, minimization problem
for simultaneous sparse approximation, but propose aréiffevay of solving the minimization problem
@). Our contributions here are essentially on novel insigin the problem and algorithms for solving
it.

At first, we develop a simple and efficient algorithm for salyithe M-Basis Pursuit problem. We show
that by using results from non-smooth optimization thearg, are able to propose an iterative method
which only needs some matrix multiplications.

Then, we focus on the more general situation wherel andg = 2 in J, ,. We show that such a row
diversity measure is actually related to automatic relegagetermination (ARD). Indeed, we show that
foranyp <1 andq = 2, J,, can be interpreted as a weighted row 2-norm measure, and Weghts
measure the relevance of a given row in the approximationn@wo that interpretation, we clarify the
relation between M-FOCUSS and M-SBL (which also uses ARD)afay value ofp < 1. Afterwards,
instead of directly deriving a proper algorithm for solvitige non-convex optimization problem when
p < 1 andgq = 2, we introduce an iterative reweighted M-Basis pursuit (BW) algorithm. We then
show that depending on the chosen weights, such an iterstiveme can actually solve problef (4).
Our main contribution at this point is then to have transldtee non-convex problerfll(4) into a series of
convex problems which are easy to solve with our iterativéhae: for M-BP. Furthermore, by choosing a

different weighting scheme, we show that our iterative ligiveed approach is strongly related to M-SBL.

The paper is organized as follows. Secfidn Il introducestdrative shrinking algorithm for solving M-
BP. After having discussed the ARD formulation of M-FOCU®&SkctiorTll, we propose in SectignllV a
reweighted M-BP algorithm for addressing the optimizatiooblem related to M-FOCUSS. Experimental
results presenting performance of our algorithms are irti@ef4 while conclusion and perspectives in
Section[V] close the paper. For a sake of reproducibilitg ¢ode used in this paper is available on

http://asi.insa-rouen.fr/enseignantaakotom/code/SSAindex.himl
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[I. SIMPLE ALGORITHM FOR M-BASIS PURSUIT

The algorithm we propose in this section addresses thecpkaticase o = 1 andg = 2, denoted
as the M-BP problem. We show in the sequel that the specifictsire of the problem leads to a very
simple iterative shrinking algorithm. Furthermore if thettbnary is under-complete then it can be shown

that the solution of the problem is equivalent to a simplenlage of the coefficient matrix.

The M-BP optimization problem is the following
. 1 2
ménW(C) = §||S—<I’CHF—|—>\Z||CZ',.||2 (6)

where the objective functio®’(C) is a non-smooth but convex function. Since the problem is un-
constrained a necessary and sufficient condition for a ma&iri to be a minimizer of [[6) is that

0 € OW(C*) wheredW (C) denotes the subdifferential of our objective valliid C) [1]. By computing

the subdifferential of¥’(C) with respect to each row; . of C, the optimality condition of problenf}6)

is then

—r; + )\gi,. =0 Vi

wherer; = ¢}(S — ®C) andg;,. is thei-th row of a subdifferential matridxG of J; 2(C) = >, ||c;,.||2-
The following lemma which proof has been postponed to theeagix, characterizes this subdifferential
G of J12(C).

Lemma 1:A matrix G is a subdifferential of/; »(C) = >, ||c;..||2 if and only if the j-th row of G
satisfies
e§G . {g e RV :||gll2 < 1} if Vk,cjp=0

ij.
lles, Nl

otherwise
wheree; is a canonical vector R,

According to this definition of/; »’s subdifferential, the optimality condition can be reweit as

Crib A = 0 Wi, .0 7)
llci,-ll2
HriH2 < A VZ, Ci.IO

A matrix C satisfying these equations can be obtained after the foltpwigebra. Let us expand each

r; So that
r; = ¢i(S—®C_;) — didici.

= Ti—q,. (8)
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Algorithm 1 Solving M-BP through iterative shrinking
C=0,Loop=1

while Loop do

fori=1,2,--- ,M do

if ¢;. KKT condition is not satisfiedhen
o = (1 - ﬁ>+TZ

end if

end for

if all KKT Conditions are satisfiethen
Loop =0

end if

end while

whereC_; is the matrixC with the i-th row being set t&) and7; = ¢!(S—®C_;). The second equality
is obtained by remembering thaf¢;=1. Then, equatior{]7) tells us thatdf. is non-zero,7; andc;.

have to be collinear. Plugging all these points into equafi) yields to an optimal solution that can be

A > .
G.o=(1-—2-) 17, Vi 9)
< 1311 ) +

From this update equation, we can derive a simple algoritthithwvconsists in iteratively applying the

obtained as :

update [[P) to each row of. Such an iterative scheme actually performs a block-coatdi optimiza-
tion. Although, block-coordinate optimization does noteerge in general for non-smooth optimization
problem, Tsengl[33] has shown that for an optimization moblwhich objective value is the sum of
a smooth and convex function and a non-smooth but blockrableaconvex function, block-coordinate
optimization converges towards the global minimum of thebfgm. Since for M-BP we are considering
a quadratic function and a row-separable penalty funclieeng’s results can be directly applied in order
to prove convergence of our algorithm.

Our approach, detailed in Algorithrfll (1), is a simple and &fitalgorithm for solving M-BP especially
when the dictionary size is large. A similar approach has hksen proposed for solving the las5al[12],
the group lassd [36] and the elastic rietl [37]. Intuitively @an understand this algorithm as an algorithm
which tends to shrink to zero rows of the coefficient matriattbontribute poorly to the approximation.

Indeed,T; can be interpreted as the correlation between the residuahwow: has been removed and
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¢;. Hence the smaller the norm @ is, the lessp; is relevant in the approximation. And according to
equation[(P), the smaller the resulting is. Insight into this iterative shrinking algorithm can hether
obtained by supposing thdt/ < N and that® is composed of orthonormal elements R, hence

®!®d = I. In such situation, we have

L
T;=¢iS and |T|5 = Z(¢§Sk)2
k=1
and thus
SN CRR S g
Sk (dhsy)? .

This last equation highlights the relation between thelsiBasis Pursuit (whe® = 1) and the Multiple-
Basis Pursuit algorithm presented here. Both algorithrad te a shrinkage of the coefficient projection.
With the inclusion of multiple signals, the shrinking factiecomes more robust to noise since it depends

on the correlation of the atom; to all signals.

As we stated previously, the M-BP problem is equivalent ® MiFOCUSS problem withp = 1 and
g = 2. For solving such a problem Cotter et all [7] have proposedctofed gradient algorithm. That
algorithm is related to iterative reweighted least-sgsiavghich at each iteration updates the coefficient
matrix C. However, their factored gradient algorithm presents aoirtgmt issue. Indeed, the updates they
propose are not guaranteed to converge to a local minimaeoptbblem (if the problem is not convex
p < 1) or to the global minimum of the convex problem- 1). Indeed, their algorithm presents several
fixed-points since when a row d is equal to0, it stays at0 at the next iteration. Although such a
point may be harmless if the algorithm is initialized with gobd” starting point, it is nonetheless an
undesiderable point when solving a convex problem. At thatraoy, our iterative shrinking algorithm
does not suffer from the presence of such fixed-points. Tihaan benefit from a good initialization like

C = 0 since most of rows would stay at zero.

From a computational complexity point of view, it is not pii¥s to evaluate the exact number
of iterations that will be needed before convergence of dgoradhm. However, we can analyze the
computational cost per each iteration. We can note that shcinking operation,in the worst case
scenario, has to be don¥ times and the dominating cost for each shrinking is the cdatjmn of
T;. This computation involves the matrix multiplicatiadC_; and a matrix-vector multiplication which

respectively need(NM L) andO(N L) operations. On the overall, if we assume that at each iterati
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all ¢;. are updated, we can consider that the computational costroéigorithm is aboutO(M2?NL).
This cost per iteration can be compared to the one of M-FOCHI§8rithm and second-order code
programming of Malioutov et. al[21] which are respectivélf M N?) and O(M3L?). Theoretically,
it seems that our algorithm suffers more than M-FOCUSS frargd dictionary size but it is far more
efficient than the SOC programming.

lllustrations of how our algorithm behaves and empiricahpatational complexity evaluation are given

in sectionY.

I1l. ARD FORMULATION OF SIMULTANEOUS SPARSEAPPROXIMATION

In this section, we now focus on the relaxed optimizatiorbfgm given in [(#) for the general where
p < landg = 2in J,,(C). Our objective here is to clarify the connection betweerhsadorm of
penalization and the automatic relevance determinatio@'®frows, which has been the keystone of the
Bayesian approach of Wipf et dl135].

For this purpose, we first consider the following formulatiof the simultaneous sparse approximation

problem
ming %HS — @CH%

st Jpqe(C) < T

(10)

Due to the non-convexity af, ,, equivalence between this formulation and the one giveriraton [4)

is not strict in the sense that it is possible that for somee&bfT, there exists na so that solution of
problem[# is a solution of probleri{[10) (for more details ois Bsue, one can refer tb1[8]). However,
such a formulation is useful due to the nature of the transédion we apply to problenf_(JL0). Indeed,
since the power function is strictly monotonically incriegs we can equivalently replace the constraint

of that problem with the constraint

(Jpq(C))» = (Z H@;W\Z) <T»
Now, let us introduce the key lemma that allows us to derieeARD-based formulation of the problem.

This lemma gives a variational form of tifg,, norm of a sequencéa;} for any s > 1.

Lemma 2:if » > 0 and{a;}! sothatl e NandVi =1, ---,I,a; € R, let us defines = 1 + % then,

s/2
m(}n{ZZ—%:diZO,nggl}: <Z|a2|g> (11)
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135 -1 -05 0 05 1 15

Fig. 1. Plots ofd] + d; = 1 for different values of r. From the inner to the outer curves kaver = {0.6, 1,19} which
corresponds to pfd.75, 1, 1.9}. We can note that for = p < 1, the plot delimitates a non-convex region which presents
singularities atd; = 0 or d2 = 0. At the contrary, wherp tends toward<, r goes tooo and thus the constraints becomes

equivalent to &, and defines a convex feasibility domain.

and equality occurs fop_, |a;| > 0 at

2
r+1

d: = |ai 5 1/r
(el 7)

The proof of this lemma, which is simply based on a Holder iraditly can be found for instance in_[23].

According to this lemma, thé: norm of a sequence can be computed through a minimizatidoigmo

Hence, applying this lemma t@]pvq(C))i by defininga; = ||¢; .||, gives forp < 2 andg = 2

s 1/p
min {Z HC;;M td; > O,Zd;ﬂ < 1} = (Z ||Cz,||g> (12)

with s = 2 andr = 5.
Now, we can go back to a regularized form of the problem byawipp in [3).J, ,(C) with Jpvq(C)l/f”

. Using the above lemma yields to the following equivalertbbem

min S - CJE + %, 15
st Y, <1 (13)
d; >0 Vi
This final problem is the one which makes clear the automalievance determination interpretation
of the original formulation of M-FOCUSS problem. We can skattwe have transformed problef (4)
into a problem with a smooth objective function at the expenfsadding some additional variablés

These parameterg; actually aim at determining the relevance of each coefficieatrix row like in
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problem [b). Indeed, in the objective function, each rowasgunorm is now inversely weighted by a
coefficientd;. By taking the convention thgf = oo if = # 0 and0 otherwise, the objective value of the
optimization problem becomes finite only|it;.||2 = 0 for d; = 0 Then the smaller; is, the smaller
the ¢;. norm will be. Furthermore, optimization probleln}13) alswdlves some constraints of; }.
These constraints impose the veafioto be in the positive orthant @&*! and so that it€,. quasi-norm is
smaller thanl. Examples of the feasibility domain imposed by these cainds related td.,. quasi-norm,
are given in Figuré&ll. According to the relation betweeandr, for p < 1, we also have < 1, and
we can see in the figure that tlig norm delimits a non-convex region with singularitiesdat= 0. Such
singularities favor sparsity of the vectdrat optimality. As we have noted above, whew;as equal to
0, the corresponding row norm should be equa)d tohich means that the corresponding element of the
dictionary is “irrelevant” for the approximation of all sigls simultaneously.

The problem[{(1I3) proposes an equivalent formulation of thE@CUSS problem for which the row-
diversity measure has been transformed in a easily intepes penalty function owing to an ARD
formulation. The trade-off between convexity of the prabland the sparsity of the solution has been
transfered fronmp, ¢ to r.

From a Bayesian perspective, we can interpretdhas the diagonal term of the covariance matrix
of a Gaussian prior over the row norm distribution. This ipi¢glly the classical Bayesian Automatic
Relevance Determination approach as proposed for instarthe following works [25], [29]. This novel
insight on the ARD interpretation of, ,(C) clarifies the connection between the M-FOCUSS of Cotter
et al. [{] and the M-SBL of Wipf et al[[35] for any value pf< 1. In their previous works, Wipf et al.
have proved that these two algorithms were related wher). Here, we refine their result by enlarging
the connection for other values pf In a frequentist framework, we can also note that Grand\lel.
has proposed a similar approach for feature selection iergéred linear models and SVN_15], 16].

This particular ARD-based formulation of the problef (4hcstill be simplified by exploiting the

specific relation between the Frobenius norm and/thaorm. Indeed, we can further expand equation

(@3), to yield

min 5,4 (lls; = @el + A5, %)
st Y, <1 (14)
d; >0, Vi
From this formulation, we can exhibit the relation betweewchesingle signal approximation problem

and the sparsity-inducing ARD parameters. Indeed, if wesiclar fixed parameters; then the problem
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is equivalent tol, least-square regression problems where the relevancebfatamsy; is weighted by
d;. Then, we can interpret again the problem as several lgastrs problems which are tied together by

the sparsity profile induced by the ARD parameters.

IV. REWEIGHTED M-BASIS PURSUIT

This section introduces an iterative reweighted M-Basiss#it (IrM-BP) algorithm and proposes two
ways of setting these weights. By using the first weightinigesee, we are able to provide an iterative
algorithm which solves problen](4) when< 1 and ¢ = 2. The second weighting scheme makes clear

the strong relation between M-SBL and our work.

A. Reweighted algorithm

Recently, several works have advocated that sparse appat&ns can be recovered through iterative
algorithms based on a reweightéd minimization [38], [3], [4]. Typically, for a single signalase, the

idea consists in iteratively solving the following problem
1
min §Hs — ®c|2 4+ Z zilcil
(2

wherez; are some positive weights, and then to update the positivghtgez; according to the solution
c*. Besides, providing empirical evidences that reweightedninimization yields to sparser solutions
than a simple/; minimization, the above cited works theoretically supprch claims. These results
for the single signal approximation case suggest that irstimelltaneous sparse approximation problem,

reweighted M-Basis Pursuit would lead to sparser soluttbas the classical M-Basis Pursuit.

Our iterative reweighted M-Basis Pursuit is defined as wedloWe iteratively solve until convergence

the optimization problem

1 2
H%niﬂs—‘I>CHF+)\ZZZ‘”CZ'7.”2 (15)

where the positive weight vectardepends on the previous iterdf”~1). In our case, we will consider

the following weighting scheme

Y= 1 Vi (16)

U™V g + &)

T,
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Where{cg,’?_l)} is the i-th row of C(®~1), » a user-defined positive constant and small regularization
term that avoids numerical instabilities and prevents fteading an infinite regularization term fef .as
soon aSCgL_l) vanishes. This is a classical trick that has been used ftarine by Candes et al.l[3] .
Note that for any positive weight vectar problem [I5) is a convex problem that does not present local
minima. Furthermore, it can be solved using our iterativen&ing algorithm by simply replacing with

Ai = A+ z;. Such a scheme is similar to tleaptive lassalgorithm of Zou et al.[[38] but uses several

iterations and addresses the simultaneous approximataiiem.

B. Relation with M-FOCUSS

The IrM-BP algorithm we proposed above can also be intezgras an algorithm for solving problem
@) when0 < p < 1. Indeed, similarly to the reweightedd scheme of Candeés et al.l[3] or the one-
step reweighted lasso of Zou et dl.[39], our algorithm féalighe class of majorize-minimize (MM)
algorithms [18]. MM algorithms consists in replacing a diffit optimization problem with a more easier
one, for instance by linearizing the objective function,dmyving the resulting optimization problem and
by iterating such a procedure.

The connection between MM algorithms and our reweightedmehcan be made through linearization.
In effect, in our case, sincd,» is concave inc;. for 0 < p < 1, a linear approximation off, »(C)

aroundC(™~1) yields to the following majorizing inequality

_ D ~1

Tp2(C) < Jpo(C) 47— (e[| = llef” ™)
i ||Ci,. 2

then for the minimization step, replacing in problefh (4). with the above inequality and dropping
constant terms lead to our optimization probldml (15) witprapriately chosen; andr. Note that for
the weights given in equatiofb{l16),= 1 corresponds to the linearization of a log penditylog(||c;..||)
whereas setting = 1—p corresponds to 4, penalty () < p < 1). According to the convergence properties
for MM algorithms towards a local minimum of their objectifienction [18], we can state that our IrM-

BP algorithm converges towards a local minimum of problEjm(th p andr being appropriately related.

Note that probleni{d5) can also be interpreted as a manesiaete determination of matri’s rows.
Indeed, compared to the ARD formulation given in equati@f),(the weights:; can be considered as
pre-fixed weights that determine the importance of rgwin the approximation. Furthermore, it is clear

that for a pairC*, d* that minimizes problem{14)C* also minimizes problenf{15) for
A
7 d:
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C. Relation with M-SBL

Very recently, Wipf et al.[[34] have proposed some new insigim Automatic Relevance Determination
and on Sparse Bayesian Learning. They have shown that, éovebtor regression case, ARD can be
achieved by means of iterative reweightgdninimization. Furthermore, in that paper, they have skedch
an extension of such results for matrix regression in whidRDAis used for automatically selecting
the most relevant covariance components in a dictionaryog@igance matrices. Such an extension is
more related to learning with multiple kernels in regressas introduced by Girolami et al._[13] or
Rakotomamonjy et all [26] although some connections withufianeous sparse approximation can be
made. Here, we build on the works on Wipf et al.1[34] and giVetted details about how M-SBL and

reweighted M-BP are related.

Recall that the cost function minimized by the M-SBL of Wigfa. [35] is
L
L(d) = Llog || + > _si%; s (17)
j=1
whereY; = 0?1 + ®D®* andD = diag(d). Now, let us defingj*(z) as the conjugate function of the
concavelog |Y;|. Since, that log function is concave and continuousl[&jﬁ, according to the scaling

property of conjugate functions we have [2]

L -log|¥| = zIél]}i{II\I/I z'd — Lg* (%)

Thus, the cost functiorf(d) in equation [[II7) can then be upper-bounded by
z L
£(d,z) 2 ztd — Lg* <Z> +3 sis s (18)
j=1

Hence when optimized over all its paramete$d, z) converges to a local minima or a saddle point of
(@I4). However, for any fixedl, one can optimize ovex and get the tight optimal upper bound. If we
denote az* such an optimak for any fixedd', sinceL - log |%;| is differentiable, we have, according

to conjugate function properties, the following closednioof z*
z* = L-Viog|%|(d") = diag @', ®) (19)

Similarly to what proposed by Wipf et al., Equatiois](18) afi) suggest an alternate optimization

scheme for minimizingZ(d, z). Such a scheme would consist, after initializationzab some arbitrary
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vector, in keeping: fixed and in computing
L
df = argmin L. (d) L2d+) sinls; (20)
j=1
then to minimize£(d', z) for fixed df, which can be analytically done according to equatlon (T8)s
alternate scheme is then performed until convergence te sbim
Owing to this iterative scheme proposed for solving M-SBle san now make clear the connection
between M-SBL and our iterative reweighted M-BP accordimghie following lemma. Again this is an
extension to the multiple signals case of a Wipf's lemma.

Lemma 3:The objective function in equatiof{20) is convex and can heiwalently solved by

computing

* : 1
C* = argmin £.(C) = 3|8 ~ C +0* > = cs. | (21)

and then by setting

—1/2 .
&=z e Vi

Proof: Convexity of the objective function in equatidn]20) is sifdforward since it is just a sum

of convex functionsl]2]. The key point of the proof is basedtioa equality
1 1 c
i s = — min |s; — Bejl5+ = (22)
which proof is given in appendix. According to this equalitye can upper-bound . (d) with
1 .
L(d,C) =2'd+ ) s = Peyli+ 2 (23)
J 2¥)

The problem of minimizingC.(d, C) is smooth and jointly convex in its paramet&sandd and thus
an iterative coordinatewise optimization scheme (iteedyi optimizing overd with fixed C and then
optimizing overC with fixed d ) yields to the global minimum. It is easy to show that for ameéi C,

the minimal value ofL(d, C) with respects tal is achieved when

~1/2
i

di =z HC%H Vi

Plugging these solutions back infa123) and multiplying the resulting objective function with? /2
yields to

1 1/2
L:(C) = 52 lIsj = ®e B +0 D 5" e (24)
7 %
Making the relation betweefy, and Frobenius norms concludes the proof. |
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Fig. 2. lllustration of the lterative shrinking algorithrorf M-BP. Example of variation along the iterations of : lefipjective
value, middle) rownorni|c;.. ||, right) F-measure. For this example, the dictionary siz&lisvhile 10 active elements have been

considered in the true sparsity profile.

Minimizing £.(C) boils down to minimize the M-BP problem with an adaptive ggna; = o2 - zil/2
on each row-norm. This latter point makes the alternateropétion scheme based on equatibd (19) and
(20) equivalent to our iterative reweighted M-BP for whickightsz; would be given by equatiofi{lL9).

The impact of this relation between M-SBL and reweighted FliB essentially methodological. Indeed,
its main advantage is that it turns the original M-SBL optiation problem into a serie of convex
optimization problems. In this sense, our iterative rewtdg algorithm can again be viewed as an
application of MM approach for solving probleri{17). Indeeek are actually iteratively minimizing
a proxy function which has been obtained by majorizing eacmtof equation[{17). This MM point
of view offers us the convergence of our iterative algorittuwards a local minimum of equatioh{17).
Convergence for the single signal case using other arguwrers also been shown by Wipf et al.|[34].
Note that similarly to M-FOCUSS, the original M-SBL algdnit based on EM approach suffers from
presence of fixed-points (wheh = 0). Hence, such an algorithm is not guaranteed to convergartsy

a local minimum of [(II7). This is then another argument forfgmréng IrM-BP.

V. NUMERICAL EXPERIMENTS

Some computer simulations have been carried out in ordevaluate the algorithms proposed in the

above sections. Results that have been obtained from theserital studies are detailed in this section.

A. Experimental protocol

In order to quantify the performance of our algorithms andipare them to other approaches, we

have used simulated datasets with different redundar%i,esumberk of active elements and numbgér
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Fig. 3. lllustration of the Iterative reweighted M-BP apgali for J%Q penalty. Example of variation along the iterations of :
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of signals to approximate. The dictionary is basedMnvectors sampled from the unit hypersphere of
RY. The true coefficient matrixC has been obtained as follows. The positions of kheon-zero rows

in the matrix are randomly drawn. The non-zero coefficiefit€are then drawn from a zero-mean unit
variance Gaussian distribution. The signal ma8ixs obtained as in equatiohl (1) with the noise matrix
being drawn i.i.d from a zero-mean Gaussian distributiod @ariance so that the signal-to-noise ratio
of each single signal i$0 dB.

Each algorithm is provided with the signal mat@xand the dictionary® and will output an estimate
of C. Since our objective is to evaluate whether the sparsityilprof the coefficient matrix has been
recovered, we use as a performance criterion the F-meastweén the row support of the trde* and
the estimateC. In order to take into account numerical precisions, we logerthe row support definition

as

rowsupgC) ={i € [1--- M]:|lc.| < p}

where i is a threshold coefficient that has been set by defaulteto'® in our experiments. From
rowsupgC) and rowsuppC*) respectively the estimated and true sparsity profile, Bietj Recall and

F-measure are computed as X
_ |rowsupgC) N rowsupgC)|

Prec ~
[rowsupgC)|
Recall— [rowsupgC) N rowsuppC)|
[rowsupgC)|
2 - Prec: Recall
F-measure=

(Prec+Recall
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Note that Precision and Recall are equal teespectively when the estimated sparsity profile is a subset
of the true sparsity profile and when the true sparsity pradile subset of the estimated one. F-measure
is equal tol when the estimated sparsity profile coincides exactly with ttue one.

In the experiments presented below, we consider empirioalergence of the iterative shrinking
algorithm when the KKT conditions given in equatidd (7) asdisfied up to a tolerance af.001.
For IrM-BP, we have usead = 1 andr = 0.5 which respectively corresponds to a log penalty and
M-FOCUSS withp = 0.5. ¢ has been set t0.01 and we stop our lterative reweighted M-BP when
|c) — ¢, < 1e~® or when the maximal number of fifty iterations are reachede MhSBL
algorithm we used is the one proposed by Wipf etlall [35] aradlavle on his website. We have used the
fast EM updates which according to Wipf et al. provides a gwade-off between speed and precision.

The M-OMP is the one described by Tropp et ALI[32].

B. lllustrating our M-BP and IrM-BP algorithms

This first experimental results aim at illustrating how ourB® and Ir-MBP algorithms work. As an
experimental set-up, we have uskfi= 50, N = 25, L = 3 and the numbek of active elements in the
dictionary is equal tal0. A has been chosen so as to optimize the sparsity profile recdvgice we
just want to illustrate how the algorithm works, we think ttlsaich a default value of is sufficient for
making our point.

Figure[2 respectively plots the variations of the objectiadue, the row normgc; .|| and the F-
measure for our iterative shrinking algorithm. For this rapée, many iterations are needed for achieving
convergence. However, we can note that the objective vadaeedses rapidly whereas the row-support
(middle plot) of C first increases then many of these row norms get shrinked rm E®llowing this
trend, the F-measure slowly increases before yielding samigximal value. In this example, we can
see that we have more non-zero rows than expected. Hijurevdsshe same plots resulting from the
same approximation problem but using Iterative reweigihieBP with a penaltyJ%Q. The first iteration
corresponds to a single pass of M-BP. After the second iterathe objective value already seems to
have reached its optimal value. However the next iteratgtifishelp in shrinking to zero some undesired
coefficients and thus in improving sparsity recovery. Fig gfroblem, IrM-BP is able to perfectly recover

the sparsity profile while M-BP does not.

We have also empirically assessed the computational caatyplef our algorithms (we used = 1

for IrM-BP). We varied one of the different parameters (dicary size M, signal dimensionalityVN,
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Fig. 4. Estimation of the empirical exponent of the compatatl complexity of different algorithms (M-BP, IrM-BP, N8BL
and M-FOCUSS). For the two last algorithms, we have used tde @vailable from Wipf's website. The top plots give the
computation time of the algorithms with respects to theidiiztry size. On the top left, the signal dimensidh has been
kept fixed and equal t@28 whereas on the right one, the signal dimension is relatetieadictionary size. The bottom plots

respectively depict the computational complexity withpexts to the number of signals to approximate and the dimeakty
of these signals.

number of signald. ) while keeping the others fixed. All matric&s, C andS are created as described
above. Experiments have been run on a Pentium D-3 GHz with 40GRAM using Matlab code.

The results, averaged ovéf trials, in Figure[## show the computational complexity of ttiéerent
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algorithms for different experimental settings. Note that have also experimented on the M-SBL and
M-FOCUSS computational performances owing to the code qff\&f al. [35]. All algorithms need one
hyperparameter to be set, for M-SBL and M-FOCUSS, we were @blchoose the optimal one since
the hyperparameter is dependent on a known noise level. loalgorithms, the choice ok is more
critical and has been manually set so as to achieve optintedrpeances. Note that our aim here is not
give an exact comparison of computational complexity of #tgorithms but just to give an order of
magnitude of these complexities. Indeed, careful compasisare difficult since the different algorithms
do not solve the same problem and do not use the same stopjiimpo.

We can remark in Figurd 4 that with respects to the dictiosag, all algorithms present an empirical
exponent betweem.4 and2.4. Interestingly, we have theoretically evaluate the coxipleof M-BP as
guadratic whereas we measure a sub-quadratic complex@ysuppose that this happens because at each
iteration, only the non-optimay; .’s are updated and thus the number of updates drasticallycescalong
iterations. We can note that among all approaches, M-BPeidetbs demanding algorithm while IrM-BP
is the less efficient one. This is clearly the cost to be pardtfading the resolution of a non-convex
problem against several convex ones. Note however, thatcthnplexity can be controlled by reducing
the number of iterations while preserving good sparsityovecy. This is the case of many weighted
Lasso algorithms which use only two iterationsi[39[.1[38].

The difference between the two top plots in Figlite 4 shows #igorithm complexities not only
depend on the dictionary size but also on the redundancyeofiittionary. Indeed, on the right plot,
signal dimensionality is related to the dictionary sized(nedancy is kept fixed) while on the left plot,
the signal size is fixed. This results in a non-uniform véoiatof the complexities which is difficult to
understand. It is not clear if it is related to the problenfidifity or is intrinsic to algorithms. Further
researches are still needed to clarify this point.

Bottom left plot of Figurd ¥ depicts the complexity dependenf all algorithms with respects to the
number of signal to approximate. The results we obtain isgie@ment with theoretical exponents since
for M-BP and IrM-BP we have exponents of approximatélyhile the other algorithm complexities
do not depend or.. On the bottom right, we have evaluated these exponents reshects to signal
dimension. Here again, we have results in accordance todties expectations : M-BP and IrM-BP have
lower complexities than M-SBL and M-FOCUSS. Furthermore, note that IrM-BP has unexpectedly
a very low exponent complexity. We assume that this is dudedfdct that as dimension increases, the

approximation problem becomes easier and thus needs IBB Nerations.
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Fig. 5. Results comparing performances of different siamdbus sparse algorithms. from left to right, we have vatiied
number of generating functiors, the dictionary sizeM and the number of signal to approximate The default setting is
M =50, N=25k=10and L = 3.

C. Comparing performances

The objective of the next empirical study is to compare pemnces of M-BP, IrM-BP (with- = 0.5
andr = 1), M-SBL and M-OMP for different experimental situationshd baseline context i3/ = 50,

N =25, k =10 and L = 3. Note that for the M-OMP, we stop the algorithm after exaétliterations.
For this experiment, we did not performed model selectionihstead tried several values afand o
and chosen the ones that maximize performances.

Figure[® shows, from left to right, the performance averagest 50 trials, on sparsity recovery when
k increases fron2 to 20, whenM goes from25 to 150 and whenl, = 2, - - - | 8. We can note that, M-BP
performs worse that IrM-BP. This is a result that we couldested in views of the literaturé [B8],1[3]
which compare Lasso and reweighted Lasso, the single sapmbximation counterpart of M-BP and
IrM-BP.

For all experimental situations, we remark that IrM-BP andSBL perform equally well. Again,
this similar performances can easily be understood becalufee strong relation between reweighted
M-BP and M-SBL as explained in Subsection 1V-C. When comsdeM-OMP, although we suppose
thatk is known, we can see that the M-OMP performance is not as getldose of M-SBL and IrM-BP.

VI. CONCLUSIONS AND PERSPECTIVES

This paper aimed at contributing to simultaneous sparseakigpproximation problems on several

points. Firstly, we have proposed an algorithm for solving multiple signal counterpart of Basis Pursuit
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Denoising named M-BP. The algorithm we introduced is ra#fécient and simple and it is based on
a soft-threshold operator which only needs matrix multgtiions. Then, we have considered the more
general non-convex M-FOCUSS problem for which M-BP is a &lerase. We have shown that M-
FOCUSS can also been understood as an ARD approach. Indedthwe transformed the M-FOCUSS
penalty in order to exhibit some weights that automaticadfluence the importance of each dictionary
elements in the approximation. Finally, we have introdueediterative reweighted M-BP algorithm
for solving M-FOCUSS. We also made clear the relationshipvben M-SBL and such a reweighted
algorithm. We also provided some experimental results shatv how our algorithms behave and how
they compare to other methods dedicated to simultaneousesppproximation. In terms of performances
for sparsity profile recovery, our algorithms does not neagly perform better than others approaches
but they are provided with interesting features such asextwand convergence guarantees.

Owing to this clear formulation of the problem and its nuroally reproducible solution (due to
convexity), our perspective on this work is now to theomdtic investigate the properties of the M-
BP and IrM-BP solutions. We believe that the recent works e ltasso and related methods can be
extended in order to make clear in which situations M-BP aniliBP achieve consistency. Further
improvements of algorithm speed can also be interestindpaotackling very large-scale approximation

becomes tractable.
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VII. APPENDIX
A. Proof of Lemma 2

By definition, a matrixG lies in 0.J; »(B) if and only if for every matrixZ, we have
J12(Z) > J12(B) +(Z - B,G)p (25)
If we expand this equation we have the following equivaleqiression

Z llzi,[l2 > Z 16, ll2 + Z(zz,- —bi\ 9i) (26)

From this latter equation, we understand that, since bigthand the Frobenius inner product are row-
separable, a matri& € 0.J; 2(B) if and only if each row ofG belongs to the subdifferential of thg

norm of the corresponding row as.
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Indeed, suppose th&k is so that any row ofG belongs to the subdifferential of thg norm of the

corresponding row oB. We thus have for any row
vz, |lzlla = |[bi ll2 + (z = b3, gi,.) (27)

A summation over all the rows then proves th@t satisfies equation (P6) and thus belongs to the
subdifferential of.J; »(B).

Now, let us show that a matri& for which there exists a row that does not belong to the stdrdiftial
of the ¢, norm of the corresponding row d can not belong to the subdifferential df »(B). Let us

considerg; . the i-th row of G, since we have supposed that ¢ 0|b;..||2, the following equation holds

Jzo st lzoll2 < |[bi, |2 + (z — bi,., gi)

Now let us construcZ so thatZ = B except for thei-th row wherez; . = zy. Then it is easy to show
that this matrixZ does not satisfy equatiof{26), which means Batloes not belong t@.J; 2(B). In
conclusion, we ged.J; »(B) by applying the/; norm subdifferential to each row d. And it is well

known [1] that
{g e RY: ||gll2 < 1} ifb=0
obll. =1 . (28)
o otherwise

B. Proof of equation[{22)

We want to show that at optimality which occurs@t, we have

1
-1
si%; s = ;sﬁ-(sj - ®CY)

which is equivalent, after factorizing witf, to show that
o’s; = Y8, — ¥, ®C*
This last equation can be proved using simple algebra
Sis; — S ®C = o°s; + 8DP's — (0’1 + $DP")PC*
= o?%s; + ®D®'s — ®(0*] + DP'®)C*
= o’s; + PD®'s — PDP's

— 524
= 078;
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